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ON A MIXED BOUNDARY VALUE PROBLEM
INVOLVING THE p-LAPLACIAN

D. AVERNA - S. M. BUCCELLATO - E. TORNATORE

In this paper we prove the existence of infinitely many solutions for
a mixed boundary value problem involving the one dimensional p-Lapla-
cian. A result on the existence of three solutions is also established. The
approach is based on multiple critical points theorems.

1. Introduction

We want to study the following mixed boundary value problem involving the
one-dimensional p-Laplacian{

−(r|u′|p−2u′)′+ s|u|p−2u = λ f (t,u) in I =]a,b[
u(a) = u′(b) = 0

(RDλ )

where p > 1, λ is a positive parameter, f : [a,b]×R→ R is a L2-Carathéodory
function and r,s ∈ L∞([a,b]) such that

r0 := ess inf
t∈[a,b]

r(t)> 0, s0 := ess inf
t∈[a,b]

s(t)≥ 0.

In this paper we generalize the results obtained in [1] and [6] with p = 2.
Our main tool to investigate the existence of infinitely many solutions for

mixed boundary value problems is the infinitely many critical points theorem
due to Ricceri ([7]). Here, we recall it as given in [3].
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Theorem 1.1. (see [7, Theorem 2.5] and [3, Theorem 2.1]) Let X be a reflex-
ive Banach space, Φ : X → R be a continuously Gâteaux differentiable, coer-
cive and sequentially weakly lower semicontinuous functional, Ψ : X → R be
sequentially weakly upper semicontinuous and continuously Gâteaux differen-
tiable functional.

Put, for each r > infX Φ

ϕ(r) := inf
u∈Φ−1(]−∞,r[)

supv∈Φ−1(]−∞,r[) Ψ(v)−Ψ(u)

r−Φ(u)
, (1)

γ := liminf
r→+∞

ϕ(r), δ := liminf
r→(infX Φ)+

ϕ(r).

One has

(α) For every r > infX Φ and every λ ∈
]
0, 1

ϕ(r)

[
, the restriction of the func-

tional Φ− λΨ to Φ−1(]−∞,r[) admits a global minimum, which is a
critical point (local minimum) of Φ−λΨ in X.

(β ) If γ < ∞ then, for each λ ∈]0, 1
γ
[, the following alternative holds: either

(β1) Φ−λΨ possesses a global minimum, or

(β2) there is a sequence {un} of critical points (local minima) of Φ−λΨ

such that limn→+∞ Φ(un) = +∞.

(ζ ) If δ <+∞ then, for each λ ∈]0, 1
δ
[, the following alternative holds: either

(ζ1) there is a global minimum of Ψ which is a local minimum of Φ−λΨ,
or

(ζ2) there is a sequence {un} of pairwise distinct critical points (local
minima) of Φ− λΨ, with limn→+∞ Φ(un) = infX Φ which weakly
converges to a global minimum of Φ.

Now, we recall a result which ensures the existence of three critical points;
the result has been obtained in [5], it is a more precise version of theorem 3.2 of
[4]

Theorem 1.2. (see [5, Theorem 3.6] ) Let X be a reflexive real Banach space,
Φ : X → R be a continuously Gâteaux differentiable, coercive and sequentially
weakly lower semicontinuous functional whose Gâteaux derivative admits a
continuous inverse on X∗, Ψ : X → R be a continuously Gâteaux differentiable
functional whose Gâteaux derivative is compact. Assume that

Φ(0) = Ψ(0) = 0

and that there exist r ∈ R and ū ∈ X, with 0 < r < Φ(ū), such that
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(a1)
supΦ(u)≤r Ψ(u)

r < Ψ(ū)
Φ(ū) ;

(a2) for each λ ∈Λr :=
]

Φ(ū)
Ψ(ū) ,

r
supΦ(u)≤r Ψ(u)

[
the functional Φ−λΨ is coercive.

Then, for each λ ∈ Λr, the functional Φ−λΨ has at least three distinct critical
points in X.

2. Preliminaries

Now, consider problem (RDλ ).
We recall that a function f : [a,b]×R→R is a L2-Carathéodory function if

(·) t→ f (t,x) is measurable for every x ∈ R;

(·) x→ f (t,x) is continuous for every t ∈ [a,b];

(·) for every ρ > 0, sup|x|≤ρ | f (t,x)| ∈ L2([a,b]).

Put
F(t,x) :=

∫ x

0
f (t,ξ )dξ ∀(t,x) ∈ [a,b]×R,

k :=
2(p+1)r0

2p(p+1)||r||∞ +(p+2)(b−a)p||s||∞
, (2)

where
||r||∞ := esssup

t∈[a,b]
r(t), ||s||∞ := esssup

t∈[a,b]
s(t)

A := liminf
ξ→+∞

∫ b
a max|x|≤ξ F(t,x)dt

ξ p , B := limsup
ξ→+∞

∫ b
a+b

2
F(t,ξ )dt

ξ p , (3)

λ1 :=
r0

p(b−a)p−1kB
, λ2 :=

r0

p(b−a)p−1A
. (4)

where we suppose λ1 = 0 if B = ∞, and λ2 =+∞ if A = 0.
Denote by X the Sobolev space {u ∈W 1,p([a,b]), u(a) = 0} endowed with
the following norm

||u|| :=
(∫ b

a
r(t)|u′(t)|pdt +

∫ b

a
s(t)|u(t)|pdt

) 1
p

.

We observe that the norm || · || is equivalent to the usual one.
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A function u : [a,b]→ R is said a generalized solution to problem (RDλ ) if
u ∈C1([a,b]), r|u′|p−2u′ ∈ AC([a,b]), u(a) = u′(b) = 0, and

−(r(t)|u′(t)|p−2u′(t))′+ s(t)|u(t)|p−2u(t) = λ f (t,u)

for almost every t ∈ I =]a,b[.
A function u ∈ X is said a weak solution of problem (RDλ ) if∫ b

a
r(t)|u′(t)|p−2u′(t)v′(t)dt +

∫ b

a
s(t)|u(t)|p−2u(t)v(t)dt =

= λ

∫ b

a
f (t,u(t))v(t)dt ∀v ∈ X .

Standard methods show that generalized solutions to problem (RDλ ) coincides
with weak ones when f is a L2-Caratheodory function.

It is well known that (X , || · ||) is compactly embedded in (C0([a,b]), || · ||∞)
and one has

||u||∞ ≤ p

√
(b−a)p−1

r0
||u|| ∀u ∈ X . (5)

In order to study problem (RDλ ), we will use the functionals Φ, Ψ : X →R
defined by putting

Φ(u) :=
1
p
||u||p, Ψ(u) :=

∫ b

a
F(t,u(t))dt ∀u ∈ X , (6)

Φ is continuous and convex, hence it is weakly sequentially lower semicontinu-
ous. Moreover Φ is continuously Gâteaux differentiable and its Gâteaux deriva-
tive admits a continuous inverse. On the other hand, Ψ is Gâteaux differentiable
with compact derivative and one has

Φ
′(u)(v) =

∫ b

a
r(t)|u′(t)|p−2u′(t)v′(t)dt +

∫ b

a
s(t)|u(t)|p−2u(t)v(t)dt,

Ψ
′(u)(v) =

∫ b

a
f (t,u(t))v(t)dt ∀v ∈ X ,

moreover
Φ(0) = Ψ(0) = 0.

A critical point for the functional Φ−λΨ is any u ∈ X such that

Φ
′(u)(v)−λΨ

′(u)(v) = 0 ∀v ∈ X .

We can observe that each critical point for functional Φ−λΨ is a general-
ized solution for problem (RDλ ).
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3. Main results

Our main results are the following theorems

Theorem 3.1. Assume that

(h1)
∫ a+b

2
a F(t,ξ )dt ≥ 0 ∀ξ ≥ 0,

(h2) liminf
ξ→+∞

∫ b
a max|x|≤ξ F(t,x)dt

ξ p < k limsup
ξ→+∞

∫ b
a+b

2
F(t,ξ )dt

ξ p

where k is given by (2).

Then, for each λ ∈]λ1,λ2[, where λ1, λ2 are given by (4), the problem (RDλ )
has a sequence of weak solutions which is unbounded in X.

Proof. Our goal is to apply Theorem 1.1. Consider the Sobolev space X and the
operators defined in (6). Pick λ ∈]λ1,λ2[.

By using (3), let {cn} be a real sequence such that limn→+∞ cn =+∞ and

lim
n→+∞

∫ b
a max|ξ |≤cn F(t,ξ )dt

c2
n

= A.

Put rn =
r0

p(b−a)p−1 cp
n for all n ∈ N, taking into account (5), one has ||v||∞ ≤ cn

for all v ∈ X such that ||v||p ≤ prn.
Hence, for all n ∈ N, one has

ϕ(rn) = inf
u∈Φ−1(]−∞,rn[)

supv∈Φ−1(]−∞,rn[) Ψ(v)−Ψ(u)

rn−Φ(u)

≤
sup||v||p<prn

∫ b
a F(t,v(t))dt

rn

≤
∫ b

a max|ξ |≤cn F(t,ξ )dt
rn

=
p(b−a)p−1

r0

∫ b
a max|ξ |≤cn F(t,ξ )dt

cp
n

therefore, since from (h2) one has A < ∞, we obtain

γ := liminf
n→∞

ϕ(rn)≤
p(b−a)p−1

r0
A < ∞.

Now, we claim that the functional Iλ = Φ−λΨ is unbounded from below.
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By using (3), let {dn} be a real sequence such that limn→∞ dn =+∞ and

lim
n→+∞

∫ b
a+b

2
F(t,dn)dt

dp
n

= B. (7)

For all n ∈ N define

ωn(t) :=
{ 2dn

b−a(t−a) if t ∈ [a, a+b
2 [

dn if t ∈ [ a+b
2 ,b].

Clearly ωn ∈ X and

||ωn||p ≤
dp

n

2(p+1)(b−a)p−1 (2
p(p+1)||r||∞ +(p+2)(b−a)p||s||∞) (8)

therefore

Φ(ωn)−λΨ(ωn) =
1
p
||ωn||p−λ

∫ b

a
F(t,ωn(t))dt (9)

≤ dp
n

2(p+1)(b−a)p−1 (2
p(p+1)||r||∞+

(p+2)(b−a)p||s||∞)−λ

∫ b

a
F(t,ωn(t))dt.

Taking into account (h1), we have∫ b

a
F(t,ωn(t))dt ≥

∫ b

a+b
2

F(t,dn)dt. (10)

Then, for all n ∈ N

Φ(ωn)−λΨ(ωn)≤
dp

n

2(p+1)(b−a)p−1 (2
p(p+1)||r||∞+ (11)

(p+2)(b−a)p||s||∞)−λ

∫ b

a+b
2

F(t,dn)dt =
dp

n r0

p(b−a)p−1k
−λ

∫ b

a+b
2

F(t,dn)dt.

Now, if B < ∞, we fix ε ∈
]

r0
pλ (b−a)p−1kB ,1

[
, from (7) there exists νε ∈ N such

that ∫ b

a+b
2

F(t,dn)dt > εBdp
n ∀n > νε

therefore

Φ(ωn)−λΨ(ωn)≤
[

r0

p(b−a)p−1k
−λεB

]
dp

n ∀n > νε
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by the choice of ε , one has

lim
n→∞

[Φ(ωn)−λΨ(ωn)] =−∞.

On the other hand, if B =+∞, we fix

M >
r0

pλ (b−a)p−1k
,

from (7) there exists νM ∈ N such that∫ b

a+b
2

F(t,dn)dt > Mdp
n ∀n > νM

therefore

Φ(ωn)−λΨ(ωn)≤
[

r0

p(b−a)p−1k
−λM

]
dp

n ∀n > νM

by the choice of M, one has

lim
n→∞

[Φ(ωn)−λΨ(ωn)] =−∞.

Hence, our claim is proved.
Since all assumptions of Theorem 1.1 are verified, the functional Iλ = Φ−λΨ

admits a sequence {un} of critical points such that limn→∞ ||un|| = +∞ and the
conclusion is achieved.

Now, we point out the following consequence of Theorem 3.1

Corollary 3.2. Let f : R→ R be a nonnegative continuous function,
s ∈C0([a,b]), r ∈C1([a,b]) and put F(x) =

∫ x
0 f (ξ )dξ ∀x ∈ R. Assume that

liminf
ξ→+∞

F(ξ )

ξ p <
k
2

limsup
ξ→+∞

F(ξ )

ξ p .

Then, for each

λ ∈

 2r0

pk(b−a)p limsupξ→+∞

F(ξ )
ξ p

,
r0

p(b−a)p liminfξ→+∞

F(ξ )
ξ p


the problem {

−(r|u′|p−2u′)′+ s|u|p−2u = λ f (u) in I =]a,b[
u(a) = u′(b) = 0

possesses a sequence of pairwise distinct classical solutions.
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Remark 3.3. In Theorem 3.1 we can replace ξ → +∞ by ξ → 0+, applying
in the proof part (ζ ) of Theorem 1.1 instead of (β ). In this case a sequence of
pairwise distinct solutions to the problem (RDλ ) which converges uniformly to
zero is obtained.

Example 3.4. Put

an :=
2n!(n+2)!−1

4(n+1)!
, bn :=

2n!(n+2)!+1
4(n+1)!

for every n ∈ N, and define the nonnegative continuous function f : R→ R as
follows

f (ξ ) =

{
32(n+1)!2[(n+1)!p−n!p]

π

√
1

16(n+1)!2 −
(
ξ − n!(n+2)

2

)2 if ξ ∈
⋃

n∈N[an,bn]

0 otherwise.

By a simple computation, we obtain liminf
ξ→+∞

F(ξ )

ξ p = 0, limsup
ξ→+∞

F(ξ )

ξ p = 2p,

so

0 = liminf
ξ→+∞

F(ξ )

ξ p <
2(p+1)

e(2p(p+1)+(p+2))
=

(p+1)
2pe(2p(p+1)+(p+2))

limsup
ξ→+∞

F(ξ )

ξ p .

Hence, from Corollary 3.2, for each λ > 2p(p+1)+(p+2)
2p p(p+1) , the problem{

−(e−t |u′|p−2u′)′+ e−t |u|p−2u = λ f (u) in ]0,1[
u(0) = u′(1) = 0

has a sequence of pairwise distinct generalized solutions.

Now we point out the following result of three generalized solutions.

Theorem 3.5. Assume that there exist three positive constants c, d and ν with
c < d, ν < p and a function µ ∈ L1([a,b]) such that

(i1)
∫ a+b

2
a F(t,ξ )dt > 0 ∀ξ ∈ [0,d],

(i2)
∫ b

a max|ξ |≤c F(t,ξ )dt
cp < k

∫ b
a+b

2
F(t,d)dt

dp

where k is given by (2),

(i3) F(t,ξ )≤ µ(t)(1+ |ξ |ν)∀t ∈ [a,b] ∀ξ ∈ R.



ON A MIXED BOUNDARY VALUE PROBLEM INVOLVING THE p-LAPLACIAN 101

Then, for each

λ ∈
] r0dp

pk(b−a)p−1
∫ b

a+b
2

F(t,d)dt
,

r0cp

p(b−a)p−1
∫ b

a max|ξ |≤c F(t,ξ )dt

[
the problem (RDλ ) has at least three generalized solutions.

Proof. Our goal is to apply Theorem 1.2. Consider the Sobolev space X and the
operators defined in (6).

Now, we claim that (i2) ensures (a2) of Theorem 1.2. In fact, set
r = r0cp

p(b−a)p−1 and consider the function ū ∈ X defined by putting

ū(t) :=
{ 2d

b−a(t−a) if t ∈ [a, a+b
2 [

d if t ∈ [ a+b
2 ,b].

(12)

We observe that

pΦ(ū) =
2pdp

(b−a)p

∫ a+b
2

a
r(t)dt +

2pdp

(b−a)p

∫ a+b
2

a
(t−a)2s(t)dt +dp

∫ b

a+b
2

s(t)dt

from 0 < c < d by using the previous relation and (2) we have

0 < r < Φ(ū)<
r0dp

pk(b−a)p−1 .

In virtue of (i1) we have

Ψ(ū)≥
∫ b

a+b
2

F(t,d)dt.

Therefore, one has

Ψ(ū)
Φ(ū)

≥ p(b−a)p−1k
r0dp

∫ b

a+b
2

F(t,d)dt. (13)

From (5) if Φ(u)≤ r, we have maxt |u(t)| ≤ c therefore

sup
Φ(u)≤r

Ψ(u)≤
∫ b

a
max
|ξ |≤c

F(t,ξ )dt. (14)

Hence, owing to (13), (14) and (i2) condition (a1) of Theorem 1.1 is verified.
We prove that the operator Φ−λΨ is coercive, in fact, for each u ∈ X , by

using (i3) one has

Φ(u)−λΨ(u) =
1
p
||u||p−λ

∫ b

a
F(t,u(t))dt ≥
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1
p
||u||p−λ

∫ b

a
µ(t)(1+ |u(t)|ν)dt ≥

1
p
||u||p−λ

∫ b

a
µ(t)dt−λ

∫ b

a
µ(t)|u(t)|νdt

and, by using (5)∫ b

a
|µ(t)||u(t)|νdt ≤ ||u||ν∞

∫ b

a
|µ(t)|dt ≤

(
(b−a)p−1

r0

) ν

p

||u||ν ||µ||1,

we have

Φ(u)−λΨ(u)≥ 1
p
||u||p−λ ||µ||1−λ

(
(b−a)p−1

r0

) ν

p

||u||ν ||µ||1 (15)

hence condition (a2) of Theorem 1.2 is verified. All assumptions of Theorem
1.2 are satisfied and the proof is complete.

Now, we point out the following consequence of Theorem 3.2.

Corollary 3.6. Let f : R→ R be a nonnegative continuous function and r ∈
C1([a,b]), s ∈C0([a,b]) . Assume that there exist positive constants a, c, d and
ν , with c < d and ν < p, such that

(i1’) F(c)
cp ≤ k

2
F(d)
dp

where k is given by (2),

(i2’) F(ξ )≤ a(1+ |ξ |ν) ∀ξ ∈ R.

Then, for each λ ∈
]

2r0dp

pk(b−a)pF(d)
,

r0cp

p(b−a)pF(c)

[
the problem{

−(r|u′|p−2u′)′+ s|u|p−2u = λ f (u) in I =]a,b[
u(a) = u′(b) = 0

has at least three classical solutions.

Example 3.7. The problem

{
−(|u′|u′)′+(2+t

3 )|u|u = λ t2[2e−t2
u17(9−u2)+1] in I =]0,1[

u(0) = u′(1) = 0

admits at least three classical solutions for each λ ∈
]

128e4

7(218 + e4)
,

3e
2(e+1)

[
.

In fact, if we choose, for example, c = 1 and d = 2, hypotheses of Theorem
3.1 are satisfied.
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Remark 3.8. In ([2]), has been studied a mixed boundary problem involving
the one dimensional p-Laplacian of type{

−
(
|u′|p−2u′

)′
+ |u|p−2u = λ f (t,u) in I =]a,b[

u(a) = u′(b) = 0
.

We observe that our equation gives back that case with r = s = 1.
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