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SUMMARY. For all structures that are constituted by hetemepus materials, the meso-modelling
approach is the most rigorous since it analyzes such stescas an assembly of distinct elements
connected by joints, the latter commonly simulated by appasterface models. In particular, the
zero-thickness interface (ZTI) models are extensivelydusghose cases where the joint thickness
is small if compared to the other dimensions of the heteregem material. In ZTI models the
constitutive laws relate the contact tractions to the dispinent discontinuities at the interface, but
in many cases the joint response depends also on intereséstrand strains within the bulk material.
In this sense the interphase model represents an enhartagfitenZTI because is able to introduce
the effect of internal stresses into the analysis. Pagticattention is spent to the definition of a
damage model in order to describe the propagation of a faatside the interphase element. The
damage model is developed in a thermodinamically contextléme stress applications.

1 INTRODUCTION

The mechanical response of all those structures that astittdad by heterogeneous materi-
als is dependent by their microstructure and by all thecstatd kinematic phenomena occurring in
each constituent and at their joints. Material degradaliomto nucleation, growth and coalescence
of microvoids and microcracks is usually accompanied bgtdaleformations that cause strain soft-
ening and induced anisotropy.
The mesoscopic approach is by now the most diffused techrtigstudy this kind of structures,
because it overcomes the problems associated with thegstimplifications that have to be intro-
duced, for example, when the macroscopic approach is apgheparticular, with the mesoscopic
approach all the material constituents are modelled iddafly and their interactions are regulated
by using appropriate devices able to reproduce the inelasitnomena that usually occur at the
physical interfaces. In literature, these mechanicalasvare generally called contact elements,
normally distinguished between link elements, thin lajenents and zero-thickness interface ele-
ments. Among them, in the last decades interface elemewntsiegen applied in several engineering
applications due to their simple formulation and to thegieass to be implemented in finite element
codes [1]-[6].

The interface constitutive laws are expressed in terms pfao tractions and displacement
discontinuities which are considered as generalizedgattins. In order to model the nonlinear
behaviour caused by plastic deformations and damage @woliite constitutive laws of the inter-
face elements are formulated making use of concepts bodrbwtheory of plasticity and continuum
damage.

However, in many cases the structural response depend®mlsdernal stresses and strains
within the joint. It is sufficient to think to the fracture thappears in the middle of masonry blocks
caused by the horizontal tangential contact stresses bptéte mortar and the block when the
masonry assembly is subjected to a pure compressive loadeTangential stresses cannot be cap-
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tured by the classical ZTI model. Therefore, the usual agsiomused in zero-thickness interface
elements, where the response is governed by contact streg®oents may require a correction by
introducing the effect of the internal stresses into thdyaig This enhancement of the interface
element is known as interphase element, for the first timpgsed by Giambanco and b [7].

The interphase element has been formulated by authors as eongact element and introduced
in a scientific oriented finite element code. Patch tests baem carried out in elasticity to inves-
tigate the numerical performance and convergence of tieegie All the results are shown in the
paper written by Giambanco el al. [8]. In particular, in tpaper is shown how strategies such as
the Reduced Selective Integration or the Enhanced Assumneith 1ethods are necessary to avoid
shear locking effects of the model.

In this work the same interphase element is improved by dhiting an isotropic damage model
in order to describe the nonlinear response due to the éwolof fractures inside the interphase.
The basic relations of the interphase model are reporte@dtich 2 for seek of completeness. In
Section 3 the damage model adopted in this work is shown \8aitdion 4 is dedicated to numerical
applications in order to show the effectiveness of the psedanodel.

2 THE INTERPHASE MODEL.
Let us consider, in the Euclidean spagereferred to the orthonormal fram®, iy, iz, i3),
a structure formed by two adherefits, Q~ connected by a third materif@lin contact with the two
bodies by means of the two physical interfa¥sandX~ respectively, as in Fig. 1.

Figure 1: (a) Mechanical scheme of a third body iterposed/&en two adherents; (b) Interphase
mechanical scheme

It is assumed that the thicknes®f the joint is small if compared with the characteristic dim
sions of the bonded assembly.

The boundary of the two adherents is divided in the two paftsaindI'i", where kinematic and
loading conditions are specified respectively.

The joint interacts with the two adherents through the feifg traction components:

tt =tfe, +ties +ties 1)

which can be considered as the external surface loads fouitite
In Eg. 1ey, e; andes are the unit vectors of the local reference system, witbriented along



the normal to the middle surfa¢eand directed towards the adherént.

The joint can be regarded as an interphase model. It is asktiraethe fibers inside the inter-
phase and directed alorg are maintained rectilinear during the deformation procéssiew of
this hypothesis the interphase dieplacement fietdin be easily obtained from the displacemeht
andu~ of the interface&* andX—, thus

1 1
u(ry, r2, x3) = (2 + x;) u’ (21, 2) + (2 - 1;13) u (71, 22) (2)
with 21, z2 andx3 the Cartesian coordinates in the orthonormal frdee;, ez, e3).

Since the thickness of the joint is generally small if congobtio the characteristic dimensions of
the adherents, we can assume the strain statgform along thees direction and given by:

h/2

e(xy, x2) = Viu (z1, z2, x3) dxs. 3)

1
h
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Substituting the expression (2) we have:

e(zy, x2) = %([u]®13+13®[u])+%vs (ut +u”) (4)
where[u] = u™ —u~, Iy = {d;3} andV* is the symmetric gradient operator defined\as =
3 (V+ V7).

Let us note that in the interphase model the joint curvatgesgerated by displacement field (2)
and the related flexural effect are neglected.

Equilibrium equations are derived by applying the prineipf virtual displacements (PVD) that
asserts that the external work produced by the contactdrecéquals the internal work developed
in the joint. By applying the divergence theorem and assgrtiiaty = X+ = X, the PVD leads
to the following local equilibrium relation of the interptemodel:

h h
t+fcr~13+§divcr:O; t7+0-13+§diva:0 on X, (5)

m-c=0 onT. (6)

3 ASIMPLIFIED ISOTROPIC DAMAGE MODEL.

Respect to the ZTI model, the interphase presents the itimevaspect of decomposing the
stress state in an external and internal part. The extenealssstate, or contact tractions, are respon-
sible for the loss of adhesion at the joint-units interfasge the internal stress state dominates the
progressive damage of the bulk material.

The present work is a first attempt to describe the nonlinesterial response of the cohesive
joints making use of the interphase model. The attentioadased on the damage of the bulk mate-
rial, thus the nonlinear behaviour of the joint is causediayavolution of microcraks and microvoids
occurring in the material interposed between the adhesmdsa perfect adhesion is considered at
the physical interfaces.



The joint material is a quasi-brittle material with diffetetensile and compressive strengths.
The constitutive model adopted is a simplified isotropic dgenmodel where the global damage
parametew is a weighted combination of the damage variables in tensioand compressiow_,
thus

w=aywr +a_w_ ©)

where the weighting coefficients, anda_ are defined as functions of the principal values of the
stress tensor as follows:

X Yl
" > oyl 7 - > oyl

being(c,) and(—o,) the positive and negative parts of the principal stressoterespectively and
> |op| the sum of the absolute values of the principal stresses.

The damage constitutive model is similar to those propogéhb and Phillips [9] and Voyiadjis
and Tagieddin [10].

Under uniaxial loading damage of the bulk material is goedrhy the corresponding damage
parameter. In presence of biaxial stress state, both ¢éeanil compressive damage parameters
evolve and their contribution to the global damage is in prtpn to the values of the weighting
coefficients. The damage parametecan assume values in the rarg& w < 1, with boundaries
having the meaning of a pristine  0) and a fully damagedJ = 1) material respectively.

Following a thermodynamical approach, the Helmholtz freergy can be defined as:

®)

N (5, 53, £, wi, w,) =—-(1- w)elBe + ‘l’:{ +9, 9

DN | =

whereE is the material undamaged elastic tensois the strain vectorl; and ¥ two convex
inelastic potentials accounting for the evolution of damagtivation domains as a consequence of
tensile and compressive damage mechanisms, respectivpb{rticular,\llj andW¥ are written as:

U =—h3[&+In(1-¢&)] (10)

with £ and¢;; two internal variables used to describe the damage evalutjpandh; are material
constants.

By imposing the Clausius-Duhem inequality, the derivatfeEq. 9 with respect to all the
kinematic variables, leads to the correspondent stateiegsa
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(11)

¢t ands™ are the thermodynamic forces associated to the damagélesia, andw_.
The capability of the model to describe the different bebawvbf the material during tensile or
compressive stresses comes from the definition of two éiffieyield functions, written as:

o=t - - (12)

whereg;” andg; are the initial damage thresholds which govern the onseawfagje in tension and
compression, respectively. The two parametersandy ; , instead, define the evolution laws of the



damage domains by changing the threshold levels.
Flow rules are derived looking for the maximum value of gigsion with respect to the static
variables by means of the Lagrangian method. The Lagrangidefined as:
L, = sTon b Ta o0& - xa ks — Aol - Ay (13)
SEXg
where the dot symbolizes the time derivative of the corradpw variable and\} and \; are

lagrangian multipliers.
)\:{, A gbj and¢, have to respect the loading/unloading complementaritylit@ms:

63 <0; A >0, ¢FAT =0 (14)
Finally the following flow rules are deduced:
M=t =0, (15)

A typical uniaxial response of the model on a single Gausstgor a cyclic loading is shown in
Fig. 2. Itis clear the change of the elastic modulus durinigagiings and the different maximum
stresses in tension and compression. Itis also visibleftaet®f crack closing when stresses change
their sign.
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Figure 2: Typical uniaxial response of the model for a cyldaxding.

4 NUMERICAL APPLICATIONS.

The model presented in Sections 2 and 3 has been detailedDoagplications in order
to assess the numerical performance of the interphase eieride interphase model has been
implemented in a scientific oriented finite element code agw finite element. All numerical
applications were carried out under the hypothesis of ptamess state.

In this particular case the elastic matkixis written as

1 v 0
E= E v 1 0 (16)
0 izv
2

T 1 -2

0



with £ andv the Young's elastic modulus and Poisson'’s coefficient retspay.
The principal stress directions coincide with the printgieain directions so that the parameters
a4 anda_ can be simply obtained starting from the knowledge of thegipal strains. In particular:

_ <61 + V€2> + <EQ + 1/81> . _ <— (51 + V62)> + <— (62 + 1/81)>
ler + vea| + |ea +ver| B le1 + vea| + |ea + ver] '

a4 (17)

A trial prediction/damage correction procedure is follohet each step of the simulations.

4.1 Uniaxial compression of a brick-mortar-brick system.

The example regardes the problem of the uniaxial compnesditvo masonry blocks joined
by a mortar thin layer. The geometry of this test is illustthin Fig. 3. Two different cases have
been considered, depending on the different ratios ofielagiduli between blocks and mortar. In
the first case the blocks are characterized by an elastic lndigher than that one of mortar. In
particularE, = 10E,,. In the second case the opposite situatitn = 30E, has been considered.
Simulations were conducted under controlled displacement
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Figure 3: Scheme of the uniaxial compression test of a myduack.

In the first column of Fig. 4 the results of the first case arenshin terms of global load-
displacement curve together with the, o, andw profiles for the entire mortar layer at certain load
steps. The same kind of curves are reported in the seconthndly have a comparison with the
results of the second case.

First of all, it can be noticed how the global response of tseeably is completely different.
After an elastic initial response and a small nonlinear binathe post-peak behaviour is quite differ-
ent due to the different boundary conditions for the intag#h the figure shows a smooth softening
curve that progressively tends to zero for the first caselevehsudden fall is evident for the second
case.

In terms of stresses, when the brick is stiffer than mortarcthnfinement action provided by the
blocks leads to compressive stresses in the x-directionth©ather hand, the opposite case happens
when mortar is stiffer than bricks. Now the joint providesoat ®f confinement action on the blocks
with the result that the joint is subjected to tensile stesn the x-direction.
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Figure 4: Uniaxial compression test of a masonry block. tEiedoumn: results for the cadg, =
10E,,; second coloumn: results for the casg = 30E;,.



In particular, the behaviour of the mortar layer when it infimed by two stiffer blocks is similar
to a material in edometric conditions, while the case of atardayer confined by two softer blocks
remembers the solution of Boussinesq for a rigid body ortielasil, clearly showed by the stress
instabilities at the boundaries in the curves.

Even the evolution of damage is different in both cases. érfitst case stresses are almost equal
for each Gauss point and damage starts to develop in congmeststhe end of the elastic branch
and progressively evolves up to the value 1 causing a rexuofistresses till a null value in all the
joint.

In the second case, instead, at the beginning the stregsges with the load and tensile damage
starts to appear in the middle of the joint when tensile strai the x-direction are able to overcome
the threshold of the correspondent activation functionteAthat, starting from the two external
ends of the mortar joint, damage develops also in compnessid quickly goes to one annulling the
stresses. The crack finally evolves towards the middle ahtihe layer is fractured.

5 CONCLUSIONS

The present paper deals with the mesomodelling of heteemgenstructures by means of in-
terphase elements, that can be considered as an enhancéthertommon interface elements. The
nonlinear response of the element has been modelled bylirdireg a isotropic damage model able
to describe the different behaviours under tensile or cesgive stress state. Numerical examples
are provided to prove the effectiveness of the model to ptetliuctural response and inelastic phe-
nomena. Ongoing and future efforts are devoted to the intibah of a plastic activation function
written on the base of contact tractions in order to repredalasticity effects by the model.
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