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Abstract: Germline mutations in BRCA1/2 genes are responsible for a large proportion
 
of 

hereditary breast and/or ovarian cancers. Many highly penetrant predisposition alleles have 

been identified and include frameshift or nonsense mutations that lead to the translation of 

a truncated protein. Other alleles contain missense mutations, which result in amino acid 

substitution and intronic variants with splicing effect. The discovery of variants of 

uncertain/unclassified significance (VUS) is a result that can complicate rather than 

improve the risk assessment process. VUSs are mainly missense mutations, but also 

include a number of intronic variants and in-frame deletions and insertions. Over 2,000 

unique BRCA1 and BRCA2 missense variants have been identified, located throughout the 

whole gene (Breast Cancer Information Core Database (BIC database)). Up to 10–20% of 

the BRCA tests report the identification of a variant of uncertain significance. There are 

many methods to discriminate deleterious/high-risk from neutral/low-risk unclassified 

variants (i.e., analysis of the cosegregation in families of the VUS, measure of the 

influence of the VUSs on the wild-type protein activity, comparison of sequence 

conservation across multiple species), but only an integrated analysis of these methods can 
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contribute to a real interpretation of the functional and clinical role of the discussed 

variants. The aim of our manuscript is to review the studies on BRCA VUS in order to 

clarify their clinical relevance. 

Keywords: BRCA genes; variant; integrated models; oncogenetic counseling 

 

1. Introduction 

The identification of high penetrance alleles of the BRCA1 (MIM 113705) and BRCA2 (MIM 

600185) genes, which determine a high risk of developing hereditary breast and ovarian cancer, has 

made genetic testing an integral part of oncogenetic counseling in clinical practice [1–6]. 

Such germline mutations lead to a risk of developing breast cancer of 45% at the age of 70 in 

BRCA1 carrier women and the risk of an ovarian neoplasia of about 40% at age 70, whereas in BRCA2 

mutation carriers breast cancer risk is of 35% at age 70 and about 20% of ovarian cancer at age 70 [7]. 

The lack of mutational hotspots leads to the analysis of the entire coding sequence of the BRCA 

genes in the various hospital, research and private clinically certified genetic testing laboratories 

involved, leading to the identification of thousands of different mutations associated with the disease. 

The Breast Cancer Information Core Database (BIC database), a public archive of BRCA mutations, 

has collected the whole series of BRCA1 and BRCA2 coding variants, amounting up until now to about 

1,300 deleterious mutations in the two genes, identified from various population studies (Table 1). 

Table 1. International sites for variants of uncertain/unclassified significance (VUS) studies. 

 

Mutation nomenclature  

http://www.hgvs.org/mutnomen/ 

 

http://www.humgen.nl/mutalyzer/1.0.1/ 

http://research.nhgri.nih.gov/bic 

Co-occurence in-trans  www.dmubd.net 

Species conservation  
www.agvgd.iarc.fr/index.php 

www.ebi.ac.uk/clustalw/index.html 

In silico analysis 

 

http://www.russell.embl.de/aas/ 

http://coot.embl.de/PolyPhen 

http://www.agvgd.larc.fr 

http://blocks.fhcrc.org/sift/SIFT.html 

http://genetics.bwh.harvard.edu/pph/ 

http://www.ensembl.org/index.html 

www.uniprot.org/ 

www.expasy.ch/prosite/ 

Splice-site prediction 

Berkley Drosophila Genome project  www.fruitfly.org/seq_tools/splice.html 

NetGene2 www.cbs.dtu.dk/services/NetGene2 

Alex Dong Li's splice site finder www.genet.sickkids.on.ca/~ali/splicesitefinder.html 

GeneSplicer Web Interface www.tigr.org/tdb/GeneSplicer/gene_spl.html 

Splice Sequence Finder(Montpelier) www.umd.be/SSF 

SNP Database  www.ncbi.nlm.nih.gov/proiects/SNP/ 
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About 70–80% of the mutations identified in the BRCA genes are pathological, as they produce a 

non-functional protein. Such mutations give rise to the premature introduction of stop codons due 

either to small insertions or deletions, which result in a frameshift in the reading frame, or else to 

nonsense mutations or to alterations in the exon-intron boundaries, which lead to incorrect RNA 

transcripts. Only 6% of the missense mutations included in the BIC database are deleterious due to 

leading to a change in the amino acid residues of the functional motives of the BRCA protein. 

One percent of all the coding variants are due to large deletions or duplications in the BRCA genes. 

All these pathological variants lead to a positive genetic test, involving the identification of a mutation 

which clearly destroys the function of the protein and therefore permits physicians to program the test 

for either healthy or affected relatives, but above all, make it possible to plan prevention strategies. 

Other possible results emerging from sequence-based genetic tests are negative—where no coding 

variant is analyzed; or uncertain—when a VUS provides no information concerning the function of the 

gene and therefore offers no information regarding cancer risk. 

The main problem for physicians is the interpretation of the VUS results, which up to the present day 

amount to over 1,500 [8–10].  

During the last few years, several approaches have been proposed for the evaluation of the clinical 

relevance of these VUSs. The study and interpretation of new or rare variants involves, in fact, 

integrated studies of several different types of analyses, such as co-segregation with the disease, 

concurrence with a deleterious in trans mutation, personal and family history of cancer of the carrier, 

in silico assessment of phylogenetic conservation and severity of the protein modification in 

biochemical functional assays [9,11–14].  

First of all, these studies help to complete and clarify the involvement of a variant at the onset of the 

proband’s disease and then make it possible to attribute a high or low risk of development of breast 

and/or ovarian disease to the VUS carriers within the family.  

Deleterious changes increase cancer risk dramatically, whereas neutral polymorphic changes do not 

seem to. 

The aim of this review is to help physicians to reach a clearer understanding of the number and type 

of the parameters that may lead to a classification of the risk level in subjects who are carriers of VUS, 

in order to avoid personalized surveillance programs based on family history, focusing rather on more 

appropriate intervention strategies and prevention programs. 

2. Variants of Unknown Significance (VUSs) 

VUSs are mainly missense and splice site mutations that have no clear biological relevance. This 

group may also include intronic variant mutations, small in-frame insertions and deletions, and 

nucleotide substitutions that do not result in an amino acid change (silent variant). These mutations 

together constitute about 30% of all the variants reported in the BIC database, and their effect on the 

protein function is not clear causing a difficult classification and interpretation as deleterious versus 

neutral polymorphic classes.  

The Myriad Genetic Laboratories (Salt Lake City, UT) report that about 7% of their molecular 

diagnoses of hereditary breast/ovarian cancer are linked to VUS [8,9]. These alterations have been 

identified more commonly in the Afro-American than in the Hispanic population [15,16]. 
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It is clear that is very important to understand and interpret the functional significance of such variants. 

The first studies regarding the interpretation of the clinical significance of VUSs in BRCA1 date to 

Judkins et al., who tried to define a first and global technical approach for this [17]. In recent years, the 

same approach has been used for the interpretation of VUSs found in the BRCA2 gene [17,18]. 

Actually, one of the most active research groups in this field is the IARC Unclassified Genetic 

Variants Working Group, which aims at collecting as much information as possible from the various 

population groups with the use of database and programming facilities [14,19–24].  

3. Principal Methods of VUS Assessment 

3.1. Type and Location of VUSs  

When a missense VUS is reported, primarily it has to be identified whether the amino acid change 

is located in a functional domain of the protein. For example, BRCA1 has a well-defined RING finger 

domain at the N-terminus and BRCT repeats at the C-terminus of the protein. Many missense VUSs 

occur within the RING-finger domain of the protein and these will most probably give rise to a 

functional loss. 

On the contrary, it is more difficult to assess a pathological effect for variants in the exon-intron 

boundaries, due to their involvement in the splicing process. Analytical studies of the transcript 

product are required in order to define their effect [25].  

Mutations identified in such well conserved functional domains are considered as suspected 

deleterious, i.e. the variants for which the available evidence indicates the likelihood, but not definite 

proof, that the mutation is deleterious. Such alterations require further supporting steps in the study of 

missense VUSs, such as the amino acid conservation analysis in the species and segregation analysis in 

breast and ovarian cancer families.  

In 2006, Bonatti et al. studied six splice variants, five of which caused a completed inactivation of 

the mutant allele since they introduced a frameshift. The aberrant RNA splicing was identified in the 

probands carrying genomic variants by the BDGP (Berkeley Drosophila Genome Project) computer 

program that allows prediction of the effects of a variant on splicing efficiency by comparing the 

sequence containing the consensus splice site versus the sequence variant (Table 1). 

It has to be considered that the aberrant RNA splicing has to be supported by other analyses such as 

the genotype-phenotype correlation and the cosegregation analysis in healthy relatives, which confirms 

the pathogenicity of alleles with splicing site mutations [26]. 

Finally, the functional and clinical consequences of the splicing process can be assessed by a variety of 

bioinformatic prediction programs, by in vitro analysis of the mRNA of the lymphocytes in normal 

tissue and by transcript analysis carrying a premature stop codon or in frame deletion disrupting a 

known functional domain [23].  

Following the analysis of mutation type, the next step involves consultation of the relevant literature 

and the various mutation and SNP databases (Table 1). 

The BIC database has recently added the possible clinical significance of the variants to the 

description of the identified mutations, to give the opportunity to be studied by all researchers that do 

population studies.  
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3.2. Analysis of Control Group 

BRCA gene mutations have been identified according to the ethnic group and geographical area; a 

useful method for the study of VUSs therefore involves the analysis of the variant in a control  

group [27–29]. When this variant in a control group has an allele frequency of more than 2%, it is to be 

considered a polymorphic variant with a neutral clinical significance. 

It is important to consider both size and ethnic homogeneity, since the research of the Myriad 

Genetic Laboratories involves subjects with European ancestry and cannot therefore be used for the 

study of a genetic variant occurring in a patient with a different (i.e., Asian) ancestry [30]. 

3.3. Co-Segregation with Cancer in Families 

Co-segregation analysis allows the association of each variant with disease. It may support the 

study of the clinical significance both of missense VUSs and also of those found within the non-coding 

portions of the BRCA genes.  

The identification of the variant in family members with the disease but not in healthy members, 

presupposes that the involved variant is pathological [7,11]. 

In fact, as reported by Goldgar et al., the co-segregation with disease in pedigrees provides evidence 

for the potential use for co-segregation analysis for VUS classification, as it is easily quantifiable and 

directly related to disease risk. In addition, this method is not susceptible to uncertainties in mutation 

frequencies or population stratification.  

Unfortunately, the main problem of the segregation study regards the availability of family data and 

its size, requiring sampling of additional individuals in the pedigrees (particularly additional cases), 

which may be difficult to achieve [7,11].  

3.4. Co-occurrence with Known Deleterious Mutation 

Co-occurrence data are relatively easily available; however, when applied to the actual set of 

unclassified variants, this analysis has much better power to contribute to classification of recurrent 

neutral variants than to classification of recurrent deleterious variants. 

Because homozygous BRCA1 mutations are expected to be lethal and homozygous BRCA2 

mutations are expected to result in lethality or a phenotype such as Fanconi Anemia, the presence of a 

deleterious mutation in trans with a variant suggests its neutrality [31–33].  

In 2003, Judkins et al. found over 500 genetic variants that were successfully assigned to one or 

more haplotypes using an automated computer program [34]. The haplotype assignments were used to 

identify 20 different VUSs in patients in trans with known deleterious mutations, confirming them  

as neutral. 

3.5. Conservation of Amino Acids across Species 

A comparative analysis of amino acid conservation from multiple species by protein sequence 

alignments provides an understanding of the importance of missense VUSs in the different BRCA 

protein domains [35,36]. The alignment of the orthologous sequences of several domains of the 

BRCA1 protein provide an indication of which amino acid residues are truly conserved and which of 
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them represent localized evolution. The alteration of these residues probably leads to a pathogenic 

sequence variant and the different data combinations of the Bayesian analysis permits an evaluation of 

the evolutionary significance of the missense variant involved. When the domains are not conserved, 

the in silico analysis of the variant is required [37]. Although this approach should be applied to all 

domains of the BRCA proteins, it acquires more relevance according to the function of the domain 

analyzed. Three main conserved domains are studied; these are the BRCA1 RING-domain (amino 

acids 1 to 102), the BRCA1 C-terminus domain (amino acids 1641 to 1863) and the BRCA2 DNA 

binding domain (amino acids 2401 to 3200) [38]. 

3.6. In silico Analysis of Amino Acid Change 

The analysis of the consequence of an amino acid change on the protein function is extremely 

important and is often used for missense VUSs. 

In silico analysis of the chemical nature of the amino acid residues can be performed by computer 

programs, such as the Grantham chemical difference matrix which analyzes the relationship of one 

amino acid residue to another. This relationship includes side chain composition, polarity and steric 

features and implicates the insertion of the sequence variant leading to the modification of the  

protein structure. 

As Grantham reports, its algorithm is based on a formula regarding the difference between amino 

acids, combining properties that correlate best with protein residue substitution frequencies. This takes 

into account chemical and physical characteristics between amino acids, and compares these 

differences between exchanging residues with substitution frequencies. Correlation coefficients show 

that fixation of mutations between dissimilar amino acids is generally rare [39].  

Extending the Grantham difference to a two-variable system (GV and GD) improves the ability to 

distinguish between substitutions that are likely to be pathogenic and those that are not. The Alignment 

GVGD score prediction analysis combines together an extensive protein multiple sequence alignment 

based on quantitative measures of sequence variation (Grantham Variation or GV) and quantitative 

measure of the fit between a missense substitution and variation observed at its position in the protein 

multiple sequence alignment (Grantham Deviation or GD) [33].  

This so-called Align-GVGD (Grantham Variation/Grantham Deviation) is otherwise a 

mathematically simple classification of missense substitutions in breast cancer susceptibility genes, 

providing a class probability based on evolutionary conservation and properties of the amino acid 

(Table 1) [9]. Nevertheless, the distribution of genetic risk as a function of this Align-GVGD is still 

not fully understood [24].  

3.7. Loss of Heterozygosity (LOH)  

BRCA mutation-positive tumors present loss of heterozygosity (LOH) more frequently than 

sporadic forms. This feature can be used to assess the pathogenicity of BRCA VUSs [12,40,41]. The 

unidentified variants in the tissue will probably prove to be neutral. 

This method is also often associated with the family data in order to support the hypothesis of 

pathogenicity or neutrality, but this requires the availability of tumor tissue from the BRCA carriers. 
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Allele-specific LOH studies have been conducted on carriers of known deleterious mutations and 

high frequency rates of BRCA LOH for breast and ovarian tumors were found. 

This study could be useful to classify BRCA VUS if associated and incorporated with  

integrated models.  

3.8. Biochemical Functional Assays 

Functional assays that are able to measure the influence of variants on protein activity can only be 

established following development of a detailed understanding of how a protein functions in a cell and 

how it contributes to cancer predisposition when mutated.  

Since the complete and effective BRCA protein function is still not fully understood, it is unknown 

which in vitro method should be used in order to define the pathogenicity or neutrality of a VUS. 

Recently, different methods have been developed to analyze BRCA1 gene mutations, such as the 

transcriptional and BARD1-correlated ubiquitin ligase activity, and those regarding the BRCA2 gene 

mutations involving homologous recombination repair. 

3.8.1. Protein Assays Related to BRCA1 Function 

The BRCA1 protein has an ubiquitin ligase activity BARD1 mediated through its RING-finger 

domain [42,43]. Pathogenic mutations have already been identified in this domain and have been 

correlated with the loss of this ligase activity [44]. This observation has led to the development of 

various methods aimed at evaluating the functional effect on the protein interaction between BRCA1 

and BARD1 and UbcH5a (enzyme conjugated to Ubiquitin E2), respectively.  

Actually, of the 100 variants identified in this interaction domain, only those which completely 

annul the interaction with BARD1 and with UbcH5a, resulting in the loss of the ubiquitin ligase 

activity, are classified as pathogenic [45]. 

Transcriptional activity located in the C-terminus region has been evaluated by the DNA Binding 

Domain (DBD) fusion method in yeast and mammalian cells, using expression vector constructs 

coding for a DNA binding domain fused to residue 1396–1863 of the gene [14,46,47]. 

Nevertheless, although this method has been used to evaluate over 50 VUSs from the BRCA1 

BRCT domains, this analysis is limited to the C-terminus region.  

3.8.2. Protein Assays Related to BRCA2 Function 

The BRCA2 protein has a BRCT functional domain, which enables it to function in homologous 

recombination repair of double strand DNA breaks and to associate with RAD51. The BRCA2 homologous 

recombination repair assay can be measured by a Green fluorescent protein (GFP)-dependent 

homology directed assay method in mutated cell lines altered in the DNA repair system [14,48]. About 

30 variants of BRCA2 have been studied with this method [12,18,49]. This method can also be applied 

to other variants of BRCA2 and to other domains, such as those involving the RAD 51 binding or the 

interaction domain with PALB2. However, there is still no clear understanding regarding the 

correlation between the method and the risk of cancer associated with mutations in this region, where 
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pathogenic missense mutations leading to an increase in breast and ovarian cancer risk have not yet 

been identified [50].  

It is clear that biochemical and functional studies of important protein domains cannot be 

considered singularly, but must be associated with multifactorial models. Nevertheless, there exists a 

strong correlation between the two types of analysis, indicating high sensitivity and specificity of the 

methods [18]. In fact, these assays may be considered as part of a multivariate model for the evaluation 

of VUS carriers.  

This is an extremely efficient approach for the classification of VUSs, which is able to differentiate 

between those that inactivate or have no influence on BRCA2 function; it can only be used, however, 

if data regarding the family data are available. 

3.9. Pathological Data 

A variety of experimental and statistical approaches for the classification of BRCA1 and BRCA2 

variants has already been mentioned. Recently, however, there has been a growing interest in 

developing additional efficient and reliable ways for classifying VUSs (i.e., histopathological and 

immunohistochemical profiles). 

BRCA1- and BRCA2-related tumors develop largely through distinct genetic pathways in terms of 

the regions altered, while also displaying distinct phenotypes. In particular, BRCA1-associated breast 

cancer (BC) is more often estrogen receptor (ER), progesterone receptor (PgR) and HER2neu receptor 

negative (triple negative), is more often of the basal-like and medullary phenotype, and more frequently 

has a high mitotic count and histological grade [21,38,51,52]. 

Breast cancer due to a BRCA2 mutation is also of a higher histological grade than sporadic breast 

cancer, and it displays luminal phenotypes and rarely overexpresses HER-2 gene products, although 

the difference is less pronounced as compared with BRCA1-related tumors [53,54]. 

It is therefore important to conduct further analysis on VUS carriers, in order to reach a more 

detailed classification and to see if they show similar features to BRCA-related carriers.  

4. Integrated Models for VUS Assessment 

The previously mentioned factors (LOH, co-occurrence with a known deleterious mutation in trans, 

sequence conservation or splice site analysis, pathological data and personal cancer history) are 

defined as independent variables, as they allow only partial evaluation of the clinical significance of 

variants. Often these data do not include segregation analysis or familial information, which are more 

difficult to acquire.  

Different researchers have tried to use direct and indirect epidemiological observations to clarify the 

power and the influence of the VUS as high- or low-risk categories, since the tested individuals and 

their families, may provide a seemingly ambiguous result, unless sufficient evidence is available that a 

given missense change is deleterious [11,37,55,56].  

Each of these methods of analysis and interpretation of results have strengths and limitations, as the 

frequency of mutations in cases and controls provides a direct estimate of associated cancer risk, but as 

those variants are presented rarely, such studies would need a very large cohort study. Species 

conservation and analysis of amino acid changes do not require the information of many families, but 
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is limited by the fact that it is only indirectly related to the cancer risk and need to be associated with 

other additional information or analysis methods.  

A method proposed to help physicians to interpret and classify VUSs is the Polyphen-based 

classification. This is an algorithm which classifies VUSs based on the functional effect of each 

missense variant into three categories (probably damaging or deleterious, possibly damaging, and 

benign) (Table 1). This model makes use of the chemical characteristics of the substitution site, the 

alignment of homologous sequences and protein three-dimensional structures, but is limited to the 

classification of missense variants, leaving unresolved the problem of how to interpret other types of 

VUSs that are not missense.  

It is clear that a combined model involving all possible direct and indirect, quantitative and 

qualitative observations is needed to give a more specific definition for each variant in terms of 

pathogenicity.  

Over the last several years many researchers have devised algorithms for in silico assessment of 

missense substitutions [9,12,37,57,58]. 

Among these in silico analyses, the Grantham difference has been a popular source of data, 

contributing to the assessment of the pathogenicity of missense substitutions [37,39,59]. 

As previously reported, this model has more recently been revised by Tavtigian, extending it to the 

two-variable system A-GVGD, improving the sensitivity and power of prediction of the previous 

method [33].  

In 2008, Tavtigian et al. published an interesting study proposing an alternative and extended 

multifactorial likelihood model for classification of VUSs that adds two other measures to the 

Alignment GVGD that can contribute to a better estimation of the genetic risk: the ascertainment ratio 

(AR) and the enrichment ratio for single-nucleotide substitutions (ERS) [33,59]. The AR is a measure 

of genetic risk closely related to an odds ratio, but designed to be applied to aggregated pools of rare 

sequence variants. The ERS is closely related to the codon-based measure of evolutionary selective 

pressure [60]. This multifactorial approach tries finally to order more specifically VUS by genetic risk.  

Recently Goldgad et al. proposed another integrated model to classify VUSs based on a 

combination of variables from the cancer history of the probands and their families that significantly 

distinguish families with proven deleterious variants from those with neutral variants [11]. This model 

takes account of direct epidemiological data, including cosegregation analysis, case-control analysis, 

personal and family history and co-occurrence of mutation disease; together with indirect measures, 

including amino acid conservation, severity of amino acid change, and evidence from functional 

assays. The model initially proposed has been revised, including other statistical studies [19,61,62]. 

We must consider that it is difficult to find a model that includes all variables and at the same time 

analyze the relationships among the different forms of evidence and integrate them to form  

one conclusion. 

Osorio et al. [38] have developed a likelihood-based model, integrating most of the data currently 

used to classify these variants including LOH, grade, and immunohistochemical analysis to assess 

estrogen receptor status for the tumors of carriers of these variants. They also considered the summary 

family history (personal or first-degree family history of bilateral breast or ovarian cancer), previously 

proposed by Goldgar [19]. 
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The result of this latter study indicates that VUS carriers are characterized by ER negative 

expression and histological grade 3. Moreover, the information regarding LOH, ER status, grade, and 

personal and first-degree family history from multiple tumors of carriers of BRCA1 missense VUSs 

can be sufficient to estimate odds of causation of an adequate order to classify them as neutral or 

deleterious. Immunohistochemical profile, strong family history and early age onset were used by 

Sweet et al. to classify L22S and T37K as deleterious BRCA1 variants [25]. 

All these integrated models are principally used for the analysis of missense variants, thus still 

leaving open the debate on the best choice for the characterization of other variants of unknown 

significance such as splice sites and in-frame variants. The only methods applied nowadays for this 

aim are in vitro and in silico analyses, but it is necessary to find an integrated method or models to 

combine with these (Figure 1).  

Figure 1. A representation of the multi-determinant approach to use for BRCA-VUS 

clinical classification.  

 

5. Psychological Aspects of VUS Carriers 

The VUS category has always posed many problems in genetic counseling due to the difficulty in 

interpreting the clinical significance of the new or rare variants [63].  

This difficulty is not only to be seen strictly from a molecular and genetic point of view, but giving 

an ambiguous result for tested individuals means that the clinician cannot manage the problem, 

probably proposing a wrong follow-up strategy. Moreover the family VUS carriers can develop stress 

that is not necessarily appropriate for the type and power of the discussed variant. 

It is clear that the classification of variants in breast cancer predisposing genes has many benefits 

for genetic counseling, Women found to carry a pathogenetic variant can be advised to undergo regular 
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screening by mammography or magnetic resonance imaging and to consider risk-reducing  

surgery [64,65]. On the other hand, relatives who do not carry a pathogenic variant can be reassured 

that they are not at high risk.  

6. Classification System of VUSs 

The misinterpretation of VUSs results in inappropriate clinical consequences and establishes 

confusion among clinicians, who are unable to offer a clear explanation of the risks to the patients 

involved. A classification system for variants with clinical recommendations would help clinicians on 

risk prediction, carrier testing, and reproductive decision making, thus reducing the level of 

misinformation given to the patients. 

Many groups are cautious in classifying the variants as pathogenic, especially when there is a lack 

of support from epidemiological data regarding cancer association. 

The BIC database uses a triple classification of clinical importance—―yes, no or unknown‖; the 

latter includes all the variants ranging from a pathogenicity of 0.1 to 99%. 

In 2008, Plon et al. [22] suggested a standardized classification system for application to sequence-

based results, using a Bayesian system to generate a probability which should be the standard for all 

variants. This classification system involves five classes of variants, with each class given specific 

recommendations for clinical management of at-risk relatives. 

Since Class 1 does not include pathogenic variants, carriers are not required to undergo increased 

surveillance nor testing of other members of the family, unlike the situation regarding Class 5, which 

includes pathogenic variants. 

Class 2 variants (0.1–5% likelihood of pathogenicity) have the same recommendations of variants 

as Class 1; these may be considered as uncertain and will therefore be included in Class 3 when there 

are more data favoring pathogenicity. 

Figure 2. A schematic representation of a multi-parametrical analysis method proposed to 

help clinicians to individuate the classes of risk.  
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The most important distinction will thus be between Class 3 and Class 4 variants, since the 

―uncertain‖ variant may easily become ―probably pathogenic‖ if there are sufficient relevant family 

data and segregation analyses [22] (Figure 2). In such cases, it might help to make a further 

classification of the variant and follow full high-risk surveillance guidelines [64,65]. 

7. Conclusions 

VUS classification has posed many problems in genetic counseling due to the difficulty in the 

interpretation of the clinical significance of the new or rare variants of BRCA genes. The tested 

individuals and their families, in fact, present ambiguous results.  

This review describes both the different approaches and the problems to be faced in the clarification 

of the pathogenic role of VUSs.  

Different study strategies are necessary for each variant in the attempt to give a clinical 

interpretation of the test results. Multidisciplinary approaches involving direct and indirect 

epidemiological observations have been integrated with statistical, mathematical and physical models 

by Goldgar et al. [11] and then revised by many researchers. 

Nevertheless, while it is important that analysis methods should be integrated, all the necessary data 

are not always available, and a single functional assay, or a set of assays, have so far not proved 

sufficient for the prediction of pathogenicity with absolute certainty. 

The future international use of a standardized system of VUS classification will make it possible to 

guarantee the clinical usefulness of genetic testing and an unequivocal clinical method for the 

treatment of at-risk patients. The most important prospective should be the creation of a unique 

database for the calculation of the likelihood of the pathogenicity of variants, such as the BIC database, 

which includes all variants in BRCA genes identified in different population studies.  
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