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ABSTRACT 
 

We analyse the effects of environmental noise in three different biological systems: 
(i) mating behavior of individuals of Nezara viridula (L.) (Heteroptera Pentatomidae); (ii) 
polymer translocation in crowded solution; (iii) an ecosystem described by a Verhulst 
model with a multiplicative Lévy noise. Specifically, we report on experiments on the 
behavioral response of N. viridula individuals to sub-threshold deterministic signals in 
the presence of noise. We analyze the insect response by directionality tests performed on 
a group of male individuals at different noise intensities. The percentage of insects which 
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react to the sub-threshold signal shows a nonmonotonic behavior, characterized by the 
presence of a maximum, for increasing values of the noise intensity. This is the signature 
of the non-dynamical stochastic resonance phenomenon. By using a ―hard‖ threshold 
model we find that the maximum of the signal-to-noise ratio occurs in the same range of 
noise intensity values for which the behavioral activation shows a maximum. In the 
second system, the noise driven translocation of short polymers in crowded solutions is 
analyzed. An improved version of the Rouse model for a flexible polymer has been 
adopted to mimic the molecular dynamics, by taking into account both the interactions 
between adjacent monomers and introducing a Lennard-Jones potential between non-
adjacent beads. A bending recoil torque has also been included in our model. The 
polymer dynamics is simulated in a two-dimensional domain by numerically solving the 
Langevin equations of motion. Thermal fluctuations are taken into account by 
introducing a Gaussian uncorrelated noise. The mean first translocation time of the 
polymer center of inertia shows a minimum as a function of the frequency of the 
oscillating forcing field. In the third ecosystem, the transient dynamics of the Verhulst 
model perturbed by arbitrary non-Gaussian white noise is investigated. Based on the 
infinitely divisible distribution of the Lévy process we study the nonlinear relaxation of 
the population density for three cases of white non-Gaussian noise: (i) shot noise, (ii) 
noise with a probability density of increments expressed in terms of Gamma function, 
and (iii) Cauchy stable noise. We obtain exact results for the probability distribution of 
the population density in all cases, and for Cauchy stable noise the exact expression of 
the nonlinear relaxation time is derived. Moreover starting from an initial delta function 
distribution, we find a transition induced by the multiplicative Lévy noise from a trimodal 
probability distribution to a bimodal probability distribution in asymptotics. Finally we 
find a nonmonotonic behavior of the nonlinear relaxation time as a function of the 
Cauchy stable noise intensity. 

 
Keywords: Stochastic resonance in Nezara viridula; Polymers translocation; Verhulst model; 

Stochastic processes. 
 
 

1. INTRODUCTION  
 

During last decades noise-induced effects have been experimentally observed and 
theoretically studied in different physical and biological contexts (Agudov and Spagnolo, 
2001; Fiasconaro and Spagnolo, 2009; Spagnolo et al., 2003; Valenti et al., 2004; Spagnolo et 
al., 2002; Zimmer, 1999; Bjørnstad and Grenfell, 2001; Grenfell et al., 1998; Chichigina, 
2008; Giuffrida et al., 2009; Korobkova et al., 2004; Pizzolato et al., 2009), such as neuronal 
cells, excitable systems and threshold physical systems (Braun, 1994; Moss et al., 1994; 
Gingl et al., 1995; Pei et al., 1995; Pikovsky, and Kurths, 1997; Nozaki and Yamamoto, 
1998; Longtin and Chialvo, 1998; Stocks, 2001; Wiesenfeld et al., 1994;  Gammaitoni, 1995; 
Wannamaker et al., 2000; Lindner et al., 2004). 

In particular, stochastic resonance, resonant activation and noise enhanced stability 
phenomena in neuronal activation have been recently discussed (Lindner et al., 2004; Duarte 
et al., 2008; Prankratova et al., 2005). 

Nature consists of open systems characterized by intrinsically non-linear interactions and 
subject to environmental noise (Spagnolo et al., 2004). The presence of random fluctuations, 
that are an uneliminable component of natural ecosystems, makes difficult detection and 
transmission of signals and can modify the information transported. 
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However, in the presence of some specific non-linearity of the system and for suitable 
intensity of noise, counterintuitive phenomena, such as stochastic resonance (SR), can be 
observed. This indicates that noise can play a constructive role, improving the conditions for 
signal detection. 

SR phenomenon, initially observed in the temperature cycles of the Earth (Benzi et al., 
1981), can be found in many physical and biological non-linear systems (Gammaitoni et al., 
1998; Mantegna and Spagnolo, 1994; Mantegna et al., 2001; Agudov et al., 2010). SR can be 
modeled by a bistable potential subject to periodical driving force in the presence of external 
additive noise. The signature of SR is a nonmonotonic behavior, characterized by a 
maximum, of the signal-to-noise (SNR) ratio as a function of the noise intensity. This 
indicates that the noise can enhance the amplitude of deterministic signals, improving the 
response of the system through a resonance-like phenomenon (Moss et al., 1994; Gingl et al., 
1995; Pei et al., 1995; Nozaki and Yamamoto, 1998; Longtin and Chialvo, 1998; Stocks, 
2001; Wiesenfeld et al., 1994;  Gammaitoni, 1995; Wannamaker et al., 2000; Lindner et al., 
2004;  Gammaitoni et al., 1998; Mantegna and Spagnolo, 1994; Mantegna et al., 2001; Vilar 
et al., 1998; Longtin et al., 1991; Bulsara et al., 1991; Chialvo and Apkarian, 1993; Neiman 
and Russell, 2002; Bahar et al., 2002; Douglass et al., 1993; Russell et al., 1999; Freund et al., 
2002; Greenwood et al., 2000; Gailey et al., 1997). However, SR does not occur only in 
bistable systems, but also in monostable, excitable, and non-dynamical systems. In these 
situations we name this effect non-dynamical (or threshold) stochastic resonance, because the 
phenomenon is connected with the crossing of a threshold and can occur also in the absence 
of an external potential (Moss et al., 1994; Gingl et al., 1995; Vilar et al., 1998). Sensory 
neurons, that are threshold systems characterized by intrinsic noise, are an ideal workbench to 
observe non-dynamical SR (Longtin et al., 1991; Bulsara et al., 1991; Chialvo and Apkarian, 
1993; Neiman and Russell, 2002; Bahar et al., 2002). Historical experiments revealed the 
presence of non-dynamical SR in the neural response of mechanoreceptor cells of crayfish 
(Douglass et al., 1993), and the improvement of sensorial activity of paddlefish in the 
detection of electric signals produced by preys (Russell et al., 1999;  Freund et al., 2002; 
Greenwood et al., 2000). Such sensory neurons are ideally suited to exhibit SR as they are 
intrinsically noisy and operate as threshold systems (Longtin et al., 1991; Bulsara et al., 1991; 
Chialvo and Apkarian, 1993; Neiman and Russell, 2002; Bahar et al., 2002). 

In this contribution, we study the effects of external noise in three different biological 
systems. We start analyzing the mating behavior of individuals of N. viridula (L.) 
(Heteroptera Pentatomidae). In particular, we investigate the role of noise in the response of 
male insects to mechanical vibrations emitted by female individuals and transmitted in the 
substrate (Čokl et al., 1999; Čokl et al., 2003; Čokl et al., 2007). N. viridula, the southern 
green stink bug, is a pentatomid insect highly polyphagous and quite harmful for agriculture 
(Todd, 1989; Pannizzi, 2000). N. viridula has up to five generations per year (Borges et al., 
1987; Kiritani, 1964; Tremblay, 1981; Fucarino, 2003). 

The mating behavior of N. viridula can be divided into long-range location and short-
range courtship. The first one includes those components of the behavior that lead to the 
arrival of females in the vicinity of males. The long range attraction mediated by male 
attractant pheromone enables both sexes to reach the same plant. 

Here, we analyze the mating behavior of insects during the short-range courtship, when 
bugs of both sexes are very close and the acoustic stimuli (improperly called songs) can be an 
important element in the sexual communication (Čokl et al., 1999). 
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The sound is produced by the tymbal, an organ sited in the back and present in adult 
individuals (Čokl et al., 2003). The vibrations, produced by a bug at the frequency of about 
100 Hz, propagate through the legs into the plant stem and can be detected by the vibro-
receptors placed in the legs of another insect (Tremblay, 1981; Bagwell et al., 2008). Many 
experimental studies have been performed on this acoustic communication, analyzing the 
different signals characteristic of populations of N. viridula from Slovenia, Florida, Japan and 
Australia (Čokl et al., 2000). 

The fundamental role of the vibratory signals suggests that a better knowledge of the 
mechanism of acoustic communication during the short-range courtship can help to point out 
more efficient strategy to control N. viridula populations, devising "biologic" traps whose 
working principle is the emission of acoustic signals. In natural conditions, N. viridula 
populations interact strongly with environment, and therefore the presence of surrounding 
noise becomes an essential component of the acoustic communication. 

In the second part of this contribution, we consider transport phenomena of polymers in 
crowded solutions. In fact, the translocation of DNA and RNA across nuclear membranes as 
well as the crossing of potential barriers by many proteins represents a fundamental process in 
cellular biology. The study of the transport of macromolecules across nanometer size 
channels is important for both medical research in anticancer targeted therapy (Higgins, 2007; 
Halwachs et al., 2009) and technological applications (Mannion et al., 2006; Sundaresan et 
al., 2008). 

First experiments on the passage of DNA molecules across an -hemolysin (-HL) 
protein channel revealed a linear relationship of the most probable crossing time p with the 
molecule length (Kasianowicz et al., 1996). Moreover, p scales as the inverse square of the 
temperature and the dynamics of biopolymer translocation across an -HL channel is found 
to be governed by pore-molecule interactions (Akeson et al., 1999; Meller et al., 2000; Deng 
et al., 2003). More recent experimental studies have shown that the application of an AC 
voltage to drive the translocation process of DNA molecules through a nanopore plays a 
significant role in the DNA-nanopore interaction, and provides new insights into the DNA 
conformations (Deng et al., 2003; Vernier et al., 2004;  Sigalov et al., 2008; Lathrop et al., 
2009; Nikolaev and Gracheva, 2009). 

The complex scenario of the translocation dynamics coming from experiments has been 
enriched by several theoretical and simulative studies (Lubensky and Nelson, 1999; Storm et 
al., 2005; Forrey and M. Muthukumar, 2007;  Luo et al., 2008; Gracheva, and J. P. Leburton, 
2008; Pizzolato et al., 2008; Panja, and G. T. Barkema, 2008; Pizzolato et al., 2009; Pizzolato 
et al., 2010). The mean first passage time of a Brownian particle to cross a potential barrier in 
the presence of thermal fluctuations and a periodic forcing field has been theoretically and 
experimentally investigated as a function of the driving frequency in Refs. (Doering and 
Gadoua, 1992; Bier and Astumian, 1993; Boguna et al., 1998; Mantegna and Spagnolo, 2000; 
Dubkov et al., 2004; Spagnolo et al., 2007). The translocation time of chain polymers has 
been theoretically studied in the presence of a dichotomically fluctuating chemical potential 
only as a function of its amplitude in Ref. (Park and Sung, 1998). 

In particular we investigate the role of an external oscillating forcing field on the transport 
dynamics of short polymers surmounting a barrier, in the presence of a metastable state. We 
find a minimum of the mean first translocation time (MFTT) of the molecule center of mass 
as a function of the frequency of the forcing field. This nonlinear behavior represents the 
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resonant activation (RA) phenomenon in polymer translocation. We find that a suitable tuned 
oscillating field can speed up or slow down the mean time of the translocation process of a 
molecule crossing a barrier, using the frequency as a control parameter. This effect can be of 
fundamental importance for all those experiments on cell metabolism, DNA-RNA sequencing 
and drug delivery mechanism in anti-cancer therapy. 

In the third part of this chapter we investigate the transient dynamics of the Verhulst 
model perturbed by arbitrary non-Gaussian white noise. The nonlinear stochastic systems 
with noise excitation have attracted extensive attention and the concept of noise-induced 
transitions has got a wide variety of applications in physics, chemistry, and biology 
(Horsthemke and Lefever, 1984). Noise-induced transitions are conventionally defined in 
terms of changes in the number of extrema in the probability distribution of a system variable 
and may depend both quantitatively and qualitatively on the character of the noise, i.e. on the 
properties of stochastic process which describes the noise excitation. The Verhulst model, 
which is a cornerstone of empirical and theoretical ecology, is one of the classic examples of 
self-organization in many natural and artificial systems (Eigen and Schuster, 1979). This 
model, also known as the logistic model, is relevant to a wide range of situations including 
population dynamics (Horsthemke and Lefever, 1984; Morita, 1982; Ciuchi et al., 1993;  
Mathis and Kiffe, 1984), self-replication of macromolecules (Eigen, 1971), spread of viral 
epidemics (Acedo, 2006), cancer cell population (Ai et al., 2003), biological and biochemical 
systems (Derise and Adam, 1990; Ciuchi et al., 1996), population of photons in a single mode 
laser (McNeil and Walls, 1974; Ogata, 1983), autocatalytic chemical reactions (Schlögl, 
1972;  Chaturvedi et al., 1976; Gardiner and Chaturvedi, 1977; Bouché, 1982; Leung, 1987), 
freezing of supercooled liquids (Das, 1983), and social sciences (Herman and  Montroll, 
1972; Montroll, 1978). 

By considering the season fluctuations and the random availability of resources we 
analyze the stochastic Verhulst equation in the presence of a non-Gaussian stochastic process. 
By investigating the transient dynamics of this model we obtain exact results for the mean 
value of the population density and its non-stationary probability distribution for different 
types of white non-Gaussian noise sources. Noise-induced transitions for the probability 
distribution of the population density and a nonmonotonic behavior of the nonlinear 
relaxation time as a function of the Cauchy noise intensity are found. 

The chapter is organized as follows. In section 2.1 we report on experimental setup and 
methods used in the investigation of behavioral response in N. viridula. In section 2.2, we 
present our experimental results of directionality tests on the behavior of male individuals of 
N. viridula. In section 2.3 we discuss the experimental findings and compare them with 
theoretical results obtained by a hard threshold model. 

In Sect. 3 we present our polymer chain model and give the details of the molecular 
dynamics simulation process. Results are reported in Sect. 3.1. In the next sections 4. - 6. we 
present our Verhulst stochastic model with Lévy noise excitation together with all the 
theoretical results obtained. Finally conclusions are drawn in Sect. 7.  
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2. BEHAVIOURAL RESPONSE IN N. VIRIDULA 
 

2.1. Materials and methods 
 

In our experiments we used individuals of N. viridula collected in the countryside around 
Palermo, and reared in laboratory conditions (Colazza et al., 2004). Male insects have been 
used for experimental trials after they reached sexual maturity (not less than ten days after the 
final moult), and a three-day period of isolation from the opposite sex (Čokl et al., 2007; Čokl 
et al., 2000). 

The sexual calling song emitted from a female individual has been recorded by the 
membrane of a conic low-middle frequency loudspeaker (MONACOR SPH 165 C CARBON 
with a diameter of 16.5 cm). Afterwards the sound, stored on a pc, has been analyzed and 
processed using a commercial software. The speaker has been used as an "inverse" 
microphone, namely an acoustic-electric transducer: the sounds have been recorded from a 
low-frequency non-resonating membrane of a speaker, conveniently chosen to get a good 
frequency response starting at 20 Hz. The sound acquisitions have been made inside an 
anechoic chamber (sound insulated) at 22 - 26 °C, 70 – 80 % of relative moisture and in 
presence of artificial light. The choice of this recording set-up has been decided after a 
comparative analysis with a recording system based on the use of a stethoscope. In particular, 
the speaker membrane shows greater sensitivity at medium-low frequencies, that are crucial 
to our experiment. 

The sound has been sampled from the analogical signal source (44100 samples per second 
at 16 bit) and then filtered by an 18th order Tchebychev filter (type I) with band-pass from 60 
to 400 Hz. This filtering has been done to cut: (i) the low frequencies due to the electric 
network (50 Hz) and those from the conic loudspeaker, and (ii) the high frequencies due to 
the electronic apparatus. Spectral and temporal properties of the measured non-pulsed female 
calling songs (NPFCS) have been compared with those of North America, observing that N. 

viridula individuals collected in Sicily have the same dialect as adults of N. viridula collected 
in USA with a slightly different frequency range (Čokl et al., 2007; Čokl et al., 2000; Čokl et 
al., 2005). 

In Fig. 1.a, the oscillogram of NPFCS is shown. The signal is characterized by a short 
pre-pulse followed by a longer one, according to previous experimental findings (Čokl et al., 
2000). In Fig. 1.b, the power spectrum density (PSD) of NPFCS is shown. In this spectrum 
the dominant frequencies range from 70 to 170 Hz and the subdominant peaks do not exceed  
400 Hz. The maximum peak occurs at 102.5  Hz. In Fig. 1.c we report the relative sonogram, 
achieved by the Short Time Fourier Transform (STFT) method. The STFT maps a signal 
providing information both about frequencies and occurrence times. It shows that during the 
first two seconds (short pre-pulse) the dominant frequency interval is narrower  than the range 
observed in the subsequent time space. In particular in the first time interval the highest 
frequency does not exceed 130 Hz, whereas in the final one it reaches almost 170 Hz. 

Here we study the effects of noise on the behavior of N. viridula during the mating 
period. Therefore, in order to perform directionality tests, we have designed and constructed a 
Y-shaped dummy plant, and placed it inside an anechoic chamber. The Y-shaped plant 
consists of a vertical wood stem, 10 cm long, and 0.8 - 0.9 cm thick at the top of which there 
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are two identical wooden branches, 25 cm long, and 0.4 cm thick, as shown in Fig. 1.d. The 
angle between two branches is 30° - 50°. 

In our experiment a signal is sent along one branch of the Y-shaped substrate and the 
behavior of single male individuals, initially placed at the center of the vertical stem, is 
observed [39] (see Fig. 1.d). The source of vibratory signals (i.e. the cone used as an electro-
acoustic transducer) is in contact with the right apex of the Y-shaped dummy plant. Vertical 
stem and lateral branches are not in direct contact, albeit in close (0.5 cm) proximity. 

 

 

Figure 1. (a) Oscillogram (b) Power spectrum density and (c) Sonogram of the non pulsed type of 
Nezara viridula female calling song; (d) The block diagram of the experimental setup. 

We consider a trial valid if the insect, before choosing one direction in the Y-shaped 
structure, has checked the two possible directions of signal origin, touching the lower 
extremity of both branches. By following these criteria, we made several observations for 
different intensities of female calling songs, recording the choices (left or right) of each male 
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individual used in our trials, and obtaining a set of statistical data that allows us to determine 
the intensity threshold value at which the bugs start to "hear" the calling song. 

 
 

2.2. Experimental Results 
 
 The presence of an "oriented" behavior, that is the tendency of the insects to choose the 

branch with the signal source, is revealed by performing directionality tests on a group of 
male individuals. When we observe a percentage of insects higher than 65%  going towards 
the acoustic source, source-direction movement (SDM), we consider that the signal has been 
revealed by the insects. In Fig. 2.a we plot the relative frequency of SDMs, that is the number 
of SDMs divided by the total trials, at different signal intensities. The exact number of trials, 
performed for each intensity, is reported beside the corresponding point in the graph. For 
small values (lower than 0.0010 V) of the signal power approximately 50% of the insects 
choose one direction and the remaining 50% the other. 

 

 

Figure 2. Plots of the Source-Direction Movement (SDM) Ratio as a function of: (a) the female calling 
song Root Mean Square (RMS) amplitude (purely deterministic signal); (b) the noise intensity D. In 
each experimental value is reported the error bar and beside the corresponding number of the performed 
trials. 

Conversely, for values greater than 0.0020 V, the insects show a preferential behavior, 
choosing the direction from which the signal originates in the 80% of the trials. 
Consequently, we have chosen the value 0.0015 V of the signal power as the threshold level 
for signal detection. 

Then, by using a sub-threshold signal plus a Gaussian white noise signal we have 
investigated the response of the test insect for different levels of noise intensity D. In Fig. 2.b 
we report the percentage of SDMs as a function of D, finding the optimal noise intensity that 
maximizes the recognition between individuals of opposite sex. The graph shows a maximum 
for D≈ 1.30⋅ 10− 5

V
2 . For values of D both lower and higher than 1.30 10-5 

V
2, the 

response of insects is not significant. In particular, for D > 1.30 10-5 
V

2 the percentage of 
individuals going towards the acoustic source decreases below 0.5 reaching 0.2 for 
D≈ 3.75⋅ 10− 5  V

2 . The other values of the SDM ratio close to 50%, indicate that 
individuals of N. viridula randomly choose the direction of their motion, that is no oriented 
behavior occurs. The nonmonotonic behavior of SDM, with a maximum at 
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D≈ 1.30⋅ 10− 5
V

2, indicates that in the presence of a sub-threshold deterministic signal, the 
environmental noise can play a constructive role, amplifying the weak input signal and 
contributing to improve the communication among individuals of N. viridula. The occurrence 
of a minimum in the SDM behavior at D≈ 3.75⋅ 10− 5

V
2, will be subject of further 

investigations. A possible conjectural explanation is the following: when the noise intensity is 
so large that the signal received from the vibro-receptors is significantly modified, the male 
insects are not able to recognize the female calling song, and they exchange it for the song of 
some rivals. 

A further increase of the noise intensity causes the spectrum of the received signal to 
become indistinguishable from a pure environmental noise and therefore the insect is unable 
to recognize any signal of N. viridula individuals. This implies that no significant response is 
observed in terms of percentage of source-direction movements (SDMs ~ 50%). 

 
 

2.3. Threshold Stochastic Resonance 
 
The presence of a maximum in the behavior of SDM percentage as a function of D  can 

be explained either by the threshold phenomenon, or non-dynamical, stochastic resonance 
(TSR). 

 

 

Figure 3. Evolution driven by a sinusoidal function plus noise. (a) Time series generated by consecutive 
pulses (dashed line: threshold level, solid line: mean value of the periodic signal); (b) Temporal 
sequence of threshold crossing events. 
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Stochastic resonance (SR), initially observed in the temperature cycles of the Earth (Benzi 
et al., 1981), is a counterintuitive phenomenon occurring in a large variety of non-linear 
systems, whereby the addition of noise to a weak periodic signal causes it to become 
detectable or enhances the amount of transmitted information through the system (Moss et al., 
1994; Gingl et al., 1995; Pei et al., 1995; Pikovsky and Kurths, 1997; Longtin and Chialvo, 
1998; Stocks, 2001; Wiesenfeld et al., 1994; Gammaitoni, 1995; Wannamaker et al., 2000; 
Lindner et al., 2004; Gammaitoni et al., 1998; Mantegna and Spagnolo, 1994; Mantegna et 
al., 2001; Vilar et al., 1998;  Longtin et al., 1991; Bulsara et al., 1991; Chialvo and Apkarian, 
1993; Neiman and Russell, 2002; Bahar et al., 2002; Douglass et al., 1993; Russell et al., 
1999; Freund et al., 2002; Greenwood et al., 2000). When SR occurs, the response of the 
system undergoes resonance-like behavior as a function of the noise level. In spite of the fact 
that initially this phenomenon was restricted to bistable systems, it is well known that SR 
appears in monostable, excitable, and non-dynamical systems. 

 

 

Figure 4. Temporal evolution of the simulated calling signal over the threshold for noise intensity 
D =2.6⋅ 10− 6

V
2 a), D =1.30⋅ 10− 5

V
2 (b) and D =1.0⋅ 10− 3

V
2 (c). The corresponding 

power spectral densities are shown in panels b, d, f. The threshold level is sth = 0.045 V  and RMS 
amplitude of the subthreshold signal is  0.031 V2. In the figures (a), (c) and (e) we have rescaled the 
values of the signal amplitude in such a way that the zero value corresponds to the threshold value. 

Here we report on experiments conducted on the response of N. viridula individuals to 
sub-threshold signals. The nonmonotonic behavior of SDM, as a function of the noise 
intensity (see Fig. 2.b), can be considered the hallmark of the threshold stochastic resonance 
(TSR). This phenomenon is well described by an extremely simple system, shown in Fig 3, 
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and characterized by: (i) an energetic activation barrier (threshold); (ii) a weak coherent input 
such as a periodic signal (sub-threshold signal); (iii) a source of noise which is inherent to the 
system, or is added externally to the deterministic input (Moss et al., 1994; Gingl et al., 1995; 
Pei et al., 1995). Since the three ingredients are often present in nature and the idea of the 
existence of a threshold is quite intuitive, TSR has migrated into many different fields, so that 
during the last decades a considerable amount of literature on this subject has appeared in 
several areas of science and engineering. 

We have simulated a system with a threshold 0.045 V and a subthreshold signal of RMS 
amplitude 0.031 V (a. u.), obtained by the recorded female calling song. In Fig. 4 we show 
the output signal, and the corresponding PSD, for three different levels of noise added to the 
subthreshold deterministic signal (calling song). In the Figs. 4.a, 4.c, 4.e we have rescaled the 
values of the signal amplitude in such a way that the zero value corresponds to the threshold 
value. For low noise intensities the signal crosses the threshold (dashed line in Fig. 4.a) very 
rarely, and in the corresponding PSD (Fig. 4.b) no frequency shows any significant power 
enhancement. By increasing the noise level the threshold crossings become more frequent 
(Fig. 4.c) and the PSD appears to take a larger value for f = 102.5 Hz (Fig. 4.d), that is the 
dominant frequency contained in the input signal. A further increase of noise intensity 
produces a degradation of the signal, a loss of coherence in the temporal sequence (Fig. 4.e) 
and a reduction of the main peak (f = 102.5 Hz) in the PSD (Fig. 4.f). The signal-to-noise 
ratio (SNR) at f = 102.5 Hz is reported in Fig. 5. For each value of the noise intensity we have 
performed 5000 numerical realizations. The noise intensity for which the SNR is maximum is 
D≈ 1.17⋅ 10− 5 , which is very near the value of the noise intensity that maximizes the 

percentage of SDMs (see Fig. 2.b). 
 

 

Figure 5. Signal to noise ratio versus variance noise D of the output signal model when the input female 
calling song is subthreshold, at the dominant frequency  f = 102.5 Hz. All the other parameters are the 
same of Fig. 2. 

The results obtained from our model suggest that in the biological system analyzed, 
stochastic resonance plays a key role, since it permits information to be extracted from a weak 
deterministic signal, thanks to the constructive action of environmental noise. In other words 
there is a suitable noise intensity which maximizes the activating behavior of the green bugs 
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and this effect can be described by the simplest threshold model which shows stochastic 
resonance. In Fig. 5 we report also the best fitting curve of the simulations (cross points in the 
figure) obtained by the formula of the SNR for a single frequency coherent signal (Moss et 
al., 1994)  

 

SNR=c log[ a

D2 exp(− b

D
) ] ,       (1) 

 
 where a =6.6⋅ 10− 5 , b =1.70⋅ 10− 6 , and c = 2.18. 

 
 

3. THE POLYMER CHAIN MODEL AND MD SIMULATIONS 
 
The polymer is modeled by a semi-flexible linear chain of N beads connected by 

harmonic springs (Rouse, 1953). Both excluded volume effect and van der Waals interactions 
between all beads are kept into account by introducing a Lennard-Jones (LJ) potential. In 
order to confer a suitable stiffness to the chain, a bending recoil torque is included in the 
model, with a rest angle θ0 =0  between two consecutive bonds. The total potential energy 
of the modeled chain molecule is U = UHar + UBend + ULJ with  

 
   

 (2) 
  
 (3) 
  (4) 

 
 

 
where Kr is the elastic constant, rij the distance between particles i and j, d the equilibrium 
distance between adjacent monomers, K the bending modulus, LJ  the LJ energy depth and  
the monomer diameter. The effect of temperature fluctuations on the dynamics of a chain 
polymer escaping from a metastable state is studied in a two-dimensional environment. The 
polymer translocation is modeled as a stochastic process of diffusion in the presence of a 
potential barrier having the form  

 
U Ext( x )=ax

2
− bx

3
       (5) 

 
with parameters a =3⋅10− 3  and b =2⋅ 10− 4 , as already adopted in Ref. (Pizzolato et al., 
2009). A three-dimensional view of UExt  is plotted in Fig. 6.  

The drift of the i
th monomer of the chain molecule is described by the following 

overdamped Langevin equations  
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dxi

dt
= −

∂U ij

∂ x
−
∂U Ext

∂ x
+√D ξ x +Acos(ωt+θ )  (6) 

 
dyi

dt
= −

∂U ij

∂ y
+√D ξ y  (7) 

 
where Uij is the interaction potential between the i

th and j
th beads, x and y are white 

Gaussian noise modeling the temperature fluctuations, with the usual statistical properties, 
namely <x (t) > = 0 and <k (t)l (t+) > = kl ()0 for (k,l = x,y). A and  are respectively 
the amplitude and the angular frequency of the forcing field and  a randomly chosen initial 
phase. In our simulations, the time t is scaled with the friction parameter  as t = tr/, where tr 
is the real time of the process. 

 

 

Figure 6. 3D-view of the potential energy UExt ,which is included in our system to simulate the presence 
of a barrier to be surmounted by the polymer. A sketch of the translocating chain molecule is shown. 

  The standard Lennard-Jones time scale is η
LJ

= (mζ
2/ε

LJ
)1/2

, where m is the mass of 
the monomer. A bead of a single-stranded DNA is formed approximately by three nucleotide 
bases and then ζ≈ 1.5 nm and m≈ 936  amu (Luo et al., 2008). Orders of magnitude of 
the quantities involved in the process are nanometers for the characteristic lengths of the 
system (polymer and barrier extension) and microseconds for the time domain. A set of 103  
numerical simulations has been performed for different values of the frequency of the forcing 
field and two values of the noise intensity D, namely D = 1.0, 4.0. The values of the potential 
energy parameters are: Kr = K = 10, LJ = 0.1, = 3 and d = 5, in arbitrary units (AU). The 
amplitude of the electric forcing field is A =5⋅ 10− 2 in AU, because it is scaled with . The 
number of monomers N is 20. The initial spatial distribution of the polymer is with all 
monomers at the same coordinate x0 = 0, corresponding to the local minimum of the potential 
energy of the barrier. Every simulation stops when the x coordinate of the center of mass of 
the chain reaches the final position at xf = 15.  

Licensed by NOVA for the exclusive use of B. Spagnalo<bernardo.spagnolo@unipa.it>



B. Spagnolo, D. Valenti, S. Spezia et al. 302 

 

Figure 7. MFTT vs. frequency of the forcing field for two different values of the noise intensity D. The 
values of the potential energy parameters are: Kr = K= 10, LJ = 0.1,  3 and d = 5, in arbitrary units 
(AU). The amplitude of the electric forcing field is A =5⋅ 10− 2 (AU). The number of monomers N  is 
20. 

 

 

Figure 8. Probability density function (PDF) of the first translocation time (FTT). Each panel shows 
two PDFs, each one characterized by a specific value of the noise intensity. The three panels differs for 
the frequency of the forcing field. The panel (a) shows the time distribution in the low frequency 
region. The long tails indicate that the polymer crosses the potential barrier with a longer mean time. In 
the panel (b) the FTTs are distributed towards shorter values, because of the lowest time scale 
characterizing the translocation process in the resonant activation regime. The panel (c) shows the 
probability distribution for the high frequency domain, where the time scale is the same that is 
characterized by the presence of a static potential. 
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3.1. Results and Discussion 
 
 The MFTT shows three different translocation regimes as a function of the frequency 

(Fig. 7). In the low frequency domain (-3), the period of the forcing field oscillations is 
very long with respect to the typical values of the mean crossing time of the chain molecule. 
In this regime the MFTT is equal to the average of the crossing times over upper and lower 
configurations of the barrier, and the slowest process determines the value of the mean 
crossing time. As a consequence, the MFTT increases and we observe long tails in the 
probability density function (PDF) shown in Fig. 8.a. In the high frequency domain             
(-1), a saturation of the translocation time is obtained. In this case, very rapid 
oscillations act on the polymer motions as the mean potential, i. e. the static field, and 
therefore the MFTT becomes equal to that obtained without any additional periodic driving. 
In other words, the polymer chain feels the average potential barrier. For intermediate 
frequencies (10-2 < -3), the crossing event is strongly correlated with the potential 
oscillations and the MFTT vs.  exhibits a minimum at a resonant oscillation rate. This 
frequency region corresponds to periods of oscillations which are of the same order of 
magnitude of the mean time the polymer takes to cross a static barrier with its shape 
corresponding to the lowest configuration of the oscillating potential. In other words, the 
potential remains around its lowest configuration for enough time to allow the polymer to exit 
and, even in the case of an initially high or intermediate value of the height of the barrier, the 
potential feature turns into the lowest configuration within a sufficiently short time lag to 
facilitate the translocation process. The polymer, driven by a periodic field oscillating at a 
period comparable with a characteristic time of the crossing dynamics, reaches a resonant 
regime that accelerates the translocation process. For each of the frequency values, the 
thermal noise intensity D  is able to speed up or slow down the crossing process, as described 
by the three frequency regions (Fig. 7) and the corresponding translocation dynamics 
(Pizzolato et al., 2010). The probability density function of the first translocation time (FTT) 
is shown in Fig. 8 for three frequency values characterizing the different dynamical domains. 
Each panel shows two PDFs, each one characterized by a specific value of the noise intensity. 
In the resonant activation regime (Fig. 8.b) the PDFs do not present the long tail at higher 
crossing times, observed in Fig. 8.a. Consequently, the MFTT reduces its value. The PDF 
assumes an interesting two-peaks structure that suggests the presence of two characteristic 
times of translocation. This feature, being present both at low and high noise intensity, can be 
ascribed to two different translocation dynamics of the polymer chain surmounting the 
barrier. In the high frequency domain (Fig. 8.c) the PDFs show the characteristic feature of 
the static potential case. 

 
 

4. VERHULST MODEL WITH  

LÉVY WHITE NOISE EXCITATION 
 
In considering how the population density x(t) may change with time t, Verhulst proposed 

the following equation  
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dx

dt
=rx(1− x

Ω)         (8) 

 
where there is the Malthus term with the rate constant r and a saturation term with the    
factor, which is the upper limit for the population growth due to the availability of the 
resources. 

Really the parameters r and  are not constant. In fact the parameter r changes randomly 
due to season fluctuations, and the parameter  fluctuates due to the environmental 
interaction which causes the random availability of resources. As a consequence we have the 
following stochastic Verhulst equation  

 
dx

dt
=r (t )x[1− x

Ω (t)].        (9) 

 
In the context of macromolecular self-replication, the model equation (9), with constant  
and a white Gaussian noise in r(t), was numerically studied in Ref. (Leung, 1988) and the 
critical slowing down, i.e. a divergence of the relaxation time at some noise intensity, was 
found. Later Jackson and co-authors (Jackson et al., 1989) investigated the same model, by 
analog experiment and digital simulations. They analyzed specifically in detail the nonlinear 
relaxation time defined as (Binder, 1973)  
 

 

      (10) 
 

and did not observe the critical slowing down. They explained this discrepancy by the 
incorrect approximate truncation of the asymptotic power series for T used in Ref. (Leung, 
1988). The stability conditions were derived in Ref. (Golec and Sathananthan, 2003). Similar 
investigations for colored Gaussian noise r(t) were performed in Ref. (Mannella et al., 1990), 
where a monotonic dependence of the relaxation time and the correlation time on the noise 
intensity was found. Some exact results for Eq. (9) with constant r and Markovian 
dichotomous noise excitation (t) = r/ (t) was obtained in Ref. (Zygadło, 2008). 

 The generalization of Eq. (9), to study a Bernoulli-Malthus-Verhulst model driven by a 
multiplicative white and colored Gaussian noise, was analyzed in Refs. (Calisto and  Bologna, 
2007; Suzuki et al., 1982; Brenig and N. Banai, 1982; Makino and Morita, 1985; Morita and 
Makino, 1986). In Refs. (Makino and Morita, 1985; Morita and Makino, 1986) the authors, 
using perturbation technique, obtained the exact expansion in power series on noise intensity 
of all the moments and found the long-time decay of t-1/2 (see also Ref. [Ciuchi et al., 1993]). 

 In the present chapter, using the previously obtained results for a generalized Langevin 
equation with a Lévy noise source (Dubkov and Spagnolo, 2005; Dubkov et al., 2008), we 
investigate the transient dynamics of the stochastic Verhulst model with a fluctuating growth 
rate and a constant value for the saturation population density , that is . The exact 
results for the mean value of the population density and its non-stationary probability 
distribution for different types of white non-Gaussian excitation r(t) are obtained. We find the 
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interesting noise-induced transitions for the probability distribution of the population density 
and the relaxation dynamics of its mean value for Cauchy stable noise. Finally we obtain a 
nonmonotonic behavior of the nonlinear relaxation time as a function of the Cauchy noise 
intensity. 

 
 

5. STOCHASTIC VERHULST EQUATION WITH NON-GAUSSIAN 

FLUCTUATIONS OF GROWTH RATE 
 
Let us consider Eq. (9) with a constant saturation value , namely  
 
dx

dt
=r (t )x (1− x).             (11) 

 
 After changing variable y = ln[x/(1-x), we obtain  
 

 
 
and the exact solution of Eq. (11) is  
 

      (12) 
 

where x0 = x(0). Now by substituting in Eq. (12) the following expression for the random rate 
r(t)  

 
r (t )=r+ξ (t),         (13) 

 
Where r > 0 and (t) is an arbitrary white non-Gaussian noise with zero mean, we can rewrite 
the solution (12) as  
 

x (t )=(1+
1− x0

x0
e− rt− L(t))− 1

.       (14) 

 
Here L(t) denotes the so-called Lévy random process with L(0) = 0, and ξ (t )= L̇(t ) . As it 
was shown in Refs. (Dubkov and Spagnolo, 2005; Dubkov et al., 2008; Feller, 1971), Lévy 
process having stationary and statistically independent increments on non-overlapping time 
intervals belongs to the class of stochastic processes with infinitely divisible distributions. As 
a consequence, the characteristic function of L(t) can be represented in the following form 
(see Eq. (6) in  [Dubkov and Spagnolo, 2005])  
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                     (15) 
 

where (z) is some non-negative kernel function. The case (z) = 2D(z) corresponds to a 
white Gaussian noise excitation (t), while for a symmetric Lévy stable noise (t) with index 
 we have a power-law kernel ρ (z)=Q∣z∣

1− α , with 0<. 
In the model under consideration the stationary probability distribution has; (i) a 

singularity at the stable point x = 1 for white Gaussian noise; and (ii) two singularities at both 
stable points x = 0and x = 1 for Lévy noise. To analyze the time behavior of the probability 
distribution in the transient dynamics it is better not to use the Kolmogorov equation for the 
probability density P(x,t), but rather the exact solution (14). Using the standard theorem of the 
probability theory regarding a nonlinear transformation of a random variable, we find from 
Eq. (14)  

 

P(x,t )= 1
x(1− x)

P
L(ln[(1− x0)x

x0(1− x)]−rt,t ),      (16) 

 
where PL(z,t) is the probability density corresponding to the characteristic function (15). For a 
white Gaussian noise (t), this distribution reads  
 

P L (z,t )= 1
2√πDt

exp{− z
2

4 Dt}.       (17) 

 
 The time evolution of the probability distribution P(x,t) for D = 0.3, r = 2, and x0 = 0.1 is 
plotted in Fig. 9. 

 

 

Figure 9. Time evolution of the probability distribution of the population density for white Gaussian 
noise excitation with intensity D . The values of the parameters are: x0=0 .1 , r =2 , D =0.3 . 
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As it is easily seen, the maximum of the unimodal distribution with initial position at x0 = 

0.1 shifts with time towards the stable point at x = 0.1. At the same time, as it follows from 
Eqs. (16) and (17), for all t > 0 we have  

 

      (18) 
 

The same picture is observed for another kernel function ρ (z)=Kz /(2sinh z )  (K >0 ) , 
corresponding to a Lévy process L(t) with finite moments and the following probability 
density of increments  
 

P L (z,t )= 2Kt− 1

π 2 Γ (Kt )
Γ (Kt

2 + iz

π )Γ(Kt

2 −
iz

π ),     (19) 

 
where (x) is the Gamma function. The corresponding time evolution of the probability 
distribution P(x,t) for K = 0.2, r = 2, and x0 = 0.1 is shown in Fig. 10.  

 

 

Figure 10. Time evolution of the probability distribution of the population density in the case of Lévy 
noise with distribution (19). The values of the parameters are: x0 = 0.1, r = 2 , K = 0.2. 

A different situation we have for a Cauchy stable noise (t) with constant kernel 
ρ (z)=Q  (α =1) . After evaluation of the integral in Eq. (15), the probability density of the 

Lévy process increments takes the form of the well-known Cauchy distribution (Feller, 1971)  
 

P L (z,t )=
D1 t

π [z2+ (D1 t)2],        (20) 

 
where D1 = Q is the noise intensity parameter. In such a case from Eqs. (16) and (20) for all 
t > 0 we find  
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      (21) 
  

As a result, from an initial delta function we immediately obtain a trimodal distribution for t 
> 0 and then after some transition time tc a bimodal one with two singularities at the stable 
points x = 0 and x = 1 (see Figs. 11 - 13).  

 

 

Figure 11. Time evolution of the probability distribution of the population density in the case of white 
Cauchy noise excitation. The values of the parameters are: x0 = 0.1, r = 2, D1 = 0.7. 

We should note that the transition from trimodal to bimodal distribution is a general 
feature of the model in the presence of a Cauchy stable noise, and it is not limited to some 
range of parameters. In fact, from Eq. (21) and a delta function initial distribution inside the 
interval (0,1), this transition always takes place. 

In the following Figs. 12 and 13 we show the time evolution of the probability 
distribution of the population density for two other values of the noise intensity, namely D1 = 

1.2 and D1 = 1.7. As the noise intensity increases the probability distribution shows two 
singularities near x = 0 and x = 1 with different amplitude. 

 

 

Figure 12. Time eolution of the probability distribution of the population density in the case of white 
Cauchy noise. The values of the parameters are : x0 = 0.1, r = 2, D1 = 1.2. 
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Figure 13. Time evolution of the probability distribution of the population density in the case of white 
Cauchy noise. The values of the parameters are x0 = 0.1, r = 2, D1 = 1.7. 

This transition in the shape of the probability distribution of the population density is due 
to both the multiplicative noise and the Lévy noise source. Using Eqs. (16) and (20) and 
equating to zero the derivative of P(x,t) with respect to x, we obtain the following condition 
for the extrema in the range 0 < x < 1, and particularly for a minimum in the same interval  

 

  
z ( x,t )

z ( x,t )2+ ( D1 t )2 =x−
1
2 ,        (22) 

 
with  

 

z ( x,t )= ln[(1− x0)x
x0(1− x)]−rt .       (23) 

  
This condition can be solved graphically by finding the intersection between the functions 
y1=z (x,t )/(z ( x,t )2+ (D1 t )2 )  and y2 = x – 1/2. This is done in the following Figs. 14 - 

16, where the function y1 is plotted for three different values of time and noise intensity. In 
each figure the black blue curve (color on line) corresponds to the critical value of time tc for 
which we have a noise induced transition of the probability distribution of the population 
density from trimodal to bimodal, that is from two minima and one maximum to one 
minimum inside the interval 0 < x < 1. The appearance of one minimum in the probability 
distribution is the signature of this transition. 

The three values of the critical time tc corresponding to the three values of the Lévy 
noise intensity investigated are: (D1)1 = 0.7, tc = 1.75; (D1)2 = 1.2, tc = 1.3; (D1)1 = 1.7, tc = 

0.95. One rough evaluation of the critical time tc is obtained by putting  equal to 1 the scale 
parameter of the Cauchy distribution of Eq. (20), that is 1/D1. The critical time tc is the time at 
which the maximum and one minimum of the probability distribution (see Figs. 11 - 13) 
coalesce in one inflection point and in this point x the function y2 = x – 1/2 becomes tangent 
at the function y1 (see Figs. 14 - 16). It is interesting to note that the critical time tc decreases 
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with the noise intensity D1. This is because by increasing the noise intensity, more quickly the 
population density reaches the two points near the boundaries x = 0 and x = 0. 

 

 

Figure 14. Plots of both sides of Eq. (22) (white Cauchy noise): function y1 (solid curves), function y2 
(dashed curve), for three values of time, namely: t = 0.8, 1.75, 2.5. The critical time is tc = 1.75 (black 
blue curve). The values of the other parameters are: x0 = 0.1, r = 2, D1 = 0.7. 

 

 

Figure 15. Plots of both sides of Eq. (22) (white Cauchy noise): function y1 (solid curves), function y2 
(dashed curve), for three values of time, namely: t = 0.9, 1.3, 3. The critical time is tc = 1.3 (black blue 
curve). The values of the other parameters are: x0 = 0.1, r = 2, D1 = 1.2. 
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Figure 16. Plots of both sides of Eq. (22) (white Cauchy noise): function y1  (solid curves), function y2 
(dashed curve), for three values of time, namely: t = 0.4,0.95,1.5 . The critical time is tc = 0.95  (black 
blue curve). The values of the other parameters are: x0 = 0.1, r = 2, D1 = 1.7. 

 
6. NONLINEAR RELAXATION TIME OF THE MEAN 

POPULATION DENSITY 
 
It must be emphasized that to find the time evolution of the mean population density one 

can use two different approaches. The first one was proposed in Ref. (Jackson et al., 1989). 
According to the exact solution (14) of the Verhulst equation (11), we can rewrite this 
expression in the following form  

 
x (t )=f (e− rt− L(t)),        (24) 

 
where  
 

f (q)=(1+
1− x0

x0
q)

− 1

.        (25) 

 
Then, by expanding the smooth function (25) in a standard Taylor power series in q  around 
the point q = 0 we have  
 

       (26) 
 

After substitution of Eq. (26) in (24) and averaging we obtain  
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     (27) 
 

or, in accordance with Eq. (15),  
 

 (28) 
  

For white Gaussian noise (t) with kernel (z) = 2 D (z) we obtain from Eq. (28) the 
following asymptotic series  
 

      (29) 
  

By considering a finite number of terms in this expansion leads to a wrong conclusion about 
the critical slowing down phenomenon in such a system, as found in Ref. (Leung, 1988). The 
exact result is obtained, of course, by summing all the terms in Eq. (29). Moreover, for most 
of the kernels (z) the integral in Eq. (28) diverges. Thus, this approach is inappropriate for 
our purposes, and it is better to use the direct averaging in Eq. (14). Therefore, using this 
second approach we have  
 

  (30) 
 
Let us consider now different models of white non-Gaussian noise (t). 

 

 

Figure 17. Nonlinear relaxation of the mean population density in the case of white shot noise 
excitation, for three values of the mean frequency  , namely 0.3, 3. The values of the other 
parameters are: x0 = 0.1, r = 2, a0 = 1. 
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We start with the white shot noise  
 
a

i
δ (t− t

i)                    (31) 
 
having the symmetric dichotomous distribution of the pulse amplitude 
P (a)= [δ(a− a0)+δ(a+a

0)]/2 , the mean frequency  of pulse train, and the kernel 

ρ (z)=νz
2

P (z ) . From Eq. (15) we have  
 

〈e
iuL(t)〉=e

− νt (1− cosa0 u).        (32) 
 
 By making the reverse Fourier transform in Eq. (32) we find the probability distribution of 
the corresponding Lévy process  
 

     (33) 
  

where In(x) is the n-order modified Bessel function of the first kind. The relaxation of the 
mean population density <x(t)> is shown in Fig. 17. According to the Eqs. (30) and (33) the 
stationary value of the population density in such a case is <x(t)>st = 1, but the relaxation 
time (10) increases with increasing the mean frequency of pulses. 

 

 

Figure 18. Nonlinear relaxation of the mean population density in the case of Lévy noise with 
distribution (19), for three values of the parameter K, namely K  = 0.4, 2. The values of the other 
parameters are: x0 = 0.1, r = 2. 

For white non-Gaussian noise with the kernel ρ ( z )=Kz /(2sinh z )  we observe a 
similar transient dynamics, which is shown in Fig. 16. We have the same stationary value 
<x(t)>st, and the relaxation time T increases with increasing the parameter K, which is 
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proportional to the noise intensity. Finally, in the case of white Cauchy noise (t) we obtain 
interesting exact analytical results. First of all, substituting Eq. (20) in (30) and changing the 
variable z = D1ty  under the integral, we obtain  

 

   (34) 
  
For the stationary mean value <x(t)>st we find from Eq. (34)  
 

   (35) 
 

where 1(x) is the step function. After evaluation of the integral in Eq. (35) we obtain finally  
 

〈x 〉st=
1
2 + 1

π
arctan r

D1
.        (36) 

 
As it is seen from Fig. 19 and Eq. (36), for small noise intensity D1, with respect to the value 
of the rate parameter r = 2, the stationary mean value of the population density is 
approximately 1, as for the other white non-Gaussian noise excitations considered. But for 
large values of D1, this asymptotic value, which is independent from the initial value of 
population density x0, tends to 0.5. 

 

 

Figure 19. Nonlinear relaxation of the mean population density in the case of white Cauchy noise, for 
three values of the noise intensity  D1, namely D1 = 0.2,2,7. The values of the other parameters are: x0 = 

0.1, r = 2. 
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It is interesting also to analyze, for this case of white Cauchy noise, the dependence of the 
relaxation time T from the noise intensity D1. Substituting Eq. (34) in (10) and changing the 
order of integration, for initial condition x0 = 0.5, we are able to calculate analytically the 
double integral in t and in y obtaining the final result  

 

T=
π ln2

r (1+D
1
2/r 2)arccot( D1 /r )

.       (37) 

 
We find a nonmonotonic behavior of the relaxation time T versus the noise intensity D1 with a 
maximum at the noise intensity D1 = 0.75, as shown in Fig. 20.  

 

 

Figure 20. Nonmonotonic behavior of the nonlinear relaxation time T as a function of the white Cauchy 
noise intensity D1. The values of the other parameters are: : x0 = 0.5, r = 2. 

This nonmonotonic behavior is also visible for another initial position: x0 = 0.1 in Fig. 
19. Here the relaxation time to reach the stationary value of mean population density <x(t)>st, 
increases from very low noise intensity (D1 = 0.2) to moderate low intensity (D1 = 2), while 
decreases for higher noise intensities (D1 = 7). This is also due to the dependence of <x(t)>st  
from the noise intensity D1 (see Eq. (36)). We note that this nonmonotonic behavior of the 
relaxation time T is related to the peculiarities of the transient dynamics of the mean 
population density and it will be object of further investigations. 

 
 

CONCLUSIONS 
 
 In this contribution we have studied the effects of random fluctuations, i.e. noise, in the 

vibrational communications occurring during the mating of N. viridula, i.e. the green bug. In 
our experimental work we analyzed the behavioral response of different individuals of N. 

viridula to a deterministic signal (calling song), measuring for these individuals the threshold 
of the neural activation. Afterwards, we analyzed the green bug response when a sub-
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threshold deterministic signal is added with an external noise source. By using the Source-

Direction Movement ratio as indicator of positive response to the external signal, we observe 
that the behavioral activation of the insects is characterized by a nonmonotonic behavior as a 
function of the noise intensity D, with a maximum at 5101.30 optD=D  V

2 . The 

value Dopt maximizes the efficiency of the sexual communication among individuals of 
Nezara viridula (L.), and therefore represents the optimal noise intensity during the mating 
behavior of these insects. The nonmonotonic behavior observed in the insect response as a 
function of the noise intensity is the signature of the threshold stochastic resonance (TSR) 
[117]. By using a threshold model we obtained numerical results for the threshold crossing, 
which corresponds in our model to the behavioral activation, finding a theoretical value for 
the optimal noise intensity. Experimental and numerical results are compared, finding a good 
agreement between the values of the optimal noise intensity obtained by the experimental 
work and model (see Figs. 2.2(b) and 3). 

We analyzed the influence of an external oscillating driving field on the translocation 
dynamics of short polymers embedded in a noisy environment. We simulate the translocation 
process by letting the polymer to cross a potential barrier starting from a metastable state, in 
the presence of thermal fluctuations. The mean translocation time as a function of the 
frequency of the driving force shows a nonmonotonic behavior, with the noise intensity acting 
as a scaling factor of the values of the crossing times. The forcing periodic electric field 
jointly with the temperature of the system can be able to speed up or slow down the polymer 
translocation. In this view, the oscillating electric field constitutes a tuning mechanism to 
select a suitable translocation time of the polymer. This feature may have important biological 
effects on the cell metabolism, for example, during a cancer targeted therapy. 

Finally, the transient dynamics of the Verhulst model, perturbed by arbitrary non-
Gaussian white noise, has been investigated. This well-known equation is an appropriate 
ecological and biological model to describe closed-population dynamics, self-replication of  
macromolecules under constraint, cancer growth, spread of viral epidemics, etc... By using 
the properties of the infinitely divisible distribution of the generalized Wiener process, we 
analyzed the effect of different non-Gaussian white sources on the nonlinear relaxation of the 
mean population density and on the time evolution of the probability distribution of the 
population density. We obtain exact results for the non-stationary probability distribution in 
all cases investigated and for the Cauchy stable noise we derive the exact analytical 
expression of the nonlinear relaxation time. Due to the presence of a Lévy multiplicative 
noise, the probability distribution of the population density exhibits a transition from a 
trimodal to a bimodal distribution in asymptotics. This transition, characterized by the 
appearance of a minimum, happens at a critical time tc, which can be roughly evaluated as 
1/D1 (where D1 is the noise intensity) and exactly evaluated from the condition (22). Finally a 
nonmonotonic behavior of the nonlinear relaxation time of the population density as a 
function of the Cauchy noise intensity was found. 
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