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The use of robust techniques in crystal structure multipole refinements of small

molecules as an alternative to the commonly adopted weighted least squares is

presented and discussed. As is well known, the main disadvantage of least-

squares fitting is its sensitivity to outliers. The elimination from the data set of

the most aberrant reflections (due to both experimental errors and incomplete-

ness of the model) is an effective practice that could yield satisfactory results,

but it is often complicated in the presence of a great number of bad data points,

whose one-by-one elimination could become unattainable. This problem can be

circumvented by means of a robust least-squares regression that minimizes the

influence of outliers. This work is aimed at showing the capability of a robust

regression to achieve an higher reliability of the least-squares estimates with

respect to the traditional weighted least-squares crystal structure refinement in

terms of both accuracy and precision. The results can be considered encouraging

and represent a starting point for future developments.

1. Introduction

The current requirement for a high level of reliability of the

results of a crystal structure refinement in all investigations

involving crystallographic models obliges us to try to improve

any protocol usually adopted in any common crystallographic

practice.

Over the years, the efforts of a number of investigators have

been turned into fruitful suggestions proposed by the Inter-

national Union of Crystallography aimed at improving each

step of the crystallographic analysis of a structure. These

efforts have been in many directions, from data-collection

techniques to data treatment, from the choice of the

minimization function to the algorithm of optimization, and

so on.

Within this framework we have undertaken the present

work in order to adopt some common robust techniques of

refinement, and to improve the least-squares estimates in

crystal structure refinement with respect to the commonly

used weighted least-squares procedures. This need is even

more pressing when dealing with multipole refinements, when

subsequent calculation for reconstructing reliable electron

densities as a function of the refined multipole parameters is

involved.

Robust techniques hinge on some robust statistical esti-

mators based on knowledge of the leverage of each data point,

so the present study can be considered as a natural evolution

of our previous research (Merli, 2005) involving regression

diagnostics based on leverage analysis aimed at achieving

a higher accuracy of the estimated variables of the crystal

structure refinement.

2. Theoretical background

2.1. The outliers of a structure refinement

It is well known that if a data point has an observed value

markedly different from its calculated value, it means that the

fitting algorithm is unable to resolve this aberrant discrepancy,

and the data point becomes an outlier. The effect of trying to

fit an outlier is to make the fits of all other data points a little

bit worse, with the consequent introduction of bias into the

parameter estimates.

For this reason, a suitable identification of the influential

points (i.e. the points that remarkably affect the model para-

meters) is therefore critically important if a highly accurate

estimation of the model parameters is required. A reliable tool

for detecting the influence of each data entry on the regression

is represented by a number of regression diagnostics (Belsey et

al., 1980). Such an approach allows a reliable identification

and elimination of the actually dangerous outliers, i.e. the data

points with a large discrepancy between observed and calcu-

lated values whose fitting may actually affect some estimates.

We successfully applied this procedure to the crystal-

lographic least-squares refinement (Merli, 2005), and have

recently extended this approach to chemical kinetic calcula-

tions (Merli et al., 2010), resulting in a significant improvement

of any fitted model.

It must be noted that the simultaneous elimination of the

outliers detected by means of some suitable diagnostics could

be a dangerous practice. This procedure would involve a

multi-collinearity analysis, which can be a non-trivial task from

several points of view. The progressive one-by-one elimination

of the bad observations should be recommended, but it
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becomes very time consuming, especially when a large number

of outliers are present. Besides, this procedure would some-

times be complicated by the appearance of new outliers during

the cycles: such situations would make the process too labor-

ious or even impossible.

These considerations led us to test a robust regression

procedure aimed at reducing the negative influence on the

estimates introduced by those observations with a relatively

large discrepancy with respect to the calculated ones, allowing

us to simultaneously downweight the bad reflections and avoid

their elimination from the data set.

2.2. Robust weights in a crystal structure refinement

The heteroskedasticity of the residuals in a least-squares

crystal structure refinement obviously requires a weighted

least-squares (WLS) regression using some suitable weighting

scheme to be introduced in the loss function. A number of

effective weighting schemes are described in the crystal-

lographic literature. For the sake of brevity we address the

reader to the work by Spagna & Camalli (1999) and references

therein, as well as to the extensive review by Watkin (2008).

Particularly interesting is the robust weighting scheme

adopted by Carruthers & Watkin (1979) implemented in the

crystallographic least-squares code CRYSTALS (Betteridge et

al., 2003). This weight is a function of the discrepancy between

the observed reflection and the calculated one. If this differ-

ence is too large compared with those estimated from the

Chebychev fitting of the residuals, the reflection is down-

weighted. This weighting scheme actually reduces the bad

influence of the large-discrepancy outliers on the refinement.

Robust statistics have been previously discussed (for

instance, Prince, 1982) in the field of crystallography but, in

general, their implementation has been largely heuristic.

These statistics are used when it is known that there are rogue

values or outliers in the data, since standard least-squares

analysis associates a particularly significant penalty with these

points. Heuristic robust techniques generally involve a

reasonable modification to the least-squares procedure. Prince

(1982) and Prince & Nicholson (1985) mentioned two modi-

fications for the least-squares algorithm. Spagna & Camalli

(1999) included robust statistics in their analysis of weighting

schemes. Box & Tiao (1968) and Sivia (1996), however, have

shown that the outlier problem may be developed within a

Bayesian approach to produce probability distribution func-

tions that have a well reasoned basis.

2.3. Robust regression techniques

Robust regression techniques are, in principle, both less

sensitive to the presence of the outliers and to some depar-

tures from general idealized assumptions introduced in the

optimization (for example, the normality of the residuals).

Obviously, the prediction and the estimation of the model may

become biased when these axiomatic assumptions are not met.

The advantage in using this kind of approach hinges on the

robustness of the statistic estimators involved in this context,

that have a lower dependency on the mere discrepancy

between observed and calculated data points and allow an

effective downweighting of the dangerous outlier.

It should be noticed that robust methods for regression are

still not widely used, even if they often yield better results

with respect to the least-squares estimation (see Hampel

et al., 1986). It is our opinion that the main (historical) reason

is that the robust estimation is a very resource-demanding

computation. Because of the great increase in computer

performance in recent years, however, robust regression

should not be considered as an insurmountable obstacle. We

hope that these methods will come into wider use in crystal-

lographic practice.

There are a number of robust regression techniques which

replace the least-squares loss function with one less influenced

by the presence of outliers in the data set and which can be

insensitive to departures from the model assumptions. We can

summarize the most common estimators used in robust

regression as follows:

(i) L-estimators, based on linear combinations of order

statistics;

(ii) R-estimators, based on the ranks of the residuals;

(iii) M-estimators, based on maximum-likelihood argu-

ments;

(iv) S-estimators, that minimize a robust M-estimate of the

residual scale;

(v) MM-estimators, that build on both M-estimation and

S-estimation to achieve a high breakdown point with high

asymptotic efficiency.

Let us briefly consider some peculiar features of the

regression estimators listed above. The reader may refer to

Rousseeuw & Leroy (1987) for an extended review of these

arguments.

Among the L-estimators class we recall the least absolute

value (LAV) regression, in which the model estimates are

found by minimizing the absolute value of the residuals

instead of the weighted sum of squares as in the WLS

regression. LAV is less affected by the presence of outliers but

is not robust in the presence of gross outliers in the data set.

Least median of squares (LMS) regression, first introduced by

Rousseeuw (1984), in which the loss function is represented by

the median of the squared residuals, is another estimator

belonging to the L-estimators class, as well as the least

trimmed squares (LTS) regression (Rousseeuw, 1985). Both

LMS and LTS show some limitations but play a significant role

in the calculation of other estimators.

R-estimators (first introduced by Jaeckel, 1972) involve

dispersion measures based on linear combinations of ordered

residuals (i.e. on the rank of the residuals). R-estimators often

show an undesirable ‘breakdown point’, i.e. the least number

of outliers that affect the estimation, which actually ‘breaks

down’. M-estimation for regression was introduced by Huber

(1964, 1973). This estimator combines the efficiency of the

least-squares estimators and the resistance of the LAV esti-

mators.

An M-estimator minimizes a less rapidly increasing function

of the residuals, which requires the use of an iterative proce-

dure, since the residuals cannot be found until the model is
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fitted. The so-called iteratively reweighted least-squares

(IRLS) is thus employed, as in this work.

Because of the breakdown points of M-estimators, Hampel

(1975) introduced the important concept of the scaling of the

residuals. Such an approach was followed by Rousseeuw &

Leroy (1987), who proposed the so-called S-estimator. This

technique seeks a solution that finds the smallest possible

dispersion of the residuals, namely, a robust estimate of the

scale (from which the method gets the ‘S’ in its name) of the

residuals.

MM-estimators attempt to combine the robustness and

resistance of S-estimation with the efficiency of M-estimation.

The method finds a highly robust and resistant S-estimate that

minimizes an M-estimate of the scale of the residuals (i.e. the

reason for the first ‘M’ in the name of this method). The scale

is then kept constant until a close-by M-estimate of the

parameters is located (i.e. the second ‘M’ in the name).

3. The robust procedure used in this work

We have implemented an MM robust regression algorithm by:

(i) Performing a usual WLS regression until convergence is

reached, using one of the weighting schemes commonly used

in crystallographic practice. The preliminary p vector of the

regression coefficients and the n vector of the residuals are

thus obtained, together with the (n � p) design matrix of the

system, which will be used to calculate robust weights in the

following steps.

(ii) Choosing one of the estimators of the dispersion of the

residuals among MSE, MAD or Rousseuw’s estimator as

reported in xA2 (the choice is empirical: in this work MAD has

been adopted).

(iii) Calculating the scaled (robust) residual as reported in

xA3.

(iv) Choosing one of the M-estimator functions as reported

in xA4.

(v) Performing one cycle of least-squares and restarting

from step (ii) until convergence is reached.

(vi) Using some regression diagnostics to detect outliers.

For the sake of clarity, we would like to give more details for

steps (iv) to (vi). As for step (iv), note that – depending on the

results of the IRLS procedure – an adjustment of the tuning

constant c is required (see xA4 for further details). Unfortu-

nately, a proper value of the tuning constant can be obtained

only through a trial-and-error procedure. In general, a smaller

tuning constant tends to downweight large residuals more

severely, while a larger tuning constant downweights large

residuals less severely. The default tuning constants, as has

been proposed by the authors, yield coefficient estimates that

are approximately 95% as efficient as least-squares estimates

when the response has a normal distribution without outliers.

A decrease of c involves a lowering of the asymptotic Gaus-

sian efficiency of the refinement, while an augmentation of c

yields an increase of the efficiency, approaching the WLS

regression. Thus, if the outlier detection diagnostics reveal the

presence of some aberrant reflections, the tuning constant

should be lowered until the disappearance of the outliers is

achieved. Besides, if the diagnostics do not reveal the presence

of outliers, it could be worthwhile increasing the value of c

and then comparing some related figure of merit with that

obtained using a different tuning constant. The choice of the

‘best’ setup (i.e. the best choice of both weighting function and

tuning constant) should involve the use of some statistical

criteria for model selection. The problem is that the most

widely used model choice criteria, such as Akaike’s informa-

tion criteria (AIC, Akaike, 1973; Burnham & Anderson,

2002), Bayesian information criteria (BIC, Schwarz, 1978;

Kass & Raftery, 1995) and the PRESS statistics analysis (Neter

et al., 1990), always depend on the scaling of the residuals.

Consequently, it would be difficult to compare models with the

same weighting function but different tuning constants. The

analysis of any scaled residuals (StdRes, StudRes or StuDel,

see xA3) can be helpful in this kind of problem, as shown in

the next section.

Relative to step (v), it should be noticed that in IRLS

regressions the convergence is always slower and sometimes

oscillating with respect to WLS regression. Thus, it is worth

adopting, together with a convergence criterion commonly

adopted in crystallographic works (for instance, maximum

shift/s.u. < 0.01), some other criterion: in this work, we stopped

IRLS when the relative difference in wSSE between two

consecutive cycles was less than 0.001% for two or three

cycles.

The outlier detection [step (vi)] can be performed in a

number of ways (Belsey et al., 1980). In this work, the Cook’s

distance and the COVRATIO estimators have been consid-

ered. Cook’s distance is a measure of how much all the other

residuals would change if the ith observation is deleted from

the analysis. Cook’s distance is greater than 0, and may be

arbitrarily large. COVRATIO examines how the precision of

the parameter estimates changes with the removal of the ith

observation. A small COVRATIO is bad, since the variance

is smaller without the ith observation, whereas a big

COVRATIO involves larger variance without the ith obser-

vation. In other words, a big COVRATIO just indicates an

extremely influential observation, not necessarily one that is

dangerously aberrant. However, if the observation also has a

high leverage, the precision of the estimates may be worse.

The thresholds adopted in this work for leverage and

Cook’s distance were 3p/n and 4/(n � p � 1), respectively,

whereas the lower and upper bounds for COVRATIO were

1 � 3p/n and 1 + 3p/n, respectively. Note that for the leverage

cutoff we have adopted that introduced by Velleman & Welsch

(1981), who suggested that, when p > 6 and n � p > 12, 3p/n is

more appropriate than the usual 2p/n.

The so-called William’s graph, in which Cook’s distance or

alternatively one of the scaled residuals is plotted against

leverage and the related thresholds are superimposed, is an

effective tool to detect the dangerous outliers. Data points

with leverage and Cook’s distance greater than the corre-

sponding thresholds are to be considered potentially

dangerous outliers. If the correspondent COVRATIO is less

than the lower bound, the outlier recognized in the William’s

graph can be considered as an actually aberrant point, whereas
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reflections with a COVRATIO value higher than the upper

thresholds are not to be considered bad observations, but just

highly influential data on the least-squares estimates. This

diagnostic, based on the combination of leverage value,

Cook’s distance and COVRATIO analysis, has been found to

be quite effective when dealing with this kind of data.

4. The experiments: results and discussion

Several different crystal structures have been used to test the

reliability of the IRLS regression described above, taken from

the inorganic, organic and metal–organic databases. For the

sake of brevity, we present just three selected examples from

the whole set of theoretical cases considered, together with

an example of the application of the robust procedure to

experimental data. In particular, we analyse here the multi-

pole refinement results for (i) an organic compound, the non-

standard amino acid sarcosine (Dittrich & Spackman, 2007),

(ii) the natural borate datolite Ca[BOH(SiO4)] (Ivanov &

Belokoneva, 2007) and (iii) an experimental formamidine

(Giumanini et al., 1999). These theoretical and experimental

case studies can be considered as representative of the overall

behaviour of the whole set of structures considered. For cases

(i) and (ii), synthetic data sets have been produced on the

basis of the model obtained from the structure refinement of

the experimental data up to the experimental resolution.

Random errors taken by normal populations with mean zero

and variances comparable to the experimental ones have been

added to the synthetic data points. In particular, a mean

variance value has been evaluated for ten different resolution

shells, in order to model a noise pertaining to the reality. It can

be noticed that we observed that the higher the bias of the

data, the higher is the effectiveness of the IRLS procedures

with respect to the WLS refinements. IRLS becomes useless if

the residuals are homoskedastic.

The multipole refinements have been carried out using the

XD program (Koritsanszky et al., 1995). The WLS regressions

have been performed using the weighting scheme imple-

mented in XD (with the coefficient a adjusted to correct the

goodness-of-fit value and the coefficient f set to 1/3; see the

XD manual for further details), and the IRLS method has

been implemented in the XD code.

Once convergence has been reached, calculation of the

leverage and some related diagnostics as described above has

been performed.

Reflections with both Cook’s distance and COVRATIO

values outside the suggested thresholds and, simultaneously, a

high leverage have been considered ‘dangerous outliers’ and

progressively eliminated from the data sets.

For cases (i) and (ii), the results of each refinement have

been evaluated by averaging the absolute values of the

discrepancies between the calculated parameters and those of

the reference model, both for the whole set of the parameters

and for each class of variables (i.e. atom coordinates, atomic

displacement parameters, � shrinking factors, multipole

population coefficients and overall scale factor). In all cases

the precision of the estimates has been evaluated by calcu-

lating the average value of both the standard deviations

associated with all the variables and with each class of vari-

ables as described above.

Moreover, for cases (i) and (ii) the relative absolute

difference between the discrepancy measures related to each

IRLS run and those for the WLS has been evaluated, in order

to have an idea about the ‘gain’ in accuracy with respect to the

traditional WLS when a robust technique is adopted. Simi-

larly, the relative absolute difference between the hs.u.i eval-

uated in WLS and each IRLS run has been considered for all

cases.

4.1. Synthetic sarcosine

A synthetic set of 2831 structure factors up to a reciprocal

resolution of sin (�)/� = 1.18 Å�1 was generated on the basis of

the model given by Dittrich & Spackman (2007). The errors

added to each reflection (taken from a normal population with

zero mean and the variance observed in the experimental

data) involved a mean discrepancy between the theoretical

|Fo| and the synthetic noise-induced |Fc| ’ 1.6%.

In order to facilitate a comparison between WLS and all of

the IRLS procedures considered, the results of both methods

have been summarized in Table 1, where some selected figures

of merit related to the refinements are shown. Table 2 gives

the overall discrepancies between the theoretical and the

refined parameters, as well as the departures from the theo-

retical values of each class of variables, as explained above.

Fig. 1 shows the comparison of the William’s graph and the

COVRATIO versus leverage plot between the WLS run (Figs.

1a and 1b, respectively) and the best robust run (Huber

weights with c = 0.1; Figs. 1c and 1d, respectively). Fig. 2

compares the StudRes observed in the WLS case (Fig. 2a) with

that of the best robust run (Fig. 2b).
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Table 1
Selected figures of merit for WLS and IRLS refinements of sarcosine.

Weighting
function WLS

Huber
(c = 1.345)

Huber
(c = 0.100)

Logistic
(c = 1.205)

Logistic
(c = 0.200)

Gaussian
efficiency

100% 95% 67% 95% 73%

R(Fo) 0.0160 0.0145 0.0143 0.0145 0.0143
R(Fo

2) 0.0256 0.0232 0.0232 0.0232 0.0233
wSSE 2371.22 12.40 1.28 10.69 2.49
MSE1/2 0.9410 0.0680 0.0219 0.0632 0.0305
R 0.9994 0.9998 1.0000 0.9998 0.9999
R2 0.9989 0.9996 0.9999 0.9997 0.9998
adjR2 0.9989 0.9996 0.9999 0.9996 0.9998
Max. shift/s.u. 0.0000 0.0058 0.0103 0.0061 0.0093
r.m.s. (shift/s.u.) 0.0000 0.0270 0.0327 0.0278 0.0374
hshift/e.s.d.i 0.0000 0.0014 0.0020 0.0015 0.0024
ME �0.0077 �0.0020 �0.0022 �0.0021 �0.0021
�2 0.0108 0.0102 0.0107 0.0101 0.0107
MAE 0.0622 0.0560 0.0552 0.0559 0.0553
MARE 0.0210 0.0184 0.0180 0.0184 0.0181
MEDE �0.0077 �0.0023 �0.0007 �0.0023 �0.0011
MAD 0.0617 0.0560 0.0553 0.0559 0.0553
SAE 175.95 158.64 156.40 158.50 156.60
AIC 19176.4 7350.5 5183.3 7022.6 5442.1
PRESS 3931.4 15.6 1.4 13.3 2.8
predR2 0.9982 0.9995 0.9999 0.9996 0.9998



4.1.1. WLS regression. The initial WLS crystal structure

refinement on the synthetic set of structure factors was carried

out using the weighting scheme implemented in the XD code,

with the coefficient a set to 0.0 and the coefficient f set to 1/3.

The refinement of 153 model parameters gave final R(Fo) =

0.0160 and R(Fo
2) = 0.0256 (Table 1). The overall measure of

the discrepancy between the refined parameters and the

theoretical ones was 0.0175, corresponding to a relative

absolute error on the estimates �5%, while the mean s.u. was

0.0086 (Table 2).

Once the convergence criterion was satisfied, the regression

diagnostics were calculated.

For this structure the thresholds for the estimators listed

above were 0.16 for the leverage, 0.0014 for the Cook’s

distance, 0.84 for the lower bound of the COVRATIO esti-

mator and 1.19 for the upper bound of COVRATIO.

The regression diagnostics revealed the presence of 63

influential outliers. This is a typical case in which the one-by-

one elimination of the outliers is unsuitable because of the

large number of outliers to be eliminated and because of the

usual appearance of new outliers during the stepwise elim-

ination of the aberrant points. Figs. 1(a), 1(b) and Fig. 2(a)

allow a visual analysis of the outliers. In particular, the points

possibly lying in the lower-right quadrant in Figs. 1(b) and 1(d)

represent the actual outliers of the refinement.

4.1.2. IRLS regression. In this work all of the weighting

functions listed in xA3 have been tested for a number of

structures. In this paper we report just the results for the

Huber and the logistic weight, since they have been observed

to be the most effective in terms of robustness, rate of

convergence and precision.

The figures of merit reported in Table 1 (columns 2–6)

clearly show a general improvement with respect to the WLS

procedures when both of the robust regression techniques are

adopted.

In all of the IRLS cases a decrease of 9–11% of the value

of the crystallographic R(Fo) and R(Fo
2) factors has been

observed. The slight improvement of the values of the R, R2

and adjR2 factors also indicates either a greater capability of

the model to explain the variance of the dependent variables

involved, or, equivalently, a reduction of the errors associated

with each dependent variable.

Some figures of merit based on the unweighted residuals

such as ME, �2, MAE, MARE, MAD and SAE listed in Table

1 are also useful in model choice, being independent of the

weights. These unweighted estimators have been taken into

account because the weighted estimators harm the intuitive

appeal of a measure of the actual error. As can be seen, the

comparison between IRLS and WLS always indicates a

significant improvement if a robust regression is performed.

The improvement of the figures of merit is in agreement

with the overall ‘gain’ in accuracy of the estimates with respect

to the WLS case, which ranges from�10% up to�18% (Table

2). The most important contribution to the overall gain in

accuracy is due to the improvement of the multipole para-

meters that involve the greater number of variables (88

parameters on 153). A very high level of improvement is

observed for the atom coordinates (up to 60%), atomic

displacement parameters (�28%), � factors (�87%) and

overall scale factor (�99%). The last two classes of variables

are typically affected by the strongest error in the structure

refinements.
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Table 2
Absolute discrepancy measurements between each class of the theoretical and refined parameters for sarcosine.

Percentages in parentheses represent the relative improvement with respect to the WLS results. all = summation over the discrepancies related to the whole set of
refined variables; coord = summation over the discrepancies related to the atom coordinates; a.d.p. = summation over the discrepancies between the a.d.p.’s; � =
summation over discrepancies between the � values; mult = summation over discrepancies between the multipole terms; scale = discrepancy between theoretical
and refined scale factor; max(|xi

truexi
calc|)var = maximum absolute discrepancy between the true and calculated values for the class of variables denoted by ‘var’;

min(|xi
truexi

calc|)var = minimum absolute discrepancy between the true and calculated values for the class of variables denoted by ‘var’.

Weighting function WLS Huber (c = 1.345) Huber (c = 0.100) Logistic (c = 1.205) Logistic (c = 0.200)

(�|xi
true
� xi

calc|/p)all 0.0175 0.0158 (10%) 0.0144 (18%) 0.0159 (10%) 0.0146 (17%)
hs.u.iall 0.0086 0.0065 (25%) 0.0041 (52%) 0.0064 (26%) 0.0048 (45%)
(�|xi

truexi
calc|/p)coord 5.08E-05 2.9E-5 (43%) 2.1E-05 (59%) 2.8E-05 (45%) 2.0E-05 (61%)

hs.u.icoord 5.66E-05 3.4E-05 (40%) 1.7E-05 (69%) 3.2E-05 (43%) 2.1E-05 (63%)
max(|xi

truexi
calc|)coord 1.7E-04 8.3E-05 5.6E-05 7.6E-05 5.2E-05

min(|xi
truexi

calc|)coord 8.0E-06 1.0E-06 2.0E-06 0.0 0.0
(�|xi

true
� xi

calc|/p)a.d.p. 0.0013 0.00135 (9%) 0.00090 (28%) 0.00138 (11%) 0.00098 (22%)
hs.u.ia.d.p. 0.0011 0.00082 (25%) 0.00052 (52%) 0.00082 (26%) 0.00060 (45%)
max(|xi

truexi
calc|)a.d.p. 2.7E-02 1.3E-02 1.3E-02 1.3E-02 1.4E-02

min(|xi
truexi

calc|)a.d.p. 1.2E-05 0.0 0.0 0.0 3.0E-06
(�|xi

true
� xi

calc|/p)� 0.0076 0.0013 (83%) 0.0010 (87%) 0.0008 (90%) 0.0009 (88%)
hs.u.i� 0.0029 0.0017 (44%) 0.0010 (66%) 0.0016 (45%) 0.0012 (60%)
max(|xi

truexi
calc|)� 1.1E-02 2.5E-03 2.0E-03 1.5E-03 1.7E-03

min(|xi
truexi

calc|)� 4.2E-03 3.0E-06 3.0E-06 5.0E-06 5.0E-06
(�|xi

true
� xi

calc|/p)mult 0.0296 0.0266 (10%) 0.0244 (18%) 0.0267 (10%) 0.0247 (16%)
hs.u.imult 0.0143 0.0107 (25%) 0.0068 (53%) 0.0106 (26%) 0.0079 (44%)
max(|xi

truexi
calc|)mult 1.2E-01 1.7E-01 1.5E-01 1.8E-01 1.5E-01

min(|xi
truexi

calc|)mult 5.0E-05 6.2E-04 1.3E-04 1.8E-05 9.7E-05
(|xi

true
� xi

calc|)scale 4.16E-03 3.0E-06 (100%) 3.0E-06 (100%) 5.0E-06 (100%) 5.0E-06 (100%)
s.u.scale 2.13E-03 1.2E-03 (45%) 6.3E-04 (70%) 1.1E-03 (46%) 7.6E-04 (65%)



The effect of reducing the bad influence of the outliers

on the refinement has an impact on the values of the

scaled residuals (Table 3), which lie in ranges almost halved

with respect to the WLS case (Table 3 and Fig. 2). For either

StdRes or StudRes (when n is large), one should expect no

more than 5% of the absolute residuals to exceed the value of

1.96, no more than 1% to exceed the value of 3 (in the WLS

procedure the percentages of reflections with an absolute

Acta Cryst. (2011). A67, 456–468 Merli and Sciascia � Iteratively reweighted least squares 461

research papers

Figure 1
(a), (c) Cook’s distance versus leverage and (b), (d) COVRATIO versus leverage for the refinements of sarcosine. (a), (b) WLS refinement; (c), (d) IRLS
refinement with Huber function and c = 0.100. Vertical dashed lines = leverage cutoff value; horizontal dashed lines = Cook’s distance cutoff value (a), (c)
and low COVRATIO cutoff value (b), (d).

Figure 2
StudRes versus |Fo| for the sarcosine WLS refinement (a) and IRLS refinement with Huber function and c = 0.100 (b). Dashed lines = StudRes cutoff
(�3).



scaled residual >1.96 and >3 were 7.3% and 3.2%, respec-

tively).

Robust weighting also increases the minimum values of

COVRATIO, indicating a reduction of the bad influence of

some reflections on the estimates. The precision of the esti-

mates, evaluated by means of the overall hs.u.i, is greatly

increased, as expected, yielding a gain with respect to WLS

ranging from �25% up to �52%. The latter feature is a

physiological consequence of the scaling of the residuals.

Note that in this experiment the tuning constants of the

IRLS weighting functions have been adjusted, since the

‘default’ values (c = 1.345 and c = 1.205 for Huber and logistic

weights, respectively) yielded an ineffective downweighting of

the outliers [four outliers still detected in both Huber and

logistic runs with this setup of the tuning constants (Table 3

and Figs. 1c, 1d).

Perusal of Table 3 gives an idea of the behaviour of the

regression at different values of the tuning constant. As can be

seen, the effect of increasing c from 1.345 to 1.4 is to punish the

residuals less severely, with a consequent increase in the

number of outliers detected (from 4 to 6). The progressive

lowering of c turns into a complete disappearance of the

outliers when c = 0.9, at a Gaussian efficiency level�89%. The

results in terms of accuracy of the model improve until c = 0.1

(Gaussian efficiency �69%). Lower values of the tuning

constant bias the refinement, worsening the accuracy (the

overall gain in accuracy with respect to the WLS decreases

from 18 to 12%): the scaled residuals become larger, indi-

cating that there is an overfiltering of the mismeasured

reflections which turns into a bias in the estimates. This is a

case in which the adjustment of the tuning constant provides a

significant improvement of the results, especially for some

classes of variables such as atomic displacement parameters

and multipole parameters. Note that, in general, it is wise not

to set a tuning constant value corresponding to a Gaussian

efficiency less than �69%.

In our experience, it has been observed that elimination of

the possible outliers in an IRLS procedure can lead to a slight

worsening of the refinement in terms of difficulty in reaching

convergence, as well as with respect to the precision and

accuracy of the estimates.

4.2. Synthetic datolite

We present here another case study that turned out to be

quite interesting and whose IRLS procedure proved to be very

effective. The data collection for this kind of compound is

sometimes affected by Renninger effects and/or large unde-

sired extinction corrections, making a subsequent multipole

refinement difficult to carry out. As in the previous case study,

the results of both methods have been summarized (Table 4)

and the William’s graph/COVRATIO/ leverage comparison is

depicted in Fig. 3 (symbols as in Fig. 1). Even in this case the

robust weight functions adopted were Huber’s and logistic

schemes.

4.2.1. WLS regression. The noise introduced in the struc-

ture factors with the same scheme adopted for sarcosine
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Table 4
Selected figures of merit for WLS and IRLS refinements of datolite.

Symbols as in Table 1.

Weighting
function WLS

Huber
(c = 1.345)

Huber
(c = 1.250)

Logistic
(c = 1.205)

Logistic
(c = 1.100)

Gaussian
efficiency

100% 95% 94% 95% 94%

R(Fo) 0.0122 0.0094 0.0094 0.0093 0.0093
R(Fo

2) 0.0260 0.0159 0.0159 0.0158 0.0158
wSSE 2553.68 66.10 63.07 56.76 53.44
MSE1/2 1.0480 0.1688 0.1648 0.1564 0.1517
R 0.9992 0.9999 0.9999 0.9999 0.9999
R2 0.9985 0.9997 0.9997 0.9997 0.9998
adjR2 0.9983 0.9997 0.9997 0.9997 0.9997
Max. (shift/e.s.d.) 0.0000 0.0085 0.0099 0.0084 0.0050
r.m.s. (shift/e.s.d.) 0.0000 0.0269 0.0303 0.0297 0.0282
hshift/e.s.d.i 0.0000 0.0012 0.0015 0.0014 0.0013
ME 0.0025 0.0004 0.0003 -0.0001 -0.0001
�2 0.1255 0.0706 0.0708 0.0699 0.0701
MAE 0.1764 0.1355 0.1353 0.1351 0.1348
MARE 0.0134 0.0136 0.0135 0.0135 0.0135
MEDE �0.0020 �0.0014 �0.0010 �0.0010 �0.0010
MAD 0.1765 0.1355 0.1353 0.1351 0.1348
SAE 455.72 349.96 349.38 348.91 348.30
AIC 17245.0 12308.7 12274.4 12078.2 12030.2
PRESS 14872.1 97.8 92.1 81.8 76.0
predR2 0.9912 0.9996 0.9996 0.9996 0.9997

Table 3
Minimum and maximum values for scaled residuals, Cook’s distance and COVRATIO for different tuning constant values in the Huber weighting
scheme.

Tuning constant

1.400 1.345 1.100 1.000 0.900 0.800 0.500 0.100 0.010

Gaussian efficiency 96% 95% 92% 90% 89% 87% 79% 69% 64%
max(StdRes) 4.58 4.54 4.36 4.29 4.22 4.16 3.98 3.86 4.12
min(StdRes) �4.89 �4.85 �4.64 �4.56 �4.47 �4.39 �4.14 �4.05 �4.73
max(StudRes) 4.71 4.67 4.47 4.39 4.32 4.25 4.05 3.90 4.14
min(StudRes) �5.03 �4.99 �4.79 �4.70 �4.61 �4.53 �4.31 �4.13 �4.89
max(StuDel) 4.73 4.68 4.49 4.41 4.33 4.26 4.06 3.91 4.16
min(StuDel) �5.05 �5.01 �4.81 �4.72 �4.63 �4.54 �4.32 �4.64 �4.91
max(Cook) 0.041 0.040 0.042 0.045 0.049 0.055 0.051 0.094 0.012
max(COVRATIO) 3.48 3.54 3.88 4.03 4.21 4.42 6.08 17.18 93.24
min(COVRATIO) 0.27 0.27 0.30 0.32 0.33 0.35 0.39 0.41 0.29
No. of outliers 6 4 2 1 0 0 0 0 0



involved a mean discrepancy between theoretical and

synthetic |Fo| �1.1%. This quite large noise turned into a

certain difficulty in refining the � values for all of the atoms

involved (maximum shift/s.u. > 0.01). They were kept fixed.

WLS refinement gave final R(Fo) = 0.0122 and R(Fo
2) =

0.0260 (Table 3) using the weighting scheme implemented in

XD by setting the coefficients a and f to 0.04 and 1/3,

respectively. The overall measure of the discrepancy between
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Figure 3
(a), (c) Cook’s distance versus leverage and (b), (d) COVRATIO versus leverage for the refinements of datolite. (a), (b) WLS refinement; (c), (d) IRLS
refinement with logistic function and c = 1.100. Dashed lines as in Fig. 1.

Figure 4
StudRes versus |Fo| for the datolite WLS refinement (a) and IRLS refinement with Huber function and c = 0.100 (b). Dashed lines as in Fig. 2.



the refined parameters and the theoretical ones was 0.0578,

corresponding to a relative absolute error on the estimates of

�16%. The mean value of the s.u. was 0.0188.

For this structure the thresholds for the estimators listed

above were 0.30 for the leverage, 0.0017 for the Cook’s

distance, 0.72 for the lower bound of the COVRATIO esti-

mator and 1.40 for the upper bound of COVRATIO. Very

large values of |StdRes| have been observed (�8.3), as well as

of |StudRes| and |StuDel| (�11.0), largely exceeding the

typical threshold values of 3. The 2% of the reflections showed

a |StdRes| > 3, i.e. twice the expected value. The regression

diagnostics revealed the presence of 60 influential outliers, due

both to the errors introduced (i.e. to the ‘mismeasurement’ of

a number of data) and the incompleteness of the model, since

the � factors have been kept fixed.

4.2.2. IRLS regression. Even in this case the results of the

IRLS runs are much improved (Table 4) with respect to the

WLS procedures, providing a gain in accuracy with respect to

the WLS case of �40%. The overall measure of the discre-

pancy between the refined parameters and the theoretical

ones was �0.0345, corresponding to a relative absolute error

on the estimates of �9% (Table 5). The mean value of the s.u.

ranged from 0.0165 to 0.0140, corresponding to an improve-

ment of 25% with respect to the WLS procedure.

In this case study, the most important advantage of using

robust regression has been the capability of refining the �
factors (hshift/s.u.i �0.001), in addition to the general

improvement usually observed in IRLS regressions.

Even for datolite, the analysis of the scaled residuals

showed ranges almost halved with respect to the WLS case

(Fig. 4), together with a significant reduction of the percentage

of reflections with |StdRes| > 3 (from �2% to �1%, the latter

being the expected value).

In this experiment no dramatic adjustment of tuning

constants of the IRLS weighting was needed: the ‘default’

values mentioned above were good enough to ensure a

complete disappearance of the outliers. Fine tuning of the

weight constants (c = 1.250 and c = 1.100 for Huber’s and

logistic weights, respectively, both with Gaussian efficiency

�94%) yielded just a slight improvement of the results.

4.3. Experimental formamidine

The comparison between the WLS and the IRLS refine-

ment of a noise-induced experimental data set presented in

this section is aimed at emphasizing the impact on the practical

use of the robust approach.

X-ray data for N-(4-methoxyphenyl)-N-phenyl-N-oxy-

formamidinium species 5 were previously collected and

processed by MM (more details on the crystal structure and

the data-collection settings can be found in Giumanini et al.,

1999).

Because of the noise, this is a typical case in which the

multipole model refined with a traditional WLS procedure can

be limited at most to the evaluation of the � factors and the

monopole terms for the non-hydrogen atoms. It will be shown

that, using a robust procedure, not only can the results be

improved with respect to the WLS refinement, but the

multipole terms for the non-hydrogen atoms can be expanded

up to the octupole terms, and the evaluation of the monopole

terms for the hydrogen atoms can also be done. Since a

reference model is not known, the comparison between each

WLS and IRLS run can be made through the evaluation of the

figures of merit, the AIC statistics, the analysis of the s.u.

associated with each variable and the analysis of the scaled

residuals. In addition, in order to check the reliability of the

regression coefficients, a Student’s t-test has been performed

for all of the models.

4.3.1. WLS regressions. The WLS refinements have been

performed adopting the following models:
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Table 5
Absolute discrepancy measurements between each class of the theoretical and refined parameters for datolite.

Symbols as in Table 2.

Weighting function WLS Huber (c = 1.345) Huber (c = 1.250) Logistic (c = 1.205) Logistic (c = 1.100)

(�|xi
true
� xi

calc|/p)all 0.0578 0.0348 (40%) 0.0346 (40%) 0.0347 (40%) 0.0346 (40%)
hs.u.iall 0.0188 0.0165 (23%) 0.0144 (24%) 0.0142 (24%) 0.0140 (26%)
(�|xi

truexi
calc|/p)coord 5.7E-05 3.9E-05 (31%) 3.8E-05 (32%) 3.7E-05 (34%) 3.6E-05 (35%)

hs.u.icoord 4.9E-05 4.3E-05 (14%) 4.2E-05 (15%) 4.1E-05 (18%) 4.0E-05 (20%)
max(�|xi

truexi
calc|)coord 2.3E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04

min(�|xi
truexi

calc|)coord 3.0E-06 0.0 0.0 0.0 0.0
(�|xi

true
� xi

calc|/p)a.d.p. 9.5E-05 6.0E-05 (37%) 5.9E-05 (38%) 5.8E-05 (39%) 5.7E-05 (40%)
hs.u.ia.d.p. 8.9E-05 7.7E-05 (14%) 7.5E-05 (16%) 7.3E-05 (18%) 7.1E-05 (20%)
max(�|xi

truexi
calc|)a.d.p. 3.1E-04 1.9E-04 1.9E-04 1.8E-04 1.8E-04

min(�|xi
truexi

calc|)a.d.p. 0.0 0.0 1.0E-06 1.0E-06 0.0
(�|xi

true
� xi

calc|/p)� 0.0376 0.000 (100%) 0.0030 (92%) 0.0006 (98%) 0.0024 (94%)
hs.u.i� 0.0235 0.0234 0.0233 0.0232
max(�|xi

truexi
calc|)� 1.0E-01 1.7E-05 7.7E-03 1.0E-03 7.8E-03

min(�|xi
truexi

calc|)� 6.4E-03 3.0E-06 2.6E-04 1.6E-04 2.2E-04
(�|xi

true
� xi

calc|/p)mult 0.0826 0.0487 (41%) 0.0485 (41%) 0.0486 (41%) 0.0484 (41%)
hs.u.imult 0.0261 0.0199 (24%) 0.0196 (25%) 0.0195 (25%) 0.0193 (26%)
max(�|xi

truexi
calc|)mult 2.4E+00 1.4E+00 1.4E+00 1.4E+00 1.4E+00

min(�|xi
truexi

calc|) mult 6.8E-04 3.4E-04 1.0E-04 1.6E-04 4.6E-05
(|xi

true
� xi

calc|)scale 0.0630 0.0007 (99%) 0.0007 (99%) 0.0007 (99%) 0.0004 (99%)
s.u.scale 0.0011 0.0005 (58%) 0.0004 (58%) 0.0004 (59%) 0.0004 (59%)



(a) a refinement with the evaluation of the � shrinking

factors for all the atoms and the monopole terms for the non-

hydrogen atoms only (hereafter WLS0);

(b) a refinement with the evaluation of the � shrinking

factors for all the atoms, the monopole terms for the non-

hydrogen atoms and the dipole terms for the non-hydrogen

atoms (hereafter WLS1);

(c) a refinement as described in (b) but cutting the reflec-

tions with I/�(I) < 3 (hereafter WLS2).

For all the runs the a and f coefficients of the weighting

scheme implemented in XD were 0.0 and 1/3, respectively.

Figures of merit and some statistics for WLS0,1,2 are

presented in Table 6. The hs.u.i values for the whole set of

variables and for each class of the refined parameters are

presented in Table 7, while an analysis of the scaled residuals is

summarized in Table 8. As can be argued, only the WLS0 run

reached convergence (maximum shift/s.u. < 0.01). The quality

of the X-ray data collected cannot allow a reliable estimation

of the multipole parameters, with the exception of the �
factors and the monopole terms for the non-hydrogen atoms.

The patterns of the scaled residuals also confirm this fact,

showing a strong skewness to the highest values [for instance,

max(StdRes) = 4.65, min(StdRes) = �2.67 in the WLS0 run].

Indeed, the elimination of the worst reflections [709 data

points with I/�(I) < 3] in the WLS2 run did not improve the

results, which are presented here just for comparison with the

IRLS refinements. Note that WLS1 and WLS2 show the

presence of one outlier (namely the 413 and the 321 reflections

for the WLS1 and WLS2 cases, respectively). Student’s t-tests

performed on the variables suggested rejecting the null

hypothesis for all the variables in all the runs but WLS2, for

which the evaluation of the isotropic atomic displacement
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Table 6
Selected figures of merit for WLS and IRLS refinements of experimental formamidine.

WLS0 = WLS refinement with � and monopole terms for non-hydrogen atoms; WLS1 = WLS refinement as WLS0 + dipole terms for non-hydrogen atoms; WLS2 =
as WLS1 but cutting reflections with I/�(I) < 3; Huber0 = IRLS as WLS0 with Huber function and c = 0.100; Huber1 = IRLS as WLS1 with Huber function and c =
0.100; Huber2 = IRLS as WLS2 with Huber function and c = 0.100; Huber3 = IRLS as WLS1 with Huber function and c = 0.100, + the monopole terms for
hydrogen atoms and the octupole terms for non-hydrogen atoms. Other symbols as in Table 1.

Weighting
function WLS0 WLS1 WLS2

Huber0
(c = 0.100)

Huber1
(c = 0.100)

Huber2
(c = 0.100)

Huber3
(c = 0.100)

Gaussian
efficiency

100% 100% 100% 67% 67% 67% 67%

n 2181 2181 1472 2181 2181 1472 2181
p 225 279 279 225 279 279 495
R(Fo) 0.0767 0.0755 0.0460 0.0728 0.0710 0.0417 0.0599
R(Fo

2) 0.0529 0.0539 0.0491 0.0435 0.0411 0.0353 0.0294
wSSE 8490.23 8142.60 5868.54 197.84 190.89 96.22 135.29
MSE1/2 2.0834 2.0691 2.2179 0.3180 0.3168 0.2840 0.2833
R 0.9896 0.9902 0.9925 0.9995 0.9995 0.9997 0.9997
R2 0.9794 0.9806 0.9851 0.9990 0.9990 0.9995 0.9993
adjR2 0.9778 0.9777 0.9817 0.9989 0.9989 0.9993 0.9991
Max. shift/s.u. 0.0000 0.0641 0.4058 0.0076 0.0084 0.0081 0.0095
r.m.s. (shift/s.u.) 0.0000 0.0688 0.0633 0.0142 0.0359 0.0404 0.0350
hshift/e.s.d.i 0.0000 0.0073 0.0073 0.0006 0.0018 0.0021 0.0016
ME 0.2477 0.2466 0.1419 0.2917 0.2884 0.2884 0.2415
�2 1.1619 1.1596 0.9943 1.1329 1.1083 0.9477 0.8817
MAE 0.8171 0.8110 0.7155 0.7792 0.7663 0.6533 0.6357
MARE 0.2206 0.2198 0.0889 0.2114 0.2083 0.0868 0.1804
MEDE 0.1349 0.1200 0.0525 0.0940 0.0924 0.0301 0.0036
MAD 0.8148 0.8094 0.7182 0.7914 0.7794 0.6813 0.6680
SAE 1782.10 1768.55 1053.27 1699.56 1671.34 961.69 1386.56
AIC 2964.47 2873.34 2036.13 �5234.36 �5312.33 �4014.91 �6062.92
PRESS 10798.1 11144.8 9310.4 214.64 213.52 114.07 164.67
predR2 0.9738 0.9734 0.9764 0.9989 0.9989 0.9994 0.9992

Table 7
Mean s.u. for all the variables and for each class of the refined parameters for experimental formamidine.

Percentages in parentheses for Huber0,1,2 represent the relative improvement with respect to the WLS0,1,2 results, respectively. ext = isotropic extinction
parameter; other symbols as in Table 2 and Table 6.

Weighting
function WLS0 WLS1 WLS2

Huber0
(c = 0.100)

Huber1
(c = 0.100)

Huber2
(c = 0.100)

Huber3
(c = 0.100)

hs.u.iall 1.03E-02 2.81E-02 4.18E-02 4.02E-03 (61%) 1.42E-02 (49%) 2.05E-02 (45%) 8.32E-02
hs.u.icoord 1.25E-03 1.51E-03 1.72E-03 6.32E-04 (49%) 7.96E-04 (36%) 7.70E-04 (55%) 2.01E-03
hs.u.ia.d.p. 3.01E-03 3.67E-03 5.21E-03 1.55E-03 (49%) 1.88E-03 (37%) 2.51E-03 (48%) 3.69E-03
hs.u.i� 3.21E-02 5.37E-02 1.14E-01 1.29E-02 (60%) 2.01E-02 (37%) 5.28E-02 (54%) 2.84E-02
hs.u.imult 9.73E-02 1.03E-01 1.73E-01 3.95E-02 (58%) 5.30E-02 (47%) 7.72E-02 (55%) 1.42E-01
hs.u.iext 1.16E-01 1.16E-01 1.09E-01 1.05E-02 (91%) 1.18E-02 (90%) 1.47E-02 (86%) 1.73E-02
hs.u.iscale 7.36E-03 7.69E-03 2.37E-02 3.41E-03 (54%) 4.14E-03 (56%) 1.91E-02 (50%) 4.85E-03



parameters of the hydrogen atoms suffers from the cutting of

the weakest reflections.

4.3.2. IRLS regressions. The IRLS refinements have been

performed using the Huber weighting function with c = 0.100

for the models listed in the previous section (Huber0,1,2), and

a refinement involving the quadrupole and octupole terms for

the non-hydrogen atoms in addition to the multipole terms

introduced in WLS1 and IRLS1 (Huber3). Perusal of Table

8 shows that in all of the IRLS procedures convergence

has been reached (maximum shift/s.u. < 0.01). Moreover,

Student’s t-tests performed on the regression variables

suggested rejecting the null hypothesis for all the cases

investigated.

A direct comparison between the WLS and IRLS proce-

dures can be made for Huber0,1,2: for these cases, the selected

figures of merit presented in Table 6 show a significant

improvement of the refinements. For instance, by looking at

the values of R(Fo), it can be seen that the Huber0 case shows

an improvement with respect to the WLS0 result of �5%,

while the improvement of Huber1 with respect to the WLS1

result is �6%, and the Huber2 run yielded an improvement

with respect to WLS2 of �9%. The ‘gain’ in precision of the

estimates for each IRLS run is even more significant (on

average �50%), as shown in Table 7. Note that the highest

improvement is related to the isotropic extinction coefficient

(�90%). In all the IRLS runs, the scaled residuals are lower

than those recorded for the corresponding WLS refinements

and, overall, the residuals are no longer skewed. Cook’s

distances are �90% lower than the WLS values, and the

min(COVRATIO) values are much greater than those

recorded for all the WLS cases. The severe value of the tuning

constant (c = 0.100) allowed for all the IRLS runs an effective

downweighting of the outliers (Table 8).

Starting from the WLS0 model, the simultaneous intro-

duction of all the multipole terms up to the octupoles for the

non-hydrogen atoms as well as the monopole terms for the

hydrogen atoms in the IRLS regression yielded a model with

R(Fo) = 0.0599, corresponding to an improvement of �22%

with respect to the stable WLS0 refinement. The values of

hs.u.i for each class of variables listed in Table 7 are actually

comparable with those of the WLS and IRLS refinements

performed with a very low number of parameters (Table 6).

AIC statistics strongly suggest that the Huber3 model is much

more accurate than the other refinements,

as well as the values of R, R2 and adjR2.

This example, which can be considered as

an ‘extreme’ application of the robust

approach, shows how powerful the robust

procedure is in crystal structure (multi-

pole) refinements.

5. Conclusions

This explorative attempt to use a robust

regression technique in a least-squares

structure refinement of small molecules

yielded encouraging results both in terms

of accuracy and precision of the estimates, showing an overall

improvement of the regression results with respect to the

traditional WLS refinement. In particular, both the tests on

the synthetic data and the application to experimental cases

presented here showed that the fitting quality is always much

better after using the robust algorithm (as demonstrated by

the figures of merit discussed) and the precision of the esti-

mates is much higher. Besides, the synthetic runs showed a

better fit of the estimates to the theoretical ones that turns into

a greater reliability of the structures and, consequently, into a

greater reliability of any subsequent calculation (first of all,

the electron-density reconstruction). These features can be

reasonably extended even to the application of the robust

procedure to experimental practice.

Moreover, these techniques allow one to downweight

outliers simultaneously, save time and avoid any naive elim-

inations of reflections only apparently aberrant. The latter

feature is even more true in the presence of a large number of

outliers.

It must be noticed that in this round-robin experiment the

IRLS tests suggested that the definition of the robust residuals

should involve MAD and StudRes, and that the use of the

Huber or logistic function could be considered as a proper

choice. This is just one of the possible recipes to adopt.

It is our opinion that further investigations aimed at testing

other robust techniques as well as other robust weighting

functions could shed light on unknown behaviours for these

algorithms, enhancing the control on this kind of optimization

process. We hope that this research area in crystallography will

be thoroughly investigated, from both a theoretical and

practical point of view.

APPENDIX A
A1. List of symbols and abbreviations

n: number of observations.

p: number of variables in the least-squares procedure.

Fo, Fc: observed structure factor, calculated structure factor.

w: statistical weight of the least-squares refinement.

ei: residual error Foi
� Fci

associated with the ith reflection.

SSE: error sum of squares, defined as
Pn

i¼1 e2
i .

wSSE: weighted error sum of squares, defined as
Pn

i¼1 wie
2
i .

ME: mean error, defined as ð1=nÞ
Pn

i¼1 ei.
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Table 8
Minimum and maximum values for scaled residuals, Cook’s distance and COVRATIO for
WLS0,1,2 and Huber0,1,2,3 IRLS of experimental formamidine.

Weighting
function WLS0 WLS1 WLS2

Huber0
(c = 0.100)

Huber1
(c = 0.100)

Huber2
(c = 0.100)

Huber3
(c = 0.100)

max(StdRes) 4.65 4.62 4.54 2.45 2.47 2.49 2.55
min(StdRes) �2.67 �2.74 �2.42 �2.12 �2.21 �2.18 �2.16
max(StudRes) 4.77 4.79 4.76 2.46 2.60 2.56 2.56
min(StudRes) �2.90 �3.06 �3.60 �2.15 �2.25 �2.24 �2.19
max(StuDel) 4.80 4.82 4.81 2.46 2.61 2.60 2.57
min(StuDel) �2.91 �3.07 �3.61 �2.15 �2.25 �2.24 �2.20
max(Cook) 0.029 0.083 0.132 0.003 0.008 0.011 0.005
max(COVRATIO) 3.49 5.97 6.99 16.18 15.21 11.16 15.73
min(COVRATIO) 0.085 0.042 0.007 0.562 0.473 0.296 0.196
No. of outliers 0 1 1 0 0 0 0



�2: error variance, defined as ð1=nÞ
Pn

i¼1 ðei �MEÞ2.

MAE: mean absolute error, defined as ð1=nÞ
Pn

i¼1 ei

�� ��.
MARE: mean absolute relative error, defined as

ð1=nÞ
Pn

i¼1 jeij=jfoi
j.

MEDE: errors median, i.e. the 50th percentile of the errors.

MAD: median absolute deviation of the errors, i.e. the median

of the absolute deviation of the errors from MEDE.

MSE: mean squared error, defined as ½1=ðn� pÞ�
Pn

i¼1 e2
i .

SAE: sum of absolute errors, i.e.
Pn

i¼1 ei

�� ��.
hi: ith diagonal element of the (n � p) projection matrix, i.e.

leverage of the ith data point.

PRESS: value of the PRESS statistics, defined asPn
i¼1½ei=ð1� hiÞ�

2.

R, R2: correlation coefficient, coefficient of determination.

adjR2: adjusted R2, defined as 1� (1� R2)(n� 1)/(n� p� 1).

predR2: predicted R2, defined as 1 � PRESS/TSS, where TSS

is the total sum of squares, i.e.
Pn

i¼1 ðfoi
� hfoiÞ

2.

AIC: value of the Akaike’s information criterion, defined as

n� ln(SSE/n) + 2p/n.

R(Fo), RðF 2
o Þ: crystallographic discrepancy factor on |Fo|,

crystallographic discrepancy factor on F 2
o .

s.u.: standard uncertainty associated with each least-squares

parameter.

shift/s.u.: ratio of the final least-squares parameter shift to the

final s.u.

a.d.p.’s: atomic displacement parameters.

A2. Robust estimators formulae

(a) MSE � estimator, calculated as: s ¼ MSE1=2.

(b) MAD � estimator, calculated as: s ¼ MAD=K, where

the constant K is set to 0.6745, which makes the estimate

unbiased for the normal distribution.

Alternatively, s can be calculated as (Rousseeuw, 1985)

s ¼ 1:4826 1þ
5

ðn� pÞ

� �
s:

The scaled robust residual rri involved in the weight function is

given by

rri ¼
ei

ðscÞ
;

where c is the tuning constant.

A3. Scaled residuals formulae

(a) Standardized residual (StdRes), computed as

StdResi ¼
eiðwiÞ

1=2

s
:

(b) Studentized residuals (StudRes), computed as

StudResi ¼
StdResi

ð1� hiÞ
1=2
:

(c) Studentized deleted residuals (StudDel), computed as

StudDeli ¼
eiðwiÞ

1=2

½StudVarið1� hiÞ�
1=2
;

where StudVari is computed as

StudVari ¼
s2SSE� wieið Þ

2

ð1� hiÞ
1=2

:

A4. Robust weight functions

The reader may refer to Holland & Welsch (1977) for a

summary of the most commonly used weighting functions and

for further details. We can categorize them into three groups:

(I) ‘Hard redescenders’;

(Ia) Andrews weighting scheme (Andrews et al., 1972);

(Ib) Tukey’s bisquare function (Beaton & Tukey, 1974);

(Ic) Talwar’s weighting function (Hinich & Talwar, 1975).

All of them involve w! 0 for |e| sufficiently large. Talwar’s

scheme assigns unit/zero weights depending on |e|.

(II) ‘Soft redescenders’;

(IIa) Cauchy’s weights (or t-likelihood);

(IIb) Welsch’s function (Dennis & Welsch, 1976).

(III) ‘Monotone redescenders’;

(IIIa) Huber’s function (Huber, 1964);

(IIIb) logistic weight;

(IIIc) Fair’s function (Fair, 1974).

The schemes adopted in this work are (IIIa) and (IIIb). In

particular:

(a) Huber’s function is defined as

wi ¼
1

maxð1; rrðeijcÞ
�� ��Þ ;

where c is set to 1.345 to have a 95% asymptotic Gaussian

efficiency.

(b) The logistic function is defined as

wi ¼ tanhðjrriðeijcÞj
�1
Þ;

where c is set to 1.205 to have a 95% asymptotic Gaussian

efficiency.
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