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SUMMARY. Hybrid stress elements are proposed as alternative to standard finite elements for linear
and non linear analysis. Hybrid stress formulation is developed in a rigorous mathematical setting
and an original approach for elimination of spurious kinematic modes is presented. Hybrid equilib-
rium method is compared to classical displacement based method by linear elastic analysis of some
well known structural examples.

1 INTRODUCTION
Finite element formulation based on stress fields satisfying locally equilibrium condition are

known in literature since 1964 by the pioneering work of de Vebeuke [1, 2]. Equilibrated elements
were initially proposed [3, 4, 5, 6, 7] as numerical tool for error estimation of classical displace-
ment based analyses. In fact equilibrium and displacement formulations produce respectively upper
bound and lower bound, with respect to the exact solution, in terms of elastic strain energy. De-
spite equilibrium formulation has not gained a widespread use, especially in commercial codes, it
could be suitable in several fields of computational mechanics, such as: cohesive crack propagation,
where accuracy of stress is a fundamental requirement; lower bound limit and shakedown analyses,
especially for non-associative rule; topology structural optimization.

Equilibrium elements may be developed in hybrid formulation by use of independent stress fields
on each element [8, 9], producing solution which satisfy strong equilibrium condition throughout the
domain with co-diffusive traction at each side. In hybrid formulation, traction equilibrium condition,
at sides between adjacent elements and at sides of free boundary, is enforced by use of independent
displacement laws at each side, assumed as lagrangian parameters.

Hybrid equilibrium formulation is defined by: element stress fields, satisfying homogeneous
equilibrium equation and defined as polynomial function; independent displacement polynomial
laws at each sides. Strong traction equilibrium condition require the same interpolation order for
stress and displacement fields, which can produces Spurious Kinematic Modes (SKMs), that are
displacement modes with null traction at sides. SKMs can heavily corrupt the elastic solution both
in terms of displacement and in terms of stress. In some patch of mesh, SKMs do not propagate and
remain confined inside the group of elements. Such a condition has inspired several approaches [9,
10, 11, 12], able to control or eliminate SKMs, which use the super-element obtained by assembling
the group of elements in which SKM is confined inside. The super-element is connected to the other
elements through its external sides, whereas the degrees of freedom of internal sides are condensed
out. The condensation procedure, that must be performed for many super-elements, could require a
considerable computational cost.

The analysis of possible SKM in a patch of elements can be performed by the algebraic procedure
proposed by [13], evaluating the rank of a rectangular compatibility matrix. The present paper
proposes an alternative approach for elimination of SKMs in some patches of mesh, well known in
literature. Due to the fact that SKMs are associated to the rank deficiency in the global stiffness
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matrix, detection of linearly dependent equations is the first step for SKM elimination. Then, the
algebraic equation system is reduced to a full rank one by elimination of the dependent equations,
for which the resolution strategies is based on the use of a kinematic constrain between degrees
of freedom involved in the dependent equations. The proposed procedure does not require any
additional computational cost; on the contrary, it reduce the overall equation system.

In the present paper, the dependent equations are detected by analysis of side equilibrium equa-
tions of three specific patches of elements. The latter analysis can not be easily generalized for
generic meshes.

2 Minimum complementary energy principle
Let an elastic body of volume Ω be considered on a two dimensional Cartesian reference (x, y),

subjected to body force bi in Ω, traction ti on the free boundary Γt and imposed displacement ui on
the constrained boundary Γu = Γ− Γt.

The elastostatic response, in terms of stress σij , strain εij and displacement ui can be obtained:
in strong form, as solution of governing partial differential equations; in weak form, as stationary
condition of a integral functional. The weak equilibrium approach is based on the following total
complementary energy functional

Πc =
1
2

∫

Ω

σij Dijhk σhk dΩ−
∫

Γu

σij nj ui dΓ (1)

where stress field σij is assumed to satisfy domain and boundary equilibrium equations

∂σij

∂xj
+ bi = 0 in Ω (2)

σij nj = ti on Γt. (3)

Functional Πc is defined in the space of all statically admissible solutions (stress fields satisfying
eq. (2) and eq. (3)) and, in such space, the point where Πc is stationary characterize the stress field
solution of the elastostatic problem.

Equilibrium element is defined by statically admissible internal stress fields σ
(e)
ij in its domain

Ωe, which must verify inter-element equilibrium, condition, at all internal sides Γs ⊂ ∂Ωe−Γt, and
boundary equilibrium condition on all free boundary sides Γs ⊂ ∂Ωe ∩ Γt. The latter two condi-
tions can be properly applied by following the classical hybrid formulation. Independent lagrangian
displacements vi, defined on each the element side, are used to mutually connect adjacent elements
and to apply traction on the free boundary. For a triangular finite element discretization, the weak
form of lagrangian approach gives the following modified total complementary energy functional

Πc =
Ne∑
e=1

[
1
2

∫

Ωe

σ
(e)
ij Dijhk σ

(e)
hk dΩ−

3∑
s=1

∫

Γs⊂∂Ωe

σ
(e)
ij nj vi dΓ

]
+

∫

Γs⊂Γt

ti vi dΓ (4)

with vi = ui on Γs ⊂ Γu. In eq. (4) nj represents the outward normal to side Γs ⊂ ∂Ωe.
Stationary conditions of functional Πc, with respect to the lagrangian variable vi of the internal

side Γs = ∂Ωe1 ∩ ∂Ωe2 between elements e1 and e2, gives

−
∫

Γs

(
σ

(e1)
ij n

(e1)
j + σ

(e2)
ij n

(e2)
j

)
δvi dΓ = 0 (5)

2



where, outward normals are n
(e1)
j = −n

(e2)
j . For a free boundary side Γs = ∂Ωe ∩ Γt stationary

condition gives

−
∫

Γs

(
σ

(e)
ij n

(e)
j − ti

)
δvi dΓ = 0. (6)

Equations (5) and (6) provide weak form of inter-element and boundary equilibrium conditions.

3 Hybrid equilibrium element
The equilibrium approach of elastostatic problem by finite element method is based on minimiza-

tion of functional Πc in eq. (4) and involve hybrid formulation. Each finite element is defined by
internal stress field satisfying domain equilibrium equation (3), which does not interpolate nodal de-
gree of freedom, but is function of internal generalized stresses. Independent side displacements are
used as interface Lagrangian variable linking the two adjacent elements, for internal sides, or link-
ing the element side traction to the external load, for the free boundary sides. In the present paper,
hybrid equilibrium element is developed only for two dimensional membrane elastostatic problems;
implementation and numerical results are proposed only for triangular finite elements with quadratic
stress field.

Let a triangular finite element of domain Ωe be considered with straight sides, referred to a local
Cartesian reference (x, y), which is parallel to the global one (X, Y ), but centered at vertex 1. The
membrane stress fields are defined by the following quadratic polynomial functions

σx = a1 + a2x + a3y + 2a4xy + a5x
2 + a6y

2 − bxx (7)

σy = a7 + a8x + a9y + 2a10xy + a11x
2 + a5y

2 − byy (8)

τxy = a12 − a9x− a2y − 2a5xy − a10x
2 − a4y

2 (9)

where, bx and by are components of body force, and terms a1, . . . , a12 are generalized stress vari-
ables. Stress field of eq. (7-9) implicitly satisfies equilibrium equation (2) and can be represented in
the following matrix notation

σ = S · a + σ0 (10)

where a collects all generalized stress and σ0 = [−bxx,−byy, 0]T is a particular solution of eq. (2)
for the body load presence.

Normal and tangential side displacements are defined in the following form

vt (ξ) = Ni (ξ)ut
i (11)

vn (ξ) = Ni (ξ)un
i (12)

where: Ni (ξ) is the ith shape function in natural coordinate −1 ≤ ξ ≤ 1, ut
i and un

i are the relevant
kinematic degrees of freedom. In matrix notation, eqs.(11, 12) are rewritten as

v̄ = N · u, (13)

where, N collects the shape functions and u collects the side kinematic degrees of freedom.
For an elastostatic problem with null body force, whose domain is discretized in ne triangular

finite elements and whose free boundary is divided in ns element sides, the the complementary
energy functional Πc is

Πc =
ne∑

e=1

[
1
2

aT
e kaa

e ae −
3∑

s=1

aT
e kau

e,sus

]
+

ns∑
s=1

TT
s us (14)
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where

kaa
e =

∫

Ωe

ST
e DSedΩ (15)

kau
e,s =

∫

Γs

ST
e he,s gsNdΓ (16)

TT
s =

∫

Γs

tT gsNdΓ (17)

he,s = ±



nsx 0
0 nsy

nsy nsx


 (18)

where the sign in the latter equation is positive if axes ns is outward from element. The degrees of
freedom of side lying on the constrained boundary Γu are constrained, with assigned value u. Alge-
braic solving equations of the hybrid equilibrium formulation are defined as stationary conditions of
functional Πc in eq. (14), that are

∂Πc

∂ae
= kaa

e ae − kau
e,s1

us1 − kau
e,s2

us2 − kau
e,s3

us3 = 0 (19)

∂Πc

∂us
= −kau

e1,s
T ae1 − kau

e2,s
T ae2 = 0 for Γs = ∂Ωe1 ∩ Ωe2 (20)

∂Πc

∂us
= −kau

e,s
T ae + Ts = 0 for Γs = ∂Ωe ∩ Γt. (21)

with s1, s2 and s3 sides of element e. After assembling operations, the following system of algebraic
equations is obtained [

KAA −KAU

−KUA 0

] [
A
U

]
=

[
0

−T

]
(22)

where vector A collects all generalized stress variables and vector U collects kinematic degrees of
freedom of all sides. Moreover, matrix KAA is composed of diagonal blocks Kaa

e , each of which is
symmetric, positive definite and not singular, so that KAA can be inverted and the relevant degrees
of freedom A can be condensed out and the solving equations system can be defined only in function
of side displacements

KUU U = T, (23)

which can be solved as in a standard finite element approach.

4 Spurious kinematic modes
In this section, the geometrical conditions of some patch of elements, under which Spurious

kinematic Modes (SKMs) emerge, are investigated. The SKM (or zero energy mode) is a set of side
displacement which produces null stress field and, consequently, null side traction. The presence
of SKMs is analyzed for a single element and for two stars of elements, which are well known
in literature [13] for the emerging SKMs: namely, the open star of two adjacent elements on the
free boundary and the closed star of four element. In [13], the presence of SKMs is predicted as a
function of the rank of a compatibility matrix, which is constructed by assembling SMKs of each
single element of the star.
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Presence of SKMs is associated to the rank deficiency in the global stiffness matrix KUU of
eq.(23), which is produced by one or more linearly dependent equations in the set of inter-element
equilibrium equations (20) and boundary equilibrium equations (21). For a boundary side Γs =
∂Ωe ∩ Γt, applied tractions ts(ξ) can be defined in the following interpolation form

ts(ξ) = gsN(ξ)fs (24)

where N(ξ) is the matrix of shape functions, fs is a vector collecting normal and tangential traction
components at interpolation points xs,i, as shown in Fig. 1a. Moreover, strongly enforcement of
boundary equilibrium equation (3) is assured by using the same order of stress field σ(x) = S(x) a
and of displacement law v̄ = N · u. Than, solution of eq.(21) is given by

[
nsxnsy − nsxnsy n2

sy − n2
sx

]
Se(xs,j)a = f t

s,j (25)[
n2

sx n2
sy 2nsynsx

]
Se(xs,j)a = fn

s,j , (26)

which ensure that internal stress field strongly verifies boundary equilibrium conditions (3) at the
three interpolation points and, consequently, at the entire side Γs. Equations (25) and (26) can be
written in the following simplified form

τe(xs,j) = f t
s,j (27)

σe(xs,j) = fn
s,j , (28)

where τe(xs,j) and σe(xs,j) are respectively tangential and normal stress components at jth interpo-
lation point of boundary side Γs.

For an internal side Γs = ∂Ωe1 ∩ ∂Ωe2, considering the same interpolation order for the two
elements stress fields and for the the side displacement law, the solution of inter-element equilibrium
equation (20) is
[
nsxnsy − nsxnsy n2

sy − n2
sx

]
Se1(x

e1
s,j)ae1 =

[
nsxnsy − nsxnsy n2

sy − n2
sx

]
Se2(x

e2
s,j)ae2 (29)

[
n2

sx n2
sy 2nsynsx

]
Se1(x

e1
s,j)ae1 =

[
n2

sx n2
sy 2nsynsx

]
Se2(x

e2
s,j)ae2 , (30)

or in simplified form

τe1(xs,j) = τe2(xs,j) (31)
σe1(xs,j) = σe2(xs,j), (32)

which ensure that internal stress fields in elements e1 and e2 are co-diffusive at the three interpolating
points and, consequently, along the entire side.

4.1 SKM in a single element
A single triangular equilibrium element with quadratic stress field is defined by ns = 12 stress

parameters (dimension of vector a) and by 3 nv = 18 displacement degrees of freedom (nv is the
dimension of vector us). With reference to eq.(23), the global stiffness matrix of the single element,
without constrained sides, can be written as

KUU =
[
kau

1
T kau

2
T kau

3
T
]

kaa
e
−1




kau
1

kau
2

kau
3


 (33)
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Figure 1: a) Constrained triangular element; b) SKM on constrained element

where it can be observed that rank rK of matrix KUU can not be grater then rank ra of matrix kaa,
than it is rK = ra = 12. The number of SKM is given as difference between dimension (nK = 18)
and rank rK of matrix KUU ; but, in unconstrained structure, three of such modes are due to rigid
body motions (nRB = 3). Than, the number of SKM is

nSK = nK − rK − nRB = 3. (34)

One SKM is still active in the single element, even if one side is constrained (s = 1 in Fig. 1a).
Dimension of matrix KUU is equal to the number of active kinematic variables (nK = 12), all rigid
body motion are blocked but, despite it is nK = ns, stiffness matrix KUU is not with full rank and
it results rK = 11 and nSK = nK − rK = 1. Side displacements of the emerging SKM, shown
initially in [14], are plotted in Fig. 1b where it can be observed that displacement at side Γ2 is
orthogonal to side Γ3 and viceversa.

Reasons of SKM presence can be found by deep analysis of the boundary equilibrium equations
(25) and (26) for the two unconstrained sides. Twelve scalar equilibrium equations are obtained and,
between them, the following four equations are related to the common corner x3 ≡ x2,1 ≡ x3,3

[
n2xn2y − n2xn2y n2

2y − n2
2x

]
Se(x2,1)a = τe(x2,1) = f t

2,1 (35)[
n2

2x n2
2y 2n2yn2x

]
Se(x2,1)a = σe(x2,1) = fn

2,1 (36)[
n3xn3y − n3xn3y n2

3y − n2
3x

]
Se(x3,3)a = τe(x3,3) = f t

3,3 (37)[
n2

3x n2
3y 2n3yn3x

]
Se(x3,3)a = σe(x3,3) = fn

3,3 (38)

The latter equations impose four conditions for the stress tensor σ(x3) = S(x3) a at the corner x3,
which is defined by only three independent components in planar membrane problems. In fact, for
a vertex with orthogonal sides, as in Fig. 2a, the tangential components must be equal τξ = τη .
More generally, the rotational equilibrium condition of an infinitesimal surface element with non-
orthogonal sides, as represented in Fig. 2b, gives

τξ − τη = (σξ − ση) cot (α) (39)

and for the corner x3 the last condition is

f t
3,3 + f t

2,1 =
[
fn
3,3 − fn

2,1

]
cot (α3) (40)

which proves that one of the four scalar equations (35-38) linearly depends on each others, causing
rank deficiency in the stiffness matrix and the relevant SKM. Moreover, the components of external
load at corner must verify eq.(40), otherwise equilibrium can not be achieved.
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Figure 2: Stress components at: a)right angle; b)general angle

Figure 3: a) Open star with parallel boundary sides; b) open star with not parallel boundary sides; c)
traction components at the common vertex

4.2 SKMs in an open star of two elements
The open star of elements is a set of two adjacent elements with one boundary side each, as

shown in figures (3a, b). Such patch of elements with parallel boundary sides (Fig. 3) presents one
SKM. Whereas, the same patch of elements, but with not parallel boundary sides, does not exhibit
any SKM. As in previous section (4.1), causes of the emerging SKM can be found by analysis of
eqs.(25) and (26) for the two boundary sides, and eqs. (29) and (30) for the common internal side.
In particular, at the common vertex 2, represented in Fig. 3c with the relevant traction components
and external load components, and considering also the corner equilibrium equation (39) applied to
the two adjacent elements, the following relation is obtained

σe1 (x3,3) [cot (α) + cot (β)] = f t
1,1 − f t

2,3 + fn
2,3 cot (β) + fn

1,1 cot (α) , (41)

which states that, when boundary sides are not parallel, inter-element normal traction component
σe1 (x3,3) is function of the external load components; whereas, when boundary sides are parallel
(β = π − α, cot (β) = − cot (α)), eq.(41) states that one of the four load components depends
on the others and, consequently, one of the equilibrium equations linearly depends on the others.
Moreover, due to the fact that for parallel boundary sides eq.(41) involves only the external load,
such condition must be imposed at the boundary condition level, otherwise equilibrium can not be
achieved. Equation (41) involves all the external load components, but if internal side is orthogonal
to the two boundary sides (α = β = π/2), only tangential components are involved.

4.3 SKMs in a closed star of four elements
The closed star of four elements is a set of four elements with an internal common vertex, as

shown in figures (4a, b). Two different cases has to be distinguished: the first one, shown in Fig. 4a,
where the internal point lies at the diagonals intersection and which present one SKM; the second
one, shown in Fig. 4b with the internal point in an other position, which does not present any SKM.
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Figure 4: a) Closed star with diagonal internal sides; b) closed star with not diagonal internal sides;
c) traction components at the internal common vertex

The presence of the SKM when the interior point lies at diagonal intersection is caused by the lost
of linear independency in the set of equilibrium equations (29) and (30), for the four internal sides
at the internal vertex, and the four equilibrium equations obtained by applying eq.(39) to the corners
around internal vertex. Manipulation of such equations gives the following relations

τe4 (x1,3)− τe3 (x3,3) = −σe1 (x4,1) [cot (α) + cot (β)]+
+ σe4 (x1,3) cot (α) + σe3 (x3,3) cot (β) (42)

τe4 (x1,3)− τe3 (x3,3) = +σe1 (x2,1) [cot (γ) + cot (δ)]+
− σe4 (x1,3) cot (δ)− σe3 (x3,3) cot (γ) , (43)

which are mutually independent, but if internal point lies at the diagonals intersection the following
conditions hold

cot (α) = − cot (β) = cot (γ) = − cot (δ) (44)

and eqs.(42) and (43) become identical, proving that the equilibrium equations are not linearly in-
dependent and, as a consequence, the rank of stiffness matrix is not full and one SKM reveals. As
in the case of the open star of element, if internal sides are orthogonal (α = β = γ = δ = π/2),
dependent equations (42) and (43) only involves tangential components.

5 Restraint of spurious kinematic modes
The proposed approach is based on the elimination of the linearly dependent equations in order

to reduce the set of equilibrium equations up to a full rank one. The equation elimination can be
performed by constraining the relevant kinematic variable by the master-slave elimination method.
Because in some cases linear dependent equations do not involve normal traction components, the
constrained variable is always a tangential displacement component.

5.1 Single element
With reference to the problem of SKM in a single element with two boundary sides analyzed

in section 4.1, the tangential displacement ut
3,3 of side Γ3 is defined as function of displacement

components of the same point x2,1 of side Γ2 (see Fig. 1a), that is

ut
3,3 = ut

2,1 cos (α23) + un
2,1 sin (α23) (45)

where α23 is the angle between the two oriented sides Γ2 and Γ3. It can be easily proven that, after
application of kinematic restrain of eq.(45), the eleven equilibrium conditions, obtained as station-
ary conditions with respects to all the independent kinematic variables, and the corner equilibrium
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equation (40) are a set of twelve coupled and linearly independent equations, whose solution is

τe (x3,i) = f t
3,i, σe (x3,i) = fn

3,i, τe (x2,i) = f t
2,i, σe (x2,i) = fn

2,i, i = 1, 2, 3 (46)

which impose the boundary conditions at each interpolation point of the boundary sides, and which
do not produce any SKM. Therefore, application of kinematic constrain of eq. 45 preserves verified
boundary equilibrium equations and it restrains the SKM.

5.2 Open star of two elements
In order to constrain the SKM in the open star of two element with parallel boundary sides

shown in Fig. 3a, the kinematic constrain can be applied between tangential degrees of freedom of
the common point between sides Γ1 and Γ2, that is

ut
2,3 = ut

1,1, (47)

which is verified in the exact solution.
As in previous case, the stationary conditions produce a set of eleven coupled boundary equilib-

rium equations for sides Γ1 and Γ2 and a set of six uncoupled inter-element equations equations for
the internal side Γ3.

It can be easily proven that application of kinematic constrain of eq.(47) restrains the SKM and
it preserves strongly verified both the boundary equilibrium conditions at sides Γ1 and Γ2 and the
inter-element equilibrium condition at side Γ3.

5.3 Closed star of four elements
Finally, in order to constrain the SKM in the closed star of four elements with diagonal internal

sides, master-slave condition can be applied between two parallel sides, for example between sides
Γ1 and Γ3 or between sides Γ2 and Γ4 (see Fig. 4a). The former case is considered and the relevant
kinematic constrain is

ut
1,3 = −ut

3,3. (48)

where sign minus is due to the opposite verses of local tangential axes of sides Γ1 and Γ3. Applica-
tion of the kinematic constrain of eq.(48) modifies the stationarity conditions of the involved sides
and a set of eleven coupled equilibrium equations is obtained. As in the two previous cases, the
solutions of such coupled equations, unitedly to the corner equilibrium equation (39) applied to the
four corner around the internal vertex and unitedly to the equilibrium equation of sides Γ2 and Γ4,
strongly keeps verified the co-diffusivity conditions at all internal sides and it restrains the SKM.

6 Numerical results
The hybrid equilibrium element and the proposed restraining approach have been implemented

in a specific finite element code for the elastostatic analysis of simple structures. The cantilever
beam problem proposed by Cook in [15] is considered in order to verify the proposed restraining
approach and in order to compare the solution of hybrid equilibrium approach with the reference
one. The beam geometry is represented in Figs. 5a,b with the two load conditions and the two
different considered meshes, which are defined by number of node, number and local reference of
sides and number of elements. Connectivity information can be easily deduced. Material is isotropic
elastic with parameter Young module E = 1500, Poisson ratio ν = 0.25 and thickness h = 1. The
cantilever beam is clamped at the left end, where section deformation is allowed in its self plane,
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Figure 5: Hybrid equilibrium meshes of the cantilever beam: a) mesh 1; b) mesh 2

and it is loaded at the right end. The same meshes are adopted also for the standard finite element
analysis with six-nodes triangular elements (T6).

The load conditions are usually defined as nodal forces, whereas in equilibrium contest they are
defined in terms of traction components at the interpolation points. Load one is usually defined by a
couple of nodal force Fx = ±1000 applied at the corner but, in the present approach, it is applied
as a linear distribution of normal stress, as shown in Figs. 5a,b. Load two is usually defined by a
tangential force Fy = ±300 but it is applied by a quadratic distribution of tangential stresses, which
vanish at the corners. In fact, due to the fact that the two horizontal external surfaces are unloaded
and in order to impose rotational equilibrium equation 39, tangential stress at the two corners of the
vertical right side must be null.

The considered meshes present some SKMs which must be restrained, otherwise numerical anal-
ysis cannot be performed. In details, mesh one (Fig. 5a) presents three SKMs: the first one is due
by the open star with parallel boundary sides of elements e1 and e2; the second and the third one
are respectively caused by element e3 and by element e4 because they present two boundary sides
each. Mesh two (Fig. 5b) presents one SKM because the mesh is a closed star of four element where
internal point lies at diagonal intersection. Such remarks are confirmed by the eigenvalue analysis
of the global stiffness matrix of the two different discretizations. Some significant eigenvalues of
the two meshes, with and without application of the restraining approach (RA), are report in the
following table 1. The relevant eigenvalues are compared in table 1 with eigenvalues of the original
problems and, in both cases, the absence of null eigenvalue confirm that all the SKMs are restrained
by the proposed approach.

The elastostatic response of the cantilever beam subjected to load 1, obtained with both the two
meshes by the hybrid equilibrium method and by application of the proposed restraining approach,
coincides with exact solution both in terms of stresses and in terms of sides displacement. In fact, in
exact solution stresses are constant in the horizontal direction and are linear in the vertical one there-
fore, such solution can be properly reproduced by the proposed quadratic elements, independently
by the adopted mesh. Exact solution is obtained also with displacement T6 elements.

The elastostatic responses of the cantilever beam subjected to load 2 does not coincide with exact
solution. The results are compared with the reference solutions [15] in table 2 in terms of vertical
displacement of the lower-right corner, for all sides containing such point. It can be observed that
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Mesh 1 Mesh 1+RA Mesh 2 Mesh 2+RA
nr Eigenvalue nr Eigenvalue nr Eigenvalue nr Eigenvalue
1 47613.86 1 47673.9 1 75418.25 1 75328.63
2 32324.52 2 32306.03 2 65882.18 2 65893.61
3 22369.74 3 22325.38 3 53124.1 3 53264.35
4 19864.39 4 19769.43 4 37102.99 4 37036.28
...

...
...

...
...

...
...

...
46 1.42 46 1.33 40 11.25 40 11.32
47 0.71 47 0.5 41 3.09 41 3.09
48 3.47E-07 42 1.44 42 1.44
49 -1.18E-07 43 0.26 43 0.26
50 -4.00E-08 44 -3.02E-06

Table 1: Eigenvalues of mesh one and mesh two with and without restraining approach (RA)

Mesh 1+RA Mesh 2+RA T6
Γ2 Γ6 Γ7 Γ1 Γ3 Γ6 mesh 1 mesh 2 Ref.[15]

uy 103.03 103.28 102.80 105.2 102.92 102.7 96.8 85 102.6
error % 0.42 0.66 0.19 2.53 0.31 0.10 -5.74 -17.2

Table 2: Load 2 vertical displacement of the lower-right corner

displacements of different sides, at the same point, are not equal and the compatibility condition is
not verified. Nevertheless, except side 1 of mesh 2, the error is less than 1%, which is very small for
the coarse meshes adopted. The deformed configuration of the two meshes subjected to load 2 are
represented in Figs. 6a,b, with displacement factor equal to 0.015.

Table 2 reports also the numerical solution of classical displacement based approach (T6), which
produces much higher error than hybrid equilibrium approach, despite based on the same discretiza-
tion.

7 Conclusions
Hybrid equilibrium elements represent an important numerical tool for the structural analysis, but

its use is strongly discouraged because the presence of potential spurious kinematic modes (SKM)
can not be easily predicted. In the present paper, causes of the emerging SKM are investigated for
three different patches of elements, well known in literature for the presence of SKM. Geometrical
conditions under which SKMs reveal and the relevant mathematical motivation are determined, unit-
edly to the set of linear dependent equations producing rank deficiency in the global stiffness matrix.
Moreover, it is proven that the set of linearly dependent equations is constituted by the inter-element
or boundary equilibrium equations related to the lagrangian kinematic variables of two adjacent
sides.

In the present paper, SKMs are restrained by a master slave elimination approach, by connect-
ing the kinematic variables related to the linearly dependent equations. The proposed approach
reduces the number of kinematic variables and it reduces the global stiffness matrix to a full rank
one. Moreover, it preserves verified all the equilibrium conditions, so that numerical solution is
actually statically admissible.

Finally, the efficacy of the proposed approach is confirmed by the numerical analysis of one
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Figure 6: Deformed configuration of: a) mesh 1; b) mesh 2

simple problem, discretized in two different meshes. Eigenvalues analysis confirms that, after ap-
plication of the restraining approach, no null eigenvalues are produced. The elastostatic numerical
analysis response coincides with exact solution for the first load condition whereas, for the second
load condition, error in displacement is much lower than in standard finite element solution.
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