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Recent experiments have demonstrated coherent phenomena in three-level systems based on

superconducting nanocircuits. This opens the possibility to detect Stimulated Raman Adiabatic

Passage (STIRAP) in arti¯cial atoms. Low-fequency noise (often 1=f) is one of the main sources
of decoherence in these systems, and we study its e®ect on the transfer e±ciency. We propose a

way to analyze low frequency °uctuations in terms of ¯ctitious correlated °uctuations of

external parameters. We discuss a speci¯c implementation, namely the Quantronium setup of a

Cooper-pair box, showing that optimizing the trade-o® between e±cient coupling and protec-
tion against noise may allow us to observe coherent population transfer in this nanodevice.

Keywords: STIRAP; quantronium; coherent transfer population; Zener transition; three-level

system.

PACS Number(s): 74.25.Jb, 73.23.-b, 73.40.Gk, 42.50.Md, 42.65.Dr

1. Introduction

The observation of coherent dynamics in nanodevices is an important achievement

towards quantum control in solid state devices. In the last decade superconducting

nanocircuits exhibiting the dynamics of single `arti¯cial atoms',1�3 two coupled

arti¯cial atoms4,5 and arti¯cial atoms coupled to electromagnetic resonators6,7 have
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been demonstrated. This development opens new perspectives to study quantum

phenomena in solid-state devices that traditionally have been part of quantum

optics.8

So far most of the research in this ¯eld has focused on the two lowest level of

arti¯cial atoms. In the last few years, it has been proposed that multilevel quantum

coherent e®ects,8�10 could be observed in superconducting nanodevices: various

schemes have been proposed to observe electromagnetically induced transparency,11

and selective population transfer by adiabatic passage.12�16 Very recently, few

experiments have demonstrated features of multilevel coherence in such devices, as the

Autler-Townes e®ect,17,18 coherent population trapping,19 electromagnetically

induced transparency,20 preparation andmeasurement of three-state superpositions.21

In studying quantum optical e®ects in solid state devices, several di®erences are

encountered with respect to the atomic realm: coupling between subsystems is larger,

but also noise is larger, and often extends over several decades, low-frequency noise

being the most important source of decoherence in many of the solid state im-

plementations of quantum bits.22,23 On the other hand solid state devices o®er several

design solutions, and the possibility of tuning by external controls the spectral

properties of the arti¯cial atom.24 All these elements come into play in multilevel

structures,25 together with new features, as for example selection rules. Di®erences

between speci¯c designs may become crucial for the successful implementation of

speci¯c protocols.

In this work we will study coherent population transfer using the STIRAP pro-

tocol three-level arti¯cial atoms. In Sec. 2 we introduce STIRAP, and discuss the

sensitivity of the transfer e±ciency to external parameters. Then we consider a

speci¯c implementation of three-level arti¯cial atom based on the Quantronium

design2,26 and introduce a model for low-frequency charge noise (Sec. 3). In Sec. 4, we

propose a way to characterize the e®ects of low-frequency noise, reducing the problem

to that of the sensitivity of the transfer e±ciency to ¯ctitious correlated external

parameters.

2. Coherent Population Transfer in Three-Level Atoms

In quantum optics, the STIRAP technique is based on a � con¯guration (Fig. 1) of

two hyper¯ne ground states j0i and j1i and an excited state j2i, with energies E0;E1

and E2 respectively.8 The system is driven by two classical laser ¯elds,9,8 called the

Stokes laser �12 ¼ �s cos!st and the Pump laser �02 ¼ �p cos!pt. Each laser is

nearly resonant with the corresponding transition. In the usual situations, we can

treat the laser drive ¯elds in the Rotating-Wave Approximation (RWA). Moreover,

one can introduce a phase transformation of the atomic basis and express the

Hamiltonian in a doubly rotating frame, with angular frequencies given by !i of the

driving ¯elds. The e®ective Hamiltonian reads

~H ¼ �j1ih1j þ �pj2ih2j þ
1

2
ð�sj2ih1j þ �pj2ih0j þ h:c:Þ ð1Þ
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where we de¯ne the detunings �s ¼ E2 � E1 � !s; �p ¼ E2 � E0 � !p and the two-

photon detuning � ¼ �p � �s ¼ E2 � E1 � ð!p � !sÞ.
At two-photon resonance, � ¼ 0, the Hamiltonian (1) has an eigenstate which is a

superposition of the two lowest atomic levels only

jDi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�sj2 þ j�pj2

q ð�sj0i � �pj1iÞ: ð2Þ

It is usually referred to as the dark state since, despite the presence of the lasers, the

atom cannot be excited to the state j2i and consequently decay by spontaneous

emission (Fig. 1). Instead, the laser ¯elds interfere destructively and, as a result, the

population is coherently trapped. A given dark state can be prepared by an appro-

priate choice of both the Rabi frequencies �i and the relative phase of the ac ¯elds.

2.1. The STIRAP protocol

From Eq. (2), it can be seen that by slowly varying the coupling strengths, �sðtÞ and
�pðtÞ, the dark state can be rotated in the two-dimensional subspace spanned by j1i
and j0i. Using adiabatic dynamics in the rotating frame, the STIRAP protocol

implements coherent population transfer between the atomic states j0i ! j1i.9
The system can be prepared in the state j0i by letting �p ¼ 0 and switchig on

�sðtÞ 6¼ 0. By slowly switching �s o® while �pðtÞ is switched on, the population can

be transferred from state j0i to state j1i. Finally also �p is switched o®. The mixing

angle of the dark state Eq. (2) is de¯ned as �ðtÞ ¼ 2 arctan½�pðtÞ=�sðtÞ�, and evolves

from � ¼ 0 to � ¼ 2� (Fig. 2, upper right panel).

This is the so-called counterintuitive scheme as opposed to the intuitive strategy

where the pump pulse preceeds the Stokes pulse. In this case population transfer

involves, as an intermediate step, population of the excited state j2i, which can

undergo spontaneous decay, strongly a®ecting the population transfer e±ciency. One

advantage of STIRAP is that, in the ideal procedure, the state j2i is never popu-

lated,9,10 therefore it is not sensitive to spontaneuos decay. Moreover, provided

adiabaticity is preserved, STIRAP is in principle insensitive to many details of the

Fig. 1. A three-level atom driven by two lasers in the � scheme. The state j2i may have a large decay

probability.
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protocol, and in practice it turns out to be insensitive to the precise timing of the

operations.

2.2. Sensitivity to parameters

Adiabaticity is critical to achieve high e±ciency, therefore much e®ort has been

devoted in the past to optimization of the pulse shapes.10 A necessary condition for

adiabaticity is j�j

:
=�jj � !jðj ¼ s; pÞ, which suggests that e±ciency can be improved

by using large enough Rabi peak frequencies. Formally, they determine a large

(Autler-Townes) splitting of the instantaneous eigenstates in the rotating frame.10,9

This splitting prevents unwanted transitions triggered by o® diagonal parts (neg-

lected in the adiabatic approximation) of the Hamiltonian in the instantaneous

eigenbasis. These non-adiabatic terms are proportional to �
:ðtÞ and tend to detrap the

population, reducing the transfer e±ciency. If we let �pðtÞ ¼ �0 f½ðt� �Þ=T � and
�sðtÞ ¼ ��0f½ðtþ �Þ=T �, a positive delay � implements the counterintuitive sequence

of STIRAP. For Gaussian pulses, fðxÞ ¼ e�x 2
, optimal choices are �0T > 10 and

� � T .10 In this paper we use a reduced pulse width �0T ¼ 30 and a delay � ¼ 0:7T .

2.2.1. Sensitivity to detunings

When the two frequencies !s and !p are not exactly resonant with the respective

transitions, the presence of non-zero detunings �s and �p may strongly a®ect the

e±ciency. Actually, the two-photon detuning is the crucial parameter. As it is shown

in Fig. 3, small deviations of the two photon detuning � lead to a substantial decrease

of the e±ciency, which is less sensitive to single-photon detunings at two-photon

resonance � ¼ 0. Actually, phenomena entering non-ideal STIRAP are qualitatively

Fig. 2. Ideal STIRAP at two-photon resonance � ¼ 0, obtained by operating with two pulses in the

counterintuitive sequence (top left panel). The system prepared in the state j0i follows the Hamiltonian

along the zero-energy adiabatic level (left lower panel) yielding complete population tranfer (right lower
panel, where Pi ¼ jhij ðtÞij2). In top right panel, the mixing angle of the dark state as a function of time for

the adiabatic evolution. The pump laser is slightly detuned, �p ¼ �0:2�0.
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di®erent according to � vanishing or not, and their interplay leads to a rich physical

picture.

Finite single photon detunings at � ¼ 0 do not a®ect the formation of the dark state,

because themixing angle does not depend on it. Instead they increase the nonadiabatic

terms.10 The e±ciency is insensitive to small single-photon detunings (� . �0, see also

Fig. 2), while larger ones prevent the adiabatic follow on of the dark state.

The detuning from two-photon resonance is more detrimental for STIRAP,

because it prevents the exclusive population of the trapped state, which is no longer

an instantaneous eigenstate of the Hamiltonian. A more detailed analysis of the

instantaneous eigenstates when � 6¼ 0 shows that there is no adiabatic transfer state

providing an adiabatic connection from the initial to the target state, as does the dark

state for � ¼ 0. In this case, the evolution leads to complete population return of the

system to its initial state. The only mechanism which leads to population transfer is

by non-adiabatic transitions between the adiabatic states. Actually for small values

of �, narrow avoided crossings between the instantaneous eigenvalues can occur and

the population can be transferred by Landau-Zener tunneling,10,9 as shown in Fig. 4.

The above considerations lead to the conclusion that the correlations between the

detunings �s and �p are very important. In fact, strongly correlated °uctuating

detunings, nearly preserving two-photon resonance, still allow large transfer e±-

ciency.27 This issue becomes very important in the discussion of the e®ects of low-

frequency noise in solid state nanodevices.

2.2.2. Sensitivity to Rabi frequencies

For ideal STIRAP, it is better to have two nearly equal peak Rabi frequencies, i.e.

� ¼ �S=�P ¼ 1. Indeed if the two maximum Rabi frequencies are di®erent, say
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Fig. 3. (left panel) Contour plot of the intensity of the transfer e±ciency as a function of single-photon

and two-photon detuning for equal peak Rabi frequencies � ¼ �S=�P ¼ 1 (left panel) and k ¼ 2 (right

panel). In axes x, y we have ~� ¼ �=�0 and ~�p ¼ �p=�0, respectively. In both panels, the bright region
corresponds to large e±ciency of population transfer (more than 80%. A two-photon detuning j�j&�0=5

determines a substantial decrease of the e±ciency. The line corresponds to correlated detunings, which give

an e®ective description of °uctuation in the Quantronium (Sec. 4). Increasing the strength of the Stokes

pulses enlarges asymmetrically the region of large transfer e±ciency.
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� > 1, while the pulse widths are about the same, the projection of the state vector

onto the adiabatic transfer state is very good initially (because in our case the more

intense pulse occurs ¯rst), but necessarily less good in the ¯nal stage. Consequently,

the transfer e±ciency will be small.10

The situation may be di®erent if ¯nite detuning is considered. In particular in the

right panel of Fig. 3 it is shown that the region of great transfer e±ciency enlarges

asymmetrically. This happens when the larger pulse occurs during the Zener process

of imperfect STIRAP (the opposite situation is illustrated in Fig. 4).

Of course, using large pulse areas, small deviations from the optimal conditions

do not lead to signi¯cant drop in transfer e±ciency, and in general increasing

both the amplitudes is the convenient strategy to counteract the e®ect of imperfec-

tions. However, in solid state nanodevices there are restrictions on the amplitude

and symmetry of the coupling to the microwave ¯elds, playing the role of the lasers.

Therefore, operating at � 6¼ 1 may give room to further optimize the transfer

e±ciency.

3. STIRAP in the Quantronium

We now discuss the implementation of the Hamiltonian (1) in the Quantronium.2

The basic unit of this device consists of a Cooper pair box, namely a superconducting

loop interrupted by two adjacent tunnel junctions with Josephson energies EJ=2

(Fig. 5). The two small junctions de¯ne the superconducting island of the box, whose

total capacitance is C and charging energy EC ¼ ð2eÞ2=2C. The electrostatic energy

can be modulated by a gate voltage Vg connected to the island via a capacitance

Fig. 4. STIRAP with ¯nite two-photon detuning � ¼ 0:2�0, with the two pulses in sequence in top left
panel. Population transfer occurs due to Zener transitions between crossing adiabatic levels (lower left

panel), and the transfer e±ciency is reduced (lower right panel). In top right panel, the mixing angle as a

function of time. Here � ¼ 2 and �p ¼ �4�. This parametrization being appropriate for discussing e®ects of

low-frequency noise in the Quantronium (Sec. 4).
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Cg � C and the Hamiltonian reads

H0ðqgÞ ¼
X
q

EC ½q � qg�2jqihqj �
EJ

2
ðjqihq þ 1j þ h:c:Þ; ð3Þ

where fjqig are eigenstates of the number operator q̂ of extra Cooper pairs in the

island. We have de¯ned the reduced gate charge qg ¼ CgVg=ð2eÞ, which is the control

parameter of the system. Eigenstates of the box are superpositions of charge eigen-

states. The spectrum can be modi¯ed by tuning qg (Fig.6) and the device is usually

operated as a qubit close to the value qg ¼ 1=2. This is a symmetry point for the
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Fig. 6. Left panel: energy spectrum of a Quantronium setup with EJ ¼ EC . The splitting Ei �E0 in units

of EC is plotted as functions of qg, The ¯rst splitting is given by E1ð1=2Þ ¼ 0:94. Right panel: o®-diagonal

entries of the Cooper pair number operator, q01; q12 and q02 from top to bottom.
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Fig. 5. Equivalent circuit for the Quantronium. Here q and C are the charge and the capacitance of the
superconducting island respectively; Cg and Vg are the capacitance and the voltage of the gate; Eg is the

Josephson energy and � is the magnetic °ux.
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device Hamiltonian (3) and it turns out that it is an optimal working point where the

system is well protected against external noise, allowing to obtain experimental

dephasing times of several hundreds nanoseconds.2,26

Manipulation of the quantum state is performed by adding to the dc part of the

gate voltage, ac microwave pulses with small amplitudes qg ! qg þ q acg ðtÞ. The

resulting Hamiltonian can be written as

HtotðtÞ ¼ H0ðqgÞ þ AðtÞq̂; ð4Þ

where AðtÞ ¼ �2ECq
ac
g ðtÞ. The e®ective three-level arti¯cial atom Hamiltonian

HðtÞ ¼
X

i

Eij�iih�ij þ AðtÞ
X
ij

qij j�iih�jj ð5Þ

is obtained by projecting HtotðtÞ onto the subspace spanned by the three lowest

energy eigenvectors j�ii; i ¼ 0; 1; 2 of H0ðqgÞ. In Eq. (5) qij ¼ h�ijq̂j�ji. The STIRAP

protocol can be carried out if we let AðtÞ ¼ AsðtÞ cos!stþApðtÞ cos!pt. We then use

the RWA, by retaining only quasi-resonant o®-diagonal and co-rotating terms of the

drive Hamiltonian, which simpli¯es to

AðtÞq̂ ! HRWAðtÞ ¼
1

2
q12AsðtÞe i!stj�1ih�2j

þ 1

2
q02ApðtÞe i!ptj�0ih�2j þ h:c: ð6Þ

In this approximation the truncated Hamiltonian (5) is transformed to the doubly

rotated frame, at angular frequencies !s and !p. This yields an e®ective Hamiltonian
~HðqgÞ with the structure of Eq. (1), which therefore implements the � con¯guration.

Notice that matrix elements qij ¼ h�ijq̂j�ji play the same role of the dipole matrix

elements in de¯ning the Rabi frequencies, �s ¼ q12As and �p ¼ q02Ap.

The RWA of Eq. (6) is justi¯ed in the regime where peak Rabi frequencies are

much smaller than the splittings, �i � jEi � Ejj, which is the usual experimental

regime. In this case the terms neglected are rapidly oscillating in the rotating frame,

and only produce a small and fast modulation in the dynamics. The approximation is

supported by simulations of the full Hamiltonian (4), using more than ten energy

levels15,28 for the usual operating region near qg ¼ 1=2.

It is worth stressing the dependence of the e®ective Hamiltonian ~H ðqgÞ on the bias

charge qg. For instance in Eq. (1) detunings depend on qg via the energies Ei and peak

Rabi frequencies via o® diagonal matrix elements qij (see Fig. 6). In particular at the

symmetry point, qg ¼ 1=2, the matrix element q02 vanishes and in general selection

rules hold preventing transitions between energy states with the same parity of the

label. The o®-diagonal matrix elements qij shown in Fig. 6 play the same role of the

dipole matrix elements in atoms. The largest one is q01, which provides the coupling

for qubit operations. Fields in STIRAP are coupled via q12 and q02. This latter

vanishes due to a parity selection rule at the symmetry point qg ¼ 1=2.

8 A. L. Cognata et al.



3.1. Broadband noise

Since the nanocircuit is not isolated, the model has to be supplemented with noise

terms. The structure of coupling to noise can be understood considering classical

°uctuations of each of the parameters in the Hamiltonian of Eq. (3). For instance

°uctuations of the gate charge can be accounted for by adding a classical stochastic

term qg ! qg þ �qxðtÞ. Physical processes described by these °uctuations are those

leading to a stray electrical polarization of the island, and include e®ects of voltage

°uctuations of the circuit and e®ects of switching impurities22 located in the oxides

and in the substrate close to the device. Since these latter are in practice the main

source of decoherence (circuit °uctuations can be reduced by careful ¯ltering) for the

Quantronium, we will only consider °uctuations of the gate charge, thus acting on

the same port used to drive the system. We may write the resulting Hamiltonian as

H ¼ H0ðqgÞ þHRWAðtÞ þ �H

where �H ¼ �2EC�qxðtÞq̂. In general, noise is due to the coupling of the device to an

environment which is itself a quantum system, and the Hamiltonian is obtained by

letting �H ¼ X̂q̂ þHenv, where Henv describes the environment and X̂ is an en-

vironment operator. This model allows to treat high-frequency noise by a quantum

optical master equation in the weak coupling regime. However the power spectrum of

noise in the solid state has a large low-frequency component which invalidates the

weak coupling approach. A multistage approach has been proposed23 where high and

low-frequency noise are separtated, and the latter is treated as an adiabatic classical

¯eld. Formally X̂ ! X̂f � 2EC�qxðtÞ, where X̂f describes fast environmental degrees

of freedom and �qxðtÞ is now a classical slow stochastic process. We let qxðtÞ ¼
qg þ �qxðtÞ and write the Hamitonian as

H ¼ H0ðqxðtÞÞ þHRWAðtÞ þ X̂q̂ þHenv: ð7Þ
In many cases low-frequency noise with 1=f spectrum, which is the leading contri-

bution of the slow dynamics of qxðtÞ, is captured by a Static-Path Approximation

(SPA), that is approximating the stochastic process by a suitably distributed random

variable.23,26 In the case of many weakly coupled noise sources, the distribution of �qx
is characterized by an energy width � ¼ 2EC�x. Populations and coherences are

obtained by averaging over this distribution the entries of the reduced density matrix

of the system. This approach has quantitatively explained the power law decoherence

observed in Quantronium26 and in phase qubits,32 and has been recently studied for

optimal tuning of multiqubit systems.25

This point of view provides a simple argument explaining why the symmetry point

qg ¼ 1=2 is well protected against external noise. Indeed, since the energy splitting

E1 � E0 depends only quadratically on the °uctuations �qx around this point, energy

°uctuations are suppressed. As a consequence, superpositions of the two lowest

energy levels keep coherent, yielding a power law suppression of the signal23,26 and

longer dephasing time.

Adiabatic Passage in Nanocircuit 9



3.2. E®ective model for low-frequency noise in STIRAP

In order to study STIRAP we project the Hamiltonian (7) on the subspace spanned

by the three lowest energy instantaneous eigenvectors of H0ðqxðtÞÞ. In doing so we

assume the adiabaticity of the dynamics induced by �qxðtÞ, which allows to neglect

e®ects of the time-dependence of the eigenvectors. Of course, if we start from the SPA

version of the Hamiltonian (7), this condition is automatically veri¯ed. We focus on

the system plus drive Hamiltonian, H0ðqxðtÞÞ þHRWAðtÞ, which has in the rotated

frame the same structure of Eq. (1). Parameters entering the Hamiltonian depend, of

course, on the realization of the stochastic process. Fluctuations of the eigenenergies

translate in °uctuations of the detunings (we let E0 ¼ 0)

�ðqxÞ ¼ E1ðqxÞ � !p þ !s; �pðqxÞ ¼ E2ðqxÞ � !p: ð8Þ

Also the e®ective drive °uctuates due to °uctuations of the charge matrix

elements, for instance �p ¼ q02ðqxÞAp.

In the regime of validity of the SPA, this analysis shows that the e®ect of low-

frequency noise in solid-state devices, can be discussed in term of sensitivity of the

transfer e±ciency obtained by STIRAP to parameters characterizing an equivalent

drive. This allows to apply several results known from quantum optics to solid state

devices. For instance the large sensitivity to two-photon detuning, translates in the

sensitivity to °uctuations of the lowest splitting, which is then the main ¯gure to be

minimized in order to achieve e±cient population transfer in the solid state. Notice

also that, the main steps of the analysis carried out for the Quantronium can also be

applied to other solid state implementations devices, as long as decoherence in the

dynamics of the two lowest energy levels is well-characterized.

4. E®ects of Low-Frequency Noise in the Quantronium

In this section we will apply the above analysis to discuss the observability of

STIRAP in the Quantronium, and we will consider a device with EJ ¼ EC , whose

spectral properties are given in Fig. 6. An important point is that while dephasing is

minimized by operating at the symmetry point qg ¼ 1=2, the selection rule q02 ¼ 0

prevents to implement STIRAP. Therefore, it has been proposed to operate slightly

o® the symmetry point.

In these conditions it has been shown that STIRAP allows a substantial coherent

population transfer also in the presence of high-frequency noise. Notice that, while in

quantum optical systems STIRAP connects two ground states, in solid state devices

high-frequency noise leads to decay 1 ! 0. These processes are well characterized

experimentally.26 In Ref. 15 it has been shown that secular dephasing between the

above two states does not produce relevant e®ects during population transfer. A

careful analysis28 has allowed us to optimize parameters for STIRAP in the presence

of high-frequency noise, showing that operating at qg ¼ 0:47 already provides su±-

cient coupling q02.

10 A. L. Cognata et al.



On the other hand, it is known that the e®ect of low-frequency noise increases

when the system is operated away from the symmetry point.26,33 This opens the

question of the trade-o® between e±cient coupling of the driving ¯elds and dephasing

due to slow excitations in the solid-state. In this work we focus on this issue and we

neglect high-frequency noise.

Another consequence of the selection rule is that, in the vicinity of the symmetry

point, coupling with the drives is asymmetric. At qg � 0:47 we have q02 � q12=4 (see

Fig. 6). Since in any case it is convenient to work with the largest pump pulse Rabi

peak frequency �0, we will ¯x this value. It can be estimated by writing �0 ¼
ðq02=q01Þ�R � �R=6, where �R is the maximal angular frequency for Rabi oscillations

between the lowest doublet. Figures of approximately �R ¼ 750� 900MHz can be

achieved in the Quantronium, corresponding to a maximum ¯eld amplitude Ap

yielding �p ¼ 100� 150MHz. The peak Rabi frequency of the Stokes ¯eld could be

chosen as �s ¼ ��p, with � � 4, but we will argue that � ¼ 1 is the optimal choice.

Fluctuations �qx of the gate charge can be estimated from the dephasing time of

the qubit at the symmetry point. This is due to energy °uctuations �=E1ð1=2Þ � 0:01.

Therefore °uctuations of gate charge, which are characteristic of the environment

only, are estimated by �x ¼ �=ð2ECÞ � 3 � 10�3, where we used EC � 15GHz. Notice

that these features may depend on details of the protocol as the total measurement

time, but for 1=f noise the dependence is logarithmic and improving the procedure

does not bring essential changes of �x.

We choose to operate at single and two-photon resonance, � ¼ �p ¼ 0 at qg ¼ 0:47.

According to Eq. (8), °uctuations �qx determine a distribution of the detuning. In the

left panel of Fig. 6, we can directly read o® °uctuations of the splitting, which give the

estimate �� ¼ �E1ðqxÞ � ð@E1=@qxÞqg �qx and ��p ¼ �E2ðqxÞ � ð@E2=@qxÞqg�qx.
Therefore, °uctuations of the detunings are anticorrelated, ��p ¼ a��, where the

ratio of the two derivatives is given by a � �5. This corresponds to the lines drawn

in the e±ciency diagrams of Fig. 3. Using ð@E1=@qxÞqg�qx � ðEJ=4Þ, we ¯nd that

°uctuations of the two-photon detuning are estimated by ��=�0 � EJ�x=ð4�0Þ
� �=ð8�0Þ � 0:1� 0:2, identifying the region of the e±ciency diagrams explored by

the system during the protocol. This estimate suggests that energy °uctuations in the

Quantronium should still allow to observe coherent population.

Fluctuations of the o®-diagonal elements can be estimated by the plots in Fig. 6

(right panel), yielding ¯gures of � ð1=4Þ�x�0 � 10�3�0, therefore they can be neg-

lected. The transfer e±ciency is then calculated by averaging the population histories

over the distribution of correlated detunings. Results are shown in Fig. 7 for di®erent

values of the °uctuation intensity of the two-photon detuning �� in units of �0. Here

detunings are anticorrelated ð�p ¼ �5�Þ and drives have been symmetrized ð� ¼ 1Þ,
by using a lower amplitude As for the Stokes ¯eld. It is seen that in standard

experimental conditions the low-frequency noise allows from 60% to more than 90%

population transfer in the Quantronium. Notice that even for �� ¼ 0:2�0 the average

population of the intermediate level is very small during the whole procedure.

Adiabatic Passage in Nanocircuit 11



Finally we comment about the optimization of the laser amplitudes. In the above

simulations we used � ¼ 1, but it would be possible to use a larger Stokes pulse, up to

� ¼ 4. However this does not improve the e±ciency if °uctuations of the detunings

are anticorrelated. As shown in Fig. 8, in this case the region of large e±ciency

shrinks for increasing �.
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Fig. 7. Averaged population histories for di®erent values of the °uctuation intensity of the two-photon

detuning, ��. In panels (a)�(f), we have �� ¼ 0:05; 0:1; 0:2; 0:4; 0:8; 1:6 in units of �0, respectively. Here

detunings are anticorrelated ð�p ¼ �5�Þ and drives have been symmetrized ð� ¼ 1Þ by using a lower
amplitude As for the Stokes ¯eld. For �0 ¼ 2� � 108 rad=s the relevant curve is �� ¼ 0:2 and T ¼ 48ns

yielding 60% of population transfer. Slightly increasing �p ¼ 150MHz one obtains �� ¼ 0:125 and

T ¼ 30 ns.
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5. Conclusion

We studied the e®ect of low-frequency noise on the transfer e±ciency of STIRAP,

proposing that low-frequency °uctuations of the spectrum can be analyzed in terms

of ¯ctitious correlated °uctuations of the detunings. For solid-state noise with large

low-frequency component (e.g. for 1=f noise) the leading e®ect (SPA approximation)

is equivalent to consider statistically distributed detunings and can be discussed by

analyzing the sensitivity to parameters of the protocol.

We applied the theory to the Quantronium, showing that correlated °uctuations

of the energy splittings have to be considered, and that transfer e±ciency is mainly

sensitive to decoherence in the subspace of the two-lowest levels, which is well-

characterized experimentally. Selection rules prevent to work at the symmetry point,

where decoherence is minimal. Therefore, the observation of coherent population

transfer requires optimization of the trade-o® between increasing coupling and

greater sensitivity to low-frequency noise. We have shown that this is indeed possible,

given the measured ¯gures of low-frequency noise.

Notice that we have used pulses of width T ¼ 48� 30 ns. Therefore, the total time

of the protocol � 200� 350 ns is longer than the dephasing time of the qubit, as

determined solely by static inhomogeneities. This dephasing time is smaller o® the

symmetry point (in the experiment of Ref. 26 the dephasing time for coherent

oscillations dropped from T� � 600 ns at the symmetry point to T� � 50 ns at

qg ¼ 0:47). This shows that STIRAP is less sensitive than coherent oscillations to

low-frequency noise. Actually, accounting for high frequency noise the process will be

limited by the relaxation T1 & 500 ns.

The analysis we illustrated applies as well to other superconducting nanodevices.

In particular, it could allow one to design correlations of °uctuations of the energy

spectrum, which maximize the Zener channel of population transfer.
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Fig. 8. Ratio of the maximum drive amplitudes k ¼ �S=�P as a function of the two-photon detuning
limits, ~� ¼ �=�0, for anticorrelated noise, typical of Quantronium (�p ¼ �5�). The white zone is the region

where we have more than 80% of transfer e±ciency of STIRAP.
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