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Abstract
The fundamental aim of this paper is to derive the recurrence relation, shift operators, differential, integrodifferential and 
partial differential equations for Gould–Hopper–Frobenius–Euler polynomials using factorization method, which may be 
utilised in solving some emerging problems in different branches of science and technology.
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Introduction and preliminaries

The investigation of factorization method has been seen as 
the relationship among Maxwell’s and Dirac’s equations. 
These equations are Lorentz invariant because of both being 
linear in nature and every one of them containing partial 
derivatives of first order. It might be commented that on 
account of Maxwell’s equations, the linearity might be a 
distortion which prompts the troubles with infinite self-
energies. An operational system which gives an answer to 
the inquiries regarding eigenvalue issues and which are of 
critical significance to physicists is known as the factoriza-
tion method [1]. The fundamental thought is to think about 
a pair of first-order differential equations, which on working 
provides an equivalent second-order differential equation. 

The assembling cycle is additionally utilized for the figuring 
of transition probabilities. The strategy is summed up so it 
will deal with perturbation problems.

Let {lm(�)}∞m=0 be a polynomial sequence of degree m. 
Two operators �−

m
 and �+

m
 , for m = 0, 1, 2,… are defined by

and

which satisfies

which is known as factorization method. The fundamental 
intention behind the factorization method is to get the deriv-
ative operator �−

m
 and multiplicative operator �+

m
 with the end 

goal that Eq. (1.3) holds.
The iterations of �−

m
 and �+

m
 to lm(�) provide the following 

relations:
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The operational relations referenced above permit us to 
determine higher-order differential equations fulfilled by 
some polynomials. The old-style factorization method 
acquainted in [1] was utilized with study of second-order 
differential equations.

Frobenius (see [2, 3]) studied in detail Frobenius–Euler 
polynomials Fm(x,�) defined by the generating relation:

particularly

which are called Frobenius–Euler numbers given by

And the coefficients eF
k
(�) related to Frobenius–Euler poly-

nomials Fm(x,�) is defined as

where

The Gould–Hopper polynomials g(m)
n

(x, y) [4] are defined by 
the following series expansion

where m is a positive integer. These polynomials hold the 
following generating function:

Let GH-FEP be Gould–Hopper–Frobenius–Euler polyno-
mials denoted by G(j)

m (x, y;�) . It can be represented by the 
following generating function (see [5]):

or equivalently

and
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respectively.
These polynomials are significant in light of the fact that 

they have useful properties, for example, generating func-
tion, differential equations, recurrence relations, series defi-
nition, integral representations, summation formulae, and so 
on. In [6, 7], the differential equations for the Appell polyno-
mials are determined by utilizing factorization method [1]. 
This methodology is additionally reached out to determine 
the integrodifferential equations for the hybrid, 2D extraordi-
nary and mixed type polynomials identified with the Appell 
family, see for instance [8–18]. This gives inspiration to set 
up the differential equations for the Gould–Hopper–Frobe-
nius–Euler polynomials.

Recurrence relations and Shift operators

In this section, the recurrence relation and shift operators 
for the Gould–Hopper–Frobenius–Euler polynomials (GH-
FEP) are derived.

Theorem 2.1 Let � be a parameter, j is a positive integer, 
thus 2-variable GH-FEP, G(j)

m (x, y,�) satisfy the recurrence 
relation

Proof Taking derivatives with respect to t of expression (1.7) 
on both sides and on simplification and using equations

and

where

it follows that
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On further simplification and using Cauchy-product rule in 
the right side, we get

By comparing the same coefficients in the Eq. (2.3), we 
arrive at the desired result.   ◻

To find the shift operators for the 2-variable GH-FEP, 
G

(j)
m (x, y;�) , we state the following theorem.

Theorem 2.2 The shift operators for the 2-variable GH-
FEP G(j)

m (x, y;�) are given by

where
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Proof Taking derivatives with respect to x in (1.7) and upon 
equating same exponents of the parameter t for resultant 
expression yields

Consequently, we have

thus proving assertion (2.4).
Further, taking derivatives with respect to y in (1.7) and 

upon equating same exponents of t of resultant expression 
yields

From here we have

Thus, the proof is completed. ◻

Next, the succeeding expression is used to find raising 
operator (2.6):

which can be further simplified on using expression (2.10) 
as:

Inserting preceding expression in relation (2.1) gives

This yields expression of raising operator (2.6).
Furthermore, the succeeding expression is considered to 

derive the raising operator (2.7):
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simplifying preceding expression in view of expression 
(2.13) gives

Inserting preceding expression in relation (2.1), it becomes

This yields expression of raising operator (2.7).

Differential equations

In this section, we derive the differential, integro-differential 
and partial differential equations for the 2-variable GH-FEP, 
G

(j)
m (x, y;�) , via factorization method.

Theorem 3.1 The 2-variable GH-FEP, G(j)
m (x, y;�) , satisfy 

the following differential equation:

Proof Using the factorization relation given by

and inserting the expressions (2.4) and (2.6) of the shift 
operators in the left hand side yields assertion (3.1).   ◻

Theorem 3.2 The 2-variable GH-FEP, G(j)
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the following integro-differential equations:
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Proof Since

and the shift operators (2.5) and (2.7), one can easily see 
Eq. (3.3).

Combining (2.4) and (2.7) of the shift operators with the 
factorization relation

yields our assertion (3.4).   ◻

Theorem 3.3 The 2-variable GH-FEP, G(j)
m (x, y;�) , satisfy 

the following partial differential equations

and

respectively.

Proof Differentiating m(j − 1) times with respect to x of 
integro-differential Eqs. (3.3) and (3.4), partial differential 
Eqs. (3.7) and (3.8) are obtained. ◻

Conclusion

The problems arising in different areas of science and engi-
neering are usually expressed in terms of differential equa-
tions, which in most of the cases have special functions 
as their solutions. The differential and integral equations 
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satisfied by these hybrid type special polynomials may be 
used to solve new emerging problems in different branches 
of science. To study the combination of operational repre-
sentations with the factorization method and their applica-
tions to the theory of differential equations for other hybrid 
type special polynomials and for their relatives will be taken 
in further investigation.
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