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1. INTRODUCTION AND STATEMENT OF THE PROBLEM

Let E be a complex Banach space, and let A be a linear closed operator inE whose domain D(A) ⊂ E
is not necessarily dense in E. We will study boundary-value problems on a finite interval 0 < t < 1,
because the general domain 0 < t < T can be reduced to the one above by replacing the variable t
by t/T . Due to the singularity of the equation at the point t = 0, the boundary conditions for the
Euler–Poisson–Darboux equation

u′′(t) +
k

t
u′(t) = Au(t), 0 < t < 1, (1.1)

are posed depending on the parameter k ∈ R; these conditions will be given below. The boundary
conditions at t = 1 will be the same, namely,

αu(1) + βu′(1) = u1, u1 ∈ E. (1.2)

where α, β ∈ R, α2 + β2 > 0, for all cases of the variation of the parameter k considered in what follows.

Boundary-value problems for Eq. (1.1) are generally ill-posed, but the need to solve ill-posed
problems is now generally accepted (see the introduction to [1], as well as [2], [3] and their extensive
bibliography). In the second chapter of the monograph [1], the degree of ill-posedness of general
boundary-value problems for a first-order differential operator equation and for an abstract nonsingular
second-order equation was investigated (case k = 0 in Eq. (1.1)).

We will present statements of various boundary-value problems for Eq. (1.1) depending on the
parameter k ∈ R and establish the corresponding criteria for the uniqueness of their solutions. It will
be shown that the uniqueness of solutions depends only on the location on the complex plane C of the
eigenvalues of the operatorA and is related to the distribution of zeros of certain analytic functions. Since
some very general conditions are imposed on the operator A, we naturally do not consider the solvability
of boundary-value problems in this paper. Let us only point out that results on the solvability of
boundary-value problems in the half-space for the Euler–Poisson–Darboux partial differential equation
were given in [4], and boundary-value problems on the semiaxis for abstract singular equations were
studied in [5] and [6].
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An important role in establishing the uniqueness criterion will be played by the eigenvalue problem
for the ordinary differential equation

v′′(t) +
k

t
v′(t) = λv(t), 0 < t < 1.

The structure of the general solution of this differential equation for all values of the parameter k ∈ R

was specified in [7], and we will recall the results needed for our purposes in what follows.

2. THE CASE k < 1. THE DIRICHLET CONDITION FOR t = 0

Consider the problem of determining the function

u(t) ∈ C([0, 1], E) ∩ C2((0, 1], E) ∩ C((0, 1),D(A)),

satisfying the Euler–Poisson–Darboux equation (1.1), condition (1.2), and the Dirichlet boundary
condition

u(0) = u0, u0 ∈ E. (2.1)

The investigation of the uniqueness of the solution of problem (1.1), (1.2), (2.1) reduces to the
question of the absence of nontrivial solutions u(t) to Eq. (1.1) satisfying the zero conditions

u(0) = 0, (2.2)

αu(1) + βu′(1) = 0, (2.3)

because this problem always has the zero solution u(t) ≡ 0.
We will search for nontrivial solutions u(t) of the homogeneous problem (1.1), (2.2), (2.3) by the

method of separating variables in the form u(t) = v(t)h, where v(t) ∈ C[0, 1] ∩ C2(0, 1] is a nonzero
scalar complex-valued function and h ∈ D(A), h �= 0.

Substituting u(t) = v(t)h into problem (1.1), (2.2), (2.3), we obtain the equation

v′′(t)h+
k

t
v′(t)h = v(t)Ah (2.4)

and the conditions
v(0) = 0, (2.5)

αv(1) + βv′(1) = 0. (2.6)

It follows from Eq. (2.4) that

Ah =
v′′(t) + k/t v′(t)

v(t)
h; (2.7)

this equality must hold on the set {t ∈ (0, 1) : v(t) �= 0}.
Obviously, equality (2.7) can only be valid if

Ah = λh (2.8)

with some constant λ ∈ C.
Thus, by virtue of (2.8), the element h ∈ D(A), h �= 0, must be an eigenvector of the operator A with

eigenvalue λ ∈ C, and Eq. (2.4) will become

v′′(t) +
k

t
v′(t) = λv(t). (2.9)

It was established in [7] that the general solution of the ordinary differential Eq. (2.9) is

v(t) = c1Yk(t;λ) + c2t
1−kY2−k(t;λ), c1, c2 ∈ R, (2.10)

where Yk(t;A), Yk(0;A) = I, is the solving operator of the Cauchy problem for Eq. (1.1) constructed
in [7] or the Bessel operator function [8]. Concrete representations for Yk(t;λ) and Y2−k(t;λ) will be
indicated in the proof.
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Therefore, a solution of Eq. (2.9) satisfying the initial condition (2.5) has the form

v(t) = t1−kY2−k(t;λ), (2.11)

where, for k < 1,

Y2−k(t;λ) = Γ

(
3

2
− k

2

)(
t
√
λ

2

)k/2−1/2

I1/2−k/2(t
√
λ ), (2.12)

Γ( · ) is the Euler gamma function and Iν( · ) is the modified Bessel function. The scalar function
Y2−k(t;λ) is also called the normalized Bessel function and denoted by j1/2−k/2(t

√
λ ).

To find suitable eigenvalues λ ∈ C, it remains to use the boundary condition (2.6); substituting into
the function (2.11), we obtain the transcendental equation

(α+ β(1− k))Y2−k(1;λ) + βY ′
2−k(1;λ) = 0. (2.13)

Denoting
√
λ = iμ and taking into account representation (2.12), we write Eq. (2.13) in terms of the

Bessel function Jν( · ) of the first kind as

(α+ β(1− k)/2)J1/2−k/2(μ) + βμJ ′
1/2−k/2(μ)

μ1/2−k/2
= 0. (2.14)

It is known (see [9, Sec. 18.3]) that Eq. (2.14) has an infinite set of positive roots μm, m ∈ N,
numbered in increasing order. Substituting λm = −μ2

m into (2.11), we obtain the functions

vm(t) = t1−k(Y2−k(t;λm), m ∈ N, (2.15)

which are nontrivial solutions of problem (2.9), (2.5), (2.6); at the same time, equality (2.8) becomes the
following equation for finding hm �= 0:

Ahm = λmhm, m ∈ N.

Let us further assume that, for some m ∈ N, the number λm is an eigenvalue of the operator A with
eigenvector hm �= 0. Then we find a nontrivial solution to the homogeneous problem (1.1), (2.2), (2.3)
of the following form:

um(t) = t1−kY2−k(t;λm)hm. (2.16)

Let us now formulate a uniqueness criterion for the solution of the boundary-value problem (1.1),
(1.2), (2.1).

Theorem 1. Let k < 1, and let A be a linear closed operator in E. Suppose that the
boundary-value problem (1.1), (1.2), (2.1) has a solution u(t). For this solution to be unique,
it is necessary and sufficient that no zero λm, m ∈ N, of the function

Υα,β
k (λ) = (α+ β(1− k))Y2−k(1;λ) + βY ′

2−k(1;λ) (2.17)

be an eigenvalue of the operator A, i.e., λm /∈ σp(A).

Proof. As noted earlier, the study of the uniqueness of the solution of problem (1.1), (1.2), (2.1)
reduces to the question of the absence of nontrivial solutions u(t) to Eq. (1.1) satisfying the zero
conditions (2.2), (2.3).

Necessity. Suppose the contrary; let some zero λm, m ∈ N, from the countable set Λα,β
k of zeros of

the function Υα,β
k (λ) defined by Eq. (2.17), be an eigenvalue of the operator A with eigenvector hm �= 0,

i.e., Λα,β
k ∩ σp(A) �= φ. Then the function um(t) defined by (2.16) serves as a nontrivial solution to

the homogeneous boundary-value problem (1.1), (2.2), (2.3), which contradicts the uniqueness of the
solution of this problem, and hence necessity is proved.

We now prove sufficiency. Suppose that Λα,β
k ∩ σp(A) = φ, and let u(t) be a solution of the

homogeneous boundary-value problem (1.1), (2.2), (2.3). We will show that, in this case, u(t) ≡ 0.
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We introduce the function U(λ) of a variable λ ∈ C with values in the Banach space E:

U(λ) =

ˆ 1

0
tY2−k(t;λ)u(t) dt, (2.18)

where Y2−k(t;λ) is the scalar function defined by Eq. (2.12), is a solution of Eq. (2.9) with parameter
2− k instead of k, and satisfies the conditions Y2−k(0;λ) = I and Y ′

2−k(0;λ) = 0.

Since the operator A is closed, taking into account equality (1.1), we calculate AUδ(λ), where

Uδ(λ) =

ˆ 1

δ
tY2−k(t;λ)u(t) dt, δ > 0.

Twice integrating by parts, we obtain

AUδ(λ) =

ˆ 1

δ
tY2−k(t;λ)Au(t) dt =

ˆ 1

δ
tY2−k(t;λ)

(
u′′(t) +

k

t
u′(t)

)
dt

= tY2−k(t;λ)u
′(t)|1δ +

ˆ 1

δ
((k − 1)Y2−k(t;λ) − tY ′

2−k(t;λ))u
′(t) dt

= tY2−k(t;λ)u
′(t)|1δ + ((k − 1)Y2−k(t;λ)− tY ′

2−k(t;λ))u(t)|1δ

+

ˆ 1

δ
t

(
Y ′′
2−k(t;λ) +

2− k

t
Y ′
2−k(t;λ)

)
u(t) dt.

Letting δ → 0, we obtain

AU(λ) = Y2−k(1;λ)u
′(1) +

(
(k − 1)Y2−k(1;λ) − Y ′

2−k(1;λ)
)
u(1) + λU(λ). (2.19)

Let, for example, β �= 0 in the boundary condition (2.3). (The case α �= 0 is considered in a similar
way.) Then equality (2.19) will take the form

(λI −A)U(λ) =
1

β

(
(α+ β(1− k))Y2−k(1;λ) + βY ′

2−k(1;λ)
)
u(1). (2.20)

Thus, for all numbers λm ∈ Λα,β
k from the countable set of zeros of the function Υα,β

k (λ) defined by
equality (2.17), Eq. (2.20) implies the relation

AU(λm) = λmU(λm).

By assumption, none of these numbers λm is an eigenvalue of the operator A. But, in that case, all
the values of U(λm) must be zero:

U(λm) = 0, m ∈ N. (2.21)

Let μm, m ∈ N, be the positive roots of Eq. (2.14) numbered in increasing order, and let (iμm)2 = λm.
Then equalities (2.21) take the form

Um =

ˆ 1

0
tk/2+1/2J1/2−k/2(tμm)u(t) dt = 0, m ∈ N. (2.22)

Applying a linear continuous functional f ∈ E∗ to the vector coefficients Um defined by equal-
ity (2.22), we obtain the scalar function ϕ(t) = f(tk/2−1/2u(t)) satisfying the conditions

f(Um) =

ˆ 1

0
tJ1/2−k/2(tμm)ϕ(t) dt = 0, m ∈ N. (2.23)

The further arguments depend on the coefficients α, β, and k.

(a) If the coefficients α, β, and k in the boundary condition (2.3) satisfy
α

β
+ 1− k > 0, (2.24)
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then, up to a multiplier, the scalar coefficients f(Um) are the coefficients of the Dini series (see [9, Sec.
18.3])

∞∑
m=1

bmJ1/2−k/2(tμm) (2.25)

of the expansion of the function ϕ(t) in the functions J1/2−k/2(tμm).

The function ϕ(t) is completely defined by the coefficients of its Dini series regardless of whether this
series converges; therefore, ϕ(t) ≡ 0, 0 ≤ t ≤ 1. Since the choice of the functional f ∈ E∗ was arbitrary,
we have u(t) ≡ 0, 0 ≤ t ≤ 1.

(b) If
α

β
+ 1− k = 0, (2.26)

then, to the Dini expansion (2.25), we must additionally add (see [9, Sec. 18.3]) the summand b0t
1/2−k/2,

where b0 = 2f(U0) for U0 determined by (2.22) with μ0 = 0.
In this case, given equality (2.26) and the boundary condition (2.3), we obtain

ϕ(t) = b0t
1/2−k/2, αϕ(1) + βϕ′(1) = b0

β(k − 1)

2
= 0.

Since β �= 0, k < 1, we have b0 = 0 and ϕ(t) ≡ 0, u(t) ≡ 0, 0 ≤ t ≤ 1.

(c) Let
α

β
+ 1− k < 0. (2.27)

In this case, to the Dini expansion (2.25), we must additionally add (see [9, Sec. 18.3]) the summand
b0I1/2−k/2(tμ0), where the ±iμ0 (μ0 > 0) are two purely imaginary roots of Eq. (2.14), and then, given
the boundary condition (2.3), we can write

ϕ(t) = b0I1/2−k/2(tμ0),

αϕ(1) + βϕ′(1) = b0(αI1/2−k/2(μ0) + βμ0I
′
1/2−k/2(μ0)) = b0

β(k − 1)

2
I1/2−k/2(μ0) = 0.

The modified Bessel function I1/2−k/2(μ0) does not vanish at real values of μ0, so again b0 = 0 and
ϕ(t) ≡ 0, u(t) ≡ 0, 0 ≤ t ≤ 1.

Thus, it is established that the solution u(t) of the homogeneous problem (1.1), (2.2), (2.3) and,
hence, of problem (1.1)–(2.1) can only be zero.

(d) If, finally, β = 0, then the proof is similar to the arguments in item (a) in which, instead of the Dini
series (2.25), where the μm are the roots of Eq. (2.14), we use the Fourier–Bessel series constructed
from the zeros of the function J1/2−k/2(μ).

For k < 1, it is convenient to determine the zeros of the function Υα,β
k (λ) from the equality

λm = −μ2
m, where μm are the roots of Eq. (2.14). For example, if k = 0, then Eq. (2.14) takes the

form

α
sinμ

μ
+ β cosμ = 0.

In some cases, the roots of this equation can be explicitly calculated; in particular, for α = 0, we have
μm = π/2 + πm, m ∈ N, and hence Λ0,β

0 = {−(π/2 + πm)2, m ∈ N}, and if β = 0, then μm = πm,
m ∈ N, and Λα,0

0 = {−(πm)2, m ∈ N}.
Thus, in order to solve the question of the uniqueness of the solution of the boundary-value problem

under consideration, one must determine the eigenvalues of the operator A and find out whether they
belong to the set Λα,β

k of zeros of the function Υα,β
k (λ). Numerous examples of finding eigenvalues for
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differential operators A acting on spatial variables can be found, for example, in [10, Chap. 2]; in each
concrete case, they must be compared with the zeros of the function Υα,β

k (λ).
We will consider an example of a singular operator A acting on the spatial variable x. For the

differential Bessel operator A = Bq,x, where

Bq,x =
d2

dx2
+

q

x

d

dx
, q > 0,

given on the set of functions

D(A) = H2(0, 1) ∩H1
0 (0, 1) ⊂ E = L2(0, 1),

the problem of the uniqueness of the solution of the boundary-value problems under consideration for
the hyperbolic equation reduces to the study of the location of the zeros of the function Iq/2−1/2(

√
z ),

which are the eigenvalues of the operator Bq,x and to that of the zeros of the function Υα,β
k (λ) defined by

equality (2.17).
In particular, for β = 0, k < 1, it is necessary to investigate the location of the zeros of the functions

Iq/2−1/2(
√
z ) and I1/2−k/2(

√
λ ). Depending on the parameters k and q, these Bessel functions may

or may not have common zeros located on (−∞, 0), and hence the uniqueness of the solution of
boundary-value problems may or may not take place. For more information about the location of the
zeros of Bessel functions, see, for example, item 2 in [11]. Also note that the ranges of variation of the
variables 0 < t < T and 0 < x < l also play an important role in the study of uniqueness, because the
position of the zeros of each one of the Bessel functions depends on them. Similar facts for the solution
of the Dirichlet problem for hyperbolic partial differential equations were established earlier in [12].

In the cases A = −Bq,x and A = iBq,x, where i is the imaginary unit, the eigenvalues of the operator
A lie either on (0,+∞) or on the imaginary axis and do not fall in (−∞, 0), and, therefore, the
corresponding boundary-value problems have a unique solution.

3. THE CASE k ≥ 0. THE NEUMANN WEIGHT CONDITION FOR t = 0
It is seen from the representation (2.10) for the general solution of Eq. (2.9) that Eq. (1.1) can also

have unbounded solutions at t = 0 if, instead of the Dirichlet condition, we set the Neumann weight
condition. The method for proving uniqueness proposed in Sec. 2 makes use of Dini and Fourier–Bessel
series expansions, so, setting the boundary condition at t = 0 must be such that the general solution of
the ordinary differential Eq. (2.9) has only one of the constants c1 and c2 equal to zero. The first such
option was implemented in Sec. 2 (c1 = 0, c2 = 1). Another option is a Neumann weight boundary
condition of the form

lim
t→0+

tku′(t) = u2 ∈ E. (3.1)

In this case, the solution of Eq. (2.9) satisfying the homogeneous initial condition (3.1) has the form
(c1 = 1, c2 = 0)

v(t) = Yk(t;λ),

where, for k ≥ 0,

Yk(t;λ) = Γ

(
k

2
+

1

2

)(
t
√
λ

2

)1/2−k/2

Ik/2−1/2(t
√
λ ). (3.2)

The further scheme for establishing a uniqueness criterion is similar to that of Sec. 2, but, instead of
relations (2.13), (2.14), (2.16), and (2.18), the following equalities must be used, respectively:

αYk(1;λ) + βY ′
k(1;λ) = 0,

(α+ β(1− k)/2)Jk/2−1/2(μ) + βμJ ′
k/2−1/2(μ)

μk/2−1/2
= 0,

um(t) = Yk(t;λm)hm, U(λ) =

ˆ 1

0
tkYk(t;λ)u(t) dt.

(3.3)

As a result, we arrive at the following uniqueness criterion.
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Theorem 2. Let k ≥ 0, and let A be a linear closed operator in E. Suppose that the
boundary-value problem (1.1), (1.2), (3.1) has a solution u(t). For this solution to be unique,
it is necessary and sufficient that no zero λm, m ∈ N, of the function

Υα,β
k (λ) = αYk(1;λ) + βY ′

k(1;λ) (3.4)

be an eigenvalue of the operator A.

The zeros of the function Υα,β
k (λ) defined by equality (3.4) are conveniently determined from the

equality λm = −μ2
m, where the μm are the roots of Eq. (3.3).

If k = 0, then Eq. (3.3) takes the form

α cosμ− βμ sinμ = 0.

In particular, for β = 0, we have μm = π/2 + πm and λm = −μ2
m for m ∈ N, and if α = 0, then

μ0 = λ0 = 0, μm = πm, and λm = −(πm)2 for m ∈ N.
Note that, in determining the unique solvability of boundary-value problems, the presence of the zero

λ0 = 0 of the function Υα,β
k (λ) necessarily leads to the existence of the inverse operator A−1.

If k = 2, then Eq. (3.3) takes the form

(α− β) sinμ+ βμ cosμ

μ
= 0.

In particular, for β = 0, we have μm = πm and λm = −(πm)2, m ∈ N, and if α = β �= 0, then
μm = π/2 + πm and λm = −μ2

m, m ∈ N.

4. THE CASE 0 ≤ k < 1

For the specified values of the parameter k, both Theorem 1 with the Dirichlet condition for t = 0 and
Theorem 2 with the Neumann weight condition for t = 0 are valid.

5. THE CASE −1 < k < 0. THE NEUMANN WEIGHT CONDITION FOR t = 0.
THE NEUMANN OR DIRICHLET CONDITION FOR t = 1

Along with the Dirichlet condition for t = 0, which was the subject of study in Sec. 2, we will
also consider the Neumann weight condition. Unlike in Sec. 3, for the negative values of the index
−1 < k < 0, we must use (see [7]) the following representation of the function v(t) = Yk(t;λ) via the
Bessel functions with positive index instead of (3.2):

v(t) = Yk(t;λ) = Yk+2(t;λ) +
t

k + 1
Y ′
k+2(t;λ)

=
Γ(k/2 + 3/2)

(t
√
λ )k/2+1/2

(
1

2
Ik/2+1/2(t

√
λ ) +

t
√
λ

k + 1
I ′k/2+1/2(t

√
λ )

)
. (5.1)

To find suitable eigenvalues λ ∈ C, we use the boundary condition (2.6); substituting the func-
tion (5.1) into this condition, we obtain the transcendental equation(

α+
βλ

k + 1

)
Yk+2(1;λ) +

α

k + 1
Y ′
k+2(1;λ) = 0,

or

(
√
λ )−k/2−1/2

((
α

2
+

βλ

k + 1

)
Ik/2+1/2(

√
λ ) +

α
√
λ

k + 1
I ′k/2+1/2(

√
λ )

)
= 0. (5.2)

Due to the presence of the multiplier λ in front of the function Ik/2+1/2(
√
λ ), the roots of Eq. (5.2)

are, in general, not related to the Fourier–Bessel and Dini series expansions, except for the cases α = 0
and β = 0. It is these cases that we will be considered further.
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5.1. The Neumann Condition for t = 1
If α = 0, then the boundary condition (1.2) becomes a Neumann condition for t = 1:

u′(1) = u1, u1 ∈ E, (5.3)

and Eq. (5.2) takes the form

λ3/4−k/4Ik/2+1/2(
√
λ ) = 0,

or, for λ = −μ2, the form

μ3/2−k/2Jk/2+1/2(μ) = 0. (5.4)

We denote the roots of Eq. (5.4) by μ0 = 0 and μm > 0, m ∈ N, and set λm = −μ2
m.

The further scheme used to establish the uniqueness criterion is similar to the proof of Theorem 1, (d)
or Theorem 1, (a). As a result, we obtain the following uniqueness criterion.

Theorem 3. Let −1 < k < 0, and let A be a linear closed operator in E. Suppose that the
boundary-value problem (1.1), (3.1), (5.3) has a solution u(t). For this solution to be unique, it
is necessary and sufficient that no zero λm, m = 0, 1, 2 . . . , of the function

Υ0,β
k (λ) = λYk+2(1;λ)

be an eigenvalue of the operator A.

5.2. The Dirichlet Condition for t = 1
If β = 0, then the boundary condition (1.2) becomes a Dirichlet condition for t = 1:

u(1) = u1, u1 ∈ E, (5.5)

and Eq. (5.2) takes the form

(k + 1)Ik/2+1/2(
√
λ ) + 2

√
λ I ′k/2+1/2(

√
λ )

λk/4+1/4
= 0,

or, for λ = −μ2, the form

(k + 1)Jk/2+1/2(μ) + 2μJ ′
k/2+1/2(μ)

μk/2+1/2
= 0. (5.6)

We denote the positive roots of Eq. (5.6) by μm, m ∈ N, and set λm = −μ2
m. Just as in the proof of

Theorem 1, (a), we obtain the following criterion.

Theorem 4. Let −1 < k < 0, and let A be a linear closed operator in E. Suppose that the
boundary-value problem (1.1), (3.1), (5.5) has a solution u(t). For this solution to be unique, it
is necessary and sufficient that no zero λm, m = 0, 1, 2 . . . , of the function

Υα,0
k (λ) = Yk+2(1;λ) +

1

k + 1
Y ′
k+2(1;λ)

be an eigenvalue of the operator A.

6. SINGULAR SOBOLEV-TYPE EQUATION
The results of the previous sections concerning the uniqueness criterion can be generalized to the

case of a singular Sobolev-type equation

B

(
u′′(t) +

k

t
u′(t)

)
= Au(t), 0 < t < 1, (6.1)

where, as well as A, B is a linear closed operator on E whose domain D(B) ⊂ E is not necessarily dense
in E.

The scheme of proof of these results is similar. The distinctive feature is the replacement of
equality (2.8) Ah = λh, which determines the eigenvalues of the operator A, by the operator equation
Ah = λBh if it has nontrivial solutions, as well as the replacement of the spectrum σp(A) by the
spectrum σp(B,A) of the the operator A with respect to B. In addition, the definition of the solution must
naturally additionally include the requirement that the operators belong to the space C2((0, 1),D(B)).
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