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DEFORMATIONS OF SYMPLECTIC FOLIATIONS

STEPHANE GEUDENS, ALFONSO G. TORTORELLA, AND MARCO ZAMBON

Abstract. We develop the deformation theory of symplectic foliations, i.e. regular foliations equipped with a
leafwise symplectic form. The main result of this paper is that each symplectic foliation has an attached !∞-
algebra controlling its deformation problem. Indeed, viewing symplectic foliations as regular Poisson structures,
we establish a one-to-one correspondence between the small deformations of a given symplectic foliation and
the Maurer-Cartan elements of the associated !∞-algebra. Using this, we show that infinitesimal deformations of
symplectic foliations can be obstructed. Further, we relate symplectic foliations with foliations on one side and
with (arbitrary) Poisson structures on the other, showing that obstructed infinitesimal deformations of the former
may give rise to unobstructed deformations of the latter.
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Introduction

This paper addresses the deformation theory of symplectic foliations, i.e. foliations equippedwith a leafwise
two-form that is closed and non-degenerate. Equivalently, a symplectic foliation can be viewed as a regular
Poisson structure; this is a constant rank bivector fieldΠwhose Schouten-Nijenhuis bracket [Π,Π]SN vanishes.
These objects have received and still receive a lot of attention. An important question concerning them is

that of existence, and a key result in this respect is the h-principle for symplectic foliations due to Fernandes-
Frejlich [6]. It guarantees their existence on a given manifold under certain assumptions; more specifically, it
shows that a regular bivector field Π on an open manifold" is homotopic, through regular bivector fields, to a
regular Poisson structure iff the distribution imΠ

♯ is homotopic to an involutive distribution. Other interesting
results about symplectic foliations concern those of codimension-one (e.g. the existence problem on (5 [22])
and normal form statements [4], to name a few.
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A local parametrization of symplectic foliations. Taking the Poisson geometry point of view, our aim
is to describe small deformations of a given regular Poisson structure Π. Following the common strategy
in deformation theory, this is done by constructing a suitable !∞ [1]-algebra whose Maurer-Cartan elements
parametrize small deformations of Π. (Recall that !∞ [1]-algebras are higher generalizations of Lie algebras,
up to a degree shift [20].) Clearly, this requires us to take care of the regularity condition and the Poisson
integrability condition simultaneously, hence the main difficulty lies in finding a local parametrization for the
space of bivector fields which behaves well with respect to both conditions.

We now describe such a parametrization. Recall first the following fact from linear algebra, which underlies
the correspondence between Poisson structures and symplectic foliations: given a vector space + , the data of
a bivector c ∈ ∧2+ is equivalent to a pair (,,l), where, ⊂ + is a subspace andl ∈ ∧2, ∗ a non-degenerate
skew-symmetric bilinear form on it. For any sufficiently small W ∈ ∧2, ∗, one defines the gauge-transformed
bivector cW to be the bivector corresponding to the pair (,,l + W). Now let Π be a regular Poisson structure
of rank 2: . Pick a complement� to the characteristic distribution)F of Π and let W ∈ Ω

2(") be the two-form
defined by extending the leafwise symplectic form l ∈ Ω

2(F ) by zero on � . We define the Dirac exponential
map

exp� : (neighborhood of zero section in ∧2 )") → ∧2)", exp� (/ ) = Π + /W .

The key point is that this parametrization is compatible both with the constant rank condition and the inte-
grability condition of Poisson structures (see Thm. 2.6 and Prop. 3.9):

(1) It linearizes the constant rank condition. Namely, for small enough / ∈ X2("), the bivector field
exp� (/ ) has constant rank 2: iff / belongs to a distinguished linear subspace X2

F
(") ⊂ X2 (").

(2) It turns the integrability condition of Poisson structures into a certain cubic equation. Namely, for any
small enough bivector field / ∈ X2("), one has that exp� (/ ) self-commutes exactly when

l
�
1 (/ ) +

1

2
l
�
2 (/,/ ) +

1

6
l
�
3 (/,/,/ ) = 0.

Here l�1 is the Poisson differential [Π,−](# , while l�2 and l�3 depend also on W (see Prop. 3.6).

Algebraically, the above equation is the Maurer-Cartan equation of an !∞ [1]-algebra (X• (") [2], {l�
:
}), as we

explain now.

The above parametrization of regular Poisson structures by means of exp� arises naturally when, instead of
working in the Poisson category, one considers the larger category of Dirac structures. A Dirac structure on a
manifold" is a maximally isotropic, involutive subbundle of the Courant algebroid)" ⊕) ∗" , as we recall in
Appendix A. In particular, the graph of the rank 2: Poisson structure Π is a Dirac structure GrΠ ⊂ )" ⊕) ∗" ,
and deforming GrΠ as a Dirac structure is tantamount to deforming Π as a Poisson structure. Hence we can
rely on results about the deformation theory of Dirac structures, which we recall in Appendix B.
Given a Dirac structure � ⊂ )" ⊕ ) ∗" , a choice of complementary almost Dirac structure � endows the

graded vector space Ω
•(�) [2] with an !∞ [1]-algebra structure whose Maurer-Cartan elements parametrize

the Dirac structures transverse to�. Moreover, different choices for� produce isomorphic !∞ [1]-algebras [12].
With this in mind, it seems natural to deform the Dirac structure GrΠ making use of the complement)" , but
this approach is not well-suited to single out regular deformations of Π. Indeed, it parametrizes the Poisson
structures on" by means of Maurer-Cartan elements of the familiar Koszul dgLa, via the correspondence

{
/ ∈ X

2(") : 3Π/ +
1

2
[/,/ ]SN = 0

}
−→ {% ∈ X

2(") : [%, %]SN = 0} : / ↦→ Π + / .

The inconvenience of this approach is that the space of bivector fields / for which Π + / is of constant
rank 2: does not have a vector space structure. Instead, we proceed as follows: if � is a complement to the
characteristic distribution )F of Π, then the almost Dirac structure � ⊕ �0 is complementary to GrΠ. Upon
the canonical identification GrΠ � ) ∗" , this yields the !∞ [1]-algebra (X•(") [2], {l�

:
}) mentioned above.
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At last, we combine step (1) and (2) above. We notice that the space of good multivector fields

X
•
F (") = {, ∈ X

•(") : ]U ]V, = 0 for all U, V ∈ Γ() ◦F )}

is closed under the multibrackets l�
:
, so X•

F
(") [2] ⊂ (X•(") [2], {l�

:
}) is an !∞ [1]-subalgebra. Its Maurer-

Cartan elements parametrize bivector fields near Π that are both regular and Poisson (see Thm. 3.18).

Main Theorem. There is a bijection

{
small Maurer-Cartan elements of (X•

F
(") [2], {l�: })

}
→

{
Π̃ ∈ RegPoiss2: (") : im Π̃

♯
⋔ �

}
:

/ ↦→ exp� (/ ).

Relation to deformations of Poisson structures and of foliations.When dealing with regular Poisson
structures, one has two obvious forgetful maps

Regular Poisson structures

))❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙

tt✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐✐

Poisson structures Foliations

(0.1)

We ask whether these maps can be lifted to morphisms between the algebraic structures governing the respec-
tive deformations. More precisely, we ask whether there are !∞ [1]-algebra morphisms whose induced maps
of Maurer-Cartan elements are exactly those appearing in the above diagram. For both maps, the answer is
positive, as we now explain.

i) For the arrow on the left in diagram (0.1), this follows from a result in [12]. Briefly, as seen in the
Main Theorem, the deformation problem of a regular Poisson structure Π is governed by the !∞ [1]-
subalgebra (X•

F
(") [2], {l�

:
}) of (X•(") [2], {l�

:
}), and the latter is essentially obtained deforming the

Dirac structure GrΠ using � ⊕ �0 as a complement. On the other hand, deforming Π as a Poisson
structure using the Koszul dgLa amounts to choosing )" as a complement to GrΠ. By [12], the
!∞ [1]-algebras obtained choosing different complements to GrΠ are isomorphic; hence there is an
!∞ [1]-morphism relating (X•

F
(") [2], {l�

:
}) with the !∞ [1]-algebra obtained shifting degrees in the

Koszul dgLa.
ii) For the arrow on the right in diagram (0.1), we provide the answer ourselves. Denote by F the foliation

underlying the regular Poisson structure Π. Using deformation theory of Dirac structures, we first
reconstruct an !∞ [1]-algebra (Ω• (F ;#F )[1], {v: }) governing the deformations of F (see Prop. 4.2).
This recovers a result already obtained in [14], [16] and [32] by different means, and in [12] by similar
means. We then proceed by constructing a strict !∞ [1]-morphism

i : (X•
F
(") [2], {l�: }) −→ (Ω•(F ;#F )[1], {v: }) (0.2)

which corresponds with the right arrow in diagram (0.1) (see Prop. 4.5 and Prop. 4.7).

The morphism (0.2) fits in a short exact sequence of !∞ [1]-algebras and strict morphisms

{0} → (X•(F ) [2], dΠ) → (X•
F (") [2], {l�: })

i
→ (Ω•(F ;#F )[1], {v: }) → {0},

reflecting the fact that one obtains deformations of regular Poisson structures by deforming both the leafwise
symplectic form (see Lemma 3.22) and the underlying foliation.
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Geometric consequences: infinitesimal deformations. At last, we draw some geometric consequences.
Most results can be stated without making reference to the full algebraic formalism developed above (which
however is needed in the proofs). We address infinitesimal deformations of a regular Poisson structure Π; these
are the 2-cocycles of the complex (X•

F
("), 3Π). Recall that an infinitesimal deformation is called unobstructed

if it is tangent to a path of deformations, otherwise it is called obstructed. We show that the deformation
problem of a regular Poisson structure is obstructed in general. We do so applying the classical Kuranishi
criterion to a simple example (see Ex. 5.8).
Refining this, we also study obstructedness in relation to the diagram (0.1). We ask whether a regular Pois-

son structure Π can have an infinitesimal deformation / which is obstructed, but such that the corresponding
infinitesimal deformation as a Poisson structure is unobstructed, or the corresponding infinitesimal deforma-
tion of the foliation is unobstructed. In both cases the answer is positive. In other words, even though / can
not be prolonged to a path of regular Poisson structures, it may be prolonged to a path of Poisson structures,
and it may be prolonged to a path of regular bivector fields spanning an integrable distribution. In detail:

i) First, we investigate whether a regular Poisson structure Π can admit obstructed infinitesimal defor-
mations that are unobstructed when deforming Π just as a Poisson structure (without conditions on
the rank). We display some examples, showing that the answer is positive (see Ex. 6.5 and Ex. 6.6).
Our examples involve regular Poisson structures whose foliated symplectic forml has a lot of leafwise
variation; this is due to the fact that the primary obstructions to extending an infinitesimal deforma-
tion of Π, either to a path of regular Poisson structures or just to a path of Poisson structures, are
equivalent when l admits a closed extension (see Cor. 6.3).

ii) Second, we relate obstructedness of infinitesimal deformations of Π with features of the underlying
foliation F . Using the morphism (0.2), an infinitesimal deformation of Π gives rise to an infinitesimal
deformation of F ; when the latter is obstructed, so is the former. There are however obstructed
infinitesimal deformations of Π that do not arise in this way (see Ex. 6.21). In fact, it is even possible
that Π has obstructed infinitesimal deformations, while the deformation problem of the foliation F is
completely unobstructed (see Ex. 6.23). We also give some conditions on the underlying foliation F

which do imply unobstructedness of infinitesimal deformations of Π, see Prop. 6.13 and Prop. 6.17.

We finish this introduction by mentioning that in a companion paper [10], we will present some results
which are not needed for this paper but which complete the theory presented here. Most notably, we will
show that the !∞ [1]-algebra (X•

F
(") [2], {l�

:
}) constructed here does not depend on auxiliary data (up to

!∞ [1]-isomorphism), and we will prove that its gauge equivalence relation corresponds with the geometric
notion of equivalence given by isotopies. We also discuss in more detail its relation with the Koszul dgLa.

Relation to the literature. Our approach to the deformations of regular Poisson structures, by means of
Dirac geometry, is analogous to the one adopted in [26, 27] in the setting of presymplectic forms, i.e. closed
2-forms with kernel of constant rank. We remark that in that setting, it was not investigated whether the ob-
structedness of infinitesimal deformations is exclusively due to the obstructedness of the underlying foliation,
whereas here we address this question.
There is a relation between our approach to deformations and previous results about horizontally non-

degenerate Poisson and Dirac structures, which can be used to recover a semi-local version of our main result.
We explain this in §3.1.3.

Structure of the paper. In Section 1, we set up the stage by introducing symplectic foliations and regular
Poisson structures. We describe the infinitesimal deformations of regular Poisson structures.
In Section 2, we deal with the constant rank condition. We parametrize regular bivector fields close to a

given regular Poisson structure by means of the Dirac exponential map.
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In Section 3, we also take the Poisson integrability condition into account. This section contains our main
result. We construct the !∞ [1]-algebra (X•

F
(") [2], {l�

:
}) introduced above, and we show that its Maurer-

Cartan elements correspond with small deformations of Π under the Dirac exponential map.
In Section 4, we explore the relation between deformations of the regular Poisson structure Π and those of

its underlying foliation F . We reconstruct the !∞ [1]-algebra governing the deformation problem of F , and
we relate it with (X•

F
(") [2], {l�

:
}) by means of a strict !∞ [1]-morphism.

In Section 5, we show that infinitesimal deformations of a regular Poisson structure can be obstructed.
In Section 6 we also relate obstructedness in the realm of regular Poisson structures with obstructedness

in the realm of Poisson structures, and we show how properties of the underlying foliation allow us to draw
conclusions about (un)obstructedness of infinitesimal deformations of the regular Poisson structure.
Appendices A and B are a recollection of Dirac structures and their deformations, while Appendix C is

devoted to a proof.

Acknowledgements. S.G. and M.Z. acknowledge partial support by the FWO and FNRS under EOS project
G0H4518N. S.G. would also like to thank the Max Planck Institute for Mathematics in Bonn for its hospitality
and financial support. M.Z. acknowledges partial support by the long term structural funding – Methusalem
grant of the Flemish Government, and the FWO research project G083118N (Belgium). A.T. has been supported
by the FWO postdoctoral fellowship 1204019N during the preparation of this paper. Further he is member of
the National Group for Algebraic and Geometric Structures, and their Applications (GNSAGA – INdAM) and
is currently partially supported by CMUP, which is financed by national funds through FCT – Fundação para
a Ciência e a Tecnologia, I.P., under the project with reference UIDB/00144/2020.

1. Symplectic Foliations

In this section, we set up the stage for the deformation problem of a symplectic foliation. We introduce the
objects under consideration, and we describe their infinitesimal deformations.

1.1. Basic definitions.

Definition 1.1. A symplectic foliation on a manifold" is a (regular) foliation F of" endowed with a leafwise
symplectic structure l , i.e. a non-degenerate 2-cocycle l in the leafwise de Rham complex (Ω•(F ), dF).

In the following, we will denote by SymplFol (") the space of all symplectic foliations on " and by

SymplFol 2: (") ⊂ SymplFol (") the subspace of those having rank 2: , so that

SymplFol (") = ⊔:SymplFol 2: (").

Actually, a symplectic foliation is the same thing as a regular Poisson structure; let us briefly recall this
well-known fact.

Definition 1.2. A Poisson structure Π ∈ X2(") on a manifold " is regular if the associated VB-morphism
Π
♯ : ) ∗" → )", [ ↦→ ][Π, has constant rank. In this case, we will refer to the rank of Π♯ as the rank of Π.

Above, “VB” stands for vector bundle. In the following, we will denote byRegPoiss (") the space of all regular
Poisson structures on" and by RegPoiss2: (") ⊂ RegPoiss (") the subspace of those having rank 2: , so that

RegPoiss (") = ⊔:RegPoiss2: (").

Let F be a foliation on a manifold" , and denote X•(F ) := Γ(∧•)F ). Notice that if Π is a regular Poisson
structure on " with )F = imΠ

♯ , then ) ◦F = kerΠ♯ and so Π ∈ X2 (F ). In other words, a regular Poisson
structure with characteristic foliation F is the same thing as a non-degenerateMaurer-Cartan (MC) element of
(X• (F ) [1], [−,−]SN), where [−,−]SN denotes the Schouten-Nijenhuis bracket. Further, the relation Π = −l−1

establishes a one-to-one correspondence between non-degenerateMC elementsΠ of (X• (F ) [1], [−,−]SN) and
non-degenerate 2-cocycles l in (Ω• (F ), dF). This proves the following.
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Proposition 1.3. For any manifold " , there is a canonical rank-preserving bijection

SymplFol •(") −→ RegPoiss•("), (F , l) ↦−→ −l−1.

1.2. The formal tangent space. We now identify the formal tangent space to RegPoiss2: (") at a point Π.
To this end, for any foliation F on" , we introduce a suitable space of multivector fields on" , which we call
good multivector fields w.r.t. F .

Definition 1.4. For any foliation F on a manifold" , the graded space of good multivector fields is defined by

X
•
F
(") = {, ∈ X

•(") : ]U ]V, = 0 for all U, V ∈ Γ() ◦F )}.

Here ) ◦F denotes the annihilator of)F .

Remark 1.5. Notice that X0
F
(") =�∞ (") and X1

F
(") = X("). Further, X•

F
(") =X• ("), if F has corank 1.

Using a choice of distribution � complementary to)F , we have X•
F
(") = Γ(∧•)F ) ⊕ Γ(∧•−1)F ⊗ �).

Lemma 1.6. For any foliation F on a manifold " , the graded space X•
F
(") is the graded X•(F )-submodule of

X• (") generated by�∞ (") ⊕ X(").

Further, if)F = imΠ
♯ for some Π ∈ RegPoiss ("), then Π is a good bivector field, i.e. Π ∈ X2

F
("), and X•

F
(")

is a subcomplex of (X• ("), dΠ), i.e.
dΠX

•
F (") ⊂ X

•+1
F ("). (1.1)

Above, 3Π := [Π,−](# denotes the Lichnerowicz differential on the space of multivector fields X•(").

Proof. Since the rest is clear, we only prove Equation (1.1). The hypothesis)F = imΠ
♯ implies thatΠ ∈ X2(F )

and dΠX•(F ) ⊂ X•+1 (F ). Since dΠ is a graded algebra derivation and�∞ (") ⊕ X(") generates X•
F
(") over

X• (F ), it remains to prove that 3ΠX(") ⊂ X2
F
("). For any - ∈ X(") and U, V ∈ Γ() 0F ), one gets

(3Π- ) (U, V) = −(L-Π) (U, V) = Π(L-U, V) + Π(U,L- V) − L- (Π(U, V)) = 0,

using that) 0F = kerΠ♯ . It follows that 3Π- ∈ X2
F
("), and this completes the proof. �

Lemma 1.7. Let Π be a rank 2: regular Poisson structure on " , with imΠ
♯ = )F . For any smooth path

(ΠC )C ∈(−n,n) in RegPoiss2: (") with Π0 = Π, one gets that ¤Π0 :=
d
dC

��
C=0

ΠC is a 2-cocycle in (X•
F
("), dΠ), i.e.:

¤Π0 ∈ X
2
F
(") and dΠ ¤Π0 = 0.

Proof. Differentiating the identity [ΠC ,ΠC ]SN = 0, at time C = 0, one gets that dΠ ¤Π0 = 0 as follows:

0 = d
dC

��
C=0

[ΠC ,ΠC ]SN = [ ¤Π0,Π]SN + [Π, ¤Π0]SN = 2[Π, ¤Π0]SN = 2dΠ ¤Π0 .

Next, we claim that if U ∈ Γ() ◦F ), then one can construct a smooth path UC in Ω
1(") with U0 = U and

]UCΠC = 0. To see this, note that the product manifold" × (−n, n) has a smooth distribution � defined by

� (?,C) = im(Π
♯
C )? ⊕ 〈mC 〉.

Denote by �0 its annihilator, which is a vector bundle over " × (−n, n). Since U ∈ Γ(�0 |"×{0}) and the
submanifold " × {0} ⊂ " × (−n, n) is properly embedded, one can extend U to a global section Ũ ∈ Γ(�0).
Setting UC := Ũ |"×{C } proves the claim.
Now we can show that ¤Π0 ∈ X2

F
("). Take U, V ∈ Γ() ◦F ) and let UC , VC be paths as constructed above.

Differentiating the identity ΠC (UC , VC ) = 0 one gets:

0 = d
dC |C=0 (ΠC (UC , VC )) = ¤Π0 (U, V) + Π( ¤U0, V) + Π(U, ¤V0) = ¤Π0 (U, V). �

Lemma 1.7 leads to the following description for the formal tangent space to RegPoiss2: (") at a point Π:

)Π
(
RegPoiss2: (")

)
= / 2 (

X
•
F
("), dΠ

)
:= ker

{
dΠ : X2

F
(") → X

3
F
(")

}
.



7

2. Parametrizing Nearby Regular Bivector Fields

In this section, using tools from Dirac geometry, we discuss the constant rank condition on bivector fields
close to a given regular Poisson structure. Since we postpone the discussion of integrability to § 3, everything
boils down to Dirac linear algebra. We freely use notions and notations from Dirac geometry, for which we
refer the reader to Appendix A. We first introduce in §2.1 a local parametrization of bivector fields close to the
given regular Poisson structure, and then in §2.2 we take into account the constant rank condition.
The first idea for parametrizing small deformations of a rank 2: regular Poisson structure Π, with charac-

teristic foliation F , would be to use those small bivector fields / such that Π + / is still a rank 2: regular
Poisson structure. From the perspective of deformation theory of Dirac structures (see Lemma B.4), this ap-
proach amounts to deforming the Dirac structure GrΠ (the graph of Π) using )" as a complementary Dirac
structure. However, the inconvience of this approach is that it does not translate the constant rank condition
into a linear condition.
In this section and in § 3 we use a better way of parametrizing small deformations of the regular Poisson

structure Π, still based on the deformation theory of Dirac structures, which works as follows. First, one fixes
a distribution � on " complementary to )F , and then one uses the complementary almost Dirac structure
� ⊕ ) ∗F to parametrize the small deformations of the Dirac structure GrΠ. As we will find out below (see
Lemma 2.3), the constant rank condition turns out to be a linear condition once we adopt this parametrization.
In the whole body of this paper, unless stated explicitly, we assume to following set-up:

• (F , l) is a rank 2: symplectic foliation on a manifold" .
• Π is the corresponding rank 2: regular Poisson structure.
• � is a distribution on" such that )" = � ⊕ )F .
• W is the unique 2-form on" defined by

W♭ |) F = l♭ and W♭ |� = 0.

We denote by pr) F : )" → )F and ?A� : )" → � the projections induced by the above splitting of )" .
Dually we have ) ∗" = ) ∗F ⊕ �∗, identifying ) ∗F � �0 and �∗

� )F 0.

2.1. Parametrizing Nearby Bivector Fields. Assume the set-up outlined in the box above. In this subsec-
tion, we will parametrize bivector fields close to Π by means of the so-called Dirac exponential map associated
with � and Π. We now introduce this map, which is constructed in two steps.

2.1.1. The gauge transformation by W . The two-form W ∈ Ω
2(") determines an orthogonal transformation of

the generalized tangent bundle (T", 〈〈−,−〉〉) given by

RW : T" → T", - + U ↦→ - + U + ]-W .

For any bivector field / ∈ X2 ("), if the almost Dirac structure RW Gr(/ ) is still transverse to )" , then it is
the graph of a (unique) bivector field, denoted by /W and called [29, §3] the gauge transform of / by W . In order
to describe when /W exists, let us introduce the open neighborhood IW of the zero section in ∧2)" given by

IW := ⊔G ∈" {/G ∈ ∧2)G" | id) ∗
G" +W♭G ◦ /

♯
G : ) ∗

G" → ) ∗
G" is invertible}. (2.1)

Then one can easily check that the open neighborhood Γ(IW ) of 0 in X2 (") w.r.t. the �0-topology consists
exactly of those bivector fields whose gauge transform by W is a well-defined bivector field.

Lemma 2.1. For any / ∈ X2("), the following conditions are equivalent:

(1) there is a (unique) bivector field /W such that RW Gr(/ ) = Gr(/W ),

(2) the almost Dirac structure Gr(/ ) is transverse to Gr(−W),
(3) the bivector field takes values in IW , i.e. / ∈ Γ(IW ).
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Proof. Clearly (1) and (2) are equivalent, since RW Gr(/ ) ⋔ )" iff Gr(/ ) ⋔ R−W)" , and R−W)" = Gr(−W).

We now check that (1) and (3) are equivalent. As RW Gr(/ ) = {/ ♯(U) + U + W♭(/ ♯(U)) : U ∈ ) ∗"}, we have

RW Gr(/ ) ∩)" =
{
/ ♯ (U) : U ∈ ker

(
id +W♭ ◦ / ♯)}.

It follows that RW Gr(/ ) ⋔ )" iff ker(id+W♭ ◦/ ♯) ⊂ ker(/ ♯), which in turn is equivalent with ker(id+W♭ ◦/ ♯)

being trivial. This shows that (1) and (3) are equivalent. �

The orthogonal transformation RW : T" → T" induces a bijection

{L almost Dirac | L ⋔ )" & L ⋔ Gr(−W)} {L almost Dirac | L ⋔ Gr(W) & L ⋔ )"}.
RW

(2.2)

By Lemma 2.1, identifying bivector fields with their graphs, this bijection comes from a fiber preserving dif-
feomorphism

�W : IW
∼

−→ I−W , / ↦−→ /W .

Clearly, we have that �W (0) = 0 and �−1W = �−W . The bivector field /W is explicitly characterized by

(/W )♯ = / ♯ ◦ (id) ∗" +W♭ ◦ / ♯)−1. (2.3)

2.1.2. The Dirac exponential map. The bivector field Π ∈ X(") also determines an orthogonal transformation
of (T", 〈〈−,−〉〉), given by

RΠ : T" −→ T", - + U ↦−→ - + ]UΠ + U.

Since imW♭ = ) ∗F and id)" +Π♯ ◦ W♭ = pr� , it is clear that

RΠ)" = )" and RΠ Gr(W) = � ⊕ ) ∗F . (2.4)

Consequently, the orthogonal transformation RΠ : T" → T" induces a bijection

{L almost Dirac | L ⋔ Gr(W) & L ⋔ )"} {L almost Dirac | L ⋔ � ⊕ ) ∗F & L ⋔ )"}
RΠ (2.5)

which, identifying bivector fields with their graphs, corresponds with a fiber preserving diffeomorphism

I−W −→ Π + I−W , /G ↦−→ ΠG + /G .

Composing the maps (2.2) and (2.5), we get that the orthogonal transformation RΠRW induces a bijection

{L almost Dirac | L ⋔ )" & L ⋔ Gr(−W)} {L almost Dirac | L ⋔ � ⊕ ) ∗F & L ⋔ )"}.
RΠRW

After identifying bivector fields with their graphs, we obtain the desired parametrization of bivector fields
close to Π.

Definition 2.2. The Dirac exponential map exp� associated with � and Π is defined by

exp� : IW −→ Π + I−W , / ↦−→ exp� (/ ) := Π + /W , (2.6)

Its action on sections / ∈ Γ(IW ) is given by

Gr(exp� (/ )) = RΠRW Gr(/ ), (2.7)

or equivalently,

(exp� (/ ))
♯
= Π

♯ + / ♯ ◦ (id) ∗" +W♭ ◦ / ♯)−1.
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2.2. Parametrizing Nearby Regular Bivector Fields. The following key lemma proves that parametrizing
bivector fields close to Π by means of the Dirac exponential map exp� turns the constant rank condition into
a linear condition. Namely, the parameter is required to belong to the subspace of good bivector fields (see
Definition 1.4).

Lemma 2.3. For any bivector field / ∈ X2 ("), the following two conditions are equivalent:

(1) / ∈ Γ(IW ) is a good bivector field,

(2) exp� (/ ) ∈ Γ(Π + I−W ) is a rank 2: regular bivector field.

Proof. First note that R−WR−Π)
∗" = )F ⊕�∗, as follows from imΠ

♯ = )F and id) ∗" +W♭ ◦Π♯ = pr�∗ . So for
each / ∈ Γ(IW ), one can easily compute

ker(exp� (/ ))
♯
= ) ∗" ∩ Gr(exp� (/ )) = RΠRW (()F ⊕ �∗) ∩ Gr(/ )).

This tells us that exp� (/ ) has constant rank 2: iff the fibers of the subbundle ()F ⊕�∗) ∩Gr(/ ) ⊂ T" have
constant rank equal to the one of kerΠ♯ = ) ◦F ≃ �∗. Since

()F ⊕ �∗) ∩ Gr(/ ) = {]U/ + U | U ∈ �∗ & ]U/ ∈ )F },

this happens iff / ♯(�∗) ⊂ )F , i.e. iff / is a good bivector field. �

When restricted to good bivector fields, the Dirac exponential map parametrizes regular bivector fields that
are close to Π, in the sense that they are still transverse to the complement� . This is shown in the next lemma.

Lemma 2.4. For any rank 2: regular bivector field, ∈ X2("), the following conditions are equivalent:

(1) the bivector field, takes values in Π + I−W , i.e., ∈ Γ(Π + I−W ),

(2) the almost Dirac structure Gr(, ) ⊂ T" is transverse to � ⊕ ) ∗F ,

(3) the distribution im, ♯ ⊂ )" is transverse to � .

Proof. First notice that conditions (1) and (2) are equivalent for an arbitrary bivector field, ∈ X2("). Indeed,
using equation (2.4) and Lemma 2.1, one gets that

Gr, ⋔ � ⊕ ) ∗F ⇐⇒ Gr, ⋔ RΠ Gr(W) ⇐⇒ Gr(, − Π) ⋔ Gr(W) ⇐⇒, − Π ∈ Γ(I−W ).

Let us continue by proving that conditions (2) and (3) are equivalent for any rank 2: regular bivector field
, ∈ X2("). Since )" = � ⊕ )F and, is regular with rank, = 2: = rank)F , one gets immediately that

� ⋔ im, ♯ ⇐⇒ ) ∗F ⋔ ker, ♯ .

Assume now that condition (2) holds. Then one can compute

) ∗F ∩ ker, ♯ ⊂ {, ♯U + U | U ∈ ) ∗F &, ♯U ∈ �} = (� ⊕ ) ∗F ) ∩ Gr, = 0,

so that ) ∗F ⋔ ker, ♯, and this shows that condition (3) holds. Conversely, assume that condition (3) holds.
Then one can easily see that

(� ⊕ ) ∗F ) ∩ Gr, = {, ♯U + U | U ∈ ) ∗F &, ♯U ∈ �} ⊂ ker, ♯ ∩) ∗F = 0,

and therefore condition (2) holds. This concludes the proof. �

Remark 2.5. For any, ∈ X2("), it is straightforward that, ∈ X2
F
(") iff −, ∈ X2

F
("). Furthermore,

, ∈ Γ(I−W ) ⇐⇒ −, ∈ Γ(IW ) and (−, )W = −(, −W ).

Notice that (−, )W ≠ −(, W ), reflecting the fact that, ↦→, W is not a linear operation.

Combining Lemmas 2.3 and 2.4, we obtain the desired parametrization of regular bivector fields close to Π.
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Theorem 2.6. The fiber preserving diffeomorphism given by the Dirac exponential map as in eq. (2.6)

exp� : IW
∼

−→ Π + I−W , / ↦−→ exp� (/ ) := Π + /W ,

induces the following bijection at the level of sections:

Γ(IW ) ∩ X
2
F
(")

∼
−→ {, ∈ X

2
reg-2k(") | im, ♯

⋔ �}, / ↦−→ exp� (/ ).

Here X2
reg-2k(") denotes the space of bivector fields on" that are regular of rank 2: .

Remark 2.7. We can view exp� (at the level of sections) as a submanifold chart for X2
reg-2k(") nearby Π, as

depicted in Figure 1 below. The name “exponential map” is justified by the fact that the derivative 30 exp� is
the identity on X2

F
("). Indeed, given a smooth curve /C in X2

F
(") with /0 = 0, we have

d

dC

����
C=0

exp� (/C ) =
d

dC

����
C=0

/C ,

as follows immediately applying Eq. (2.3) to each /C and taking the time derivative.

X2 (")

•
Π

X2
F
(")

X2
reg-2k (")

/

• Π + /W

Figure 1. A submanifold chart for X2
reg-2k (").

Remark 2.8 (An alternative characterization of the Dirac exponential map). Recall that any regular bivector
field can be equivalently described in terms of a pair, consisting of a distribution � (the image of its sharp-map)
together with a section of ∧2�∗ which is non-degenerate at every point. For instance, in the notation above,
the regular Poisson structure Π corresponds to the distibution )F and the leaf-wise symplectic form l .
We provide an alterative characterization of exp� (/ ), for / a good bivector field lying in Γ(IW ). Decompose

/ as
/ = /1 + /2 ∈ Γ(∧2)F ) ⊕ Γ()F ⊗ �).

Then the regular bivector field exp� (/ ) corresponds to the following pair:

• � := Gr(−/ ♯
2 ◦ l

♭ : )F → �),

• ?A ∗(l − (∧2l♭)/1),

where ?A : � → )F is the restriction of the projection )" → )F with kernel � . This can be checked as in
the proof of the later Proposition 4.7. Hence the deformation exp� (/ ) of Π can be described as follows: the
component /2 deforms the distribution )F , while /1 deforms of the foliated symplectic form l .
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3. The Local Deformation Space of a Symplectic Foliation

This section describes the local deformation space of a rank 2: symplectic foliation (F , l) via an associated
!∞ [1]-algebra (see Proposition 3.17). This !∞ [1]-algebra structure lives on the shifted spaceX•

F
(") [2] of good

multivector fields, and it controls the deformations of the rank 2: regular Poisson structure Π corresponding
with (F , l). Indeed, as stated in the main result of this section (see Theorem 3.18), small Maurer–Cartan (MC)
elements of the !∞ [1]-algebraX•

F
(") [2] parametrize a neighborhood ofΠ in RegPoiss2: ("). The construction

of this !∞ [1]-algebra structure relies on standard results from deformation theory of Dirac structures (see
Appendix B). We use freely the notation from Appendix A.
In §3.1 we display an !∞ [1]-algebra whose MC elements parametrize arbitrary Dirac structures nearby Π

(see Proposition 3.9). In §3.2 we restrict this !∞ [1]-algebra to obtain Theorem 3.18.

3.1. Deformation Theory of the Dirac Structure Gr(�).

3.1.1. The general Poisson case. Let Π be a Poisson structure on a manifold" . The generalized tangent bundle
T" = )" ⊕ ) ∗" admits the following direct sum decomposition

T" = )" ⊕ GrΠ,

where both )" and GrΠ = {]UΠ + U | U ∈ ) ∗"} ⊂ T" are Dirac structures. Applying Lemma B.1 and
Remark B.2 2) to the current situation, where � = T" is the standard Courant algebroid, � = GrΠ and
� = )" , one gets that the associated !∞-algebra

(
Ω

•(GrΠ) [1], {<)"
:

}
)
reduces to a dgLa. The latter admits

an equivalent description that is better-known, as we now show.

Lemma 3.1. Denote by RΠ the orthogonal transformation of (T", 〈〈−,−〉〉) determined by Π.

a) This map gives an isomorphism of dgLa’s

∧• (RΠ |) ∗" )∗ : (Ω• (GrΠ) [1],<)"
1 ,<)"

2 ) −→ (X• (") [1], dΠ, [−,−](# ). (3.1)

b) The associated map between MC elements recovers the fact that under the relation

% = Π + /,

Poisson structures % ∈ X2 (") correspond with MC elements / of the dgLa (X• (") [1], dΠ, [−,−](# ).

Proof. a) There exist unique Dorfman bracket [[−,−]]Π and anchor d on T" , such that the following is a
Courant algebroid isomorphism

RΠ : (T", 〈〈−,−〉〉, [[−,−]]Π, d) −→ (T", 〈〈−,−〉〉, [[−,−]],pr)" ) : - + U ↦→ - + ]UΠ + U,

where on the RHS, T" is equippedwith its standard Courant algebroid structure. Furthermore, the orthogonal
transformation RΠ induces the identity map RΠ |)" = id)" : )" → )" and the Lie algebroid isomorphism:

RΠ |) ∗" : () ∗", [−,−]Π,Π
♯) −→ (GrΠ, [[−,−]],pr)" ),

where) ∗" carries the Lie algebroid structure associated with Π. Hence, Lemma B.1 and Remark B.2 2) imply
that (3.1) is a dgLa isomorphism.
b) For any b ∈ Ω

2(GrΠ), the graph Gr(b) of the map GrΠ → (GrΠ)∗ � )" induced by b is transverse to
)" . Hence Gr(b) corresponds with a bivector field % ∈ X2("). One checks that it is determined by

∧2(RΠ |) ∗" )∗(b) = % − Π.

Using Lemma B.4, we can summarize the situation in the following diagram:

"� (Ω• (GrΠ) [1],<)"
1 ,<)"

2 ) "� (X• (") [1], dΠ, [−,−](# )

{% ∈ X2 (") : [%, %](# = 0}

b ↦→Gr(b)

∧2 (RΠ |) ∗" )∗

.
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From this diagram, we indeed read off the relation

% = Π + / (3.2)

between bivectors % ∈ X2(") s.t. [%, %](# = 0, and MC elements / of the dgLa (X•(") [1], dΠ, [−,−](# ). �

3.1.2. The regular Poisson case: deforming using the complement � ⊕ ) ∗F . For any Poisson structure Π on " ,
Lemma 3.1 shows that, choosing)" as Dirac structure complementary to GrΠ, Lemma B.4 reduces to the fact
that the dgLa (X• (") [1], dΠ, [−,−]SN) controls the deformation problem of Π. Assuming that Π is regular of
rank 2: , the parametrization (3.2) is not well-suited to single out regular deformations of Π, since the space of
/ ∈ X2 (") for which Π + / has rank 2: is not a vector space.
We have seen in Section 2 that there is a better choice of almost Dirac structure complementary to

GrΠ, which is compatible with the constant rank condition. Using this complement, we now construct via
Lemma B.1 a different !∞ [1]-algebra that, by Lemma B.4, still controls the deformation problem of the Dirac
structure GrΠ. We will see in §3.2 that this !∞ [1]-algebra is relevant to the deformation problem of the regular
Poisson structure Π. Below, we assume the setup summarized in the box at the beginning of §2.

Lemma 3.2. The almost Dirac structure � ⊕ ) ∗F ≃ � ⊕ �◦ is complementary to GrΠ.

Proof. For any U ∈ ) ∗" , we have Π♯ (U) ∈ )F , so requiring that Π♯ (U) lies in � implies that Π♯ (U) = 0. This
means that U ∈ )F 0, hence also requiring that U lies in �0 yields U = 0. �

At this point, it is natural to apply Lemmas B.1 and B.4 to the setting where � = T" , � = GrΠ and
� = � ⊕ ) ∗F , yielding an !∞ [1]-algebra (Ω•(GrΠ) [2], {`�⊕) ∗F

:
}) which controls the deformation problem

of the Dirac structure GrΠ. Instead of doing so directly, to simplify the computations, we will follow an
indirect approach. We first simplify the situation, by transporting the Courant algebroid structure along a
mapwhich transforms the splitting T" = GrΠ⊕ (� ⊕) ∗F ) into T" = ) ∗"⊕)" . Then we apply Lemmas B.1
and B.4, which yields an !∞ [1]-algebra structure {l�

:
} on X•(") [2]. This one is more directly related to the

geometry of the symplectic foliation (F , l) and the chosen splitting)" = � ⊕)F , it is strictly isomorphic to
(Ω• (GrΠ) [2], {`�

:
}) (see Proposition 3.8) and its MC elements encode the Dirac structures close to GrΠ w.r.t.

� ⊕ ) ∗F (see Proposition 3.9).

Lemma 3.3. There exists a unique Courant algebroid structure ( [[−,−]]� , d� ) on (T", 〈〈−,−〉〉), such that the

orthogonal transformation

RΠRW : (T", 〈〈−,−〉〉, [[−,−]]� , d� )
∼

−→ (T", 〈〈−,−〉〉, [[−,−]],pr)" ),

- + U ↦−→ (pr� - + ]UΠ) + (U + ]-W), (3.3)

is a Courant algebroid isomorphism. In particular, the latter induces:

• the Lie algebroid isomorphism

(RΠRW ) |) ∗" : ) ∗"
∼

−→ GrΠ, U ↦−→ ]UΠ + U, (3.4)

where ) ∗" carries the Lie algebroid structure associated with Π.

• the almost Lie algebroid isomorphism

(RΠRW ) |)" : )"
∼

−→ � ⊕ ) ∗F , - ↦−→ pr� - + ]-W, (3.5)

where )" carries the almost Lie algebroid structure ( [−,−]W , dW ) defined by

[-,. ]W = [pr� -, pr� . ] − Π
♯ (Lpr� - ].W − Lpr� . ]-W), dW (- ) = pr� - . (3.6)

The proof is a straightforward computation, and so we omit it.
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GrΠ

� ⊕ ) ∗F

RΠRW

RΠRW

)"

) ∗"

Remark 3.4. Denote by Υ
�
)" ∈ Ω

3 (") the Courant tensor (see Remark A.4) of the almost Dirac structure )"
in (T", 〈〈−,−〉〉, [[−,−]]� , d� ), then Lemma 3.3 implies that Υ�)" is the pullback along isomorphism (3.5) of the
Courant tensor of� ⊕ ) ∗F . So it is easy to see that, for all -,. , / ∈ X("),

Υ
�
)" (-,. , / ) = W (-, [pr� ., pr� / ]) + W (., [pr� /,pr� - ]) + W (/, [pr� -, pr� . ]).

Additionally, notice that Υ�
)"

∈ Γ() ∗F ⊗ ∧2�∗) ⊂ Ω
3 (") and it vanishes iff � ⊂ )" is involutive.

The following remark relates the almost Lie algebroid structure ()", [−,−]W , dW ) with the existing literature.

Remark 3.5. (1) Notice that W is a constant rank 2-form on " , with kernel � , whose restriction to the
leaves of)F is closed. Hence the condition 3W = 0 is equivalent to
• (3W) |) F∧�∧� = 0, meaning that � is involutive
• (3W) |) F∧) F∧� = 0, meaning that L-W = 0 for all - ∈ Γ(�).

(2) In full generality, the bracket in (3.6) can be rewritten as

[-,. ]W =
(
[pr� -, pr� . ] + pr) F [pr� -, pr) F . ] − pr) F [pr� ., pr) F - ]

)

− Π
♯
(
]pr) F . ]pr� -3W − ]pr)F - ]pr� .3W

)
, (3.7)

by applying Cartan identities to the term Lpr� - ].W in Eq. (3.6) and using that Π♯W♭ = − pr) F .
Recall [19] (see also [18]) that an endomorphism # : )" → )" is called Nijenhuis if the tensor)#

vanishes, where)# (-,. ) = [#-, #. ] −# ( [#-,. ] + [-, #. ]) +# 2 [-,. ] . In that case, # gives rise
to a Lie algebroid structure on )" , with anchor # itself and Lie bracket

[-,. ]# := [#-,. ] + [-, #. ] − # [-,. ] .

Assume now that � is involutive. Then one can check that pr� : )" → )" is a Nijenhuis endomor-
phism, and that the corresponding Lie algebroid bracket [−,−]pr� is the first term in round brackets
in Eq. (3.7). Using this, and the first bullet point in item (1) together with the fact that Π ∈ ∧2)F , we
see that

[-,. ]W = [-,. ]pr� − Π
♯ (]. ]-3W) .

In other words, when � is involutive, the Lie bracket [−,−]W equals the Lie bracket associated to the
Nijenhuis endomorphism pr� plus an additional term involving Π.

(3) When the distribution � is involutive, we have Υ�)" ≡ 0 (see Remark 3.4). Hence ()", [−,−]W ) is a
Lie algebroid, and together with the Lie algebroid () ∗", [−,−]Π) associated to the Poisson structure it
forms a Lie bialgebroid. The stronger condition 3W = 0 implies that the Nijenhuis endomorphism pr�
and the Poisson structure Π are compatible, i.e. form a Poisson-Nijenhuis structure. In that case the
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Lie bialgebroid of the Poisson-Nijenhuis structure [18, §3.2] is exactly the Lie bialgebroid mentioned
just above.

We apply Lemma B.1 to the case where � = (T", 〈〈−,−〉〉, [[−,−]]� , d� ) is the Courant algebroid mentioned
in Lemma 3.3, with Dirac structure � = ) ∗" and almost Dirac structure � = )" . So the graded space
X• (") [2] inherits an !∞ [1]-algebra structure {l�

:
}, described in the following.

Proposition 3.6. The !∞ [1]-algebra associated with the Dirac structure ) ∗" via the complementary almost

Dirac structure )" in the Courant algebroid (T", 〈〈−,−〉〉, [[−,−]]� , d� ) consists of the graded vector space

X• (") [2] with the !∞ [1]-algebra structure {l�
:
} whose only non-trivial multibrackets, l�1 , l

�
2 , l

�
3 , are given by:

• the unary bracket l�1 is the Poisson differential dΠ , i.e. for all % ∈ X•("):

l
�
1 (%) = [Π, %]SN, (3.8)

• the binary bracket l�2 acts as follows on homogeneous %,& ∈ X•("):

l
�
2 (%,&) = (−) |% | [%,&]W , (3.9)

where [−,−]W denotes the extension to an almost Gerstenhaber bracket (cf. Remark A.6) of the bracket in

eq. (3.6).
• the ternary bracket l�3 acts as follows on homogeneous %,&, ' ∈ X•("):

l
�
3 (%,&, ') = (−1) |& |

(
%♯ ∧&♯ ∧ '♯ )

Υ
�
)" , (3.10)

where Υ�)" is defined in Remark 3.4.

Proof. It is a straightforward consequence of Lemmas B.1 and 3.3. �

Remark 3.7. We list some remarks concerning the !∞ [1]-algebra (X•(") [2], {l�
:
}) introduced above.

(1) In view of Remarks B.2 (2) and 3.4, the !∞ [1]-algebra (X• (") [2], {l�
:
}) reduces to a dgL[1]a if and

only if � ⊂ )" is involutive.
(2) As already pointed out in Remark B.2 (3), the !∞ [1]-algebra (X•(") [2], {l�

:
}) is actually a �∞ [1]-

algebra (also called %∞ [1]-algebra), i.e. its multibrackets are graded algebra derivations of X•(").

The!∞ [1]-algebra (X•(") [2], {l�
:
}) is canonically isomorphic to

(
Ω

•(GrΠ) [2],
{
`�⊕) ∗F
:

})
, as stated below.

The proof is a straightforward consequence of Lemma 3.3.

Proposition 3.8. The VB isomorphism (3.4) induces a strict isomorphism of !∞ [1]-algebras

∧•(RΠRW ) |
∗
) ∗" :

(
Ω

•(GrΠ) [2],
{
`�⊕) ∗F
:

}) ∼
−→ (X•(") [2], {l�: }),

with inverse ∧• (pr) ∗" |∗GrΠ) : (X
•(") [2], {l�

:
})

∼
−→

(
Ω

•(GrΠ) [2],
{
`�⊕) ∗F
:

})
.

Turning to MC elements, we now show that the !∞ [1]-algebra (X•(") [2], {l�
:
}) encodes Dirac structures

that are close to GrΠ w.r.t. � ⊕ ) ∗F .

Proposition 3.9. Let (F , l) be a symplectic foliation on" , with corresponding regular Poisson structure Π. For

any splitting )" = )F ⊕ � , the relation

! = RΠRW Gr(/ )

establishes a canonical one-to-one correspondence between:

• MC elements / of the !∞ [1]-algebra (X•(") [2], {l�
:
}),

• Dirac structures ! ⊂ T" transverse to � ⊕ ) ∗F .
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Proof of Proposition 3.9. We know that (X•(") [2], {l�
:
}) is the !∞ [1]-algebra associated with the Dirac struc-

ture) ∗" and the complementary almost Dirac structure)" in (T", 〈〈−,−〉〉, [[−,−]]� , d� ), by Proposition 3.6.
Lemma B.4 provides the following bijection:

MC(X•(") [2], {l�: })
∼

−→ {! ⊂ T" Dirac structure wrt ( [[−,−]]� , d� ) | ! ⋔ )"},

/ ↦−→ Gr(/ ).

Since RΠRW : (T", 〈〈−,−〉〉, [[−,−]]� , d� )
∼

−→ (T", 〈〈−,−〉〉, [[−,−]], pr)" ) is a Courant algebroid isomor-
phism (see Lemma 3.3), with RΠRW ()") = � ⊕ ) ∗F , it induces the following bijection:

{! ⊂ T" Dirac structure w.r.t. ( [[−,−]]� , d� ) | ! ⋔ )"}
∼

−→ {! ⊂ T" Dirac structure | ! ⋔ � ⊕ ) ∗F },

! ↦−→ RΠRW (!).

Composing the two bijections, the proposition is proven. �

In summary, using also Proposition 3.8, we can draw the following commutative square of bijective maps:

{! ⊂ T" Dirac structure wrt ( [[−,−]]� , d� ) | ! ⋔ )"} {! ⊂ T" Dirac structure | ! ⋔ � ⊕ ) ∗F }

MC(X•(") [2], {l�
:
}) MC

(
Ω

•(GrΠ) [2],
{
`�⊕) ∗F
:

})

RΠRW

∧2 (pr) ∗" |∗GrΠ)

Gr(∗) Gr(∗)

3.1.3. Comparison with the literature: horizontally non-degenerate Dirac structures. As pointed out to us by Rui
Loja Fernandes, Proposition 3.9 is reminiscent of a correspondence that appeared in [33][3, §5] for the Poisson
case, and in [1] [34] for the Dirac case. First we recall this correspondence, following the interpretation given
by Mărcuţ [23, §4.2]. Then we describe the relation to Proposition 3.9 and Theorem 3.18 below, summarizing
our conclusions in Corollaries 3.11 and 3.12.
Fix a surjective submersion ? : � → ( with connected fibers, and denote by + := ker(?∗) ⊂ )� the vertical

bundle. A Dirac structure on � is called horizontally non-degenerate if it is transverse to + ⊕ + ◦. We denote

• by X•
+ (�) := Γ(∧•+ ) the space of vertical multivector fields,

• by X% (�) the space of vector fields on � which are ?-projectable,
• by Ω̃� the space of differential forms on ( with values in X•

+ (�) + X% (�),
• by Ω� := Γ(∧•(+ ⊕ + ◦)) the subspace of differential forms on ( with values in X•

+
(�).

Notice that Ω̃� carries a natural bigrading, and that Ehresmann connections on � form an affine subspace of

Ω̃
(1,1)
�

. It turns out that Ω̃� [1] has a graded Lie bracket [−,−]⋉, making it into a graded Lie algebra, and that
Ω� [1] is a graded Lie subalgebra.

A Maurer Cartan (MC) element of (Ω̃� [1], [−,−]⋉) is an element V ∈ Ω̃
(0,2)+(1,1)+(2,0)
�

such that [V, V]⋉ = 0.
It turns out that there is a bijection [23, Prop. 4.2.5] between

(1) horizontally non-degenerate Dirac structures on �

(2) MC elements of (Ω̃� [1], [−,−]⋉) whose (1, 1)-component is an Ehresmann connection.

This bijection restricts [23, Prop. 4.2.10] to a bijection between

(1’ ) horizontally non-degenerate Poisson structures
(2’ ) MC elements of (Ω̃� [1], [−,−]⋉) for which additionally the (2, 0)-component1 is non-degenerate.

Further it restricts to a bijection between

(1’’ ) horizontally non-degenerate Poisson structures of constant rank equal to dim(()

1This is a 2-form on ( with values in�∞ (�) .
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(2’’ ) MC elements of (Ω̃� [1], [−,−]⋉) for which, in addition to the previous two requirements, the (0, 2)-
component2 vanishes.

We now relate the bijection (1)-(2) with our Proposition 3.9, and the last bijection with Theorem 3.18 below.
Take aDirac structure on" , and fix an embedded leaf ( . A choice of tubular neighborhood embedding provides
a submersion ? : � → ( , defined on a neighborhood of ( in " , and we can assume that the Dirac structure is

horizontally-nondegenerate on � (shrinking � if necessary). Denote by V ∈ Ω̃
(0,2)+(1,1)+(2,0)
�

the Maurer Cartan

element of Ω̃� corresponding to the Dirac structure. The twist by V of the graded Lie algebra (Ω̃� [1], [−,−]⋉)
is a dgLa with the same binary bracket and with differential 3V := [V,−]⋉. It is immediate to check that an

element V ′ is a MC element of the graded Lie algebra (Ω̃� [1], [−,−]⋉) iff V ′ − V is a MC element of the above
dgLa. Therefore the assignment V ′ ↦→ V ′ − V yields a bijection between (2) above and

(3) MC elements of (Ω� [1], 3V , [−,−]⋉),

using the fact that the difference of two Ehresmann connections is a 1-form on ( with values in Γ(+ ), i.e. an

element of Ω (1,1)
�

. Now assume that V corresponds to a regular Poisson structure. We will show that the dgLa
(Ω� [1], 3V , [−,−]⋉) is isomorphic with the dgLa obtained shifting degrees in (X• (�) [2], {l�

:
}), where� is the

involutive distribution + . Note that the latter dgLa is given by (X•(�) [1],3Π, [−,−]W ).

Lemma 3.10. Suppose that V corresponds to a regular Poisson structure. The map

5 : )� → + ⊕ + 0 : - ↦→ pr+ - + ]-W

induces an isomorphism of dgLa’s

∧• 5 : (X•(�) [1],3Π, [−,−]W )
∼
→ (Ω� [1], 3V , [−,−]⋉).

Proof. The fact that ∧• 5 matches the differentials 3Π and 3V is proved in [23, Prop. 4.2.11]. As for the graded
Lie brackets, first recall that the bracket [−,−]⋉ on Ω� = Γ(∧•(+ ⊕ + 0)) is defined extending the Lie bracket
of the Lie algebroid + ⊕ + 0 (see [23, p. 119]). On the other hand, eq. (3.5) in Lemma 3.3 shows that the
bracket [−,−]W is defined by transporting the Lie bracket of + ⊕ + 0 under the map 5 , and then extending to
all multivector fields. This implies that ∧• 5 intertwines the graded Lie brackets [−,−]W and [−,−]⋉. �

Consequently we conclude:

Corollary 3.11. The bijection between (1) and (3) above recovers Proposition 3.9 in a tubular neighborhood of

the leaf ( for the choice of complement � = + .

This specialises to a similar statement about Theorem 3.18 below:

Corollary 3.12. By restricting the bijection (1)-(3) to (1’’ ), we recover Theorem 3.18 in a tubular neighborhood

of ( for the choice of complement � = + .

Corollary 3.12 is a consequence of the following result, which uses the dgLa isomorphism ∧• 5 from the
previous lemma.

Lemma 3.13. A MC element V ′ of the graded Lie algebra (Ω̃� [1], [−,−]⋉) corresponds with the MC element

∧2 5 −1(V ′ − V) of the dgLa (X•(�) [1],3Π, [−,−]V). Under this correspondence, we have:

• the (0, 2)-component of V ′ vanishes iff ∧2 5 −1(V ′ − V) belongs to X2
F
(�),

• the (2, 0)-component of V ′ is non-degenerate iff ∧2 5 −1(V ′ − V) belongs to the neighborhood IW .

Proof. We first remark that the inverse of 5 is given by

5 −1 : + ⊕ + 0 → )� : - + U ↦→ - − Π
♯U.

In particular, 5 −1 restricts to the identity map on + and takes + 0 to)F . We now prove the two statements.

2This is a vertical bivector-field on � .
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• The bivector field ∧2 5 −1(V ′ − V) belonging to X2
F
(�) means that it has no component in Γ(∧2+ ). By

the previous observation about 5 −1, this is equivalent with V ′ − V having no component in Γ(∧2+ ),
i.e. its (0, 2)-component being zero. Since V corresponds with a regular Poisson structure, its (0, 2)-
component is zero; hence the last statement is equivalent with the (0, 2)-component of V ′ being zero.

• Recall that a bivector field / ∈ X2(�) belongs to IW iff the map id+W♭ ◦ / ♯ : ) ∗� → ) ∗� is invertible.
Writing this mapwith respect to the decomposition) ∗� = )F 0⊕+ 0 yields a triangular blockmatrix for
which a diagonal block is the identity; as a consequence, it is equivalent to require that the restriction
id+ 0 +W♭ ◦ / ♯ |+ 0 : + 0 → + 0 is invertible. We expand

83+ 0 + W♭ ◦
(
∧2 5 −1(V ′ − V)

)♯
|+ 0 = 83+ 0 + W♭ ◦

(
∧2 5 −1(V ′ − V) (2,0)

)♯
|+ 0

= 83+ 0 − W♭ ◦ Π♯ ◦
(
(V ′ − V) (2,0)

)♭
◦ Π♯ |+ 0 . (3.11)

In the second equality, we use that 5 −1 agrees with −Π♯ on + 0, which implies that
(
∧2 5 −1(V ′ − V) (2,0)

)♯
=

(
∧2

Π
♯ (V ′ − V) (2,0)

)♯
= −Π♯ ◦

(
(V ′ − V) (2,0)

)♭
◦ Π♯ .

Further using that W♭ ◦ Π♯ = − pr+ 0 , the right hand side of (3.11) becomes

83+ 0 +
(
(V ′ − V) (2,0)

)♭
◦ Π♯ |+ 0 .

Since V corresponds with the Poisson structure Π, its (2, 0)-component V (2,0) is given by the inverse
of Π♯ : + 0 → Π

♯ (+ 0) (see [23, p. 130]). Therefore, we conclude that the above expression equals

83+ 0 +
(
(V ′) (2,0)

)♭
◦ Π♯ |+ 0 −

(
(V) (2,0)

)♭
◦ Π♯ |+ 0 =

(
(V ′) (2,0)

)♭
◦ Π♯ |+ 0 .

Since Π♯ |+ 0 is injective, this shows that ∧2 5 −1(V ′ − V) belongs to IW iff (V ′) (2,0) is non-degenerate.

�

3.2. Deformation Theory of a Symplectic Foliation. We remain in the setup described by the box at the
beginning of §2. In §3.1 we constructed the !∞ [1]-algebra (X•(") [2], {l�

:
}), which encodes as itsMC elements

those Dirac structures that are close to GrΠ w.r.t. � , in the sense that they are still transverse to� ⊕) ∗F . We
now single out an !∞ [1]-subalgebra (see Proposition 3.17) which actually controls the deformation problem
of the symplectic foliation (F , l) (see Theorem 3.18).

3.2.1. An algebraic tool. We first need to introduce the notion of strongly homotopy Lie–Rinehart algebras, or
!'∞ [1]-algebras. We will essentially adopt the same terminology as in [32] (cf. also [17] for another version
of this notion).

Definition 3.14 ([32, Definition 7]). Let A be a graded commutative algebra. An !'∞ [1]-algebra over A

consists of a gradedA-module Q equipped with an !∞ [1]-algebra structure {`: } and a family of anchor maps

d: : Q×(:−1) × A → A, (@1, . . . , @:−1, 0) ↦→ d: (@1, . . . , @:−1 |0)

of degree 1 which are A-linear in the first : − 1 entries and a derivation in the last one, such that

• for all : ∈ N and all homogeneous 0 ∈ A, @1, . . . , @: ∈ Q, the following Leibniz-like rule holds:

`: (@1, . . . , 0@: ) = d: (@1, . . . , @:−1 |0)@: + (−) |0 | (1+|@1 |+...+|@:−1 |)0`: (@1, . . . , @: ), (3.12)

• for all : ∈ N and all homogeneous E1, . . . , E: ∈ Q ⊕ A, the following extended Jacobi identity holds:

0 =
∑

8+9=:+1
8, 9≥1

∑

f ∈( (8,:−8)

n (f, v){{Ef (1) , . . . , Ef (8)}8 , Ef (8+1) , . . . , Ef (:) } 9 . (3.13)

Here n (f ; v) denotes the symmetrical Koszul sign determined by f and v = (E1, . . . , E: ) (cf. [7]) and,
for each 8 ∈ N, the bracket {−, . . . ,−}8 : (Q ⊕ A)×8 → Q ⊕ A is the unique graded symmetric multi
R-linear map which extends `8 and d8 and which vanishes if more than one entry belongs to A.
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Remark 3.15. If (Q, {`: }, {d:}) is an !'∞ [1]-algebra overA, then in particular, d1 is a degree 1 graded algebra
derivation of A, and `1 is a degree 1 graded module derivation of Q with symbol given by d1.

Notice that the splitting )" = � ⊕)F endows the graded algebra X•(") with an additional N×N grading
defined as follows:

X
• (") =

⊕

@,? ∈N

X
(?,@) ("), where X

(?,@) (") := Γ(∧?)F ⊕ ∧@�). (3.14)

In particular, X= (") =
⊕

?+@== X
(?,@) ("), and we additionally get

X
•(F ) =

⊕

? ∈N

X
(?,0) (") and X

•
F (") =

⊕

?∈N
@=0,1

X
(?,@) (").

Lemma 3.16. The non-trivial multibrackets of (X•(") [2], {l�
:
}) behave as follows w.r.t. the N × N grading:

1) the unary bracket l�1 = dΠ has two components of bi-degree (1, 0) and (2,−1), namely

l
�
1 (X

(?,@) (")) ⊂ X
(?+1,@) (") ⊕ X

(?+2,@−1) ("),

2) the binary bracket l�2 has two components of bi-degree (0,−1) and (1,−2), namely

l
�
2 (X

(?1,@1) (") × X
(?2,@2) (")) ⊂ X

(
∑

8 ?8 ,
∑

8 @8−1) (") ⊕ X
(
∑

8 ?8+1,
∑

8 @8−2) ("),

3) the ternary bracket l�3 has bi-degree (−1,−2), namely

l
�
3 (X

(?1,@1) (") × X
(?2,@2) (") × X

(?3,@3) (")) ⊂ X
(
∑

8 ?8−1,
∑

8 @8−2) (").

Proof. Equations (3.8)–(3.10) (see also Equation (3.6) defining the almost Lie bracket [−,−]W on )") impose
the following constraints on the action of l�1 , l

�
2 , l

�
3 on the generators of the graded algebra X•("):

l
�
1 (�

∞ (")) ⊂ Γ()F ), l
�
1 (Γ()F )) ⊂ Γ(∧2)F ), l

�
1 (Γ(�)) ⊂ Γ(∧2)F ) ⊕ Γ(� ⊗ )F ),

l
�
2 (�

∞ ("), Γ()F )) = l
�
2 (Γ()F ), Γ()F )) = 0, l

�
2 (Γ()F), Γ(�)) ⊂ Γ()F),

l
�
3 (Γ()F ), Γ()F), Γ()F)) = l

�
3 (Γ()F ), Γ()F ), Γ(�)) = l

�
3 (Γ(�), Γ(�), Γ(�)) = 0.

(3.15)

Since the multibrackets are multiderivations of the graded algebra X•(") (see Remark 3.7 (2)) and the N × N

grading is compatible with the algebra structure, i.e. X (ℎ,:) (") · X (?,@) (") ⊂ X (ℎ+?,:+@) ("), the statement
follows immediately from the relations (3.15). �

3.2.2. Parametrizing deformations of a symplectic foliation. We now single out a suitable !∞ [1]-subalgebra of
the !∞ [1]-algebra (X•(") [2], {l�

:
}) constructed in Proposition 3.6. Recall that the space of good multivector

fields X•
F
(") was introduced in Definition 1.4.

Proposition 3.17. The multibrackets l�
:
mapX•

F
(") [2] ⊂ X•(") [2] to itself. So X•

F
(") [2] inherits an !∞ [1]-

algebra structure, still denoted by {l�
:
}, which we call the !∞ [1]-algebra associated with (F , l) and� . Actually,

(X•
F
(") [2], {l�

:
}) turns out to be an !'∞ [1]-algebra over the graded algebra X•(F ).

Proof. As proved in Lemma 3.16, the multibrackets l�
:
behave as follows w.r.t. the N×N bi-grading of X•("):

1) the unary bracket l�1 = dΠ has two components of bi-degree (1, 0) and (2,−1),
2) the binary bracket l�2 has two components of bi-degree (0,−1) and (1,−2),
3) the ternary bracket l�3 has bi-degree (−1,−2).

Since X•(F ) =
⊕

?≥0X
(?,0) (") and X•

F
(") =

⊕
?≥0
@=0,1

X (?,@) ("), one can check that for each : ∈ N:

• the graded X•(F )-submodule X•
F
(") of X•(") is closed under l�

:
,
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• the multibracket l�
:
: X•(")×: → X•(") induces a map

d: : X•
F (")×(:−1) × X

• (F ) −→ X
•(F ), (D1, . . . , D:−1, U) ↦−→ l

�
: (D1, . . . , D:−1, U),

which is gradedX•(F )-linear in the first :−1 entries and a graded algebra derivation in the last entry.

Further, the Leibniz rule (3.12) and Jacobi identity (3.13) for an !'∞ [1]-algebra hold because of the Leibniz
rule and the Jacobi identity for the �∞ [1]-algebra structure {l�

:
} on X•(") [2]. This concludes the proof. �

Restricting to good multivector fields, we obtain an !∞ [1]-algebra that governs the deformation problem of
the symplectic foliation (F , l). The proof relies on results shown in Section 2, and we use the same notation
as established there. In particular, recall that the neighborhood �W and the Dirac exponential map exp� were
introduced in §2.1.

Theorem 3.18. (Main theorem) Let (F , l) be a rank 2: symplectic foliation on a manifold " , with corre-

sponding rank 2: regular Poisson structure Π. Fix a distribution� complementary to)F on" . Then the relation

−l̃−1
= exp� (/ )

establishes a canonical one-to-one correspondence between

(1) MC elements / of the !∞ [1]-algebra (X•
F
(") [2], {l�

:
}) such that / ∈ IW ,

(2) rank 2: symplectic foliations (F̃ , l̃) on" such that ) F̃ ⋔ � .

Proof. Theorem 2.6 establishes a bijection

Γ(IW ) ∩ X
2
F (")

∼
−→ {, ∈ X

2
reg-2: (") | im, ♯

⋔ �}, / ↦−→ exp� (/ ). (3.16)

Using Proposition 3.9 and the fact that RΠRW Gr(/ ) = Gr(exp� (/ )) (see eq. (2.7)), we also have a bijection

MC(X•(") [2], {l�: })
∼

−→ {! ⊂ T" Dirac structure | ! ⋔ � ⊕ ) ∗F }, / ↦−→ Gr(exp� (/ )). (3.17)

For any, ∈ X2 ("), we have that Gr(, ) ⊂ T" is Dirac iff, is Poisson, and if, is regular then im, ♯ ⋔ �

iff Gr(, ) ⋔ � ⊕ ) ∗F by Lemma 2.4. Hence, the equations (3.16) and (3.17) lead to the following bijection:

Γ(IW ) ∩MC(X•
F (") [2], {l�: })

∼
−→ {, ∈ RegPoiss2: (") | im, ♯

⋔ �}, / ↦−→ exp� (/ ).

Finally, the canonical one-to-one correspondence between rank 2: symplectic foliations and rank 2: regular
Poisson structures on" (as in Proposition 1.3) completes the proof. �

Remark 3.19 (The corank one case). In case the regular Poisson structure Π is of corank one, some simplifica-
tions occur. On one hand, every complement� to )F is automatically involutive and X•

F
(") coincides with

X• ("). Consequently, the deformation problem of the regular Poisson structure Π is governed by the dgL[1]a
(X• (") [2], {l�

:
}), because of Theorem 3.18.

On the other hand, assuming" is compact, Poisson structures C0-close toΠ are automatically of corank one,
hence it is equivalent to deformΠ as a Poisson structure (without the rank condition). Consequently, the defor-
mation problem of the regular Poisson structure Π is also governed by the usual dgLa (X•(") [1], 3Π, [−,−]SN).
The corresponding dgL[1]a is indeed isomorphic with (X•(") [2], {l�

:
}), because of the following. By

Lemma 3.1, it is (strictly) isomorphic with the dgL[1]a (Ω• (GrΠ) [2], `)"1 , `)"2 ) defined in terms of the
splitting T" = GrΠ ⊕ )" . By a result proved in [12], the latter is !∞ [1]-isomorphic with the dgL[1]a
(Ω• (GrΠ) [2], `�⊕) ∗F

1 , `�⊕) ∗F
2 ), which is defined in terms of the splitting T" = GrΠ ⊕ (� ⊕ ) ∗F ). Finally,

by Proposition 3.8, the latter is (strictly) isomorphic with (X• (") [2], {l�
:
}).

Remark 3.20. Given any !∞ [1]-algebra, there is a natural equivalence relation on the set of MC elements,
induced by the elements of degree −1. For the !∞ [1]-algebra (X•

F
(") [2], {l�

:
}), the degree −1 elements are

the vector fields on " . Under the bijection stated in Theorem 3.18, the induced equivalence relation on rank
2: symplectic foliations transverse to� is given by isotopies. More precisely, and assuming that" is compact:
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(F̃ , l̃) and (F ′, l ′) are equivalent iff there is an isotopy (kC )C ∈[0,1] of" mapping the former to the latter, and

so that (kC )∗F̃ ⋔ � for all C . We will show this in [10].
Further, since the differential l�1 in the !∞ [1]-algebra (X•

F
(") [2], {l�

:
}) is the Poisson differential 3Π , the

degree −1 cocycles are the Poisson vector fields on (",Π), in agreement with the general interpretation of
such elements as infinitesimal symmetries. The degree −1 coboundaries are the Hamiltonian vector fields.

3.3. Deforming by leaf-wise differential forms. The leaf-wise multivector fields X•(F ) are contained in
the good multivector fields X•

F
("). Here we point out that it is easy to describe explicitly the deformation

of (F , l) induced (via Theorem 3.18) by a small bivector field in X2(F ): it is just the gauge transform by the
corresponding leaf-wise 2-form.

Lemma 3.21. The cochain complex (X•(F ) [2], dΠ) is canonically embedded in the !∞ [1]-algebra
(X•

F
(") [2], {l�

:
}).

Proof. Since X•(F ) =
⊕

? ∈N X
(?,0) ("), Lemma 3.16 implies that l�1 = dΠ preserves X•(F ), while l�2 and

l�3 vanish on X•(F ). This proves that the natural embedding X•(F ) ↩→ X•
F
(") gives a strict morphism of

!∞ [1]-algebras (X• (F ) [2], dΠ) −→ (X•
F
(") [2], {l�

:
}). �

Note that the non-degenerate Poisson structure Π on the leaves induces an isomorphism of Lie algebroids
Π
♯ between the cotangent Lie algebroid) ∗F of the Poisson structure Π and the tangent Lie algebroid)F . By

pullback, this gives an isomorphism of complexes X•(F ) � Ω
•(F ). In particular, an element / ∈ X2 (F ) is

3Π-closed iff the corresponding element V/ ∈ Ω
2 (F ) is a closed leafwise form.

Lemma 3.22. The deformation of Π associated to a MC element / ∈ X2(F ) lying in IW , as in Theorem 3.18,

is the gauge transformation of Π by Ṽ/ , where Ṽ/ is any extension of V/ to a 2-form on " . In particular, it is a

regular Poisson structure with same underlying foliation as Π.

Proof. We have to show that exp� (/ ) = Π
Ṽ/ , and we do so by checking that their graphs are equal. The Dirac

structure Gr(exp� (/ )) = RΠRW Gr(/ ) is given by

{
(Π♯b, b+W♭/ ♯b) : b ∈ ) ∗"

}
, (3.18)

using the fact that im(/ ♯) ⊂ )F and Π
♯ ◦ W♭ = −?A) F . Next, we note that (V/ )♭ = −l♭ ◦ / ♯ ◦ l♭. Take

the extension of V/ to the 2-form Ṽ/ on" that annihilates � (its flat-map is −W♭ ◦ / ♯ ◦ W♭). Then Gr(ΠṼ/ ) =

RṼ/
(Gr(Π)) is equal to (3.18), as can be seen using W♭ ◦ Π

♯ = −?A) ∗F . Any other extension of V/ yields the
same gauge transformation of Π. �

4. Relation with Deformations of Foliations

Forgetting the leafwise symplectic structure and keeping only the underlying foliation, one defines a rank-
preserving map from the space of symplectic foliations on" to the space of foliations on" , denoted by

q : SymplFol •(") −→ Fol •("), (F̃ , l̃) ↦−→ F̃ . (4.1)

This section aims at finding an algebraic interpretation of the latter. Indeed, in Proposition 4.7, we will see
that it arises from a strict morphism of !∞ [1]-algebras (cf. Proposition 4.5) going from the !∞ [1]-algebra of
the symplectic foliation (F , l) (cf. §3.2) to the !∞ [1]-algebra of the foliation F (cf. §4.1).
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4.1. Review: Deformations of Foliations. We reconstruct here the !∞ [1]-algebra controlling the deforma-
tions of a foliation (cf. [14, 32]), using the deformation theory of Dirac structures (cf. Appendix B).
Let F be a rank 3 foliation on a manifold " . Denote the normal bundle to )F in )" by #F and the

quotient VB morphism by )" → #F := )"/)F , - ↦→ - . Then the Lie algebroid )F ⇒ " has a natural
representation ∇ on #F , also called the Bott connection, which is defined by

∇-. = [-,. ],

for all - ∈ Γ()F ) and . ∈ X("), and one can introduce the de Rham complex (Ω•(F ;#F ), d∇) of the Lie
algebroid )F with coefficients in the representation #F .
Fix a distribution � on " complementary to )F . The splitting )" = � ⊕ )F induces the identifications

) ◦F ≃ �∗, �◦ ≃ ) ∗F , � ≃ #F , and the following splitting of the generalized tangent bundle

T" = ()F ⊕ ) ◦F ) ⊕ (� ⊕ �◦),

where )F ⊕ ) ◦F ⊂ T" is a Dirac structure while � ⊕ �◦ ⊂ T" is an almost Dirac structure. So, applying
Lemma B.1, one gets the following.

Lemma 4.1. There exists a unique !∞ [1]-algebra structure {n: } on Γ(∧•() ∗F ⊕ #F )) [2] that makes

Γ(∧•() ∗F ⊕ #F )) [2] into a �∞ [1]-algebra, whose only non-trivial brackets n1, n2, n3 are determined by:

• n1 is the de Rham differential of the Lie algebroid )F ⊕ ) ◦F ⇒ " , i.e. it satisfies

n1 (5 ) = dF 5 , n1[ = dF[, n1- = d∇-,

for all 5 ∈ �∞("), [ ∈ Ω
1(F ) and - ∈ X(").

• n2 is the almost Gerstenhaber bracket of the almost Lie algebroid� ⊕�◦ → " up to a sign, i.e. it satisfies

−n2 ([ + -, 5 ) = - (5 ), −n2([1 + - 1, [2 + - 2) = pr� [-1, -2] + pr) ∗F (L-1[2 − L-2[1),

for all 5 ∈ �∞("), -,-1, -2 ∈ Γ(�) and [, [1, [2 ∈ Ω
1 (F ).

• n3 satisfies the following:

n3([1 + - 1, [2 + - 2, [3 + - 3) = − ([1 [-2, -3] + [2 [-3, -1] + [3[-1, -2]) ,

for all [1, [2, [3 ∈ Ω
1(F ) and -1, -2, -3 ∈ Γ(�).

The graded algebra Γ(∧•() ∗F ⊕#F )) has a natural N×N bigrading, where the bi-degree (?,@) component
is given by Γ(∧?) ∗F ⊗∧@#F ). It is easy to see that the brackets n: are compatible with this additional N×N
bigrading; specifically we have

bi-degree(n1) = (1, 0), bi-degree(n2) = (0,−1), bi-degree(n3) = (−1,−2).

Consequently, one can easily check that, for all : ,

• the graded Ω
•(F )-submodule Ω• (F ;#F ) of Γ(∧•() ∗F ⊕ #F )) is closed under n: ,

• the multibracket n: : Γ(∧•() ∗F ⊕ #F ))×: → Γ(∧•() ∗F ⊕ #F )) induces a map

Ω
•(F ;#F ):−1 × Ω

•(F ) −→ Ω
• (F ), (D1, . . . ,D:−1, U) ↦−→ n: (D1, . . . ,D:−1, U),

which is additionally graded Ω
•(F )-linear in the first : − 1 entries.

This means that Ω•(F ;#F )[1] inherits from Γ(∧•() ∗F ⊕#F )) [2] an !∞ [1]-algebra structure, whose multi-
brackets we denote by {v: }, which is additionally an !'∞ [1]-algebra over the graded algebra Ω•(F ) (cf. Defi-
nition 3.14). So we get the following reformulation of a result first obtained in [32, Theorem 29], using different
techniques, and later in [12, Theorem 5.5] using the same techniques as ours.

Proposition 4.2. Let F be a foliation on a manifold " . There exists a unique !∞ [1]-algebra structure {v: } on
Ω

•(F ;#F )[1] that makes Ω•(F ;#F )[1] into an !'∞ [1]-algebra over Ω•(F ), whose only non-trivial brackets

v1, v2, v3 are given by:

• v1 is the de Rham differential d∇ of the Lie algebroid)F ⇒ " with coefficients in its representation #F ,
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• v2 is given by the following formula, for all U, V ∈ Ω
•(F ), -,. ∈ Γ(�),

v2 (U ⊗ -, V ⊗ . ) = −(−) |U |
(
U ∧ pr) ∗FL- V ⊗ . − pr) ∗F L.U ∧ V ⊗ - + U ∧ V ⊗ [-,. ]

)
,

• v3 is given by the following formula, for all U, V, W ∈ Ω
•(F ) and -,. , / ∈ Γ(�),

v3(U ⊗ -, V ⊗ .,W ⊗ / ) =(−) |V |+1
(
(] [.,/ ]U) ∧ V ∧ W ⊗ - − (−) |U | |V | (] [-,/ ]V) ∧ U ∧ W ⊗ .

+ (−) |V | |W |+ |U | |W | (] [-,. ]W) ∧ U ∧ V ⊗ /
)
.

Its anchor maps are given by the multibrackets n: of the !∞ [1]-algebra appearing in Lemma 4.1.

Further, if one specializes also Lemma B.4 to this setting, then one obtains the following.

Lemma 4.3. The relation L = Gr(/ ) establishes a one-to-one correspondence between:

(1) MC elements / of the !∞ [1]-algebra (Γ(∧•() ∗F ⊕ #F )) [2], {n: }),
(2) Dirac structures L on" close to )F ⊕ ) ◦F in the sense that L ⋔ � ⊕ �◦.

Here Gr(/ ) denotes the graph of / viewed as a map )F ⊕ ) ◦F → ) ∗F ⊕ #F � � ⊕ �◦.

Recall that the relation L = � ⊕ �◦ establishes a one-to-one correspondence between distributions � on
" and those almost Dirac structures L on " such that L = pr)" L ⊕ pr) ∗" L. If � and L correspond to
each other in this way, then � is integrable iff L is Dirac. Further, for any / ∈ Γ(∧2() ∗F ⊕ #F )), it is
straightforward to see that Gr(/ ) = pr)" Gr(/ ) ⊕ pr) ∗" Gr(/ ) if and only if / ∈ Ω

1(F ;#F ). Consequently,
Lemma 4.3 yields the following reformulation of the result obtained in [15, Theorem 6.2.20] in the context of
deformation theory of Lie subalgebroids.

Proposition 4.4. The relation )F ′ = Gr([) establishes a one-to-one correspondence between:

(1) MC elements [ of the !∞ [1]-algebra (Ω•(F ;#F )[1], {v: }), and
(2) rank 3 foliations F ′ on" close to F in the sense that )" = )F ′ ⊕ � .

4.2. A strict morphism of !∞ [1]-algebras. Let Π be a rank 2: regular Poisson structure on " with corre-
sponding symplectic foliation (F , l), and fix a distribution � on " complementary to )F . We construct a
strict morphism between the !∞ [1]-algebras governing the deformations of Π and of F , which we introduced
in Proposition 3.17 and Lemma 4.2 respectively.
First, the map l♭ : )F → ) ∗F determines a degree 0 graded algebra isomorphism i : X•(F ) → Ω

•(F )

which acts as follows:
i (%) (-1, . . . , -ℓ ) = (−1)ℓ% (l♭-1, . . . , l

♭-ℓ ), (4.2)

for all ℓ ≥ 0, % ∈ Xℓ (F ) and -1, . . . , -ℓ ∈ Γ()F ). We then proceed by defining a degree 0 graded module
morphism i : X•

F
(") [2] → Ω

•(F ;#F )[1], along the graded algebra isomorphism i : X•(F ) → Ω
•(F ), as

the composition

X
•
F (") [2] = Γ(∧•+2)F ) ⊕ Γ(∧•+1)F ⊗ �) → Γ(∧•+1)F ⊗ �) → Γ(∧•+1) ∗F ⊗ �) ≃ Ω

•(F ;#F )[1],

where the first map is the projection and the second one is i ⊗ id� . Explicitly, i acts as follows, for all ℓ ≥ 0,
% ∈ Xℓ

F
("), -1, . . . , -ℓ−1 ∈ Γ()F ) and V ∈ Γ(# ∗F ) ≃ Γ(�∗):

V
(
i (%) (-1, . . . , -ℓ−1)

)
= (−1)ℓ−1% (l♭-1, . . . , l

♭-ℓ−1, V). (4.3)

Proposition 4.5. The degree 0 graded linear map i : X•
F
(") [2] → Ω

•(F ;#F )[1] induces a strict morphism

of !∞ [1]-algebras

(X•
F
(") [2], {l�

:
}) (Ω•(F ;#F )[1], {v: }).

i

We defer the proof of Proposition 4.5 to Appendix C. There we also provide a conceptual argument under
the assumption that the 2-form W is closed, showing that in that case i is obtained from the pullback by a
Courant algebroid isomorphism.
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Remark 4.6. Lemma 3.21 and Prop. 4.5 show that there is a short exact sequence of !∞ [1]-algebras and strict
morphisms

{0} → (X•(F ) [2], dΠ) → (X•
F (") [2], {l�: })

i
→ (Ω•(F ;#F )[1], {v: }) → {0}. (4.4)

This short exact sequence reflects the fact that one obtains deformations of regular Poisson structures by
deforming both the leaf-wise symplectic form (see Lemma 3.22) and the underlying foliation (see Prop. 4.4).

In (4.1) we displayed a natural geometric map from the space of rank 2: Poisson structures to the space of
rank 2: foliations on " . The next proposition states that it “lifts” to the strict morphism of !∞ [1]-algebras
i : (X•

F
(") [2], {l�

:
}) −→ (Ω•(F ;#F )[1], {v: }) we just constructed, i.e. that it is exactly the map of MC

elements induced by i .

Proposition 4.7. The following diagram commutes

Γ(IW ) ∩MC
(
X•
F
(") [2], {l�

:
}
)

MC
(
Ω

•(F ;#F )[1], {v: }
)

RegPoiss2: (") Fol 2: (")

i

/ ↦→exp� (/ ) Gr

q

. (4.5)

Proof. An arbitrary / ∈ Γ(IW ) ∩ X2
F
(") can be uniquely decomposed as / = /1 + /2, where /1 ∈ Γ(∧2)F )

and /2 ∈ Γ()F ⊗ �). From a straightforward computation, it follows that

Gr(exp� (/ )) = RΠRW (Gr(/ )) = {Π♯U+/
♯
2U + U + V+W♭/

♯
1U+W

♭/
♯
2V | U + V ∈ ) ∗F ⊕ �∗}.

Further, since i (/ ) = i (/2) = (i ⊗ id� )/2, one easily gets that

im((exp� (/ ))
♯) = pr)" (Gr(exp� (/ ))) = {Π♯U+/

♯
2U | U ∈ ) ∗F } = {+−/

♯
2 (W

♭+ ) | + ∈ )F } = Gr(i (/ )),

and this proves in particular that the diagram (4.5) commutes. �

5. Infinitesimal Deformations of Symplectic Foliations and Obstructions

In this section, we take a closer look at infinitesimal deformations of regular Poisson structures, showing that
in general there exist obstructed infinitesimal deformations. First in §5.1 we single out a class of infinitesimal
deformations that are always unobstructed. Then in §5.2, using the Kuranishi criterion, we discuss an example
of a regular Poisson structure with obstructed infinitesimal deformations.
Fix a rank 2: regular Poisson structure Π on a manifold" .

Definition 5.1. A smooth deformation of Π is a smooth path of bivector fields ΠC lying in RegPoiss2: (") with
Π0 = Π.

Let F denote the characteristic foliation of Π and fix a distribution � on " complementary to )F , so
that one can construct the associated !∞ [1]-algebra (X•

F
(") [2], {l�

:
}:∈N) as in Proposition 3.17. Without

loss of generality, one can assume that all smooth deformations of Π come, via the map exp� , from smooth
1-parameter families /C of MC elements of (X•

F
(") [2], {l�

:
}:∈N), with /0 = 0. If /C is such a family, then

differentiating the MC equation at C = 0 one obtains

0 =
d

dC

����
C=0

(
dΠ/C +

1

2
l
�
2 (/C , /C ) +

1

6
l
�
3 (/C , /C , /C )

)
= dΠ

(
d

dC

����
C=0

/C

)
,

Since the tangent map to exp� : IW → Π+I−W is the identity map along the points of the zero section of ∧2)" ,
we recover the content of Lemma 1.7, namely that a smooth deformation of Π gives rise infinitesimally to a
2-cocycle in (X•

F
("), dΠ). This justifies the following definition.

Definition 5.2. An infinitesimal deformation (or first order deformation) of Π is a 2-cocycle in the complex
(X•

F
("), dΠ)
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As seen above, taking the derivative at time C = 0, each smooth deformation gives rise to an infinitesimal
deformation of Π. Infinitesimal deformations of Π that do not arise in this way are called obstructed. If such
an infinitesimal deformation exists, then the deformation problem of the regular Poisson structure Π is said
to be obstructed. We show in Example 5.8 below that obstructions can occur, implying that the space of rank
2: regular Poisson structures may fail to be smooth around Π.

5.1. Unobstructed deformations. An arbitrary infinitesimal deformation / ∈ X2
F
(") of Π decomposes as

/ = /1 + /2 ∈ Γ(∧2)F ) ⊕ Γ()F ⊗ �).

Infinitesimal deformations lying in the first summand Γ(∧2)F ) can be turned into closed elements of
Γ(∧2) ∗F ) using the leafwise symplectic form l ; they are the infinitesimal shadows of gauge transforma-
tions of the Poisson structure Π, which leave the underlying foliation unchanged. In particular, any such
infinitesimal deformation is unobstructed, as we show in the next Proposition 5.3.
In constrast, an infinitesimal deformationwith nonzero component in Γ()F ⊗�) projects to a nonzero infin-

itesimal deformation of the underlying foliation F via the strict !∞ [1]-morphism in Prop. 4.5. Consequently,
a path of regular Poisson structures that prolongs such an infinitesimal deformation necessarily changes the
foliation F .

Proposition 5.3. Assume that " is compact and let Π be a regular Poisson structure on " with corresponding

symplectic foliation (F , l). Any infinitesimal deformation / ∈ Γ(∧2)F ) of Π is unobstructed.

Proof. Since 3Π/ = 0, the foliated two-form V := ∧2l♭(/ ) ∈ Γ(∧2) ∗F ) is leafwise closed. Let Ṽ ∈ Ω
2(") be

any extension of V . Compactness of " implies that there exists n > 0 small enough such that the bundle map

Id + C
(
Ṽ
)♭

◦ Π♯ : ) ∗" → ) ∗"

is invertible for all C ∈ (−n, n). By gauge transforming Π with C Ṽ for C ∈ (−n, n), we obtain a path of regular

Poisson structures ΠC Ṽ characterised by
(
Π
C Ṽ

)♯
= Π

♯ ◦
(
Id + C (Ṽ)♭ ◦ Π♯

)−1
.

We claim that the path Π
C Ṽ is a prolongation of the infinitesimal deformation / . To prove this, note that

(
Π
C Ṽ

)♯
◦

(
Id + C (Ṽ)♭ ◦ Π♯

)
= Π

♯,

and differentiating this equality at time C = 0, we obtain

3

3C

����
C=0

(
Π
C Ṽ

)♯
= −Π♯ ◦ (Ṽ)♭ ◦ Π♯

=

(
∧2

Π
♯ (Ṽ)

)♯
.

This shows that
3

3C

����
C=0

Π
C Ṽ

= ∧2
Π
♯ (Ṽ) = ∧2

Π
♯ (∧2l♭(/ )) = / .

�

Remark 5.4. We can rephrase the proof of Prop. 5.3 making use of Lemmas 3.21 and 3.22. Observe that /
is a MC element of the !∞ [1]-subalgebra (X•(F ) [2], dΠ) ⊂ (X• (") [2], {l�

:
}). Compactness of " ensures

that for small enough times C , the path of MC elements C ↦→ C/ stays inside the neighborhood �W introduced
in (2.1). So Theorem 3.18 gives us a curve C ↦→ exp� (C/ ) of regular Poisson structures which prolongs the
infinitesimal deformation / . By Lemma 3.22, this curve agrees with the one constructed in the proof above,

i.e. exp� (C/ ) = Π
C Ṽ .
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Example 5.5 (An unobstructed deformation). Consider (T4, o1, o2, o3, o4) with rank 2 regular Poisson struc-
ture Π = mo1 ∧ mo2 . As a complement to the characteristic distribution of Π, we take � := Span{mo3 , mo4 }. The
bivector field

b := mo1 ∧ mo3 + mo2 ∧ mo4 ∈ X
2
F (T

4)

is an infinitesimal deformation of Π, and we claim that it is unobstructed. Indeed, it is tangent to the path

ΠC := mo1 ∧ mo2 + C (mo1 ∧ mo3 + mo2 ∧ mo4 ) + C
2mo3 ∧ mo4 , (5.1)

which consists of rank 2 regular Poisson structures since ∧2
ΠC = 0. Notice that the quadratic term of ΠC

cannot be omitted because the resulting path would consist of rank 4 Poisson structures for C ≠ 0.
To interpret this example, we mention a more general fact. Say that we are given a regular Poisson manifold

(",Π) whose characteristic distribution allows an involutive complement� . If b ∈ X2
F
(") is an infinitesimal

deformation of Π satisfying [b, b]W = 0, then b is in fact a MC element of (X•
F
(") [2], {l�

:
}:∈N), which in this

case reduces to a dgL[1]a. So C ↦→ Cb is a curve of MC elements, which implies that C ↦→ exp� (Cb) is a path
of regular Poisson structures prolonging b . One can check by direct computation that this procedure gives
exactly the path that we found in (5.1).

Remark 5.6. Assume " is compact and let / ∈ X2
F
(") be an unobstructed infinitesimal deformation of Π.

Then any representative of the Poisson cohomology class [/ ] ∈ � 2
Π
(") is an unobstructed infinitesimal

deformation of Π. Indeed, pick an arbitrary representative / + 3Π. for some . ∈ X("), and assume that ΠC

is a path of regular Poisson structures that is a prolongation of / . Let iC denote the flow of . ; it is globally
defined by compactness of" . Then the path of regular Poisson structures (iC )∗ΠC is a prolongation of/ +3Π. ,
since

3

3C

����
C=0

(iC )∗ΠC = −L.Π +
3

3C

����
C=0

ΠC = 3Π. + / .

5.2. Obstructed deformations. The !∞ [1]-algebra (X•
F
(") [2], {l�

:
}:∈N) controlling the deformation prob-

lem of the regular Poisson structure Π provides a sufficient criterion for the existence of obstructions. Indeed,
obstructions can be detected by means of the Kuranishi map

Kur : � 2 (X•
F ("), dΠ) → � 3 (X•

F ("), dΠ), [/ ] ↦→ [l�2 (/,/ )] . (5.2)

Proposition 5.7. Let / be an infinitesimal deformation of Π. If Kur[/ ] ≠ 0, then / is obstructed.

The proof is a general argument in deformation theory (see, e.g., [24, Theorem 11.4]) and we skip it. We
now use the Kuranishi map to provide an example of obstructed infinitesimal deformation.

Example 5.8 (An obstructed deformation). Consider the 3-torus T3 = ((1)×3 with angular cooordinates
o1, o2, o3. We equip T3 with the rank 2 symplectic foliation (F , l) corresponding to the regular Poisson struc-
ture

Π := mo1 ∧ mo2 .

We consider the splitting of the tangent bundle )T3 = � ⊕ )F , where

)F := imΠ
♯
= Span

{
mo1 , mo2

}
and � := Span

{
mo3

}
.

So � is integrable, and the 2-form W = W� ∈ Ω
2(T3) is given by W = do1 ∧ do2.

Further, an arbitrary % ∈ X2(T3) decomposes as % =
∑

8< 9 58 9 mo8 ∧ mo 9
and one can easily compute3 its

differential l�1 (%) ∈ X3(T3) as follows

l
�
1 (%) = dΠ (%) =

(
mo1 513 + mo2 523

)
mo1 ∧ mo2 ∧ mo3 . (5.3)

3In this example we make use of the dgL[1]a (X• (") [2], {l�
:
}) , for the sake of illustration. Since 2>38< () F) = 1, alternatively we

could have used the more familiar dgLa (X• (") [1], 3Π, [−,−]SN) , see Remark 3.19.
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Let & ∈ X3(T3) be an arbitrary tri-vector field. For any g3 ∈ (1, define the 2-torus T2(g3) ⊂ T3 as follows

T
2(g3) := {(o1, o2, o3) ∈ T

3 | o3 = g3}.

Equation (5.3) implies immediately that, if & is l�1 -exact, then the following condition holds for any g3 ∈ (1:
∫

T2 (g3)

& (do1 ∧ do2 ∧ do3) · do1 ∧ do2 = 0. (5.4)

From now on, let us consider the bivector field %̃ on T3 given by

%̃ = 5 (o3)mo1 ∧ mo3 + 6(o3)mo2 ∧ mo3

for arbitrary 5 , 6 ∈ �∞ ((1). Equation (5.3) shows that %̃ is an infinitesimal deformation, i.e. l�1 %̃ = 0. Since

l
�
2 (%̃ , %̃) = 2l�2

(
5 (o3)mo1 ∧ mo3 , 6(o3)mo2 ∧ mo3

)
= 2 (−5 ′(o3)6(o3)+5 (o3)6

′(o3)) mo1 ∧ mo2 ∧ mo3 ,

one gets that for all g3 ∈ (1,
∫

T2 (g3)

(l�2 (%̃, %̃)) (do1 ∧ do2 ∧ do3) · do1 ∧ do2 = 2(2c)2 (−5 ′(g3)6(g3)+5 (g3)6
′(g3)) . (5.5)

Fix now the functions 5 , 6 ∈ �∞ ((1) such that −5 ′6+5 6′ ≠ 0, for instance set 5 (o) = sino and 6(o) = coso .
In this case, Equation (5.5) tells us that& := l�2 (%̃ , %̃) doesn’t satisfy Equation (5.4). So l�2 (%̃, %̃) is not l

�
1 -exact,

and [%̃] ∈ � 2(X• (T3), dΠ) is not killed by the Kuranishi map, i.e.

Kur( [%̃]) = [l�2 (%̃, %̃)] ≠ 0 ∈ � 3(X•(T3), dΠ).

This means that infinitesimal deformation %̃ of Π is obstructed (see Proposition 5.7).

6. Relating Obstructions to Poisson Structures and to Foliations

In the previous section §5, we considered infinitesimal deformations / of a regular Poisson structure Π,
and established some of their properties. Clearly, by the two forgetful maps in the diagram below, / induces
both an infinitesimal deformation of Π viewed as a Poisson structure (without constraints on the rank), and
an infinitesimal deformation of the foliation underlying Π. In this section, we relate the (un)obstructedness of
/ to that of these two infinitesimal deformations.

Regular Poisson structures

))❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙

tt✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐✐

Poisson structures Foliations

(6.1)

6.1. Obstructedness as a regular Poisson structure vs. obstructedness as a Poisson structure. In this
subsection, we consider the following problem. Say we are given a regular Poisson structure (",Π), a choice
of complement)" = )F ⊕ � and an infinitesimal deformation b ∈ X2

F
(") of Π.

• Is it possible that b is tangent to a path of Poisson structures deforming Π, but that there exists no
such path consisting of regular Poisson structures?

• That is, can b be obstructed in the deformation problem of Π as a regular Poisson structure, while it is
unobstructed when deforming Π just as a Poisson structure?

Assuming " is compact, this phenomenon cannot occur when Π has corank one: if ΠC is a path of Poisson
structures with Π0 = Π, then ΠC is also of corank one for small enough C . We will show that in higher corank
however, the answer is positive.
In §6.1.1 we show that when the extension W ∈ Ω

2(") of the leaf-wise symplectic form is closed, the
Kuranishi criterion (see §5.2) is not able to distinguish between the two kinds of obstructedness. Therefore in
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§6.1.2 we focus on the case where W is not closed, and using the Kuranishi criterion we exhibit examples in
corank 2 showing that the answer to the above questions is positive.

6.1.1. Comparing the obstructions. We first compare at the algebraic level the basic obstructions for extend-
ing an infinitesimal deformation of Π, either to a path of Poisson structures or to a path of regular Poisson
structures.

Lemma 6.1. Let (",Π) be a regular Poisson manifold, and fix a complement)" = )F ⊕� . If b ∈ X2
F
(") is an

infinitesimal deformation of Π, then [b, b]W is exact in (X•("), 3Π) if and only if [b, b](# is exact in (X•("), 3Π).

Proof. The two choices of complements T" = GrΠ ⊕ )" and T" = GrΠ ⊕ (� ⊕ ) ∗F ) give rise to !∞-

algebras
(
Ω

•(GrΠ) [1],<)"
1 ,<)"

2

)
and

(
Ω

•(GrΠ) [1],<�⊕) ∗F
1 ,<�⊕) ∗F

2 ,<�⊕) ∗F
3

)
, as described in Lemma B.1.

As proved in [12], these are related by a canonical !∞-isomorphism {5=}=≥1, with 51 = Id. Also using Lemma 3.1
and Proposition 3.8, we obtain a diagram

(
Ω

•(GrΠ) [1],<)"
1 ,<)"

2

) (
Ω

• (GrΠ) [1],<�⊕) ∗F
1 ,<�⊕) ∗F

2 ,<�⊕) ∗F
3

)

(X•(") [1], dΠ, [−,−](# ) (X•(") [1], {<�
:
})

�3

∧• (RΠ |) ∗" )∗ ∧• (RΠ |) ∗" )∗
,

where the vertical maps are strict !∞-isomorphisms and (X•(") [1], {<�
:
}) is the !∞-algebra corresponding

with the !∞ [1]-algebra (X•(") [2], {l�
:
}). By composition, at the bottom of the above diagram we obtain an

!∞-isomorphism from (X•(") [1], dΠ, [−,−](# ) to (X•(") [1], {<�
:
}), whose first component is the identity.

As a consequence, the class of [b, b](# in (X•("), 3Π) coincides with the class of <�
2 (b, b) = [b, b]W . This

proves the lemma. �

However, the obstruction for extending b to a path of regular Poisson structures is the class of [b, b]W in the
cohomology of the subcomplex (X•

F
("), 3Π) ⊂ (X•("), 3Π). Under an additional condition, [b, b]W is exact in

(X•
F
("), 3Π) if and only if it is exact in (X•("), 3Π), as we now show.

Lemma 6.2. Let (", Π) be a regular Poisson manifold, and choose a complement)" = )F ⊕� . If 3W = 0, then
the inclusion (X•

F
("), 3Π) ↩→ (X•("), 3Π) induces an injective map in cohomology.

Proof. We will use the bi-grading X• (") =
⊕

@,? ∈N X
(?,@) (") introduced in (3.14). While in general

3ΠX
(?,@) (") ⊂ X (?+1,@) (") ⊕ X (?+2,@−1) (") (cf. Lemma 3.16), we make the following

Claim: The assumption that W is closed ensures that 3ΠX
(?,@) (") ⊂ X (?+1,@) (").

Since 3Π (Γ()F )) ⊂ Γ(∧2)F ), this claim follows if we show that 3Π (Γ(�)) ⊂ Γ()F ⊗�). Since)F is involu-
tive, around any point there exists a local frame {.1, . . . , .; } for � consisting of infinitesimal automorphisms
of F . Notice that 3Π.8 = 0 for such generators .8 ∈ Γ(�), since

L.8l = A (L.8W) = A (3].8W + ].83W) = 0,

where we used that 3W = 0. Here l ∈ Γ(∧2) ∗F ) is the leafwise symplectic form and A : Ω•(") → Ω
• (F ) is

the restriction map. Consequently, for a local section
∑

8 58.8 of � we obtain

3Π

(
;∑

8=1

58.8

)
=

;∑

8=1

(3Π 58 ) ∧ .8 ∈ Γ()F ⊗ �).

This proves that 3Π (Γ(�)) ⊂ Γ()F ⊗ �), which confirms our claim that 3ΠX (?,@) (") ⊂ X (?+1,@) (").
We now prove the lemma. Assume that b ∈ X=

F
(") = X (=,0) (") ⊕ X (=−1,1) (") is exact, i.e. b = 3Πi for

some i ∈ X=−1("). We have to show that b has a primitive in X=−1
F

("). We decompose i = iF + irest in the
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direct sum

X
=−1(") =

(
X

(=−1,0) (") ⊕ X
(=−2,1) (")

)
⊕

(
⊕9>1X

(=−1− 9, 9) (")
)
.

Since b = 3ΠiF + 3Πirest, we have 3Πirest = b − 3ΠiF ∈ X=
F
("). But by the claim we just proved, we also

know that 3Πirest is contained in ⊕9>1X
(=− 9, 9) ("), so that

3Πirest ∈ X
=
F (") ∩

(
⊕9>1X

(=− 9, 9) (")
)
= {0}.

In conclusion, b = 3ΠiF , which shows that b has a primitive in X=−1
F

("). �

Combining Lemmas 6.1 and 6.2, we obtain the following result. It states that if W is closed, then the primary
obstructions for extending an infinitesimal deformation b of Π to a path of Poisson structures resp. a path of
regular Poisson structures are equivalent. So the Kuranishi criterion cannot distinguish obstructedness in the
regular Poisson deformation problem from obstructedness in the Poisson deformation problem.

Corollary 6.3. Let (",Π) be a regular Poisson manifold, and choose a complement )" = )F ⊕ � . Assume

moreover that 3W = 0. If b ∈ X2
F
(") is an infinitesimal deformation of Π, then [b, b]W is exact in

(
X•
F
("), 3Π

)

precisely when [b, b](# is exact in (X•("), 3Π).

Remark 6.4. The conclusion of Lemma 6.2 fails in general if W is not closed. Consider the regular Poisson
manifold

(
T
4,Π = (sin o4 + 2)mo1 ∧ mo2

)
. In this case, the leafwise symplectic form l is given by

l =
1

sin o4 + 2
3o1 ∧ 3o2.

There exists no closed 2-form on T4 extending l , since the leafwise variation of l (see [31, Def. 1.2.14])

E0Al =

[ (
− coso4

(sino4 + 2)2
3o1 ∧ 3o2

)
⊗ 3o4

]
∈ � 2 (F ;# ∗F )

is nonzero. Now consider the trivector field

, := coso4mo1 ∧ mo2 ∧ mo3 ∈ X
3
F
(T4).

Its Poisson cohomology class [, ] ∈ � 3
Π
(T4) is trivial since 3Π (mo3 ∧ mo4 ) = , . But, is not exact in the

complex
(
X•
F
(T4), 3Π

)
. Indeed, if it were exact then it would be of the form

3Π
(
512mo1 ∧ mo2 + 513mo1 ∧ mo3 + 514mo1 ∧ mo4 + 523mo2 ∧ mo3 + 524mo2 ∧ mo4

)

= (sin o4 + 2)

((
m513

mo1
+
m523

mo2

)
mo1 ∧ mo2 ∧ mo3 +

(
m514

mo1
+
m524

mo2

)
mo1 ∧ mo2 ∧ mo4

)
,

which would imply that

coso4 = (sin o4 + 2)

(
m513

mo1
+
m523

mo2

)
= mo1

(
(sin o4 + 2) 513

)
+ mo2

(
(sino4 + 2) 523

)
.

But then we reach a contradiction: defining T2 (g3, g4) to be the 2-subtorus obtained fixing the coordinates
o3, o4 to arbitrary constants g3, g4 ∈ (1, we get

4c2 cosg4 =

∫

T2 (g3,g4)

coso43o1 ∧ 3o2

=

∫

T2 (g3,g4)

(
mo1

(
(sino4 + 2) 513

)
+ mo2

(
(sin o4 + 2) 523

) )
3o1 ∧ 3o2 = 0

This shows that the inclusion (X•
F
("), 3Π) ↩→ (X•("), 3Π) is not injective in cohomology.
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6.1.2. Obstructed examples which are unobstructed as Poisson structures. By Corollary 6.3 and Remark 6.4, in
order to find a regular Poisson structure Π and an infinitesimal deformation of Π that is obstructed for the
regular Poisson deformation problem, but unobstructed for the Poisson deformation problem, we should look
at examples where the foliated symplectic form l is not tamed by a closed 2-form. That is why we will look
at examples where l has non-zero leafwise variation.

Example 6.5. Consider again the regular Poisson manifold
(
T
4,Π = (sin o4 + 2)mo1 ∧ mo2

)
, as in Remark 6.4

above. As a complement to the characteristic distribution, we take � = Span{mo3 , mo4 }, so that W ∈ Ω
2(T4) is

given by

W =
1

sin o4 + 2
3o1 ∧ 3o2.

Consider the infinitesimal deformation b := sin o4mo1 ∧ mo3 + mo2 ∧ mo4 ∈ X2
F
(T4) of Π. If we deform Π as a

Poisson structure, then b is unobstructed since it is tangent to the path of Poisson structures

ΠC := (sin o4 + 2)mo1 ∧ mo2 + C
(
sin o4mo1 ∧ mo3 + mo2 ∧ mo4

)
+ C2mo3 ∧ mo4 .

Notice that the pathΠC does not deformΠ as a regular Poisson structure. Indeed,∧2
ΠC = 4C2mo1∧mo2∧mo3∧mo4 ,

so that ΠC has rank 4 for C ≠ 0. In fact, we claim that b is not tangent to a path of rank 2 Poisson structures.
To see why, we compute

[b, b]W = −4
coso4

sino4 + 2
mo1 ∧ mo2 ∧ mo3 ,

which is not exact in (X•
F
("), 3Π). Indeed, if it were exact with primitive i ∈ X2

F
(T4), then we would have

that

, := coso4mo1 ∧ mo2 ∧ mo3 = 3Π

(
−
sin o4 + 2

4
i

)

is exact in (X•
F
("), 3Π), which violates Remark 6.4. So b is an infinitesimal deformation of Π, which is tangent

to a path of Poisson structures but not to a path of rank 2 Poisson structures deforming Π.

We present a family of examples that generalize Ex. 6.5.

Example 6.6. Consider the regular Poisson manifold
(
T
4,Π = ℎ(o3, o4)mo1 ∧ mo2

)
, where ℎ is nowhere-

vanishing. As a complement to the characteristic distribution, we take � = Span{mo3 , mo4 }. An element of
the form

b := 5 (o3, o4)mo1 ∧ mo3 + 6(o3, o4)mo2 ∧ mo4 ∈ X
2
F
(T4)

is an infinitesimal deformation of Π, i.e. [Π, b] = 0.
Claim: If the infinitesimal deformation b can be extended to a smooth path of rank-2 Poisson structures, then

6
m(5 /ℎ)

mo4
= 5

m(6/ℎ)

mo3
= 0. (6.2)

To prove the claim, we relate b to foliations as in Prop. 6.11 below. Recall from Prop. 4.5 that we have a strict
morphism of !∞ [1]-algebras i : (X•

F
(") [2], {l�

:
}) → (Ω•(F ;#F )[1], {v: }). We have

i (b) = −

(
3o1 ⊗

6

ℎ
mo4 − 3o2 ⊗

5

ℎ
mo3

)
,

and we compute

v2 (i (b), i (b)) = −23o1 ∧ 3o2 ⊗

(
6

ℎ

m(5 /ℎ)

mo4
mo3 −

5

ℎ

m(6/ℎ)

mo3
mo4

)
.

Notice that the two coefficients in the round bracket are functions of o3 and o4 only. In [27, §6.2] it was shown
that for all U ∈ Ω

1 (F ;�), we have
∫
T2 (g3,g4)

v1U = 0, where T2(g3, g4) denotes the 2-subtorus obtained fixing

the last two coordinates to arbitrary constants g3 ∈ (1 and g4 ∈ (1. Hence v2 (i (b), i (b)) is v1-exact only when
it vanishes identically. In other words, Kur[i (b)] = 0 iff Eq. (6.2) holds. By Prop. 6.11, this proves the claim.
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We now provide instances in which b can be extended to a smooth path of Poisson structures, albeit not of
constant rank 2. Notice that

[b, b](# = 2

(
5
m6

mo3
mo1 ∧ mo2 ∧ mo4 − 6

m5

mo4
mo1 ∧ mo2 ∧ mo3

)
.

We consider two cases.

a) Suppose 5 = 5 (o3) and 6 = 6(o4). Then we have [b, b](# = 0, so

Π + Cb

is a Poisson structure. Further Π + Cb has “square” −2C25 6 mo1 ∧ mo2 ∧ mo3 ∧ mo4 , so for C ≠ 0 it has
constant rank two only if 5 6 = 0 vanishes.

Notice that Eq. (6.2) boils down to 5 6 mℎ
mo4

= 5 6 mℎ
mo3

= 0. So, for instance, for any non-constant func-
tion ℎ(o3, o4) without zeros and 5 = 6 = 1, we see that the infinitesimal deformation b is unobstructed
in the realm of Poisson structures but is obstructed in the realm of regular Poisson structures.

b) Suppose 5 = 5 (o4), 6 = 6(o3), i.e. the opposite dependence than in case a). Set ℎ := 1
0 5 6 + � where

� ∈ R and 0 ∈ R \ {0} are constants (we assume that ℎ is nowhere vanishing). Then

ΠC := Π + Cb + C2-

is Poisson, for - := 0mo3 ∧ mo4 , since one checks easily that [b, - ](# = 0 and 2[Π, - ](# = −[b, b](# .
Further ΠC has “square” 2C2�0 mo1 ∧ mo2 ∧ mo3 ∧ mo4 , so for C ≠ 0 the Poisson structure ΠC has rank 2
only if � = 0.

Now Eq. (6.2) boils down to 6
m5

mo4
� = 5

m6

mo3
� = 0. So, for instance, for 5 = sin(o4), 6 = 1, 0 = 1

and � = 2 (so that ℎ = sin(o4) + 2 ), we see that the infinitesimal deformation b is unobstructed in the
realm of Poisson structures but obstructed in the realm of regular Poisson structures. This is exactly
Ex. 6.5.

Remark 6.7. For the regular Poisson manifold
(
T
4, mo1 ∧ mo2

)
, the leafwise symplectic form clearly admits

a closed extension W ∈ Ω
2 (T4). Therefore, because of Corollary 6.3, the Kuranishi criterium is not able to

establish if an infinitesimal deformation is obstructed in the realm of regular Poisson manifolds while being
unobstructed in the realm of Poisson manifolds. Hence we are led to modify this regular Poisson structure
multiplying it with a nowhere vanishing Casimir function ℎ, i.e. to consider Π = ℎ(o3, o4)mo1 ∧ mo2 : this is
what we do in Ex. 6.6.
Notice that if the leafwise symplectic form ℎ−1(o3, o4)3o1 ∧3o2 admits a closed extension W ∈ Ω

2(T4), then
ℎ has to be constant. To see this, for all pairs of points (g3, g4) and (g ′3, g

′
4) ∈ T

2, apply Stokes’ theorem to W on a
3-dimensional submanifold of the form T2 × % , where % ⊂ T2 is an arc joining (g3, g4) to (g ′3, g

′
4). Alternatively,

one can use the leafwise variation of ℎ−1(o3, o4)3o1 ∧ 3o2, which is given by
[
3o1 ∧ 3o2 ⊗

(
mℎ−1

mo3
3o3 +

mℎ−1

mo4
3o4

)]
∈ � 2 (F ;# ∗F ). (6.3)

If the leafwise symplectic form ℎ−1(o3, o4)3o1 ∧ 3o2 admits a closed extension, then its variation needs to be
zero. Since the foliation F is given by the fibers of T4 → (T2, o3, o4) , one has� 2 (F ;# ∗F ) � Ω

1(T2;� 2(T2)),
where the first copy of T2 is the base with coordinates (o3, o4) and the second one is the fiber with coor-
dinates (o1, o2). Hence, the leafwise variation (6.3) being zero implies that both (mℎ−1/mo3)3o1 ∧ 3o2 and
(mℎ−1/mo4)3o1 ∧ 3o2 are leafwise exact, so that necessarily ℎ is constant.

6.2. Relating obstructedness with the underlying foliation. We discuss, and illustrate with examples,
how obstructedness of a regular Poisson structure Π relates with its characteristic foliation F . The main tool
is the strict !∞ [1]-morphism i introduced in Prop. 4.5: if an infinitesimal deformation of Π is unobstructed,
then the corresponding infinitesimal deformation of F is also unobstructed (see Proposition 6.11 below).
We ask whether the converse holds:
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• Given an infinitesimal deformation / of Π such that i (/ ) is tangent to a path of foliations deforming
F , is / itself tangent to a path of regular Poisson structures?

• In other words, does the unobstructedness of i (/ ) imply the unobstructedness of /?

In §6.2.1 we present a few situations in which the infinitesimal deformation / is unobstructed. However, as we
show in §6.2.2, in general the answer to the above questions is negative, i.e. the converse of Proposition 6.11
does not hold. This means that the obstructedness of an infinitesimal deformation of Π is not “due” exclusively
to the obstructedness of the corresponding infinitesimal deformation of F . Finally, in §6.2.3 we present some
remarks about a related question, namely the stability of symplectic foliations.

Fix a rank 3 foliation F on a manifold" . We first recall some terminology, in analogy to §5.

Definition 6.8. A smooth deformation of the rank 3 foliation F is a smooth path FC in Fol 3 (") with F0 = F .

Upon choosing a complement � to the distribution )F , we can construct the !∞ [1]-algebra
(Ω• (F ;#F )[1], {v: }) introduced in Prop. 4.2, which governs the deformation problem of F . Being inter-
ested in small deformations of the foliation F , one can assume that all FC ’s in a smooth deformation of F
are transverse to � . Consequently, in view of Prop. 4.4, there is a unique smooth 1-parameter family [C , with
[0 = 0, of MC elements of (Ω•(F ;#F )[1], {v: }), such that )FC = Gr([C ). Differentiating the MC equation
for [C at C = 0, one gets that d∇ ¤[0 = 0. Additionally, it is easy to see that the 1-cocycle ¤[0 in (Ω•(F ;#F ), d∇)
coincides exactly with the infinitesimal deformation associated by Heitsch to the smooth deformation FC of
the foliation F (cf. [13, Def. 2.7 and Cor. 2.11]). This justifies the following definition.

Definition 6.9. An infinitesimal deformation of F is a 1-cocycle in the complex (Ω•(F ;#F ), d∇) .

So each smooth deformation gives rise, as its derivative at C = 0, to an infinitesimal deformation. The
converse is generally false: there may exist obstructed infinitesimal deformations, i.e. infinitesimal deformations
of F which do not arise from smooth deformations. This reflects the fact that the space of rank3 foliations may
fail to be smooth around F . The !∞ [1]-algebra (Ω• (F ;#F )[1], {v: }) controlling the deformation problem
of F gives a criterion for the existence of obstructions. Indeed, obstructions can be detected by means of the
Kuranishi map

Kur : � 1 (Ω•(F ;#F ), d∇) → � 2(Ω• (F ;#F ), d∇), [[] ↦→ [v2 ([, [)] . (6.4)

Proposition 6.10. Let [ be an infinitesimal deformation of F . If Kur[[] ≠ 0, then [ is obstructed.

From now on, let F be a foliation on " that comes from a regular Poisson structure Π ∈ X2(").
Recall that the !∞ [1]-algebra (X•

F
(") [2], {l�

:
}) governing the deformations of Π and the !∞ [1]-algebra

(Ω• (F ;#F )[1], {v: }) governing those of F are related by a strict !∞ [1]-morphism (see Prop. 4.5)

i : (X•
F
(") [2], {l�: }) → (Ω•(F ;#F )[1], {v: }). (6.5)

Via this morphism, one can detect obstructed infinitesimal deformations of the regular Poisson structure Π.

Proposition 6.11. Let / be an infinitesimal deformation of the regular Poisson structure Π, i.e. / ∈ X2
F
(") and

dΠ/ = 0. Then i (/ ) is an infinitesimal deformation of the characteristic foliation F , i.e. i (/ ) ∈ Ω
1(F ;#F )

and d∇i (/ ) = 0. Further,

• Kur[i (/ )] ≠ 0 =⇒ Kur[/ ] ≠ 0
• if i (/ ) is obstructed, then / is obstructed as well.

Proof. The first part follows immediately from i being a strict !∞ [1]-algebra morphism (Prop. 4.5) and the
consequent identity [i] ◦ Kur = Kur ◦ [i], where [i] denotes the map induced by i in cohomology.
To prove the last statement of the proposition, assume that / is an unobstructed infinitesimal deformation

of Π, which is tangent to a path of deformations ΠC . We can assume that the path ΠC comes from a smooth
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family of MC elements /C of (X•
F
(") [2], {l�

:
}), via ΠC = exp� (/C ). Then i (/C ) is a smooth family of MC

elements of (Ω•(F ;#F )[1], {v: }), and satisfies

d

dC

����
C=0

i (/C ) = i

(
d

dC

����
C=0

/C

)
= i (/ ).

Here in the first equality we used the linearity of i , and in the second that by Remark 2.7 we have

/ =
3

3C

����
C=0

ΠC =
3

3C

����
C=0

exp� (/C ) =
3

3C

����
C=0

/C .

This shows that, if / is unobstructed, then i (/ ) is unobstructed as well, finishing the proof.
We remark that, as one might expect,i (/ ) is tangent to the path of foliations underlying the regular Poisson

structures ΠC . Indeed the smooth family i (/C ) corresponds with the path of foliations Gr(i (/C )) = @(ΠC ).
Here we used Prop. 4.7, denoting by q : RegPoiss2: (") → Fol 2: (") the obvious map (see eq. 4.1). �

Remark 6.12. Proposition 6.11 sheds a new light on Example 5.8. In that example we constructed an ob-
structed infinitesimal deformation F for a regular Poisson structure Π on T3. Actually, one can check that
Kur[i (F)] ≠ 0 and so i (F) is an obstructed infinitesimal deformation of the characteristic foliation F of Π
on T3 (cf. Proposition 6.10). This and Proposition 6.11 gives another proof of the fact that Kur[F] ≠ 0 and so
the infinitesimal deformationF is obstructed.

6.2.1. Unobstructedness results. We present a few conditions guaranteeing that if an infinitesimal deformation
/ of a regular Poisson structure is such that the corresponding deformation of the foliation is unobstructed,
then / itself is unobstructed. As earlier, i denotes the strict !∞ [1]-morphism of equation (6.5).

Proposition 6.13. Let (",Π) be a compact regular Poisson manifold with 2-dimensional symplectic leaves. If

an infinitesimal deformation / ∈ X2
F
(") of Π is such that i (/ ) is unobstructed, then / itself is unobstructed.

In particular, if the deformation problem of the underlying foliation F is unobstructed, then also the deformation

problem of Π as a rank-2 Poisson structure is unobstructed.

Proof. Fix a complement � to )F and assume that / = /1 + /2 ∈ Γ(∧2)F ) ⊕ Γ()F ⊗ �) is an infinitesimal
deformation of Π so that i (/ ) is unobstructed. As before, denote by W ∈ Ω

2(") the extension of the leafwise
symplectic form l by zero on � , i.e. W |) F×) F = l and ].W = 0 ∀. ∈ Γ(�).

By assumption, the infinitesimal deformation i (/2) of F is tangent to a path of foliations)FC = Graph(ΦC ),
for some ΦC ∈ Γ() ∗F ⊗�). For small enough C , since" is compact, we have that W is still non-degenerate on
the leaves of FC , and it is automatically leafwise closed for dimension reasons. So we obtain Poisson structures
ΠC := F

−W
C , defined by gauge transforming FC by −W . We also have a foliated two-form U := ∧2l♭ (/1) which

is automatically leafwise closed; denote by Ũ any extension of U . Gauge transforming ΠC with CŨ for small
enough C , we obtain a path of Poisson structures

Π
CŨ
C = F

−W+CŨ
C .

We claim that this path is a prolongation of the infinitesimal deformation /1 + /2.
First, since the Dirac structure F

−W
C given by

F
−W
C =

{
E + ΦC (E) + V−W♭ (E + ΦC (E)) : E ∈ )F , V ∈ )F 0

C

}

corresponds with the Poisson structure ΠC , we have that

−Π
♯
C ◦ W

♭ ◦ (Id) F + ΦC ) = Id) F + ΦC .

Notice that the L.H.S. is just −Π♯
C ◦ W

♭ |) F . Differentiating at time C = 0, we get

−
3

3C

����
C=0

Π
♯
C ◦ W

♭
=

3

3C

����
C=0

ΦC .
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As we know that 3
3C
|C=0ΠC lies in X2

F
(") by Lemma 1.7, this proves that 3

3C
|C=0ΠC ∈ Γ()F ⊗ �) and that

i

(
3

3C

����
C=0

ΠC

)
=

3

3C

����
C=0

ΦC = i (/2).

Hence, 3
3C
|C=0ΠC = /2. Next, we have by definition that

(
Π
CŨ
C

)♯
◦

(
Id + CŨ♭ ◦ Π

♯
C

)
= Π

♯
C .

Again differentiating at time C = 0, we obtain

3

3C

����
C=0

(
Π
CŨ
C

)♯
=

3

3C

����
C=0

Π
♯
C − Π

♯
0 ◦

(
∧2l♭(/1)

)♭
◦ Π

♯
0

=
3

3C

����
C=0

Π
♯
C +

(
∧2

Π
♯
0

(
∧2l♭(/1)

))♯

= /
♯
2 + /

♯
1 .

This confirms that ΠCŨ
C is a prolongation of the infinitesimal deformation /1 + /2, so the proof is finished. �

We present a simple example for the construction in Proposition 6.13.

Example 6.14. On " = R3, take the rank-2 Poisson structure Π = mG ∧ m~ and the infinitesimal deformation
/ := /2 := mG∧mI , and extend the leaf-wise symplectic form toW := 3G∧3~ ∈ Ω

2("). The imagei (/ ) = 3~⊗mI
can be prolonged to the path of MC elements {C3~ ⊗ mI}, corresponding to the foliations FC = Gr(C3~ ⊗ mI) =

Span{mG , m~ + C mI}. Then F
−W
C = Gr(ΠC ) for ΠC := mG ∧ (m~ + C mI), which indeed constitutes a path of rank-2

Poisson structure which prolongs / .
Notice that, even though " is not compact, W ∈ Ω

2(") happens to be non-degenerate on the leaves of FC ,
for all C ∈ R. A compact example can be obtained replacing R3 by the 3-torus R3/Z3.

The following is a variation of Proposition 6.13 in which leaves are allowed to have arbitrary dimension,
but the hypotheses are more stringent.

Proposition 6.15. Let (",Π) be a compact regular Poisson manifold. Consider an infinitesimal deformation

/ = /1 + /2 ∈ X2
F
(") of Π. Assume that i (/ ) is unobstructed, that W is closed, and that the leafwise two-form

∧2l♭(/1) ∈ Ω
2
2;>B43

(F ) extends to a closed 2-form on" . Then / itself is unobstructed.

Proof. We first argue that ∧2l♭ (/1) is indeed leafwise closed. As shown in the proof of Lemma 6.2, the as-
sumption that 3W = 0 ensures that 3ΠX (?,@) (") ⊂ X (?+1,@) ("). So if /1 + /2 ∈ Γ(∧2)F ) ⊕ Γ()F ⊗ �) is an
infinitesimal deformation of Π, then

0 = 3Π/1 + 3Π/2 ∈ Γ(∧3)F ) ⊕ Γ(∧2)F ⊗ �),

implying in particular that 3Π/1 = 0. As a consequence, ∧2l♭ (/1) is leafwise closed. The proof of Prop. 6.13

shows that the path of bivector fields F −W+CŨ
C is a prolongation of the infinitesimal deformation / , for any

extension Ũ of ∧2l♭(/1). By assumption we can choose Ũ to be closed. The form −W + CŨ is closed for every

C , so it restricts to a closed foliated form on FC , showing that F
−W+CŨ
C is Poisson. �

Remark 6.16. Let (",Π) be a compact regular Poisson manifold. Take an infinitesimal deformation/ ∈ X2
F
(")

of Π such that i (/ ) is unobstructed. Then / can be prolonged to a smooth path of regular bivector fields (not

necessarily Poisson), each of which spans an involutive distribution. Indeed, such a path is provided by F −W+CŨ
C

as in the proof of Prop. 6.13.

We now show that all infinitesimal deformations of the regular Poisson structure Π are unobstructed if the
underlying foliation is infinitesimally rigid.
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Proposition 6.17. Let (",Π) be a compact regular Poisson manifold with characteristic distribution)F . Then

every infinitesimal deformation / ∈ X2
F
(") of Π such that [i (/ )] = 0 ∈ � 1 (F ;#F ) is unobstructed. In

particular, if � 1(F ;#F ) = 0, then the deformation problem of Π is unobstructed.

Proof. Fix a complement� to)F , and let / = /1+/2 ∈ Γ(∧2)F )⊕Γ()F ⊗�) be an infinitesimal deformation
of Π satisfying

i (/1 + /2) = i (/2) = 3∇.

for some . ∈ Γ(�). By Remark 5.6 and Prop. 5.3, the infinitesimal deformation / is unobstructed as soon as
we find a representative /̃ of the Poisson cohomology class [/ ] ∈ � 2

Π
(") satisfying /̃ ∈ Γ(∧2)F ). We have

i (/2−3Π. ) = 3∇. − 3∇(i (. )) = 3∇. − 3∇. = 0.

So we can write /1 + /2 = (/1 + /2−3Π. )+3Π. := /̃+3Π. , where /̃ ∈ Γ(∧2)F ). This finishes the proof. �

Remark 6.18. A restatement of the proof of Prop. 6.17 is as follows. The short exact sequence (of cochain
complexes) given in Remark 4.6 induces a long exact sequence in cohomology. The assumption that [i (/ )] = 0
in� 1(F ;#F ) implies that [/ ] ∈ � 2 (X•

F
(")) is represented by some cocycle, lying inX2(F ). We can work

with, instead of / , by Remark 5.6. Now, is unobstructed by Prop. 5.3.

The following example is an illustration of the proposition above.

Example 6.19 (All infinitesimal deformations are unobstructed). Consider the manifold (1 ×(2, and letk de-
note the coordinate on (1. Let Π be the Poisson structure Π on (1×(2 for which the symplectic leaves are given
by copies {k }×(2 endowed with the standard symplectic structure l(2 on (

2. Since the characteristic foliation
F is a fibration defined by the closed one-form 3k , we have � 1 (F ;#F ) � � 1 (F ) � �∞

(
(1, � 1 ((2)

)
= 0. So

the above proposition ensures that the deformation problem of Π is unobstructed. We double-check that this
is indeed the case.
Since any Poisson structure close enough to Π is also regular of corank one, it is enough to show that any

infinitesimal deformation of Π is tangent to a path of Poisson structures. First notice that, since Π is induced
by a cosymplectic structure and � 1 (F ) = 0, we have an isomorphism [31, Thm. 3.2.17]

∧2
Π
♯ : � 2(F ) → � 2

Π
((1 × (2) : [5 (k )l(2 ] ↦→ [5 (k )Π] . (6.6)

By Remark 5.6, we only need to check that infinitesimal deformations of the form 5 (k )Π are unobstructed.
This is clearly the case, since a prolongation is given by the path Π + C 5 (k )Π = (1+ C 5 (k ))Π for small enough
C . Note indeed that this path consists of Poisson structures since 1 + C 5 (k ) is a Casimir of Π for each value of
C . This confirms that the deformation problem of Π is unobstructed.

6.2.2. Obstructed deformations with unobstructed underlying foliations. In Proposition 6.11 we saw that given
an infinitesimal deformation / of a regular Poisson structure, if i (/ ) is obstructed then / also is. One can
wonder if all obstructed infinitesimal deformations / of a regular Poisson structure arise in this way, i.e.
whether the obstructedness of / is “due” exclusively to the obstructedness of the corresponding infinitesimal
deformation of the underlying foliation. We display some examples, showing that the answer is negative.
Even more, in Example 6.23 we display a regular Poisson structure Π such that all infinitesimal deformations
of the characteristic foliation are unobstructed, whereas the deformation problem of Π is obstructed.
The examples concern corank-one Poisson structures of cosymplectic type on compact manifolds of the

form (1×# , and we first prove some statements about obstructedness in this setting. Recall from Remark 3.19
that in the corank-one case, the usual dgLa (X•((1 × # ) [1], 3Π, [−,−]SN) can be used to study deformations
of the regular Poisson structure Π.

Lemma 6.20. Let (#,l) be a compact symplectic manifold. Consider the manifold (1 × # with cosymplectic

structure (3k, l), where k denotes the coordinate on (1. Correspondingly, there is a corank-one Poisson structure

Π on (1 ×# whose symplectic leaves are ({k } × #,l) and for which mk is a transverse Poisson vector field. Take

� := Span{mk } as a complement to the characteristic distribution )F = ker(3k ).
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(1) Denote by KurF the Kuranishi map of the !∞ [1]-algebra (Ω• (F ;�) [1], {v: }) governing the deformations

of F . Then KurF is trivial iff ∧ : � 1 (# ) ×� 1 (# ) → � 2 (# ) is trivial.

(2) If � 1 (# ) is one-dimensional, then the deformation problem of F is unobstructed.

(3) Denote by KurΠ the Kuranishi map of the dgLa (X• ((1×# ) [1], 3Π, [−,−]SN) governing the deformations

of Π. Then KurΠ is trivial iff both ∧ : � 1 (# ) × � 1 (# ) → � 2 (# ) and ∧ : � 1 (# ) × � 2 (# ) → � 3(# )

are trivial.

Proof. Throughout the proof, we will use that � • (F ;�) � � •(F ) ⊗ Rmk � �∞ ((1, � • (# )) ⊗ Rmk , where the
first isomorphism holds since mk provides a trivialization of� for which the Bott connection is trivial.

(1) Fix a basis {[U1], . . . , [U: ]} of � 1(# ), so that

� 1 (F ;�) =

{[
:∑

8=1

58 (k )U8 ⊗ mk

]
: 58 ∈ �∞ ((1)

}
.

Looking at Prop. 4.2, we see that the Kuranishi map KurF is given by the formula

KurF

[
:∑

8=1

58 (k )U8 ⊗ mk

]
=

[
v2

(
:∑

8=1

58 (k )U8 ⊗ mk ,

:∑

8=1

58 (k )U8 ⊗ mk

)]

= −

[
:∑

8, 9=1

(5 ′8 (k ) 59 (k ) − 58 (k ) 5
′
9 (k ))U8 ∧ U 9 ⊗ mk

]

Consequently, if ∧ : � 1(# ) ×� 1(# ) → � 2(# ) is trivial, then also KurF is trivial. Conversely, assume
that there exist 8, 9 ∈ {1, . . . , :} such that U8 ∧ U 9 is not exact. Fix two functions 58 , 59 ∈ �∞ ((1) such
that 5 ′8 (k ) 59 (k )− 58 (k ) 5

′
9 (k ) is not identically zero. Then KurF [58 (k )U8 ⊗ mk + 59 (k )U 9 ⊗ mk ] is nonzero.

We remark that using the isomorphism � • (F ;�) � �∞ ((1, � •(# )), the Kuranishi map simply reads
[0] ↦→ −2[mk0 ∧ 0].

(2) Fixing a generator [U] of � 1(# ), we have

� 1 (F ,�) =
{
[5 (k )U ⊗ mk ] : 5 ∈ �∞ ((1)

}
.

We first check that an infinitesimal deformation of the form 5 (k )U ⊗ mk is unobstructed. If 5 ≡ 0,
there is nothing to prove, so assume that 5 is not identically zero. Notice that

Graph(5 (k )U ⊗ mk ) = {E + 5 (k )U (E)mk : E ∈ )F } = Ker(5 (k )U − 3k ). (6.7)

Consider the path of one-forms VC := (1 − C)3k + C 5 (k )U. They all give rise to a foliation on (1 × #

since VC is nowhere zero and

VC ∧ 3VC = ((1 − C)3k + C 5 (k )U) ∧ C 5 ′(k )3k ∧ U = 0.

The path Ker(VC ) is a prolongation of 5 (k )U ⊗ mk since Ker(V0) = Ker(3k ) = )F and

Ker

(
3

3C

����
C=0

VC

)
= Ker(5 (k )U − 3k ) = Graph(5 (k )U ⊗ mk ),

using (6.7) in the last equality. In general, an arbitrary infinitesimal deformation of F is of the form
5 (k )U ⊗ mk + 3∇. for some . ∈ Γ(�). Denote by (iC ) the flow of . , which is globally defined
because (1 × # is compact. As a consequence of [28, Thm. 2.6], we know that the path of involutive
distributions (iC )∗()F ) is a prolongation of the second summand 3∇. . By what we showed above,
there exists a prolongation )FC of the first summand 5 (k )U ⊗ mk . Then (iC )∗()FC ) is a prolongation
of 5 (k )U ⊗ mk + 3∇. , since

3

3C

����
0

(iC )∗()FC ) =
3

3C

����
0

(iC )∗()F ) +
3

3C

����
0

)FC = Graph(3∇. + 5 (k )U ⊗ mk ).
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(3) Because the Poisson structure Π is induced by a cosymplectic structure, we have short exact sequences
in cohomology [31, Thm. 3.2.17]

0 → � • (F )
∧•

Π
♯

−→ � •
Π
((1 × # ) → � •−1(F ) → 0.

Consequently, choosing bases {[U1], . . . , [U: ]} of �
1(# ) and {[V1], . . . , [V; ]} for �

2 (# ), we get

� 2
Π
((1 × # ) =

{[
;∑

8=1

58 (k ) ∧
2
Π
♯ (V8 )

]
: 58 ∈ �∞ ((1)

}
⊕

{[
:∑

9=1

6 9 (k )Π
♯ (U 9 ) ∧ mk

]
: 6 9 ∈ �∞((1)

}
.

As a result, the Kuranishi map KurΠ is given by

KurΠ

[
;∑

8=1

58 (k ) ∧
2
Π
♯ (V8) +

:∑

9=1

6 9 (k )Π
♯ (U 9 ) ∧ mk

]

=

[∑

8, 9

58 59

[
∧2

Π
♯ (V8 ),∧

2
Π
♯ (V 9 )

]
(#

+ 2
∑

8, 9

(
6 9 58

[
∧2

Π
♯ (V8),Π

♯ (U 9 )
]
(#

∧ mk + 6 9 5
′
8 ∧3

Π
♯ (U 9 ∧ V8 )

)

+
∑

8, 9

(686
′
9 − 6′86 9 ) ∧

2
Π
♯ (U8 ∧ U 9 ) ∧ mk

]

=

[∑

8, 9

58 59 ∧
3
Π
♯ ( [V8 , V 9 ]Π) + 2

∑

8, 9

(
6 9 58 ∧

2
Π
♯ ( [V8, U 9 ]Π) ∧ mk + 6 9 5

′
8 ∧3

Π
♯ (U 9 ∧ V8 )

)

+
∑

8, 9

(686
′
9 − 6′86 9 ) ∧

2
Π
♯ (U8 ∧ U 9 ) ∧ mk

]
. (6.8)

Here [·, ·]Π denotes the Koszul bracket [27], which is defined by the rules

[[, b]Π = (−1) |[ |+1
(
LΠ ([ ∧ b) − (LΠ[) ∧ b − (−1) |[ |[ ∧ LΠb

)
,

LΠ = []Π, 3] = ]Π ◦ 3 − 3 ◦ ]Π,

and we used [27, Lemma 2.11], which implies that ∧•
Π
♯ intertwines the Koszul bracket and the

Schouten bracket. It is clear that the Koszul bracket of closed forms is exact, and therefore the sum-
mands in (6.8) involving [·, ·]Π are trivial in Poisson cohomology. If ∧ : � 1(# ) × � 1 (# ) → � 2(# )

and ∧ : � 1(# ) × � 2 (# ) → � 3(# ) are trivial, then also the remaining summands in (6.8) are zero in
cohomology. Conversely, if either ∧ : � 1 (# ) ×� 1 (# ) → � 2 (# ) or ∧ : � 1 (# ) ×� 2 (# ) → � 3 (# ) is
not trivial, then (6.8) can be arranged to be nonzero in cohomology since∧•

Π
♯ : � •(F ) → � •

Π
((1×# )

is injective. This finishes the proof.

�

The next example features a regular Poisson structure Π with obstructed infinitesimal deformations that
project to unobstructed infinitesimal deformations of the foliation F under the strict !∞ [1]-morphism (6.5).
This shows that Prop. 6.11 does not cover all obstructed infinitesimal deformations of the regular Poisson
structure. Lemma 6.20 is not used in this example, but it will be needed for a variation just below.

Example 6.21 (An obstructed deformation with unobstructed deformation of the foliation). Consider (1×T4

with coordinates (k, o1, o2, o3, o4) and corank-one Poisson structure Π given by Π = mo1 ∧ mo2 + mo3 ∧ mo4 . As a
complement to the characteristic distribution )F , we take � = Span{mk }. We claim that any bivector field of
the form

b := 5 (k )mo1 ∧ mo2 + mo3 ∧ mk (6.9)

with 5 (k ) non-constant is an obstructed infinitesimal deformation of Π that projects to an unobstructed infin-
itesimal deformation of F . Denoting by i the strict !∞ [1]-morphism (6.5), one checks that i (b) = 3o4 ⊗ mk .
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• We first look at the case where 5 = 2 is constant. Then the path ΠC given by

ΠC = (1 + 2C)mo1 ∧ mo2 + mo3 ∧ (mo4 + C mk )

is a path of Poisson structures with the desired velocity (6.9) at time zero. Since

∧2
ΠC = 2(1 + 2C)mo1 ∧ mo2 ∧ mo3 ∧ mo4 + 2C (1 + 2C)mo1 ∧ mo2 ∧ mo3 ∧ mk ,

it follows that this path consists of corank-one Poisson structures for small enough C ∈ (−n, n). More-
over, the path (ΠC )C ∈(−n,n) gives rise to a path of foliations

imΠ
♯
C = Span{mo1 , mo2 , mo3 , mo4 + C mk } = Graph(C3o4 ⊗ mk )

that prolongs the infinitesimal deformation 3o4 ⊗ mk . So if 5 is constant, this example confirms
Proposition 6.11, showing that unobstructedness of b ∈ X2

F
((1 × T4) implies unobstructedness of

i (b) ∈ Ω
1(F ;�).

• Now assume that 5 is not constant. We show that the bivector field b cannot be realized as the velocity
at time 0 of a path of Poisson structures ΠC with Π0 = Π. To do so, we compute the Schouten bracket

[5 (k )mo1 ∧ mo2 + mo3 ∧ mk , 5 (k )mo1 ∧ mo2 + mo3 ∧ mk ](# = 25 ′(k )mo1 ∧ mo2 ∧ mo3 , (6.10)

and by the Kuranishi criteron, it suffices to show that this trivector field defines a non-trivial class in
� 3
Π
((1 × T4). Since the Poisson structure Π is induced by the cosymplectic structure (3k, 3o1 ∧ 3o2 +

3o3 ∧ 3o4), it gives an injective map in cohomology

∧3
Π
♯ : � 3(F ) → � 3

Π
((1 × T4),

which follows from [31, Proposition 1.4.7] and [31, Theorem 3.2.17]. Since the class of the trivector
field (6.10) is the image under this map of the class

[−25 ′(k )3o1 ∧ 3o2 ∧ 3o4] ∈ � 3 (F ),

it suffices to note that the latter class is non-trivial. This is indeed the case, for if it was trivial then the
restriction of that 3-form to each level set T4 ofk would be exact, which would imply that 5 ′(k ) ≡ 0.
So the infinitesimal deformation b of Π is obstructed. However, the infinitesimal deformation i (b) =

3o4 ⊗ mk of F is unobstructed: it is tangent to the path ΦC = C3o4 ⊗ mk ∈ Ω
1(F ;�), which indeed

deforms F because Graph(ΦC ) = Span{mo1 , mo2 , mo3 , mo4 + C mk } is involutive.

In the example above, the foliation F still has obstructed infinitesimal deformations, because of Lemma 6.20
(1). We now alter this example by changing the fiber suitably, which yields an example of a regular Poisson
structure Π with characteristic foliation F such that all infinitesimal deformations of F are unobstructed,
whereas the deformation problem of Π is obstructed. Keeping in mind Lemma 6.20, we want the fiber to
possess the following properties.

Lemma 6.22. There exists a compact symplectic manifold (#,l) that satisfies the following:

• � 1 (# ) is one-dimensional, with generator [U].

• There exists a closed 2-form V ∈ Ω
2(# ) such that U∧V is not exact. That is, themap∧ : � 1(# )×� 2(# ) →

� 3 (# ) is not trivial.

Proof. A theorem by Gompf [11] ensures that every finitely presented group arises as the fundamental group
of a compact symplectic 4-manifold. In particular, there exists a compact symplectic manifold (",l" ) such
that c1 (") = Z and therefore � 1(") � Hom (c1("),R) � R. Fix a generator [U] ∈ � 1 (").
Define # := " ×(2 and endow it with the product symplectic form ?∗1l" +?∗2l(2 . By the Künneth formula,

we have � 1(" × (2) = R[?∗1U] and the closed 2-form ?∗2l(2 is such that ?∗1U ∧ ?∗2l(2 is not exact. �
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Example 6.23 (An obstructed deformation with unobstructed foliation). Let (#,l) be a compact symplectic
manifold as in Lemma 6.22. We consider the manifold (1×# with cosymplectic structure (3k, l), wherek de-
notes the coordinate on (1. Correspondingly, there is a Poisson structure Π on (1×# whose symplectic leaves
are ({k } × #,l) and for which mk is a transverse Poisson vector field. As a complement to the characteristic
distribution )F , we take� := Span(mk ).
Lemma 6.20 (2) implies that the deformation problem of the underlying foliation F is unobstructed. But the

deformation problem of the corank-one Poisson structure Π is obstructed, by Lemma 6.20 (3).

Implicitly, we made sure that the dimension of the fiber # of (1 × # is at least 4, by imposing the second
condition in Lemma 6.22. This was indeed necessary in order to obtain an example with the desired properties,
because of Proposition 6.13.

6.2.3. Stability of symplectic foliations. Various kinds of stability questions in Poisson geometry have been
addressed in the literature, for instance, in [3] and [5]. Here we mention the stability question for symplectic
foliations: fix a regular Poisson structure (", Π), i.e. a symplectic foliation (F , l). The stability question
reads: does any foliation F ′ nearby F carry a leaf-wise symplectic structure? From a geometric perspective it
is clear that stability holds in each of the following cases:

• if l extends to a closed 2-form Ω on" , because then one can pull back Ω to the leaves of F ′

• if A0=: (F ) = 2, since one can proceed as above with any extension of l .

The smooth 1-parameter version of the question reads: for any smooth family of foliations {FC } with F0 = F ,

does there exist a smooth family of leaf-wise symplectic structures lC on FC with l0 = l , for C lying in some open

interval around zero?

If the answer is positive, then a surjectivity statement for unobstructed infinitesimal deformations holds,
namely: the map i : X•

F
(") [2] → Ω

•(F ;#F )[1] of equation (6.5) induces a map of cocycles

/ 0(X•
F (") [2]) → / 0(Ω•(F ;#F )[1]) (6.11)

with the property that every unobstructed cocyleU on the r.h.s. has an unobstructed preimage. This surjectivity
statement is related to the unobstructedness of infinitesimal deformationswe addressed in §6.2.1, but it features
a more flexible behaviour. Indeed, given an unobstructed cocycle on the codomain of the map (6.11), the
surjectivity statement is the existence of an unobstructed preimage, while in §6.2.1 we provided conditions
under which all preimages are unobstructed.

Appendix A. Courant Algebroids and Dirac Structures

We review some background material concerning Courant algebroids and Dirac structures. The latter were
introduced by Courant in [2].

Definition A.1. A Courant algebroid consists of a vector bundle � → " equipped with a non-degenerate
symmetric pairing 〈〈−,−〉〉 : � ⊗ � → R, a bilinear bracket [[−,−]] : Γ(�) × Γ(�) → Γ(�) called the Dorfman

bracket, and a VBmorphism d : � → " over id" called the anchor map, satisfying the compatibility conditions:

[[4, [[4 ′, 4 ′′]]]] = [[[[4, 4 ′]], 4 ′′]] + [[4 ′, [[4, 4 ′′]]]],

〈〈[[4, 4 ′]], 4 ′′〉〉 = 〈〈4, [[4 ′, 4 ′′]]〉〉,

d (4)〈〈4 ′, 4 ′〉〉 = 2〈〈[[4, 4 ′]], 4 ′〉〉,

for any 4, 4 ′, 4 ′′ ∈ Γ(�). Consequently, the Dorfman bracket and the anchor are related by the Leibniz rule

[[4, 5 4 ′]] = (d (4) 5 )4 ′ + 5 [[4, 4 ′]],

for any 4, 4 ′ ∈ Γ(�) and 5 ∈ �∞ ("). See, e.g., [25] for alternative descriptions of Courant algebroids.
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Example A.2. The generalized tangent bundle T" := )" ⊕ ) ∗" is the prototypical example of a Courant
algebroid. It is equipped with the pairing 〈〈−,−〉〉, Dorfman bracket [[−,−]] and anchor d , which are defined
on sections - + U,. + V ∈ Γ(T") as follows:

〈〈- + U,. + V〉〉 = U (. ) + V (- ), d (- + U) = -, [[- + U,. + V]] = [-,. ] + L- V − ].dU.

Definition A.3. Given a Courant algebroid �, a subbundle ! ⊂ � is called an almost Dirac structure if ! = !⊥,
where !⊥ ⊂ � denotes the orthogonal of ! w.r.t. the pairing 〈〈−,−〉〉. A Dirac structure is an almost Dirac
structure ! ⊂ � that is additionally involutive w.r.t. the Dorfman bracket [[−,−]], i.e. [[Γ(!), Γ(!)]] ⊂ Γ(!).

Remark A.4. For each almost Dirac structure ! ⊂ �, its Courant tensor Υ! ∈ Γ(∧3!∗) is defined by

Υ! (b1, b2, b3) = 〈〈b1, [[b2, b3]]〉〉,

for all b1, b2, b3 ∈ Γ(!). It is easy to see that ! is Dirac if and only if Υ! = 0.

Example A.5. We show some special classes of (almost) Dirac structures for the generalized tangent bundle.

• 2-forms on" correspondwith almost Dirac structures that are transverse to) ∗" , via the identification

Ω
2(")

∼
−→ {L ⊂ T" almost Dirac structure | L ⋔ ) ∗"},

l ↦−→ Gr(l) := {- + ]-l | - ∈ )"}.

Moreover, l ∈ Ω
2(") is closed if and only if Gr(l) ⊂ T" is Dirac.

• Bivector fields4 on" correspond with almost Dirac structures that are transverse to )" as follows:

X
2(")

∼
−→ {L ⊂ T" almost Dirac structure | L ⋔ )"},

/ ↦−→ Gr(/ ) := {]U/ + U | U ∈ ) ∗"}.

Moreover, / ∈ X2(") is Poisson if and only if Gr(/ ) ⊂ T" is Dirac.
• Distributions on" correspond with almost Dirac structures L ⊂ T" s. t. L = pr)" L ⊕ pr) ∗" L,

{distributions on"}
∼

−→ {L ⊂ T" almost Dirac structure | L = pr)" L ⊕ pr) ∗" L},

� ↦−→ � ⊕ �0.

Moreover, � is involutive if and only if � ⊕ �0 ⊂ T" is Dirac.

Remark A.6. Let ! ⊂ � be an almost Dirac structure, and assume that ' is a complementary subbundle of �.
Using the projection pr! with kernel ', one can restrict the Dorfman bracket [[−,−]] to an almost Lie bracket
pr! ◦[[−,−]] on Γ(!). Along with the restriction of the anchor map d to !, one obtains an almost Lie algebroid
structure (d |!, pr! ◦[[−,−]]) on !. The latter allows us to further construct:

• a differential d! on Ω
•(!) :=Γ(∧•!∗), i.e. the degree 1 graded algebra derivation d! of Ω•(!) such that

d! 5 (b) = d (b) 5 , d![ (b, Z ) = Ld (b) ]Z[ − Ld (Z )]b[ − ]pr! [[b,Z ]][,

for all 5 ∈ �∞ (") = Ω
0(!), [ ∈ Γ(!∗) = Ω

1(!), and b, Z ∈ Γ(!).
• an almost Gerstenhaber bracket [−,−]! on Γ(∧•!), i.e. the degree 0 graded almost Lie bracket on

Γ(∧•!) [1] determined by

[b, 5 ]! = d (b) 5 , [b, Z ]! = pr! [[b, Z ]], [%,& ∧ ']! = [%,&]! ∧ ' + (−) |& | ( |% |−1)& ∧ [%, ']!,

for all 5 ∈ �∞ ("), b, Z ∈ Γ(!) and homogeneous %,&, ' ∈ Γ(∧•!).

If ! is Dirac, then it becomes a Lie algebroid (independent of '). In that case, d! is an honest differential, i.e.
d2! = 0, and [−,−]! satisfies the graded Jacobi identity.

4If / is a non-degenerate bivector field and l the corresponding non-degenerate 2-form, determined by / ♯ = −(l♭ )−1, then the
graphs satisfy Gr(/ ) = Gr(−l) .
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Appendix B. Deformation Theory of Dirac Structures

We will briefly review the classical constructions and results from deformation theory of Dirac structures
that are relevant for the main goal of this paper, following [21] and [8]. The relevant algebraic structure here
is the one of !∞-algebras [20], which contain differential graded Lie algebras (dgLa’s) as special cases. We will
mostly work with the equivalent notion of !∞ [1]-algebra (see for instance [7, §2]), in which all the structure
maps are graded symmetric and of degree 1.
Let � → " be a Courant algebroid and� ⊂ � be a Dirac structure. Upon choosing an almost Dirac structure

complementary to �, the graded vector space Ω
•(�) [2] becomes endowed with !∞ [1]-algebra structure, as

stated in Lemma B.1 below.
We first introduce some notation. Let� → " be a vector bundle. For any U ∈ Ω

: (�) := Γ(∧:�∗), we define
the VB morphism U♯ : � → ∧:−1�∗ by setting

(U♯b1) (b2, . . . b: ) = U (b1, . . . , b:),

for all G ∈ " and b1, . . . , b: ∈ �G . Clearly, if : = 0, then U♯ = 0. Given U1 ∈ Ω
:1 (�), . . . , U= ∈ Ω

:= (�), one can

define the VB morphism U
♯
1 ∧ . . . ∧ U

♯
= : ∧=� → ∧:1+...+:=−=�∗ so that

(U
♯
1 ∧ . . . ∧ U

♯
=) (b1 ∧ . . . ∧ b=) =

∑

f ∈(=

(−)fU
♯
1 (bf (1) ) ∧ . . . ∧ U

♯
= (bf (=) ),

for all G ∈ " and b1, . . . , b= ∈ �G . Further, for any U1 ∈ Ω
:1 (�) and U2 ∈ Ω

:2 (�), we define the VB morphisms

U
♯
1 ∧ U2, U1 ∧ U

♯
2 : � → ∧:1+:2−1�∗ by setting

(U
♯
1 ∧ U2)b = (U

♯
1b) ∧ U2 and (U1 ∧ U

♯
2 )b = U1 ∧ (U

♯
2b),

for any b ∈ �. Consequently, for all homogeneous U ∈ Ω
•(�) and V ∈ Ω

•(�), the following identity holds:

(U ∧ V)♯ = U♯ ∧ V + (−) |U |U ∧ V♯ .

Using these morphisms along with the notation introduced in Remarks A.4 and A.6, one can describe the
induced !∞ [1]-algebra structure on Ω

•(�) [2] as follows. The following is an adaptation of [8, Lemma 2.6]
(see also [26, Proposition 3.11]), in which we take the negative5 of the binary bracket appearing there.

Lemma B.1. Given a Courant algebroid � → " , let � = �⊕� be a splitting where� is a Dirac structure and � is

a complementary almost Dirac structure. Then the graded vector space Ω• (�) [2] has an induced !∞ [1]-algebra
structure {`�

:
}, whose only non-trivial multibrackets `�1 , `

�
2 , `

�
3 are defined as follows:

• `�1 coincides with the de Rham differential of Lie algebroid � ⇒ " , i.e. for all U ∈ Ω
•(�):

`�1 (U [2]) = (d�U) [2]. (B.1)

• `�2 acts as follows, for all homogeneous U, V ∈ Ω
•(�):

`�2 (U [2], V [2]) = (−1) |U | [U, V]� [2]. (B.2)

• `�3 acts as follows, for all homogeneous U, V, W ∈ Ω
•(�):

`�3 (U [2], V [2], W [2]) = (−1) |V | (U♯ ∧ V♯ ∧ W♯)Υ� [2]. (B.3)

In the RHS of equations (B.2) and (B.3), we use the identification �
≃

−→ �∗, D ↦−→ 〈〈D,−〉〉|� .

Remark B.2. We list some remarks concerning the !∞ [1]-algebra
(
Ω

•(�) [2], `�1 , `
�
2 , `

�
3

)
introduced above.

5An advantage of this convention is that no minus signs appear in Lemma B.4 below.
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(1) If + is a graded vector space, then !∞-algebra structures {<: } on + correspond bijectively to !∞ [1]-
algebra structures {`: } on + [1] via the following relation (we follow the convention of [7, Remark
1.1], up to a global minus sign):

<: (E1, . . . , E: ) = −(−): (−)
∑

8 (:−8) |E8 |`: (E1 [1], . . . , E: [1]),

for all : ∈ N and homogeneous E1, . . . , E: ∈ + . In particular, the !∞ [1]-algebra structure {`�
:
} on

Ω
•(�) [2] described in Lemma B.1 corresponds to an !∞-algebra structure {<�

:
} on Ω

•(�) [1], whose

only non-trivial multibrackets<�
1 ,<

�
2 ,<

�
3 are defined as follows:

<�
1 (0) = `�1 (0[1]),

<�
2 (0, 1) = −(−) |0 |`�2 (0[1], 1 [1]),

<�
3 (0, 1, 2) = (−) |1 |`�3 (0[1], 1 [1], 2 [1]),

for homogeneous elements 0, 1, 2 ∈ Ω
•(�) [1].

(2) For any almost Dirac structure � ⊂ � complementary to the Dirac structure � ⊂ �, the !∞ [1]-algebra
structure {`�

:
} reduces to a dgL[1]a, i.e. `�

:
= 0 for all : ≥ 3, if and only if � is Dirac. In this case, the

!∞-algebra (Ω• (�) [1], {<�
:
}) reduces to the dgLa (Ω•(�) [1], 3�, [−,−]�∗) used in [21].

(3) The !∞ [1]-algebra (Ω•(�) [2], {`�
:
}) (resp. !∞-algebra (Ω•(�) [1], {<�

:
})) is actually a�∞ [1]-algebra

(resp. �∞-algebra) since its multibrackets are compatible with the graded algebra structure of Ω•(�).
That is, the following graded Leibniz rule holds:

`�: (U1, . . . , U:−1, U: ∧ V) = `�: (U1, . . . , U: ) ∧ V + (−) |U: | (1+|U1 |+...+|U:−1 |)U: ∧ `�: (U1, . . . , U:−1, V), (B.4)

for all homogeneous U1, . . . , U: , V ∈ Ω
•(�) [2] (a similar Leibniz rule holds for the graded skew-

symmetric multibrackets <�
:
). For the general definition of �∞-algebras, also called homotopy Ger-

stenhaber algebras or %∞-algebras, we refer the reader to [9, 30].

Given a Dirac structure � ⊂ � and a complementary almost Dirac structure � ⊂ �, we now turn to the
geometric information encoded by the Maurer-Cartan elements of the associated !∞ [1]-algebra.

Definition B.3. AMaurer–Cartan (MC) element of the !∞ [1]-algebra (Ω• (�) [2], {`�
:
}) is a degree 0 element

[ of Ω•(�) [2], i.e. a 2-form [ ∈ Ω
2(�), satisfying theMC equation

`�1 [ +
1

2
`�2 ([, [) +

1

6
`�3 ([, [,[) = 0.

The pairing 〈〈−,−〉〉 induces VB isomorphisms �
∼

−→ �∗ and � = � ⊕ �
∼

−→ � ⊕ �∗. Under these identifica-
tions, it is easy to see that the relation

! = Gr([) = {b+]b[ | b ∈ �} ⊂ � ⊕ �∗ ≃ � ⊕ � = �.

establishes a one-to-one correspondence between degree 0 elements [ of Ω•(�) [2], i.e. 2-forms [ ∈ Ω
2(�),

and almost Dirac structures ! ⊂ � that are close to � w.r.t. �, in the sense that they are still transverse to �.
As proven in [21, Theorem 6.1] (when the complement � is Dirac) and [8, Lemma 2.6] (in the general case),

the MC elements of the !∞ [1]-algebra (Ω•(�) [2], {`�
:
}) are exactly those 2-forms [ ∈ Ω

2 (�) for which the
corresponding almost Dirac structure ! = Gr([) is involutive, i.e. Dirac.

Lemma B.4 ([21, Theorem 6.1] and [8, Lemma 2.6]). Let � be a Courant algebroid and� ⊂ � a Dirac structure.

Fix an almost Dirac structure � ⊂ � complementary to �. Then a canonical one-to-one correspondence between

(1) MC elements [ of the associated !∞ [1]-algebra (Ω•(�) [2], {`�
:
}),

(2) Dirac structures ! ⊂ � that are transverse to �,

is established by the following relation:

! = Gr([) := {b+]b[ | b ∈ �} ⊂ � ⊕ �∗ ≃ � ⊕ � = �.
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This means that, for each complementary almost Dirac structure � ⊂ �, the associated !∞ [1]-algebra
(Ω• (�) [2], {`�

:
}) controls the “corresponding” deformation problem of the given Dirac structure � ⊂ �.

Appendix C. Proof of Proposition 4.5

Proposition 4.5 states that the map

(X•
F
(") [2], {l�

:
}) (Ω•(F ;#F )[1], {v: })

i

is a strict morphism of !∞ [1]-algebras. We first prove this proposition by a direct computation. Then in
Proposition C.1 we provide a conceptual argument under the assumption that the 2-form W is closed.

Proof of Prop. 4.5. Recall that both (X•
F
(") [2], {l�

:
}) and (Ω•(F ;#F )[1], {v: }) are in fact !'∞ [1]-algebras

over X•(F ) and Ω
•(F ), with anchor maps {d: } and {n: }, respectively (see Proposition 3.17 and Lemma 4.2).

Moreover, these anchor maps are derivations in their last entries, and the module morphismi is defined along
the algebra morphism i . Therefore, we can conclude that i is a strict !∞ [1]-morphism if we check that the
following equalities hold:

i
(
l
�
: (%1, . . . , %: )

)
= v:

(
i (%1), . . . , i (%: )

)
, (C.1)

i
(
d: (%1, . . . , %:−1 |- )

)
= n:

(
i (%1), . . . , i (%:−1) |i (- )

)
, (C.2)

where %1, . . . , %: ∈ X0
F
(") ⊕X1

F
(") = �∞ (") ⊕ Γ()F) ⊕ Γ(�) and - ∈ X0(F ) ⊕X1(F ) = �∞(") ⊕ Γ()F ).

We now carry out three computations to check that i preserves the unary, binary, and ternary brackets, i.e.
that equation (C.1) is satisfied.
i) Let us start proving that i preserves the unary bracket. In view of the above, we just have to check that

i (dΠ (5 )) = d∇ (i (5 )), i (dΠ (- )) = d∇ (i (- )), i (dΠ (. )) = d∇ (i (. )),

for all 5 ∈ �∞ ("), - ∈ Γ()F ) and . ∈ Γ(�). Actually, the first two identities are obvious: both the LHS and
RHS vanish because i kills X•(F ). To check the third identity, we compute for U ∈ Γ() ∗F ) and V ∈ Γ(�∗):

〈
i (3Π. ) (Π

♯U), V
〉
= −3Π.

(
l♭(Π♯U), V

)

= 3Π. (U, V)

= −(L.Π) (U, V)

= −L.

(
Π(U, V)

)
+Π

(
L.U, V

)
+Π

(
U,L. V

)

= Π
(
U,L. V

)
,

using in the last equality that V annihilates )F = imΠ
♯ . On the other hand, we have

〈
d∇i (. ) (Π

♯U), V
〉
=

〈
∇
Π♯Ui (. ), V

〉

=
〈
[Π♯U,. ], V

〉

= −
〈
L.Π

♯U, V
〉

=
〈
Π
♯U,L. V

〉
− L. 〈Π

♯U, V〉

= Π(U,L. V).

ii) Let us now prove that i preserves the binary bracket. By degree reasons, we only have to show that

i (l�2 (5 , - )) = v2 (i (5 ), i (- )), i (l�2 (5 , . )) = v2 (i (5 ), i (. )),

i (l�2 (-1, -2)) = v2 (i (-1), i (-2)), i (l�2 (-,. )) = v2 (i (- ), i (. )), i (l�2 (.1, .2)) = v2(i (.1), i (.2)),
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for all 5 ∈ �∞ ("), -,-1, -2 ∈ Γ()F ) and .,.1, .2 ∈ Γ(�). Except the last one, all the identities above are
obvious since both the LHS and RHS vanish. The last one can be proved as follows:

i (l�2 (.1, .2)) = i (−[.1, .2]W ) = i (−[.1, .2]) = − pr� [.1, .2] = v2(.1, .2) = v2 (i (.1), i (.2)).

iii) We now prove that i preserves the ternary bracket. By degree reasons, we only have to show that

i (l�3 (+1,+2,+3)) = v3 (i (+1), i (+2), i (+3)),

for all +1,+2,+3 ∈ Γ()F ⊕ �). Clearly, this identity holds because both sides are zero. This proves (C.1).
We now proceed by checking compatibility with the anchor maps, as required by (C.2).
i) For the first anchor, we need to check that

i (d1(5 )) = n1 (i (5 )), i (d1(- )) = n1(i (- )),

for all 5 ∈ �∞("), - ∈ Γ()F ). The first equality holds because

i (d1(5 )) = i (3Π 5 ) = −i (Π♯3 5 ) = −l♭ (Π♯3 5 ) = 3F 5 = n1 (5 ) = n1 (i (5 )).

The second equality holds because one one hand

i (d1(- )) = i (3Π- ) = −i
(
3Π (Π

♯ (l♭- ))
)
= i

(
∧2

Π
♯ (3F (l

♭- ))
)
= ∧2l♭ ( ∧2

Π
♯ (3F (l

♭- ))
)
= 3F (l

♭- )

whereas on the other hand

n1 (i (- )) = n1 (l
♭- ) = 3F (l

♭- ).

Above we made use of the fact that i (- ) = l♭- for all - ∈ Γ()F ).
ii) For compatibility with the second anchor, the only non-trivial equalities to check are

i (d2(. |5 )) = n2(i (. ) |i (5 )), i (d2(. |- )) = n2 (i (. ) |i (- ))

for 5 ∈ �∞ ("), - ∈ Γ()F ), . ∈ Γ(�). Here the first equality holds since

i (d2(. |5 )) = i (−[., 5 ]W ) = −[., 5 ]W = −. (5 ) = n2 (., 5 ) = n2(i (. ) |i (5 )),

and also the second equality is true because

i (d2(. |- )) = i (−[.,- ]W ) = i
(
Π
♯ (L.W

♭(- ))
)
= l♭ (

Π
♯ (L.W

♭(- ))
)
= − pr) ∗F L.W

♭ (- ),

n2(i (. ) |i (- )) = n2(., l
♭(- )) = − pr) ∗F L.W

♭(- ).

iii) At last, to check compatibility with the third anchor, the only non-trivial requirement is

i
(
d3(.1, .2 |- )

)
= n3

(
i (.1), i (.2) |i (- )

)

for .1, .2 ∈ Γ(�) and - ∈ Γ()F ). This equality holds because

i
(
d3(.1, .2 |- )

)
= −Υ�)" (.1, .2, - ) = −W (-, [.1, .2]),

n3
(
i (.1), i (.2) |i (- )

)
= −i (- ) ( [.1, .2]) = −W♭(- ) ( [.1, .2]) = −W (-, [.1, .2]).

We now proved that the relations (C.2) hold, so the proof is finished. �

When W is closed, the strict !∞ [1]-morphism i from Proposition 4.5 is obtained from the pullback by a
Courant algebroid isomorphism, as we now explain.

Proposition C.1. Assume that W is closed. Then i is induced by an isomorphism of Courant algebroids

� : (T", 〈〈−,−〉〉, [[−,−]]� , d� )
∼
→ (T", 〈〈−,−〉〉, [[−,−]], pr)" )

which transforms the splitting T" = ) ∗" ⊕ )" into T" = ()F ⊕ ) ◦F ) ⊕ (� ⊕ �◦).

Proof. Recall that
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• (X•
F
(") [2], {l�

:
}) is an !∞ [1]-subalgebra of (X•(") [2], {l�

:
}), and the latter arises as in Lemma

B.1 from the splitting T" = ) ∗" ⊕ )" of the Courant algebroid (T", 〈〈−,−〉〉, [[−,−]]� , d� ) (see
Lemma 3.3),

• (Ω•(F ;�) [1], {v: }) is an !∞ [1]-subalgebra of (Γ(∧•() ∗F ⊕ �)) [2], {n: }), and the latter arises
from the splitting T" = ()F ⊕ ) ◦F ) ⊕ (� ⊕ �◦) of the standard Courant algebroid
(T", 〈〈−,−〉〉, [[−,−]], pr)" ) (see Lemma 4.1).

The map � in question is given by the following formula:

� : T" → T" : - + U ↦→ (Π♯U + pr� - ) + (]-W + pr�∗ U).

Claim: � is a Courant algebroid isomorphism.

One readily checks that � is an orthogonal transformation of (T", 〈〈−,−〉〉), regardless of W being closed or
not. Clearly � matches the anchors d� and pr)" , it takes) ∗" to ()F ⊕) ◦F ) and)" to (� ⊕�◦). It remains
to show that � takes [[−,−]]� to [[−,−]], and this is where the condition 3W = 0 comes into play. To facilitate
this computation, recall from Lemma 3.3 that RΠ ◦ RW intertwines [[−,−]]� and [[−,−]], so it is enough to
show that � ◦ R−W ◦ R−Π preserves [[−,−]]. This map is easily described:

� ◦ R−W ◦ R−Π : T" → T" : - + U ↦→ - + U + ]-W,

i.e. it agrees with the gauge transformation RW . It is well-known thatRW preserves the Courant bracket [[−,−]]

iff W is closed. This confirms our claim that � : (T", 〈〈−,−〉〉, [[−,−]]� , d� )
∼
→ (T", 〈〈−,−〉〉, [[−,−]],pr)" ) is a

Courant algebroid isomorphism.

It follows that we obtain a strict !∞ [1]-isomorphism

∧• � |∗) ∗" : (Γ(∧•() ∗F ⊕ �)) [2], {n: })
∼

−→ (X•(") [2], {l�: }). (C.3)

We will now invert this map and restrict to the suitable !∞ [1]-subalgebras. First note that

�−1 |) F⊕�∗ : )F ⊕ �∗ → ) ∗" : - + U ↦→ U − ]-W

and consequently the dual map reads

�−1 |∗) F⊕�∗ : )" → ) ∗F ⊕ � : - ↦→ 〈〈- + ]-W,−〉〉|) F⊕�∗ .

Clearly this map takes )F to ) ∗F and it takes � to itself. So by Remark 1.5 there is an induced map

∧•�−1 |∗) F⊕�∗ : X
•
F (") [2] → Γ(∧•) ∗F )[2] ⊕ Γ(∧•) ∗F ⊗ �) [1],

which is a strict !∞ [1]-isomorphism since it is a restriction of the inverse of the map (C.3).

Claim: The composition of the above map with the projection,

% ◦ ∧•�−1 |∗) F⊕�∗ : (X
•
F (") [2], {l�: }) → (Γ(∧•) ∗F ⊗ �) [1], {v: }), (C.4)

is a strict !∞ [1]-morphism.

It suffices to show that the projection % : (Γ(∧•) ∗F )[2] ⊕ Γ(∧•) ∗F ⊗ �) [1] → Γ(∧•) ∗F ⊗ �) [1] inter-
twines6 the multibrackets {n: } and {v: }. To show this, we make the following remarks:

• Because n1 has bi-degree (1, 0), it follows that % (n1b) = v1 (% (b)) for all b .
• Because n2 has bi-degree (0,−1), it follows that

% (n2 (b, [)) = v2 (% (b), % ([)) (C.5)

for all b, [ in Γ(∧•) ∗F )[2] ⊕ Γ(∧•) ∗F ⊗ �) [1]. Explicitly, since n2(Γ(�), Γ()
∗F )) ⊂ Γ() ∗F ) and

n2 (Γ()
∗F ), Γ() ∗F )) = 0, we have that both terms in eq. (C.5) vanish whenever both b, [ have bi-

degree (•, 0), or when b has bi-degree (•, 0) and [ has bi-degree (•, 1). If both b and [ have bi-degree

6We mention as an aside that the full projection Γ (∧• () ∗F ⊕�)) [2] → Γ (∧•) ∗F ⊗�) [1] does not intertwine the brackets.
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(•, 1), then
% (n2 (b, [)) = n2 (b, [) = v2 (b, [) = v2(% (b), % ([)).

These remarks prove the claim that the map (C.4) is a strict !∞ [1]-morphism.

Claim: the map % ◦ ∧•�−1 |∗
) F⊕�∗ defined in (C.4) coincides with the map i defined in (4.3).

Let .1 ∧ · · · ∧ .: ∈ X:
F
(") and choose -1, . . . , -:−1 ∈ Γ()F ) and V ∈ Γ(�∗). Then

〈
(∧:�−1 |∗) F⊕�∗.1 ∧ · · · ∧ .: ) (-1, . . . , -:−1), V

〉
= 〈(�−1)∗.1 ∧ · · · ∧ (�−1)∗.: , -1 ∧ · · · ∧ -:−1 ⊗ V〉

=

�������

〈(�−1)∗.1, -1〉 · · · 〈(�−1)∗.1, -:−1〉 〈(�−1)∗.1, V〉
...

...
...

〈(�−1)∗.: , -1〉 · · · 〈(�−1)∗.: , -:−1〉 〈(�−1)∗.: , V〉

�������

=

�������

〈W♭.1, -1〉 · · · 〈W♭.1, -:−1〉 V (.1)
...

...
...

〈W♭.: , -1〉 · · · 〈W♭.: , -:−1〉 V (.: )

�������

= (−1):−1

�������

〈.1, W
♭-1〉 · · · 〈.1, W

♭-:−1〉 V (.1)
...

...
...

〈.: , W
♭-1〉 · · · 〈.: , W

♭-:−1〉 V (.: )

�������

= (−1):−1.1 ∧ · · · ∧ .: (W
♭-1, . . . , W

♭-:−1, V)

= 〈i (.1 ∧ · · · ∧ .: ) (-1, . . . , -:−1), V〉 .

This shows that % ◦∧•�−1 |∗
) F⊕�∗ agrees with i , as claimed. In particular, the latter is a strict !∞ [1]-morphism.

�

References

[1] O. Brahic and R. L. Fernandes. Poisson fibrations and fibered symplectic groupoids. In Poisson geometry in mathematics and physics,
volume 450 of Contemp. Math., pages 41–59. Amer. Math. Soc., Providence, RI, 2008.

[2] T. Courant. Dirac manifolds. Trans. Amer. Math. Soc., 319(2):631–661, 1990.
[3] M. Crainic and R.L. Fernandes. Stability of symplectic leaves. Invent. Math., 180(3):481–533, 2010.
[4] M. Crainic and I. Mărcuţ. Reeb-Thurston stability for symplectic foliations. Math. Ann., 363(1):217–235, 2015.
[5] J.-P. Dufour and A. Wade. Stability of higher order singular points of Poisson manifolds and Lie algebroids. Ann. Inst. Fourier,

56(3):545–559, 2006.
[6] R. L. Fernandes and P. Frejlich. An ℎ-principle for symplectic foliations. Int. Math. Res. Not. IMRN, 2012(7):1505–1518, 2012.
[7] D. Fiorenza and M. Manetti. !∞ structures on mapping cones. Algebra & Number Theory, 1(3):301–330, 2007.
[8] Y. Frégier and M. Zambon. Simultaneous deformations and Poisson geometry. Compos. Math., 151(9):1763–1790, 2015.
[9] M. Gerstenhaber and A. Voronov. Homotopy �-algebras and moduli space operad. Int. Math. Res. Not. IMRN, 1995(3):141–153, 1995.
[10] S. Geudens, A.G. Tortorella, and M. Zambon. Deformations of symplectic foliations: algebraic aspects. In progress.
[11] R. Gompf. A new construction of symplectic manifolds. Ann. Math., 142(3):527–595, 1995.
[12] M. Gualtieri, M. Matviichuk, and G. Scott. Deformation of Dirac structures via !∞ algebras. Int. Math. Res. Not. IMRN, 2020(14):4295–

4323, 2020.
[13] J. L. Heitsch. A cohomology for foliated manifolds. Comment. Math. Helv., 50(1):197–218, 1975.
[14] J. Huebschmann. Higher homotopies and Maurer-Cartan algebras: quasi-Lie-Rinehart, Gerstenhaber, and Batalin-Vilkovisky alge-

bras. In The breadth of symplectic and Poisson geometry, volume 232 of Progr. Math., pages 237–302. Birkhäuser Boston, 2005.
[15] X. Ji. Deformation problems in Lie algebroids and extended Poisson geometry. PhD thesis, Pennsylvania State University, 2013.
[16] X. Ji. Simultaneous deformations of a Lie algebroid and its Lie subalgebroid. J. Geom. Phys., 84:8–29, 2014.
[17] L. Kjeseth. Homotopy Rinehart cohomology of homotopy Lie-Rinehart pairs. Homology Homotopy Appl., 3(1):139–163, 2001.
[18] Y. Kosmann-Schwarzbach. The Lie bialgebroid of a Poisson-Nijenhuis manifold. Lett. Math. Phys., 38(4):421–428, 1996.
[19] Y. Kosmann-Schwarzbach and F. Magri. Poisson-Nijenhuis structures. Ann. Inst. Henri Poincaré, Phys. Théor., 53(1):35–81, 1990.
[20] T. Lada and M. Markl. Strongly homotopy Lie algebras. Comm. Algebra, 23(6):2147–2161, 1995.
[21] Z.-J. Liu, A. Weinstein, and P. Xu. Manin triples for Lie bialgebroids. J. Differential Geometry, 45(3):547–574, 1997.
[22] Y. Mitsumatsu. Leafwise symplectic structures on Lawson’s foliation. J. Symplectic Geom., 16(3):817–838, 2018.



46 STEPHANE GEUDENS, ALFONSO G. TORTORELLA, AND MARCO ZAMBON

[23] I. Mărcuţ. Normal forms in Poisson geometry. PhD thesis, Utrecht University, 2013.
[24] Y.-G. Oh and J.-S. Park. Deformations of coisotropic submanifolds and strong homotopy Lie algebroids. Invent. Math., 161(2):287–360,

2005.
[25] D. Roytenberg. Courant algebroids, derived brackets and even symplectic supermanifolds. PhD thesis, UC Berkeley, 1999.
[26] F. Schätz and M. Zambon. Deformations of pre-symplectic structures: a Dirac geometry approach. SIGMA Symmetry Integrability

Geom. Methods Appl., 14:128–139, 2018.
[27] F. Schätz and M. Zambon. Deformations of pre-symplectic structures and the Koszul !∞-algebra. Int. Math. Res. Not. IMRN,

2020(14):4191–4237, 2020.
[28] F. Schätz and M. Zambon. Gauge equivalences for foliations and pre-symplectic structures. Commun. Contemp. Math., 0(0):2050067,

2020.
[29] P. Ševera and A. Weinstein. Poisson geometry with a 3-form background. Progr. Theoret. Phys. Suppl., 144:145–154, 2001. Noncom-

mutative geometry and string theory (Yokohama, 2001).
[30] D. Tamarkin. Another proof of M. Kontsevich formality theorem. e-print arXiv:math/9803025 , 1998.
[31] B. Osorno Torres. Codimension-one symplectic foliations: constructions and examples. PhD thesis, Utrecht University, 2015.
[32] L. Vitagliano. On the strong homotopy Lie-Rinehart algebra of a foliation. Commun. Contemp. Math., 16(6):1450007, 49 pages, 2014.
[33] Y. Vorobjev. Coupling tensors and Poisson geometry near a single symplectic leaf. In Lie algebroids and related topics in differential

geometry (Warsaw, 2000), volume 54 of Banach Center Publ., pages 249–274. Polish Acad. Sci. Inst. Math., Warsaw, 2001.
[34] A. Wade. Poisson fiber bundles and coupling Dirac structures. Ann. Global Anal. Geom., 33(3):207–217, 2008.

Geometry Section, Department of Mathematics, KU Leuven, Celestijnenlaan 200B - 3001 Leuven, Belgium

Current address: Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany

Email address: stephane_geudens@hotmail.com

Geometry Section, Department of Mathematics, KU Leuven, Celestijnenlaan 200B - 3001 Leuven, Belgium

Current address: Centro de Matemática da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal

Email address: alfonso.tortorella@fc.up.pt

Geometry Section, Department of Mathematics, KU Leuven, Celestijnenlaan 200B - 3001 Leuven, Belgium

Email address: marco.zambon@kuleuven.be

https://arxiv.org/abs/math/9803025
mailto:stephane_geudens@hotmail.com
mailto:alfonso.tortorella@fc.up.pt
mailto:marco.zambon@kuleuven.be

	Introduction
	1. Symplectic Foliations
	2. Parametrizing Nearby Regular Bivector Fields
	3. The Local Deformation Space of a Symplectic Foliation
	4. Relation with Deformations of Foliations
	5. Infinitesimal Deformations of Symplectic Foliations and Obstructions
	6. Relating Obstructions to Poisson Structures and to Foliations
	Appendix A. Courant Algebroids and Dirac Structures
	Appendix B. Deformation Theory of Dirac Structures
	Appendix C. Proof of Proposition 4.5
	References

