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ABSTRACT
Given a fully extended topological quantum field theory, the “crossing with the circle” conditions establish that the dimension, or categorifi-
cation thereof, of the quantum invariant assigned to a closed k-manifold Σ is equivalent to that assigned to the (k + 1)-manifold Σ × S1. We
compute in this paper these conditions for the 4-3-2-1 Dijkgraaf–Witten theory. In the context of the lattice Hamiltonian realization of the
theory, the quantum invariants assigned to the circle and the torus encode the defect open string-like and bulk loop-like excitations, respec-
tively. The corresponding “crossing with the circle” condition, thus, formalizes the process by which loop-like excitations are formed out of
string-like ones. Exploiting this result, we revisit the statement that loop-like excitations define representations of the linear necklace group as
well as the loop braid group.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0061214

I. INTRODUCTION
The axiomatic formulation of topological quantum field theories (TQFTs) pioneered by Atiyah bears a strong category theoretical flavor.

Indeed, given a field 𝕜, Atiyah defined in Ref. 1 a d-dimensional TQFT as a symmetric monoidal functor Z : Cob(d) → Vec(𝕜), where Cob(d)
is the category whose objects are closed oriented (d − 1)-manifolds and morphisms are equivalence classes of bordisms, while Vec(𝕜) is
the category whose objects are vector spaces over 𝕜 and morphisms are linear maps. Unpacking this definition, we obtain that a TQFT
Z is determined by a choice of finite dimensional 𝕜-vector space Z(Σ) for every closed oriented (d − 1)-manifold Σ, a choice of linear
maps Z(Σ→ Σ′) : Z(Σ) → Z(Σ′) for every diffeomorphism class of bordism Σ→ Σ′, as well as isomorphisms Z(Σ ⊔ Σ′) ≃ Z(Σ)⊗𝕜Z(Σ′)
and Z(∅) ≃ 𝕜, where ⊔ refers to the disjoint union, ∅ refers to the empty manifold considered as a closed, oriented (d − 1)-manifold,
and ⊗𝕜 refers to the tensor product over 𝕜. Furthermore, the functoriality conditions translate into the statements that Z(Σ × I) = idZ(Σ)
and Z(Σ→ Σ′∪Σ′Σ′ → Σ′′) = Z(Σ→ Σ′) ○Z(Σ′ → Σ′′). More precisely, given a surface Σ, the manifold Σ × I can be interpreted as either
one of the following bordisms: Σ→ Σ, Σ→ Σ, Σ ⊔ Σ→∅, or ∅→ Σ ⊔ Σ, where Σ refers to the manifold with opposite orientation. The
corresponding morphisms in Cob(d) are referred to as the identity maps idΣ and idΣ, the evaluation map evΣ, and the coevaluation map
coevΣ, respectively. Applying the functor Z to evΣ yields the following canonical pairing:

⟨−,−⟩ : Z(Σ)⊗𝕜Z(Σ) ≃ Z(Σ ⊔ Σ)
Z(evΣ)ÐÐÐÐ→Z(∅) ≃ 𝕜.

Similarly, applying Z to coevΣ yields the map

𝕜 ≃ Z(∅) Z(coevΣ)ÐÐÐÐÐ→Z(Σ ⊔ Σ) ≃ Z(Σ)⊗𝕜Z(Σ).
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Denoting by Z(Σ)∗ the vector space dual to Z(Σ), it follows from the defining axioms of Z that v ↦ ⟨v,−⟩ is an isomorphism so that
Z(Σ)∗ ≃ Z(Σ). The identification between the space of endomorphisms End(V) and V ⊗𝕜 V∗ for any vector space V further implies that
the map evΣ corresponds to the trace operation in End(Z(Σ)), while coevΣ is given by the inclusion of the identity map. Since the manifold
Σ × S1 is diffeomorphic to the composition of coevΣ, Σ ⊔ Σ→ Σ ⊔ Σ and evΣ, we obtain that Z(Σ × S1) can be expressed as the composition
of maps,

𝕜 ≃ Z(∅) Z(coevΣ)ÐÐÐÐÐ→End(Z(Σ)) Z(evΣ)ÐÐÐÐ→Z(∅) ≃ 𝕜,

which corresponds to the scalar multiplication by the dimension of the vector space Z(Σ), and thus, Dim𝕜(Z(Σ)) = Z(Σ × S1). Henceforth,
we shall refer to this equation as the first “crossing with the circle” condition.

In virtue of Z(∅) ≃ 𝕜, we can state that a d-dimensional TQFT assigns an element of 𝕜 to any closed oriented d-manifold, a 𝕜-vector
space to every closed oriented (d − 1)-manifold, and a vector in the vector space associated with its boundary to every open oriented d-
manifold. We might also want to consider (d − 1)-manifolds with non-empty boundaries and extend the theory so that it assigns something
to the corresponding (d − 2)-manifold. The result is a so-called 2-extended TQFT, which, in addition to the data described above, assigns a
finite semisimple 𝕜-linear Abelian category to every (d − 2)-manifold such that the hom-set between two objects of this category are finite
𝕜-vector spaces and to an open (d − 1)-manifold an object in the category associated with its boundary. At least formally, we can further
extend this definition by assigning an appropriate 𝕜-linear 2-category to a closed (d − 3)-manifold, and so on and so forth. A TQFT that
assigns non-trivial information all the way down to the point is referred to as a fully-extended TQFT. Crucially, such fully extended TQFTs
(possibly with the addition of framing data) can be concisely described via the so-called corbordism hypothesis put forward by Baez and Dolan
in Ref. 2 and proven by Lurie in Refs. 3 and 4. Instead of stating this result here, we shall merely quote one of its by-products, namely, that
a fully extended TQFT is fully characterized by what it assigns to the point. This implies that given the data assigned to the point, there
must be a mechanism allowing us to recover the data assigned to higher-dimensional closed manifolds. One instance of such a mechanism
is the first crossing with the circle condition, which establishes, let us recall, that the dimension of the vector space associated with a closed
(d − 1)-manifold Σ equals Z(Σ × S1). More generally, the following relation is expected to hold:2,5

DimZ(Σd−n) ≅ Z(Σd−n × S1), (∗)

where Dim refers to a categorification of the notion of dimension of a vector space that is suitable to the type of data assigned to the manifold
Σd−n.2,5,6 The precise definition of this equation is provided in Sec. IV. Henceforth, we shall refer to such a relation as the nth crossing with the
circle condition. Given that a fully extended TQFT assigns an (n − 1)-category to a closed (d − n)-manifold and an (n − 2)-category to a closed
(d − n + 1)-manifold, any crossing with the circle condition amounts to a decategorification process. Generally speaking, decategorification
refers to a collection of techniques whereby statements about categories are reduced to statements about sets.7 In practice, this is typically
done by discarding morphisms so that only equivalence classes of objects remain. The operation that consists in computing the dimension of
vector spaces is one example of such a procedure since isomorphic vector spaces do have the same dimension.

The purpose of this paper is to compute the crossing with the circle conditions for a special type of fully extended TQFTs that have a
lattice gauge theory interpretation and elucidate their physical interpretations. In d dimensions, the input data of such a theory is a finite group
G as well as a cohomological class [ω] ∈ Hd(G, U(1)), and the corresponding state-sum invariant for a triangulated manifold was explicitly
constructed by Dijkgraaf and Witten in Ref. 8. In (2+ 1)d, the theory is equivalent to the Turaev–Viro–Barrett–Westbury theory,9,10 with input
spherical fusion category being the category VecαG of G-graded vector spaces whose monoidal structure is twisted by a cohomology class in
[α] ∈ H3(G, U(1)) (see Example 1). The refinement of the theory to a fully extended (2 + 1)d TQFT was presented in Refs. 11–14. Given that
it assigns non-trivial information to three-, two-, one-, and zero-dimensional manifolds, such a refinement is usually referred to as the 3-2-1-0
Dijkgraaf–Witten theory. By analogy, we can also consider the 4-3-2-1 theory, which is a (3 + 1)d TQFT that assigns non-trivial information
all the way down to the circle.15 Henceforth, we shall denote the corresponding functor by Z π

G, where π is a normalized representative in a
cohomology class [π] ∈ H4(G, U(1)). The goal of our work is to compute and interpret the crossing with the circle conditions (∗) for this
specific theory. For simplicity, we shall focus on the scenario where Σ4−n, with n = 1, . . . , 3, is homeomorphic to the (4 − n)-torus, although
we could treat the more general case analogously.

In order to quote the main results of this paper, let us briefly list some of the quantum invariants assigned by Z π
G. A detailed expo-

sition is presented in Sec. II C. Choosing the simplest triangulation of the four-torus, the complex number Z π
G(T4) the theory assigns

to it can be straightforwardly computed. There is a particularly concise way to quote the result, which we review in Sec. II, invoking the
notion of loop groupoid. Given a finite groupoid G, its loop groupoid is equivalent to the functor category Fun(Z,G), where Z is the group
Z treated as a one-object groupoid (see Definitions 2 and 4).16 Applying this definition to the group G treated as a one-object groupoid
yields the loop groupoid denoted by ΛG. This procedure can be iterated so as to define the four-fold loop groupoid Λ4G. Similarly, one
can define a map t that sends a given groupoid cocycle to a loop groupoid cocycle, i.e., t : Zn(G, U(1)) → Zn−1(ΛG, U(1)) so that given the
group 4-cocycle π, one can construct a groupoid 0-cocycle t4(π) in H0(Λ4G, U(1)) (see Sec. II A). Given the above, the number Z π

G(T4)
reads
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Z π
G(T4) = 1

∣G∣ ∑
X∈Ob(Λ4G)

t4(π)(X) =: ∫
Λ4G

t4(π),

where the sum is over objects of the groupoidΛ4G. The data the Dijkgraaf–Witten theory assigns to the manifolds T3, T2, and S1 were recently
computed in the context of topological phases of matter within the lattice Hamiltonian formalism of the theory.17–20 Generally speaking,
given a d-dimensional state-sum invariant, one can define in a canonical way a lattice Hamiltonian whose ground state subspace on a closed
(d − 1)-manifold is isomorphic to the vector space the TQFT assigns to it. The resulting model is a concrete realization of a topological phase
whose low-energy effective description realizes the TQFT.21–23 The ground state subspace on T3 of the lattice Hamiltonian realization of the
4-3-2-1 Dijkgraaf–Witten theory was computed explicitly in Ref. 17, which in the loop groupoid terminology reads16

Z π
G(T3) = SpanC{s : Ob(Λ3G) → C ∣ s(Y) = t3(π)(g) s(X) ∀ g ∈ HomΛ3G(X, Y)} =: VΛ3G(t3(π)).

The remaining data that the theory assigns to T2 and S1 can be conveniently found as the category theoretical structures encoding the
defects and excitations hosted by the lattice Hamiltonian realization. Models of topological phases of matter in (2 + 1)d famously host
point-like excitations with anyonic statistics. The exchange statistics of these anyons is governed by representations of the braid group,
where the braids are formed by the worldlines of the point-like particles upon exchanges. Given a lattice Hamiltonian realization of
the Turaev–Viro–Barrett–Westbury theory, it is well-known that anyons are encoded into the Drinfel’d center of the input category (see
Definition 17).22,24 Importantly, braids can always be untangled in (3 + 1)d so that anyons only exist in two-dimensional systems. Never-
theless, higher-dimensional topological models yield higher-dimensional excitations, which also possess statistics beyond the bosonic and
fermionic ones, and as such behave like spatially extended anyons. In particular, three-dimensional models—such as the one we are inter-
ested in—host bulk loop-like excitations, where “loop-like” here refers to the topology of a defect whose tubular neighbourhood is a region
of the physical system with energy higher than that of the ground state. In general, such a defect supports a composite excitation comprising
a loop-like flux, to which a point-like charge may be attached while being threaded by an auxiliary flux. Using a generalization of the tube
algebra approach,25,26 the authors found in Refs. 19 and 27 that the bulk loop-like excitations and their statistics were encoded into the braided
monoidal category of modules over the twisted groupoid algebra C[Λ2G]t

2
(π) (see Definition 13). As we review in Sec. II, this is precisely the

category that the TQFT assigns to the two-torus, i.e.,

Z π
G(T2) = Mod(C[Λ2G]t

2π).

In addition to bulk loop-like excitations, the Hamiltonian yields (open) string-like excitations that terminate at lower-dimensional defects.
Examples of such string-like excitations are obtained by bringing loop-like excitations in contact with gapped boundaries. The authors showed
in Ref. 20—using a categorified version of the tube algebra approach—that these string-like objects were encoded into the bicategory (see
Definitions 5 and 11) of module categories over the category Vect(π)

ΛG of loop-groupoid-graded vector spaces (see Example 1). A detailed
treatment for the case G = Z/2Z was carried out in Ref. 28. This bicategory corresponds to the 2-category the TQFT assigns to the circle. In
symbols, we have29

Z π
G(S1) = MOD(Vect(π)

ΛG )

such that objects in this bicategory are interpreted as defect boundary conditions for the endpoints of a string-like excitation—isomorphism
classes of which specifying, in particular, allowed magnetic fluxes for the string—the 1-morphisms as dyonic quantum numbers associated
with string-like topological excitations that are constrained by a choice of boundary conditions at the endpoints, and 2-morphisms as imple-
menting the renormalisation of string-like excitations that are glued along their endpoints.20 In Sec. IV, we compute the dimension, and
categorifications thereof, of the above data to find

DimC(VΛ3G(t3(π))) = ∫
Λ4G

t4(π),

Dim Mod(C[Λ2G]t
2
(π)) ≃ Z(C[Λ2G]t

2
(π)),

Dim MOD(Vect(π)
ΛG ) ≅ Z(Vect(π)

ΛG ),

where Z(−) and Z(−) refer to the center of an algebra and the Drinfel’d center of a monoidal category, respectively. In order to check
the second and third crossing with the circle conditions, it remains to establish that the mathematical objects on the right-hand side of
the equations above are equivalent to the data introduced previously, namely, that VΛ3G(t3(π)) ≃ Z(C[Λ2G]t

2
(π)) and Mod(C[Λ2G]t

2
(π))

≅ Z(Vect(π)
ΛG ). Showing these equivalences is the purpose of Sec. III. Although we do not require it for our derivation, it is interesting to note

that the bicategory MOD(Vect(π)
ΛG ) also admits an equivalent definition as the higher-categorical center Z(2VecπG) of the bicategory 2VecπG of

G-graded 2-vector spaces whose pentagon identity is weakened by a pentagonator 2-isomorphism characterized by the group 4-cocycle π (see
Example 2).30 Our findings are conveniently summarized in Table I, which makes transparent the subtle interplay between the n-fold loop-
groupoid of the input group, iterative categorifications of the center construction, and higher-categorical analogs of the notion of module over
an algebra.
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TABLE I. Summary of the quantum invariants assigned by (3 + 1)d Dijkgraaf–Witten theory to the manifolds S1, T2, T3, and T4 and how they are related via the crossing
with the circle conditions.

Manifold Quantum invariant Equivalent structure Physical interpretation

∫Λ4Gt4(π) DimC(VΛ3G(t3(π))) Ground state degeneracy on T3

VΛ3G(t3(π)) Z(C[Λ2G]t
2
(π)) Ground state subspace on T3

Mod(C[Λ2G]t
2
(π)) Z(Vect(π)

ΛG ) Category of loop-like bulk excitations

MOD(Vect(π)
ΛG ) ≅ Z(2VecπG) Bicategory of defects and string-like excitations

From a physical standpoint, the results summarized in the table above formalize among other things the relation between string- and
loop-like excitations hosted by the lattice Hamiltonian realization of the theory such that loop-like excitations can be thought as descending
from string-like ones via a tracing mechanism. Exploiting this result, we revisit in Sec. V the statement that loop-like excitations provide
representations of the linear necklace group,31 which is isomorphic to the braid group, hence confirming that these excitations constitute
extended anyon-like objects.18,19,32–34 Furthermore, we explain that a subset of such loop-like excitations yield representations of the loop
braid group.35,36

In a subsequent work, we aim to verify that the necklace and loop braid group representations described within this paper can alter-
natively be derived utilizing the duality structures for objects in Z(2VectπG). In particular, we wish to refine the pseudo-graphical calculus
introduced in Sec. V by drawing an analogy with the graphical presentation of the category of 2-tangles,37 which describes a combinatorial
presentation of knotted surfaces embedded in the 4-disk.38

Although this work focuses on the example of the (3 + 1)d Dijkgraaf–Witten theory, we conjecture that all results apply with minor
modifications to every (3 + 1)d TQFT whose input data are a spherical fusion bicategory.39 In particular, given such an input data, one can
construct the corresponding categorified tube algebra such that the bicategory of module categories over it defines the invariant the theory
assigns to the circle.40 This bicategory can be further shown to be equivalent, as a braided monoidal bicategory, to the higher-categorical
center of the input bicategory. We then conjecture that the crossing with the circle conditions we establish in this paper apply analogously,
yielding among other things new representations of the linear necklace group and the loop braid group.

A. Organization of this paper
We begin in Sec. II by introducing relevant notions of category theory and by briefly reviewing what the 4-3-2-1 Dijkgraaf–Witten theory

assigns to the manifolds T4, T3, T2, and S1. In Sec. III, we present an alternative description of the data introduced in Sec. II in terms of the
notion of center of an algebra and categorifications thereof. The crossing with the circle conditions are computed in Sec. IV in terms of
categorifications of the notion of dimension of a vector space. Finally, in Sec. V, the crossing with the circle conditions are exploited in order
to recover the fact that loop-like excitations hosted by the lattice Hamiltonian realization of the theory yield representations of the linear
necklace and loop braid groups.

II. DIJKGRAAF–WITTEN THEORY AS A 4-3-2-1 EXTENDED TQFT
In this section, we review some relevant categorical notions and tabulate what data the (3 + 1)d Dijkgraaf–Witten state-sum invariant

assigns to the manifolds T4, T3, T2, and S1 using the language of loop groupoids. We shall motivate the relevant data from the lattice Hamiltonian
perspective.

A. Preliminaries
Let us begin by fixing our conventions for categories. Given a category C, we notate via Ob(C) and Hom(C) the sets of objects and

morphisms in C, respectively. For each pair X, Y ∈ Ob(C) of objects, the set of morphisms (hom-set) from X to Y is denoted by HomC(X, Y).
For each f : X → Y ∈ HomC(X, Y), we define s( f ) ∶= X and t( f ) ∶= Y to be the source and target objects of f , respectively. For each triple
X, Y , Z ∈ Ob(C), the composition rule is written as ○ : HomC(X, Y) ×HomC(Y , Z) → HomC(X, Z) and the identity morphism associated with
an object X ∈ Ob(C) is denoted by idX ∈ EndC(X) ∶= HomC(X, X). Finally, given three composable morphisms f , g, h ∈ Hom(C), these data
are subject to the relations ids( f ) ○ f = f = f ○ idt( f ) and ( f ○ g) ○ h = f ○ (g ○ h). A functor between two categories C and C ′ is a map that
sends objects X ∈ Ob(C) to F(X) ∈ Ob(C ′) and morphisms f : X → Y ∈ Hom(C) to F( f ) : F(X) → F(Y) ∈ Hom(C ′) such that composition
is preserved. Maps between functions then lead to the notion of natural transformations, which will play an important role later.
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Definition 1 (natural transformation). Let F, F′ : C→ C ′ be two functors between two categories C and C ′. A natural transformation
η : F⇒ F′ between F and F′ is an assignment of a morphism ηX : F(X) → F′(X) ∈ Hom(C ′) to every X ∈ Ob(C) such that the diagram

(1)

commutes for all f : X → Y ∈ Hom(C).

In the following, we shall often consider a special class of categories.

Definition 2 (groupoid). A groupoid G is a category whose morphisms are all invertible, i.e., there exists a function −1: HomG(X, Y)
→ HomG(Y , X) satisfying the relations g ○ g−1 = ids(g) and g−1 ○ g = idt(g) for all g ∈ Hom(G). A groupoid G is called “finite” if the collection
of objects and the hom-sets are finite.

Henceforth, we shall denote the composition g ○ h of two composable groupoid morphisms as gh in analogy with group theory. The
following concept of connected component of a groupoid is often very useful:

Definition 3 (connected component). Let G be a finite groupoid. The morphisms of G define an equivalence relation ∼G on the set Ob(G)
of objects given by the relation X∼GY if there exists a g : X → Y ∈ Hom(G). We refer to the equivalence classes of ∼G as “connected components”
and utilize the notation π0(G) ∶= Ob(G)/∼G.

The groupoid cohomology Hn(G, U(1)) of a finite groupoid G is defined as the simplicial cohomology of its classifying space BG, where
BG is defined as a simplicial set resulting from the gluing of abstract n-simplices that are identified with strings X0

g1ÐÐ→X1
g2ÐÐ→ ⋅ ⋅ ⋅ gnÐÐ→Xn of

n composable morphisms in G. Given a cohomology class [ωn] ∈ Hn(G, U(1)), a normalized representative ωn ∈ [ωn] is a groupoid n-cocycle
for which ωn(g1, . . . , gn) = 1 whenever any of the arguments is an identity morphism.

Given a finite groupoid, we can define another groupoid following a recipe that is ubiquitous in our construction.

Definition 4 (loop groupoid). Let G be a finite groupoid. We define the loop groupoid ΛG as the groupoid whose objects are endomorphisms
g ∈ EndG(X), for every object X ∈ Ob(G), and morphisms are of the form h : g→ h−1gh for all h ∈ HomG(X, Y) and g ∈ EndG(X) such that the
composition is inherited from the one in G.

Furthermore, there is the so-called S1-transgression map that sends a given groupoid cocycle to a loop groupoid cocycle, i.e.,
t : Z●(G, U(1)) → Z●−1(ΛG, U(1)), such that

t(ω)(x g1ÐÐ→ , g−1
1 xg1

g2ÐÐ→ , . . . , (g1 ⋅ ⋅ ⋅ gn−1)−1
x(g1 ⋅ ⋅ ⋅ gn)

gnÐÐ→)

∶=
n

∏
i=0

ω(g1, . . . , gi, (g1 ⋅ ⋅ ⋅ gi)−1
x(g1 ⋅ ⋅ ⋅ gi), gi+1, . . . , gn)(−1)n−i

, (2)

where we used the shorthand notation g
hÐ→ ≡ g hÐ→ h−1gh. With the loop groupoid of a finite groupoid being a finite groupoid itself, the

procedure described above can be iterated so as to define the n-fold loop groupoid ΛnG ∶= Λ(Λn−1G) and the corresponding Tn-transgression
map tn : Z●(G, U(1)) → Z●−n(ΛG, U(1)).

In addition to categories, in the following, we will make use of higher categorical structures that we will model algebraically in terms of
bicategories.

Definition 5 (bicategory). A bicategory B consists of the following:

● A set of objects Ob(B).
● A category HomB(X, Y), for every pair of objects X, Y ∈ Ob(B), such that objects and morphisms in HomB(X, Y) are referred to as

1- and 2-morphisms, respectively.
● A binary functor ⊗ : HomB(X, Y) ×HomB(Y , Z) → HomB(X, Z) for every triple of objects X, Y , Z ∈ Ob(B).
● A natural isomorphism αf ,g,h : ( f ⊗ g) ⊗ h⇒ f ⊗ (g ⊗ h) called the “1-associator,” for every triple of composable 1-morphisms f , g,

and h, satisfying the “pentagon” axiom.
● A 1-morphism 𝟙X ∈ Ob(HomB(X, X)), for every object X ∈ Ob(B), and a pair of natural isomorphisms ℓf : 𝟙X ⊗ f ⇒ f and

rf : f ⊗ 𝟙Y ⇒ f called the “left” and “right unitors,” respectively, for every 1-morphism f : X → Y. These data must satisfy the “triangle”
axiom.
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A particularly important class of bicategories for the following discussion is provided by monoidal categories.

Definition 6 (monoidal category). Let B be a bicategory with a unique object {●} = Ob(B). The hom-category HomB(●, ●) ≡ C equipped
with the composition functor ⊗ and the natural isomorphisms α, ℓ and r is called a “monoidal” category.

Endowing a monoidal category with additional properties, whose precise definitions can be found, for instance, in Chap. 4 of Ref. 41,
yields the concept of multi-fusion category.

Definition 7 (multi-fusion category). A “multi-fusion” category C is a rigid monoidal category that is C-linear, Abelian, semi-simple and
such that the monoidal structure is given via a bifunctor ⊗ : C ⊠ C→ C, where ⊠ denotes the Deligne tensor product of Abelian categories. In
addition, if HomC(𝟙,𝟙) ≃ C, then we call C a “fusion” category.

Physically, (spherical) fusion categories provide input data for (2 + 1)d lattice models exhibiting topological order.9,10,22,24 We shall now
review the essential definitions of module categories over a multi-fusion category C, module category functors, and module category natural
transformations. Note that for the sake of conciseness, we shall omit to reproduce some of the relevant coherence relations. These can be
found, for instance, in Ref. 41 or in Ref. 20, where the notation is the same as here.

Definition 8 (module category). Let C ≡ (C,⊗,𝟙C, ℓ, r,α) be a multi-fusion category. We define a (left) C-module category as a triple
(M,⊙, α̇) that consists of a category M, an action bifunctor ⊙ : C ⊠M→M, and a natural isomorphism,

α̇X,Y ,M : (X ⊗ Y) ⊙M ∼Ð→ X ⊙ (Y ⊙M), ∀X, Y ∈ Ob(C) and M ∈ Ob(M). (3)

The isomorphism α̇, which is referred to as the module associator, is subject to a “pentagon” axiom involving the monoidal associator α. In
addition, there is a unit isomorphism ℓM : 𝟙C ⊙M ∼Ð→M that is subject to a “triangle” axiom involving the right unitor r.

Definition 9 (module category functor). Let C ≡ (C,⊗,𝟙C, ℓ, r,α) be a multi-fusion category and (M1,M2) be a pair of left C-module
categories with module associators α̇ and α̈, respectively. We define a C-module functor as a pair (F, s), where F : M1 →M2 is a functor and s
is a natural isomorphism such that

sX,M : F(X ⊙M) → X ⊙ F(M), ∀X ∈ Ob(C) and M ∈ Ob(M1). (4)

Together, they satisfy a “pentagon” axiom involving α̇ and α̈.

Given a (2 + 1)d topological model with the input spherical fusion category C, module categories over C label gaped boundary conditions,
while module category functors classify point-like excitations at the interface of two gapped boundaries.20,42

Definition 10 (module category natural transformation). Let C ≡ (C,⊗,𝟙C, ℓ, r,α) be a multi-fusion category and (F, s), (F′, s′) be a pair
of C-module functors. We define a C-module natural transformation (or morphism of C-module functors) between F and F′ as a natural
transformation η : F → F′ such that the following diagram commutes:

(5)

for every X ∈ Ob(C) and M ∈ Ob(M).

Similarly, one can define right module categories as well as the corresponding module category functors and morphisms of module
category of functors. Given the above definitions, we can naturally form a bicategory of C-module categories MOD(C) in analogy with the
category of modules over a ring.

Definition 11 (bicategory of module categories). Let C ≡ (C,⊗,𝟙C, ℓ, r,α) be a multi-fusion category. We define the bicategory MOD(C) as
the bicategory with objects, C-module categories, 1-morphisms, C-module functors, and 2-morphisms, C-module natural transformations.

Given a pair (M1,M2) of C-module categories, we will sometimes refer to the category FunC(M1,M2) of C-module functors (F, s) :
M1 →M2 and C-module natural transformations. An important instance of Definition 11 is the bicategory of finite dimensional 2-vector
spaces 2Vec ∶= MOD(Vec), where Vec is the fusion category of finite dimensional complex vector spaces and linear maps. The motivation
for such a nomenclature is that we should think of 2Vec as a categorification of Vec. Indeed, by definition a (complex) vector space is a
C-module. Considering Vec as a possible categorification of C, a 2-vector space (an object in 2Vec) is defined analogously as a Vec-module
category. Moreover, finite dimensional 2-vector spaces are given by finite, C-linear Abelian, semi-simple categories.
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B. Algebras and higher algebras
In the following, we shall present the data the Dijkgraaf–Witten theory assigns to certain closed manifolds of different dimensions in

terms of algebras and higher algebras. Given a multi-fusion category, there is a notion of algebra internal to it.

Definition 12 (algebra object). Let C ≡ (C,⊗,𝟙, ℓ, r,α) be a multi-fusion category. We define an (associative) algebra object in C as a triple
(A, m, u) that consists of an object A and morphisms m : A⊗ A→ A and u : 𝟙→ A in C referred to as the multiplication and the unit, respectively.
The morphisms m and u are subject to an associativity and unitality conditions involving the monoidal structure C.

Using the previous definitions, we can define an important class of algebra objects in Vec, namely, twisted groupoid algebras, which
generalize straightforwardly the concept of twisted group algebra.

Definition 13 (twisted groupoid algebra). Given a groupoid G and a normalized groupoid 2-cocycle in [β] ∈ H2(G, U(1)), we define the
twisted groupoid algebra C[G ]β as the associative algebra with defining vector space SpanC{∣g⟩ ∣ ∀ g ∈ Hom(G)} and the algebra product

∣g⟩ ⋆ ∣g′⟩ ∶= δt(g),s(g′) β(g, g′) ∣gg′⟩ (6)

for all g, g′ ∈ Hom(G).

Following the theory of twisted group algebras, we can show that twisted groupoid algebras are semi-simple algebras, i.e., every module
is isomorphic to a direct sum of simple modules.

The notion of algebra object admits a natural categorification in terms of pseudo-algebra objects, whose definition can be found in
Ref. 20. Guided by the observation that 2Vec defines a fusion 2-category in the sense of Ref. 39, we would like to consider an appropriate
categorification of the notion of twisted groupoid algebras, referred to as twisted groupoid 2-algebras, which are examples of pseudo-algebra
objects internal to 2Vec. Akin to the categorification of Vec to 2Vec, groupoid 2-algebras are obtained by promoting the field C to Vec,
yielding the notion of groupoid-graded vector spaces.

Example 1 (category of groupoid-graded vector spaces). Let G be a finite groupoid and α be a normalized groupoid 3-cocycle in H3(G, U(1))
for the trivial G-module U(1). The twisted groupoid 2-algebra VecαG is the category whose objects are Hom(G)-graded vector spaces and mor-
phisms, grading preserving linear maps. There are ∣Hom(G)∣-many simple objects notated via Cg,∀ g ∈ Hom(G). Including the zero vector space
∅ as the vector space with no grading, the monoidal structure is given by a bifunctor ⊗ : VecαG ⊠ VecαG → VecαG , which acts on objects via

⊗ : Vg ×Wh ↦
⎧⎪⎪⎨⎪⎪⎩

(V ⊗W)gh if t(g) = s(h)
∅ else,

(7)

for all V , W ∈ Ob(VecαG ) and g,h ∈ Hom(G) and on morphisms fg : Vg → V′g and f ′h : Wh →W′

h via

⊗ : fg ⊗ f ′h ↦
⎧⎪⎪⎨⎪⎪⎩

( f ⊗ f ′)gh if t(g) = s(h)
0 else,

(8)

for all g,h ∈ Hom(G). The monoidal associator is given by the natural transformation

αUg ,Vh ,Wk = α(g,h, k) ● (ηU,V ,W)ghk : (Ug ⊗ Vh) ⊗Wk
∼Ð→ Ug ⊗ (Vh ⊗Wk) (9)

for all composable morphisms g,h, k ∈ Hom(G), where ηU,V ,W is the canonical isomorphism of vector spaces (V ⊗W) ⊗ Z ∼Ð→ V ⊗ (W ⊗ Z).
The monoidal unit is given by 𝟙 ∶= ⊕X∈Ob(G)CidX , and the unitality conditions are

ℓVg : Vg ⊗ 𝟙 ∼Ð→ Vg, rVg : 𝟙⊗ Vg
∼Ð→ Vg, (10)

which are defined by the canonical isomorphisms (V ⊗C)g ≃ Vg and (C⊗ V)g ≃ Vg, respectively, for all vector spaces V and g ∈ Hom(G).
Subsequently, we will assume that VecαG is equipped with the following rigid structure, which, in particular, ensures that VecαG is multi-fusion.
The dual of an object V∗ is given by ⊕g∈Hom(G)(V∗)g with (V∗)g ∶= HomVec(Vg−1 ,C), and the evaluations evVg : (V∗)g ⊗ Vg−1 → 𝟙 and
ẽvVg : Vg−1 ⊗ (V∗)g → 𝟙 are defined by the linear maps

evVg : ( f ⊗ v)ids(g) ↦ f (v)ids(g) , ẽvVg : (v ⊗ f )ids(g) ↦ α(g, g−1, g) f (v)ids(g) , (11)

respectively, for all f ∈ (V∗)g and v ∈ Vg−1 . The corresponding coevaluation maps are provided by the grading preserving linear maps
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coevVg : ididg ↦ α(g, g−1, g)−1
dim(V)

⊕
i=1
(vi ⊗ fi)idg , c̃oevVg : ididg ↦

dim(V)

⊕
i=1
( fi ⊗ vi)idg , (12)

where {vi}dim(V)
i=1 denotes a basis for Vg and { fi}dim(V)

i=1 denotes a basis for (V∗)g such that fj(vi) = δi,j for all i, j ∈ 1, . . . , dim(V).

As we shall evoke below, this procedure can be iterated by promoting the category Vec to 2Vec so as to define a notion of 3-algebra.
Crucially, algebra objects in the category VecαG of groupoid-graded vector spaces admit a simple characterization in terms of (G,α)-

subgroupoids.

Definition 14. Let G be a finite groupoid and α a normalized groupoid 3-cocycle in H3(G, U(1)). We define a (G,α)-subgroupoid as a pair
(A,ϕ) that consists of a subgroupoid A ⊆ G and a cochain ϕ ∈ C2(A, U(1)) satisfying d(2)ϕ(a, a′, a′′) = α−1(a, a′, a′′) for any triple (a, a′, a′′)
of composable morphisms in Hom(A).

Given a (G,α)-subgroupoid (A,ϕ), an algebra object in VecαG is defined as Aϕ ≡ (⊕a∈Hom(A)Ca, m, u), where

m : Aϕ ⊗Aϕ → Aϕ

: a⊗ a
′ ↦ δt(a),s(a′) ϕ(a, a′) aa′

and u(𝟙Vecα
G
) ∶= ∑

X∈Ob(Aϕ)

idX. (13)

Finally, we shall require the notion of module objects.

Definition 15 (right module object). Let C ≡ (C,⊗,𝟙, ℓ, r,α) be a multi-fusion category and a ≡ (A, m, u) be an algebra object in C. We
define a right module object over A as a pair (M, p) consisting of an object M ∈ Ob(C) and an action morphism p : M ⊗ A→M ∈ Hom(C) that
satisfies a compatibility condition involving the multiplication m and the associator α, as well as a unit constraint involving r and u.

Given two module objects, a module object homomorphism between them is a morphism between the corresponding objects in the
underlying category that satisfies a compatibility condition involving the action morphisms of both algebra objects. Left module objects and
the corresponding homomorphisms are defined in a similar fashion. Furthermore, given an algebra object, the subspace of module object
homomorphisms is stable under composition, and as such, we can define the following category:

Definition 16 (category of module objects). Let C be a multi-fusion category and A ≡ (A, m, u) be an algebra object in C. We define the
category ModC(A) as the category with A-module objects and A-module homomorphisms.

Henceforth, given an algebra object A in Vec, we shall notate the category ModVec(A) as Mod(A), which is equivalent to the category
Rep(A) of representations and intertwiners of A.

C. Dijkgraaf–Witten theory in a nutshell
We shall now review from a physical perspective what the (3 + 1)d Dijkgraaf–Witten theory assigns to the manifolds T4, T3, T2, and

S1 in terms of the category-theoretical notions presented above. Since we shall only briefly motivate and quote the results, we encourage the
reader to consult Refs. 8 and 17–20 for details.

The input of the theory is a finite group G and a normalized representative in [π] ∈ H4(G, U(1)). Given a four-manifold M, we endow
it with a triangulation M△ equipped with a total ordering v0 < v1 < ⋅ ⋅ ⋅ < v∣M△ ∣0 of its 0-simplices. This total ordering induces an orientation
ϵ(△(n)) = ±1 for every n-simplex△(n). We define a G-coloring of such a triangulation as an assignment of group variables to every 1-simplex
such that for every 2-simplex (vivjvk)with vi < vj < vk, the flatness condition gvivj gvjvk = gvivk is verified. The set of G-colorings is denoted by
Col(M△, G). Writing the restriction of a G-coloring g to a 4-simplex△(4) = (v0v1v2v3v4) as g[v0 . . . v4] ≡ (gv0v1 , . . . , gv3v4), the evaluation
of the 4-cocycle ω on △(4) is given by ω(g[v0 . . . v4]) ≡ ω(gv0v1 , . . . , gv3v4). Given the above conventions, the state-sum assigns to M△ the
following complex number:

Z ω
G(M△) =

1
∣G∣∣M △ ∣0 ∑

g∈Col(M△ ,G)
∏

△(n)⊂M△

⟨ω(g),△(n)⟩, (14)

where we introduced the topological action ⟨ω(g),△(n)⟩ ∶= ω(g[△(n)])ϵ(△
(n)
). Let us now specialize to the four-torus T4. It can be trian-

gulated as a 4-cube with opposite 3-cubes identified that is decomposed into twenty-four 4-simplices. In the spirit of Ref. 16, we shall write
the complex number Z ω

G(T4
△
) using the language of loop groupoids. Let G be the delooping of the finite group G, i.e., the group treated as

a one object groupoid. The loop groupoid ΛG is the groupoid such that Ob(ΛG) = G and Hom(ΛG) = {g aÐ→ a−1ga ≡ g aÐ→ ∣∀ g, a ∈ G}.
Henceforth, we shall use the shorthand notation ΛG ≡ ΛG whenever no confusion is possible. A groupoid cocycle in H3(ΛG, U(1)) can then
be obtained by applying the S1-transgression map to the group 4-cocycle π such that

t(π)(a bÐ→ , ab cÐ→ , abc dÐ→) = ω(b, ab, c, d)ω(b, c, d, abcd)
ω(a, b, c, d)ω(b, c, abc, d) , (15)
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where we introduced the shorthand notation xy ∶= y−1xy. Iterating this process, we can construct the 4-fold loop groupoid Λ4G together with
the T4-transgression map such that t4(π) ∈ H0(Λ4G, U(1)). By definition, objects in Ob(Λ4G) are characterized by quadruples {a, b, c, d} of
group variables in G such that [x, y] ∶= xyx−1y−1 = 𝟙G for every (x, y) ∈ {a, b, c, d}. Moreover, given a groupoid G, a groupoid 0-cocycle can be
interpreted as a U(1)-valued function over the objects of G, which only depend on connected components of G. Given the following notation,

∫
G
γ ∶= ∑

[X]∈π0(G)

γ(X)
∣Aut(X)∣ , (16)

where Aut(X) refers to the group of morphisms in EndG(X) and π0(G) is the set of connected components, the complex number the TQFT
assigns to T4 can finally be expressed in the following concise way:16

Z π
G(T4) = ∫

Λ4G
t4(π). (17)

By definition, the Dijkgraaf–Witten theory assigns a vector space to every closed three-manifold. Specializing to the case of the three-torus,
let us now compute this vector space. We shall find this vector space as the ground state subspace of the Hamiltonian realization of the theory
on T3. This lattice Hamiltonian, whose explicit definition can be found in Refs. 17 and 19, is such that its ground state projector on T3 is equal
to the linear map the theory assigns to the bordism T3 × I. Since the theory maps the manifold T3 × I to the identity map idZ π

G(T
3), we have

Z π
G(T3) = ImZ π

G(T3 × I). Triangulating the three-torus as a cube with opposite plaquettes identified that is decomposed into six 3-simplices,
we define a microscopic state on this triangulation as a state ∣a, b, c⟩ ∈ C[G]⊗3, where it is understood that a, b, and c label the 1-simplices
going along each non-contractible 1-cycle, respectively. Acting with the ground state projector Z π

G(T3 × I) yields

Z π
G(T3) ≃ SpanC

⎧⎪⎪⎨⎪⎪⎩

1
∣G∣ ∑

x∈HomΛ3G(a,−)
t3(π)(a xÐ→) ∣x−1

ax⟩
⎫⎪⎪⎬⎪⎪⎭a∈Ob(Λ3G)

, (18)

where objects a ∈ Ob(Λ3G) are characterized by triples {a, b, c} of G-variables such that [a, b] = [b, c] = [a, c] = 𝟙G. Crucially, it follows from
the triangulation invariance of the state-sum that any two choices of triangulation for T3 yields isomorphic vector spaces. More generally,
given a groupoid G and groupoid 1-cocycle ϵ, we define the following vector space:16

VG(ϵ) ∶= SpanC{s : Ob(G) → C ∣ s(Y) = ϵ(g) s(X) ∀ g ∈ HomG(X, Y)}. (19)

Using the 1-cocycle condition of t3(π), we obtain that the vector space the TQFT assigns to T3 is isomorphic to

Z π
G(T3) ≃ VΛ3G(t3(π)). (20)

Let us now motivate from the lattice Hamiltonian point of view what the theory assigns to the two-torus. By the definition of an extended
TQFT, we expect the theory to assign to every closed two-manifold a finite dimensional 2-vector space and to an open three-manifold an
object in the 2-vector space associated with its boundary. We shall argue that the quantum invariant the Dijkgraaf–Witten theory assigns to
the two-torus can be interpreted as the category of loop-like bulk anyonic excitations hosted by its lattice Hamiltonian realization.

As mentioned above, the lattice Hamiltonian realization of the theory on a three-manifold is such that its ground state subspace is
isomorphic to the vector space the theory assigns to the closed three-manifold. More specifically, it is an exactly solvable model obtained
as a sum of mutually commuting projectors, which act on neighbourhoods of the 0-simplices that are in the interior of the manifold.17,19 It
follows that the Hamiltonian has open boundary conditions. Generically, such boundary conditions can be interpreted as excitations that are
linear superpositions of electric charges and magnetic fluxes. Indeed, given an excitation, which is by definition a subcomplex whose energy is
higher than that of the ground state, the equivalence class of topological excitations up to the insertion of a local excitation are encoded onto
the boundary conditions of the manifold that results from removing this subcomplex from the three-manifold.19,43 Given that a loop-like
excitation is an excitation whose topology is that of the circle S1 and that a regular neighborhood of S1 has the topology of a solid torus
D2 × S1, we find that loop-like excitations are classified by boundary conditions on the two-torus T2 = ∂(D2 × S1)—the solid torus providing
here the aforementioned subcomplex, for which the energy is above the ground state one.

Let Σo be the open manifold obtained by removing a solid torus from a closed three-manifold Σ. Given such a manifold, it is always
possible to glue a copy of the manifold T2 × I along ∂Σo without altering its topology. As detailed in Ref. 19, this gluing operation can be
extended to an action of the ground states on T2 × I onto those on Σo. Similarly, the operation that consists in gluing two copies of T2 × I and
applying an orientation-preserving diffeomorphism from T2 × [0, 2] to T2 × [0, 1] can be extended so as to endow the ground state subspace
on T2 × I with the structure of an associative semi-simple ∗-algebra. This algebra was shown in Ref. 19 to be Morita equivalent to the groupoid
algebra C[Λ2G]t

2
(π) of the 2-fold loop-groupoid twisted by the T2-transgression map t2(π) in H2(Λ2G, U(1)). Applying the definition of

Sec. II A, this is the algebra with the underlying vector space,
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SpanC{∣g
aÐ→⟩ ∣ g aÐ→ ∈ Hom(Λ2G)}, (21)

and the product rule,

∣g aÐ→⟩ ⋆ ∣g′ a′ÐÐ→⟩ = δg′ ,a−1ga t2(π)(g aÐ→ , a−1
ga

a′ÐÐ→) ∣g aa′ÐÐ→⟩. (22)

It follows that the ground state subspace on Σo has the structure of a module over C[Λ2G]t
2
(π), which can be decomposed over isomorphism

classes of simple modules. Noticing that we can always find a collar neighborhood of the torus-like boundary that is diffeomorphic to T2 × I,
the task of finding such simple modules reduces to classifying the simple modules of the regular module of C[Λ2G]t

2
(π), which, in turn, boils

down to computing the irreducible representations of the algebra. Putting everything together, we obtain that the loop-like bulk excitations of
the lattice Hamiltonian realization are encoded into the category Mod(C[Λ2G]t

2
(π)) of C[Λ2G]t

2
(π)-modules and module homomorphisms,

which is the quantum invariant that the TQFT assigns to T2, i.e.,

Z π
G(T2) = Mod(C[Λ2G]t

2
(π)). (23)

Note that this category can be further endowed with a braided monoidal structure that encode the fusion and the braiding of the loop-like
excitations.19 We shall comment further on these aspects in Sec. V.

Finally, let us present the 2-category that the theory assigns to the circle S1. We shall introduce this 2-category as the bicategory of open
string-like excitations hosted by the lattice Hamiltonian realization of the theory.20 In the vein of the discussion above, we shall reveal this
bicategory via a categorification of the tube algebra approach.

Given a three manifold Σ with a non-empty boundary ∂Σ, we consider the lattice Hamiltonian realization of the theory on Σ. We are
interested in string-like excitations that terminate at the spatial boundary, a regular neighborhood of which has the topology of a solid cylinder,
i.e., D2 × I. Removing such a regular neighborhood leaves a cylinder-like boundary component referred to as the excitation boundary, which
is incident on ∂Σ. We notate the resulting manifold via Σo and the excitation boundary via ∂Σo∣

ex.. Similar to the loop-like excitations, we would
like to classify these string-like excitations via a classification of the boundary conditions along the excitation boundary ∂Σo∣

ex.. Following the
tube algebra approach, we begin by noticing that we can always glue a copy of the pinched interval bordism (S1 × I)×p I along ∂Σo∣

ex., where
Ξ×p I is defined as Ξ × I/ ∼ such that (x, i) ∼ (x, i′) for (x, i) ∈ ∂Ξ × I. Similarly, the gluing of two copies of the manifold (S1 × I)×p I along
S1 × I is diffeomorphic to (S1 × I)×p I. We, thus, enrich the vector space of ground states on (S1 × I)×p I with the structure of an associative
semi-simple ∗-algebra so that the ground state subspace on Σo has the structure of a module over it. This algebra can be checked to be
isomorphic to the algebra CΛG of functions over the loop groupoidΛG. The tube algebra approach, thus, prescribes that the theory assigns the
category Mod(CΛG) to S1 × I, which happens to be equivalent to the category of loop-groupoid-graded vector spaces VecΛG.44 Alternatively,
we can think of Mod(CΛG) as the category of functors from the groupoid, with object-set ΛG and trivial morphisms, to Vec.

In sharp contrast to the case of the torus, we can define another gluing operation for the manifold (S1 × I)×p I, namely, along the
circle boundary components. This gluing operation can be lifted to a product rule ⊗ : VecΛG ⊠ VecΛG → VecΛG, which equips VecΛG with a
monoidal structure that is the one discussed in Definition 1. In particular, it follows from the triangulation invariance of the theory that the
monoidal associator is characterized by t(π), as expected, so that the manifold (S1 × I)×p I is endowed with the structure of the 2-algebra
Vect(π)

ΛG . We shall now find what the theory assigns to the circle by computing the “representations” of this categorified tube algebra, which
in this context are provided by the module categories over the 2-algebra Vect(π)

ΛG . Putting everything together, we can argue that the theory
assigns to the circle the following bicategory (see Definition 11):

Z π
G(S1) = MOD(Vect(π)

ΛG ) (24)

such that objects in this bicategory are interpreted as defect boundary conditions for the endpoints of a string-like excitation—isomorphism
classes of which specifying, in particular, allowed magnetic fluxes for the string—the 1-morphisms as dyonic quantum numbers associated
with string-like topological excitations that are constrained by a choice of boundary conditions at the endpoints and 2-morphisms as imple-
menting the renormalization of string-like excitations that are glued along their endpoints.20 The 2-algebra Vect(π)

ΛG can further be equipped
with the structure of a quasi-triangular quasi-Hopf category, categorifying the notion of the quasi-triangular quasi-Hopf algebra45 and serving
as a non-strict example of the construction in Ref. 46. Such an extension, in turn, equips MOD(Vect(π)

ΛG )with a braided monoidal bicategorical
structure.

III. CENTERS
In preparation for the following, we will reformulate the category-theoretical data that the theory assigns to the manifolds T3, T2, and S1 in

terms of the notion of “center” and categorifications thereof.
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A. Center of a (1-)algebra
In Sec. II C, we briefly summarized the result that the Dijkgraaf–Witten theory assigns the vector space VΛ3G(t3(π)) to the three-torus T3.

We now would like to express this vector space in terms of the algebra C[Λ2G]t
2
(π), the modules of which label the bulk loop-like excitations

of the Hamiltonian realization.
Given a groupoid G and normalized groupoid 2-cocycle in [β] ∈ H2(G, U(1)), let us consider the center Z(C[G ]β) of the twisted

groupoid algebra C[G ]β. Recall that the center is given by the commutative subalgebra consisting of all elements ∣ψ⟩ ∈ C[G ]β that satisfy
the relation

∣ψ⟩ ⋆ ∣g⟩ = ∣g⟩ ⋆ ∣ψ⟩, ∀ ∣g⟩ ∈ C[G ]β. (25)

The fact that it is indeed an algebra follows from the associativity of C[G ]β and the observation that

(∣ψ⟩ ⋆ ∣ϕ⟩) ⋆ ∣g⟩ = ∣ψ⟩ ⋆ ∣g⟩ ⋆ ∣ϕ⟩ = ∣g⟩ ⋆ (∣ψ⟩ ⋆ ∣ϕ⟩) (26)

for every ∣ψ⟩, ∣ϕ⟩ ∈ Z(C[G ]β) and ∣g⟩ ∈ C[G ]β. We shall now establish the fact that as a vector space, this center is isomorphic to VΛG(t(β)),
as defined in (19). Given a function s ∈ VΛG(t(β)), we consider the groupoid algebra element ∣ψ⟩ = ∑g∈Ob(ΛG)s(g)∣g⟩. It satisfies

∣x⟩ ⋆ ∣ψ⟩ = ∑
Z∈Ob(G)
g∈EndG(Z)

s(g) ∣x⟩ ⋆ ∣g⟩ = ∑
g∈EndG(Y)

s(g) β(x, g) ∣xg⟩

= ∑
g∈EndG(X)

s(x−1gx) β(x, x−1
gx) ∣gx⟩ = ∑

g∈EndG(X)
s(x−1gx) t(β)(g xÐ→) β(g, x) ∣gx⟩

= ∑
g∈EndG(X)

s(g) β(g, x) ∣gx⟩ = ∑
Z∈Ob(G)
g∈EndG(Z)

s(g) ∣g⟩ ⋆ ∣x⟩ = ∣ψ⟩ ⋆ ∣x⟩ (27)

for every x ∈ HomG(X, Y), where we used the defining property of s as well as the explicit expression of t(β). This proves that ∣ψ⟩ ∈ Z(C[G ]β).
Conversely, given an element ∑g∈Hom(G)s(g)∣g⟩ in the center, we can check that s ∈ VΛG(t(β)), proving the isomorphism VΛG(t(β))
≃ Z(C[G ]β). Specializing to G = Λ2G finally yields

VΛ3G(t3(π)) ≃ Z(C[Λ2G]t
2
(π)). (28)

Note that the twisted groupoid algebra C[Λ2G]t
2
(π) enters the definition of the category that the theory assigns to T2. This is premonitory of

the relation Dim : Z π
G(T2) ↦ Z π

G(T3) that we shall establish in Sec. IV B.

B. Center of a 2-algebra
We showed above that the vector space assigned by Z π

G to T3 is isomorphic to that spanned by the central elements of the algebra
C[Λ2G]t(π). Similarly, we shall now demonstrate that the category assigned by the theory to T2 is equivalent to the categorified center of a
2-algebra, namely, Vect(π)

ΛG . More specifically, we shall employ a categorification of the notion of center of an algebra that is suitable for any
multi-fusion category.

From the earlier discussions, a multi-fusion category can be viewed as a natural categorification of the notion of semi-simple algebra,
where the multiplication rule is replaced by the tensor product bifunctor ⊗ : C ⊠ C→ C. We could then naively define the center of a multi-
fusion category as the category whose objects commute with all other objects in C with respect to ⊗. However, in the spirit of categorification,
we ask X ⊗ A and A⊗ X to be isomorphic for all A ∈ Ob(C) as opposed to equal. In this manner, objects in the center should be provided by
pairs (X, RX,−), where X is an object of C and RX,− : X ⊗ − ∼Ð→ −⊗X is a collection of isomorphisms. Due to ere weak associativity of ⊗, it is
natural to further require that the isomorphisms RX,− compose weakly, relating RX,A and RX,B to RX,A⊗B for every A, B ∈ Ob(C). This yields
the definition of the monoidal (or Drinfel’d) center of a multi-fusion category.47,48

Definition 17 (center of a multi-fusion category). Let C ≡ (C,⊗,𝟙C, ℓ, r,α) be a multi-fusion category. The center Z(C) of C is a cate-
gory defined as follows: Objects in Z(C) consist of pairs (X, RX,−) with X ∈ Ob(C) and RX,− : X ⊗ − ∼Ð→ −⊗X being a collection of natural
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isomorphisms such that the diagram

(29)

commutes for every A, B ∈ Ob(C). The naturality of RX,− further implies that the commutativity of the following diagram commutes:

(30)

for every f ∈ HomC(A, B). Given a pair of objects (X, RX,−), (Y , RY ,−) ∈ Ob(Z(C)), a morphism from (X, RX,−) to (Y , RY ,−) is a morphism
f ∈ HomC(X, Y) such that for every A ∈ Ob(C), the following square commutes:

(31)

Composition of the morphisms in Z(C) is induced from that in C, and the identify morphism associated with the object (X, RX,−) is idX .

In analogy with the center of an algebra being closed under multiplication, the center of a multi-fusion category is furthermore a monoidal
category.

Property 1. Let C ≡ (C,⊗,𝟙C, ℓ, r,α) be a multi-fusion category. The center Z(C) is a monoidal category such that the unit is given by the
pair (𝟙C, r−1ℓ) and the tensor product of two objects (X, RX,−), (Y , RY ,−) ∈ Ob(Z(C)) is provided by (X, RX,−) ⊗ (Y , RY ,−) ∶= (X ⊗ Y , RX⊗Y ,−),
where the isomorphism RX⊗Y ,− is defined via the following commutative diagram:

(32)

for every A ∈ Ob(C). The monoidal associator is inherited from that in C.
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In the same vein as the definition of the center of a multi-fusion category, we can categorify the notion of commutative algebra. This
yields the notion of braided monoidal category.

Definition 18 (braided monoidal category). A braided monoidal category is a monoidal category C ≡ (C,⊗,𝟙C, ℓ, r,α) equipped with a
natural isomorphism RX,Y : X ⊗ Y ∼Ð→ Y ⊗ X for every X, Y ∈ C such that coherence relations

(33)

are satisfied for all X, Y , Z ∈ Ob(C).

The fact that the center of an algebra is a commutative algebra gets naturally categorified into the following property:41,48

Property 2. The center Z(C) of a multi-fusion category C ≡ (C,⊗,𝟙C, ℓ, r,α) is a braided monoidal category with braiding isomorphism
R(X,RX,−),(Y ,RY ,−) ∶= RX,Y for every pair of objects (X, RX,−), (Y , RY ,−) ∈ Ob(Z(C)).

Henceforth, we shall assume that the algebra C[Λ2G]t(π) is further equipped with the quasi-coassociative comultiplication map and the
compatible R-matrix, as described explicitly in Ref. 19 and recalled below, such that Mod(C[Λ2G]t(π)) is a braided monoidal category. We
are now ready to state the main result of this section, namely, that the category the Dijkgraaf–Witten theory assigns to the two-torus T2 can
be expressed as the center of a 2-algebra.49

Theorem 1. There is a braided monoidal equivalence between the category of modules over the twisted groupoid algebra C[Λ2G]t
2
(π) and

the center of the twisted groupoid 2-algebra Vect(π)
ΛG . In symbols,

Mod(C[Λ2G]t
2
(π)) ≅ Z(Vect(π)

ΛG ). (34)

In order to prove this statement, we shall proceed incrementally by first proving the equivalence of the categories and then extend it to a
braided monoidal equivalence.

Lemma 1. There is an equivalence between the categories Mod(C[Λ2G]t
2
(π)) and Z(Vect(π)

ΛG ).

Proof. The semi-simplicity of Vect(π)
ΛG implies that every object V = ⊕g∈Hom(ΛG)Vg in Vect(π)

ΛG decomposes as a direct sum of finitely
many simple objects of the form {Cg}∀ g∈Hom(ΛG). Given this observation, let us construct explicitly the objects in the center. By definition,
we know that an object in Z(Vect(π)

ΛG ) is provided by a pair (V , RV ,−) with V a Hom(ΛG)-graded vector space and RV ,− is a collection of
isomorphisms defined by

RV ,Ca : V ⊗Ca
∼Ð→ Ca ⊗ V , ∀ a ∈ Hom(ΛG), (35)

which satisfy the coherence relation (29). Provided such a family of isomorphisms and a morphism g ∈ Hom(ΛG), we have

(RV ,Ca)ga :
⎧⎪⎪⎨⎪⎪⎩

Vg
∼Ð→Va−1ga if s(g) = t(g) = s(a)

Vg
∼Ð→∅ otherwise,

(36)

for every a ∈ Hom(ΛG) so that the existence of a non-trivial isomorphism RV ,Ca implicitly constrains V to be an End(ΛG)-graded vector
space. Noticing that Ob(Λ2G) = End(ΛG), it follows that such a vector space decomposes as

V = ⊕
[g′]∈π0(Λ2G)

V[g′] with V[g′] ∶= ⊕
g∈[g′]

Vg (37)
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such that all the vector spaces appearing in the decomposition of V[g′] are equal when neglecting the grading. Given the above, we find that
the isomorphisms RV ,− induce a family of endomorphisms,

ρCa : V[g′] → V[g′]
: Vg∈[g′] ↦ δs(a),t(g) [Vg ◃ ρ(vg, a)] ∈ Va−1ga,

(38)

where ρ(vg, a) : Vg
∼Ð→Va−1ga for non-zero basis vectors (a, vg) ∈ Ca × Vg∈[g′] with s(a) = t(g). This family of endomorphisms is such that

Rvg ,a : vg ⊗ a↦ a⊗ [vg ◃ ρ(vg, a)], (39)

and more generally,50

RV[g′] ,Ca = swap ○
⎛
⎝

id⊗ ρ
⎛
⎝ ∑g∈[g′]

vg, a
⎞
⎠
⎞
⎠

, (40)

where “swap” is the transposition map that permutes the order of vector spaces in the tensor product. Classifying the objects of Z(Vect(π)
ΛG ),

thus, amounts to classifying pairs
(V
[g′]∈π0(Λ2G),{ρCa}∀a∈Hom(ΛG)). (41)

Utilizing (29), we find that

RV[g′] ,Caa′ = t(π)−1
V[g′] ,Ca ,Ca′ ○ (RV[g′] ,Ca ⊗ idCa′ ) ○ t(π)Ca ,V[g′] ,Ca′ ○ (idCa ⊗ RV[g′] ,Ca′ ) ○ t(π)−1

Ca ,Ca′ ,V[g′] ,

where t(π) here refers to the associator isomorphism in Vect(π)
ΛG . In virtue of (39), this implies that ρ(−,−) satisfies the algebra

ρ(vg, a) ◃ ρ(vg′ , a′) = δt(a),s(a′) t2(π)(g aÐ→ , a−1
ga

a′ÐÐ→) ρ(vg, aa′) (42)

for all g ∈ Ob(Λ2G) and a ∈ HomΛG(s(g),−). We recognize this algebra as the twisted groupoid algebra of the two-fold loop groupoid of G.
It follows that objects (V , RV ,−) can be conveniently described via weak functors

Fρ,V : Λ2G → Vec

: g ∈ Ob(Λ2G) ↦ Vg ⊂ V

: g
aÐ→ ∈ Hom(Λ2G) ↦ ρ(vg, a) : Vg → Va−1ga

(43)

such that every isomorphism ρ(vg, a) satisfies the weak composition rule (42). Exploiting the well-known equivalence between representations
and modules, we can interpret Fρ,V , or the pair (V , ρ), as a module over C[Λ2G]t

2
(π). Furthermore, morphisms in Z(Vect(π)

ΛG ) can be defined
by natural transformations Fρ,V → Fρ′ ,V′ , or equivalently, as intertwiners between representations of the twisted groupoid algebra. Putting
everything together, this establishes the equivalence Mod(C[Λ2G]t

2
(π)) ≅ Z(Vect(π)

ΛG ).

Lemma 2. The equivalence Mod(C[Λ2G]t
2
(π)) ≅ Z(Vect(π)

ΛG ) can be extended to a monoidal equivalence.

Proof. In light of the equivalence at the level of the categories, showing the monoidal equivalence amounts to proving that the monoidal
product in the center corresponds to the tensor product over C of representations of C[Λ2G]t

2
(π) encoded by a comultiplication map that is

quasi-coassociative with respect to a quasi-invertible algebra element characterized by t(π)−1. Given a pair of objects (V , RV ,−), (W, RW,−)
∈ Ob(Z(Vect(π)

ΛG ), the monoidal structure is provided by (V , RV ,−) ⊗ (W, RW,−) = (V ⊗W, RV⊗W,−) together with (32) such that

RV⊗W,A = t(π)V ,W,A ○ (idV ⊗ RW,A) ○ t(π)−1
V ,A,W ○ (RV ,A ⊗ idW) ○ t(π)A,V ,W (44)

for every A ∈ Ob(Vect(π)
ΛG ). The monoidal associator is the one of Vect(π)

ΛG . Provided non-zero basis vectors (a, vg1 ,wg2) ∈ Ca × Vg1∈[g′1]

⊗Wg2∈[g′2], we denote by (v ⊗w)g∈[g′] the basis vector of (V ⊗W)g defined as

(v ⊗w)g = ∑
g1 ,g2∈End(ΛG)

g1g2=g

vg1 ⊗wg2. (45)
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Considering the pair of modules (V , ρ) and (W, σ) associated with (V , RV ,−) and (W, RW,−), respectively, we find that

R(v⊗w)g ,a : (v ⊗w)g ⊗ a↦ ∑
g1 ,g2∈End(ΛG)

g1g2=g

γa(g1, g2) a⊗ ([vg1 ◃ ρ(vg1 , a)] ⊗ [wg2 ◃ σ(wg2 , a)]), (46)

where

γa(g1, g2) ∶=
t(π)(g1, g2, a) t(π)(a, a−1g1a, a−1g2a)

t(π)(g1, a, a−1g2a)
. (47)

Following the line of argument of the previous proof, we find that the pair (V ⊗W, RV⊗W,−) can be equivalently described by the module
[V ⊗W, (ρ⊗ σ) ○ Δ] in terms of the weak functor

F(ρ⊗σ)○Δ,V⊗W : Λ2G → Vec

: g ∈ Ob(Λ2G) ↦ (V ⊗W)g ⊂ V ⊗W

: g
aÐ→ ∈ Hom(Λ2G) ↦ (ρ⊗ σ) ○ Δ(g aÐ→)

(48)

such that the map Δ is identified with the comultiplication map of the twisted groupoid algebra,19

Δ : C[Λ2G]t
2
(π) → C[Λ2G]t

2
(π) ⊗C[Λ2G]t

2
(π)

: ∣g aÐ→⟩ ↦ ∑g1 ,g2∈End(ΛG)
g1g2=g

γa(g1, g2) ∣g1
aÐ→⟩ ⊗ ∣g2

aÐ→⟩. (49)

It follows from the cocycle relation
γa(g2, g3) γa(g1, g2g3)
γa(g1g2, g3) γa(g1, g2)

= t(π)(g1, g2, g3)
t(π)(a−1g1a, a−1g2a, a−1g3a)

(50)

that this comultiplication map, which can be verified to be an algebra homomorphism, satisfies the following quasi-coassociativity condition:

(Δ⊗ id) ○ Δ(∣a aÐ→⟩) = Φ ⋆ [(id⊗ Δ) ○ Δ(∣g aÐ→⟩)] ⋆Φ−1, (51)

with Φ being the invertible element of C[Λ2G]t
2
(π) ⊗C[Λ2G]t

2
(π) ⊗C[Λ2G]t

2
(π) given by

Φ ∶= ∑
g1 ,g2 ,g3∈Ob(Λ2G)

t(π)−1(g1, g2, g3) ∣g1
ids(g1)ÐÐÐÐ→⟩ ⊗ ∣g2

ids(g2)ÐÐÐÐ→⟩ ⊗ ∣g3
ids(g3)ÐÐÐÐ→⟩, (52)

where the loop groupoid cocycle t(π) characterizes the monoidal associator in the center. This quasi-coassociativity condition ensures that
the C[Λ2G]t

2
(π)-modules defined according to

(ρ⊗ σ ⊗ 𝜚) ○ (Δ⊗ id)Δ and (ρ⊗ σ ⊗ 𝜚) ○ (id⊗ Δ)Δ (53)

are isomorphic, from which follows the associativity condition in Mod(C[Λ2G]t
2
(π)). ◻

Lemma 3. The monoidal equivalence Mod(C[Λ2G]t
2
(π)) ≅ Z(Vect(π)

ΛG ) can be extended to a braided monoidal equivalence.

Proof. Let us consider a pair of objects (V , RV ,−), (W, RW,−) ∈ Z(Vect(π)
ΛG ) described by the modules (V , ρ) and (W, σ), respectively.

On the one hand, the braiding isomorphism with respect to the monoidal structure of the center is given by

R(V ,RV ,−),(W,RW,−) = RV ,W : (V , RV ,−) ⊗ (W, RW,−)
∼Ð→(W, RW,−) ⊗ (V , RV ,−). (54)

On the other hand, the braiding isomorphism on Mod(C[Λ2G]t
2
(π)) is given by (ρ⊗ σ)(R) ○ swap, where R is an invertible algebra element

defined as19

R ∶= ∑
g∈Ob(Λ2G)

g′∈EndΛG(s(g))

∣g′ gÐ→⟩ ⊗ ∣g
ids(g)ÐÐÐ→⟩ ∈ C[Λ2G]t

2
(π) ⊗C[Λ2G]t

2
(π) (55)

such that it satisfies
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R ⋆ Δ(∣g aÐ→⟩) ⋆ R−1 = Δ(∣g aÐ→⟩) ○ swap, ∀ ∣g aÐ→⟩ ∈ C[Λ2G]t
2
(π). (56)

This algebra element is referred to as the R-matrix in the context of the study of quasi-triangular quasi-Hopf algebra.66,67 Equivalence between
the two descriptions is then ensured by the following derivation:

RV ,W = ∑
g∈Ob(Λ2G)

(id⊗ σ(wg, ids(g))) ○ RV ,Wg

= swap ○ ∑
g∈Ob(Λ2G)

σ(wg, ids(g)) ⊗ ρ
⎛
⎝ ∑
g′∈EndΛG(s(g))

vg′ , g
⎞
⎠

= ∑
g∈Ob(Λ2G)

g′∈EndΛG(s(g))

(ρ(vg′ , g) ⊗ σ(wg, ids(g))) ○ swap = (ρ⊗ σ)(R) ○ swap, (57)

where we used the fact that σ(wg, ids(g)) acts as a projector onto Wg ⊂W, as well as (40). ◻

Putting the previous three lemmas together yields Theorem 1. It follows, in particular, that the simple objects of the center Z(Vect(π)
ΛG )

can be conveniently obtained via the irreducible representations of the twisted groupoid algebra, which were computed explicitly in Ref. 19.

C. Center of a 3-algebra

We mentioned in Sec. II C that the Dijkgraaf–Witten theory assigns to the circle S1 the braided monoidal bicategory MOD(Vect(π)
ΛG ). In

close analogy with what the theory assigns to T2 and T3, this bicategory can be equivalently presented as the categorified center of a 3-algebra,
namely, 2VecπG. The same way the center defined above is a categorification of the notion of center of an algebra suitable to multi-fusion
categories, the categorified center required here is a natural categorification of the notion of center of a multi-fusion category suitable to
monoidal bicategories. Since showing this equivalence of bicategories was the purpose of the paper27 by Kong et al., we shall merely state the
result in this section.

First, we need to enrich our notion of bicategory with a monoidal structure whose consistency conditions are weakened in an appropriate
way according to the ethos of categorification.51–53

Definition 19 (monoidal bicategory). A monoidal bicategory is defined as a decuple B ≡ (B,⊗,𝟙,α, r, ℓ,π, τ1, τ2, τ3) that consists of a
bicategory B together with a monoidal structure (⊗,𝟙,α, ℓ, r) such that the coherence diagrams of the pseudo-natural equivalences α :
(− ⊗ −) ⊗ − → −⊗ (− ⊗ −), ℓ : 𝟙⊗ − → − and r : − ⊗ 𝟙→ − commute up to invertible modifications π, τ1, τ2, and τ2, which fulfil various
coherence relations.

An example of the monoidal bicategory is provided by twisted group 3-algebras. These are obtained as a categorification of the concept
of 2-algebras by promoting the category Vec to 2Vec.

Example 2 (bicategory of group-graded 2-vector spaces). Let G be a finite group and π be a normalized group 4-cocycle in H4(G, U(1)).
The twisted group 3-algebra 2VecπG is a monoidal bicategory whose objects are G-graded 2-vector spaces of the form V = ⊞g∈GV g , 1-morphisms,
grading preserving Vec-module functors, and 2-morphisms, Vec-module natural transformations. There are ∣G∣-many simple objects notated
via Vecg , ∀g ∈ G. The monoidal structure is defined on homogeneous components via ⊠ : Vecg × Vech → Vecgh for all g, h ∈ G together with the
pseudo-natural equivalences

(Vecg ⊠ Vech) ⊠ Veck

αVecg ,Vech ,VeckÐÐÐÐÐÐÐÐÐÐ→Vecg ⊠ (Vech ⊠ Veck),

Vecg ⊠ Vec𝟙G

rVecgÐÐÐÐ→Vecg , and Vec𝟙G
⊠ Vecg

ℓVecgÐÐÐÐ→Vecg ,

(58)

which are identity 1-morphisms. The invertible modifications τ1, τ2, and τ3 are trivial, whereas the “pentagonator” π is defined by

πVecg ,Vech ,Veck ,Vecl
= π(g, h, k, l) ● idVecghkl

(59)

: (αVecg ,Vech ,Veck
⊠ idVecl

) ○ αVecg ,Vech⊠Veck ,Vecl
○ (idVecg

⊠ αVech ,Veck ,Vecl
)

⇒ αVecgh ,Veck ,Vecl
○ αVecg ,Vech ,Veckl

for all g, h, k, l ∈ G.
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Monoidal bicategories can be further equipped with a braiding structure, whose definition we omit here (see, e.g., Ref. 53). A
categorification of the center of a multi-fusion category suitable to monoidal bicategories goes as follows.

Definition 20 (center of a monoidal bicategory). Let B ≡ (B,⊗,𝟙,α, ℓ, r,π, τ1, τ2, τ3) be a monoidal bicategory. The center Z(B) of B is a
bicategory such that we have the following:

● Objects are triple (X, RX,−, RX∣−,−) that consists of an object X ∈ B, a pseudo-natural equivalence RX,− : X ⊗ − → −⊗ X, and an invertible
modification RX∣−,− weakening the “hexagon” coherence relation (29), which satisfy a “permuto-associahedron” axiom involving the
pentagonator π.

● 1-morphisms between two objects (X, RX,−, RX∣−,−) and (Y , RY ,−, RY∣−,−) are tuples ( f , Rf ,−) that consists of a morphism f : X → Y
and an invertible modification Rf ,− weakening the coherence relation (31), which satisfy a “prism” axiom involving RX∣−,− and RY∣−,−.
Composition of morphisms in Z(B) is of the form ( f , Rf ,−) ○ (g, Rg,−) = ( f ○ g, (id f⊗− ○ Rg,−) ⋅ (Rf ,− ○ id−⊗g)), where f and g are
composable morphisms in B.

● 2-morphisms between 1-morphisms ( f , Rf ,−) and (g, Rg,−) are 2-morphisms f ⇒ g in B subject to a “prism” axiom involving Rf ,− and
Rg,−.

Similar to the center of a multi-fusion category, the center of a monoidal bicategory can be verified to be a braided monoidal bicategory. In
Ref. 30, they computed explicitly the center of the 3-algebra 2VecπG and showed that it satisfies an equivalence of bicategories, which in our
terminology reads

MOD(Vect(π)
ΛG ) ≅ Z(2VecπG). (60)

This equivalence can be further lifted to a braided monoidal equivalence of bicategories by noting that there exists a quasi-triangular quasi-
Hopf category structure on 2VecπG making MOD(Vect(π)

ΛG ) braided monoidal.46 Although we do not require (60) for our exposition per se, it
brings the content of this section together and sheds light on universal features of the theory as a fully extended TQFT.

IV. DIMENSION AND CROSSING WITH THE CIRCLE
In this section, we establish the “crossing with the circle” conditions for the manifolds T3, T2 and S1 obtained by computing the dimension,

and categorifications thereof, of the data the theory assigns to these manifolds.

A. Dimension of the vector space Z π
G(T3)

We explained in the Introduction that if a fully extended topological quantum field theory is fully characterized by the data it assigns to
the point, we must be able to recover from these data what the theory assigns to higher-dimensional manifolds. In particular, the “crossing
with the circle” condition is the statement that the dimension of the quantum invariant assigned to a (d − n)-manifold is equivalent to that
assigned to the Cartesian product of this manifold with the circle, where “dimension” here refers to a suitable categorification of the notion of
dimension of a vector space. In symbols, we expect

DimZ(Σd−n) = Z(Σd−n × S1).

The first—and simplest—instance of this equation states that the complex number assigned to a manifold of the form Σ3 × S1 equals the
dimension of the vector space assigned to Σ3. Invoking general arguments, we have already established in the Introduction that it is indeed
true, but we shall now confirm it in the case of the three-torus by computing explicitly the dimension of the vector space VΛ3G(t3(π)).

Let us consider a finite groupoid G and a groupoid 1-cocycle ϵ in H1(G, U(1)). On the one hand, we have the following relation:16

∫
ΛG

t(ϵ)(16)= ∑
[g]∈π0(ΛG)

t(ϵ)(g)
∣Aut(g)∣ = ∑

[X]∈π0(G)
g∈EndG(X)

ϵ(g)
∣Aut(X)∣ = ∑

[X]∈π0(G)

⎧⎪⎪⎨⎪⎪⎩

1 if ϵ∣Aut(X) ≡ 1,

0 otherwise,

where we used the fact that, since ϵ is a groupoid 1-cocycle, ϵ∣Aut(X) defines a one-dimensional representation of Aut(X) for every [X]
∈ π0(G), which satisfies the usual orthogonality condition. On the other hand, since any groupoid G can be decomposed over its connected
components as

G ≅ ⊔
[X]∈π0(G)

Aut(X), (61)

we find that

DimCVG(ϵ) = ∑
[X]∈π0(G)

DimCVAut(X)(ϵ∣Aut(X)) = ∑
[X]∈π0(G)

⎧⎪⎪⎨⎪⎪⎩

1 if ϵ∣Aut(X) ≡ 1,

0 otherwise,
(62)
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hence the equality ∫ΛGt(ϵ) = DimCVG(ϵ). Applying this formula to G = Λ2G finally yields

DimC Z π
G(T3) (20)= DimC VΛ3G(t3(π)) = ∫

Λ4G
t4(π) (17)= Z π

G(T4), (63)

as expected. Exploiting the isomorphism (28), we know that a complete and orthogonal basis for VΛ3G(t3(π)) is labelled by the characters of
the twisted groupoid algebra C[Λ2G]t

2
(π). It follows that the number Z π

G(T4) that the theory assigns to T4 equals the number of irreducible
representations of the algebra. Physically, this is the statement that the ground state degeneracy of the lattice Hamiltonian realization of the
theory on T3 equals the number of irreducible loop-like excitation types in the model.

Note finally that computing the dimension of a vector space is a trivial example of a decategorification process, upon which the vector
space thought as a 0-category is reduced to a number thought as a (−1)-category. In the following, we consider higher-categorical analogs of
this process.

B. Dimension of the category Z π
G(T2)

Let us now consider the crossing with the circle condition for the two-torus T2. As previously, we want to recover what the theory
assigns to T3 as the dimension of the category Z π

G(T2), where by dimension we mean a categorification of the usual notion that is suitable
to categories. Our approach mimics Bartlett’s who performs in Ref. 5 analogous computations for the fully extended (2 + 1)-dimensional
theory. More specifically, we consider a categorification of the well-known statement that the dimension of a vector space equals the trace of
the identity linear map.

Definition 21 (dimension of a category). Let C be a category and idC : C→ C be the identity functor on C. We define the dimension Dim(C)
of C as the commutative monoid Nat(idC, idC) of natural transformations η : idC ⇒ idC. If C is a 𝕜-linear category, then the dimension is defined
as a commutative 𝕜-algebra.

Expanding this definition, a natural transformation η : idC ⇒ idC of the identity functor is an assignment of a morphism ηX : X → X
∈ Hom(C) to each object X ∈ Ob(C) subject to the condition that the diagram

(64)

commutes for all morphisms f : X → Y ∈ Hom(C). Given a pair of natural transformations η,μ : idC ⇒ idC, these can be composed so as to
yield another natural transformation η ○ μ : idC ⇒ idC, which assigns to every X ∈ Ob(C) the morphism (η ○ μ)X ∶= ηX ○ μX . Applying rela-
tion (64) to the morphisms f ≡ μX : X → X for every X ∈ Ob(C) yields ηX ○ μX = μX ○ ηX , hence the commutativity η ○ μ = μ ○ η. Given this
definition, establishing the crossing with the circle condition for T2 amounts to proving the following theorem:

Theorem 2. The dimension of the category Mod(C[Λ2G]t
2
(π)) is isomorphic, as a commutative C-algebra to the center Z(C[Λ2G]t

2
(π))

of the twisted groupoid algebra C[Λ2G]t
2
(π), i.e.,

Dim Mod(C[Λ2G]t
2
(π)) ≃ Z(C[Λ2G]t

2
(π)). (65)

We shall prove this theorem by considering a series of lemmas. Letting Mod(C[Λ2G]t
2
(π))∣reg. denote the full subcategory of

Mod(C[Λ2G]t
2
(π)) consisting of a single object, which is the right regular representation of the algebra, and endomorphic intertwiners of

this unique representation, we have the following property:

Lemma 4. A natural transformation of the identity functor on Mod(C[Λ2G]t
2
(π)) is completely determined by a natural transformation

of the identify functor on Mod(C[Λ2G]t
2
(π))∣reg..

Proof. Let us begin with some observations. Recall that the right regular representation of an algebra A is the representation whose vector
space is given by the underlying vector space of A with action given by multiplication in A. As such, the single object in Mod(C[Λ2G]t

2
(π))∣reg.

is C[Λ2G]t
2
(π) itself. Given a representation (V , ρ) ∈ Ob(Mod(C[Λ2G]t

2
(π))), an intertwiner f : C[Λ2G]t

2
(π) → V between the regular

representation and V satisfies by definition

(− ⋆ ∣g⟩) ○ f = f ○ ρ(∣g⟩), ∀ ∣g⟩ ∈ C[Λ2G]t
2
(π). (66)
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Applying this defining formula to the identity algebra element ∣𝟙⟩ in C[Λ2G]t
2
(π) yields f (∣g⟩) = ρ(∣g⟩)(v) for every ∣g⟩ ∈ C[Λ2G]t

2
(π),

where v ∶= f (∣𝟙⟩). Conversely, given v ∈ V , we can define an intertwiner fv via fv(∣g⟩) ∶= ρ(∣g⟩)(v). It follows that a choice of intertwiner
f : C[Λ2G]t

2
(π) → V uniquely specifies a vector v ∈ V . As a corollary, we obtain that an endomorphic intertwiner of the regular representation

is defined by an element ∣g⟩ ∈ C[Λ2G]t
2
(π), which we write f ∣g⟩.

Let us now consider a natural transformation η of the identity functor on Mod(C[Λ2G]t
2
(π)) and notate via f∣η⟩ the intertwiner

η
C[Λ2G]t2(π) : C[Λ2G]t

2
(π) → C[Λ2G]t

2
(π), emphasizing that a choice of η specifies, in particular, a choice of algebra element ∣η⟩. The

morphism ηV : V → V assigned by η to any representation (V , ρ) in Mod(C[Λ2G]t
2
(π)) is such that the diagram

(67)

commutes for every v ∈ V . This condition stipulates that ηV : v ↦ ρ(∣η⟩)(v). The commutativity of the diagram

(68)

for every pair of representations (V , ρ) and (W, σ) and intertwiner f : V →W, which follows from the definition property of the intertwiner
f : V →W so that

(ηV ○ f )(v) = (ρ(∣η⟩) ○ f )(v) = ( f ○ σ(∣η⟩))(v) = ( f ○ ηW)(v), (69)

then confirms that the map η as so defined is indeed a natural transformation of the identity functor. With the natural transformation η being
solely defined in terms of its component associated with the regular representation, this concludes the proof of the lemma. ◻

Let us now proceed to showing the following property:

Lemma 5. The dimension of the subcategory Mod(C[Λ2G]t
2
(π))∣reg. is isomorphic, as a commutative C-algebra, to the center

Z(C[Λ2G]t
2
(π)) of the twisted groupoid algebra C[Λ2G]t

2
(π).

Proof. Let η ∈ Dim Mod(C[Λ2G]t
2
(π))∣reg. be a natural transformation of the identity functor, whose unique component is the endo-

morphic intertwiner f ∣η⟩ ≡ ηC[Λ2G]t2(π) . By definition, f∣η⟩ must commute with all intertwiners in the category. However, we established in
the proof of the previous lemma that endomorphic intertwiners of the regular representation are of the form f ∣g⟩(−) = − ⋆ ∣g⟩ for every
∣g⟩ ∈ C[Λ2G]t

2
(π). Therefore, the diagram

(70)

must commute for every ∣g⟩ ∈ C[Λ2G]t
2
(π). It follows that an intertwiner f∣η⟩ defines a natural transformation of the identity functor if and

only if
∣η⟩ ⋆ ∣g⟩ = ∣g⟩ ⋆ ∣η⟩, ∀ ∣g⟩ ∈ C[Λ2G]t

2
(π), (71)

i.e., ∣η⟩ ∈ Z(C[Λ2G]t
2
(π)). This establishes the following isomorphism of vector space:

Dim Mod(C[Λ2G]t
2
(π))∣reg. ≃ Z(C[Λ2G]t

2
(π)). (72)

It follows from the definition of the composition of natural transformations as well as the associativity of the twisted groupoid algebra that the
center element associated with the composition η ○ μ is ∣η⟩ ⋆ ∣μ⟩. Thus, the previous isomorphism lifts in an obvious way to an isomorphism
of commutative algebras. ◻
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Putting the previous two lemmas together yields Theorem 2, and thus, we have shown that

DimZ π
G(T2) (23)= Dim Mod(C[Λ2G]t

2
(π)) (65)≃ Z(C[Λ2G]t

2
(π)) (28)≃ VΛ3G(t

3(π)) (20)= Z π
G(T3), (73)

as required.

C. Dimension of the bicategory Z π
G(S1)

We shall now compute the crossing with the circle equation for the circle S1, which amounts to showing that the dimension of the
bicategory Z π

G(S1) is equivalent, as a braided monoidal category, to Z π
G(T2), where by dimension we mean a categorification of the previous

notion suitable to bicategories. The derivation will follow in close analogy with the Proof of Theorem 2 and is related to Bartlett’s computations
in the lower-dimensional scenario using gerbal representations.5

In order to define the dimension of a bicategory, we first need to introduce higher-categorical analogs of the notions of functor and
natural transformation, namely, 2-functor and pseudo-natural transformations. Since we shall only deal with identity 2-functors, in practice,
we omit to provide a detailed definition here and simply state that a 2-functor between two bicategories consists of a rule between the object-
sets as well as a (1-)functor between the hom-categories such that the structure is preserved up to coherent 2-isomorphisms—all the coherent
2-isomorphisms being trivial in the case of identity 2-functors. Pseudo-natural transformations between two such 2-functors are then defined
as follows:

Definition 22 (pseudo-natural transformation). Let F, F′ : B→ B ′ be two 2-functors between two bicategories B and B ′. A pseudo-natural
transformation η : F⇒ F′ between F and F′ is a rule assigning a 1-morphism ηX : F(X) → F′(X) ∈ Hom(C ′) to every X ∈ Ob(B) and an
invertible 2-morphism ηf to every f : X → Y ∈ Ob(Hom(B)) defined via54

(74)

The 1- and 2-morphisms ηX and ηf are subject to coherence laws ensuring naturality as well as the preservation of the composition and the units,
involving, in particular, the 1-associators of B and B ′.

We further require the notion of modification, which are maps between pseudo-natural transformations.

Definition 23 (modification). Let η, μ : F⇒ F′ be two pseudo-natural modifications between two 2-functors F, F′ : B→ B ′. A modification
ϑ : η⇛ μ is a rule assigning a 2-morphism ϑX : ηX ⇒ μX to every X ∈ Ob(B) such that the diagram

(75)

commutes for every X, Y ∈ Ob(B) and f ∈ Ob(HomB(X, Y)).

We are now ready to define the dimension of a bicategory.2,5

Definition 24 (dimension of a bicategory). Let B be a bicategory and idB : B→ B be the identity 2-functor on B. We define the dimension
Dim(B) of B as the braided monoidal category with objects, pseudo-natural transformations η,μ : idB ⇒ idB, morphisms, and modifications
ϑ : η⇛ μ between them.

Expanding this definition, a pseudo-natural transformation η : idB ⇒ idB of the identity 2-functor is a rule assigning a 1-morphism
ηX : X → X to every X ∈ Ob(B) and an invertible 2-morphism ηf : ηX ⊗ f ⇒ f ⊗ ηY to every f ∈ Ob(HomB(X, Y)) such that the diagram

(76)
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commutes for every f : X → Y and g : Y → Z. Moreover, given two pseudo-natural transformations η,μ : idB ⇒ idB, the composition η ○ μ is
defined as the pseudo-natural transformation that assigns to every X ∈ Ob(B) the 1-morphism (ηX ○ μX) and to every f ∈ Ob(HomB(X, Y))
the invertible 2-morphism (η ○ μ) f : (η ○ μ)X ○ g ⇒ f ○ (η ○ μ)Y defined via

(77)

Finally, given two pseudo-natural transformations η,μ : idB ⇒ idB, a modification ϑ : η⇛ μ is a rule assigning a 2-morphism ϑX : ηX ⇒ μX
to every X ∈ Ob(B) such that ηf ○ (id f ⊗ ϑY) = (ϑX ⊗ f ) ○ μf for every f ∈ Ob(HomB(X, Y)). Given this definition, establishing the crossing
with the circle equation for S1 amounts to proving the following theorem:

Theorem 3. The dimension of the bicategory MOD(Vect(π)
ΛG ) is equivalent, as a braided monoidal category, to the center Z(Vect(π)

ΛG ) of
the twisted groupoid 2-algebra Vect(π)

ΛG , i.e.,

Dim MOD(Vect(π)
ΛG ) ≅ Z(Vect(π)

ΛG ). (78)

We shall prove this theorem by considering the higher-categorical analogs of Lemmas 4 and 5. However, in order to do so, we require
an alternative description of the constituents of MOD(−), which we recall from Definition 11, which is the bicategory of module categories,
module functors, and module natural transformations over a multi-fusion category.

Given a multi-fusion category C, every indecomposable C-module category is equivalent to the category of module for a separable algebra
object in C. In order to introduce the notion of separable algebra object, we first need to discuss bimodule objects. We already introduced the
notions of algebra objects and right module objects in Definitions 12 and 15, respectively. Left module objects are defined analogously, which
when combined with right module objects, yield the notion of bimodule objects.

Definition 25 (bimodule object). Let C ≡ (C,⊗,𝟙, ℓ, r,α) be a multi-fusion category and (A, B) be a pair of algebra objects in C. If (M, p)
is right B-module object, (M, q) is a left A-module object, and (p, q) satisfy an obvious coherence relation involving the associator α, then the
triple (M, p, q) defines an (A, B)-bimodule object in C.

Note that by definition any right A-module object (M, p) can be identified with the (𝟙, A)-bimodule object (M, ℓM , p), and similarly
for left A-module objects. In the same vein, we can define the concept of bimodule object homomorphisms. A separable object in C is then
defined as an algebra object (A, m, u) whose multiplication map admits a section Δ : A→ A⊗ A satisfying

A ΔÐ→ A⊗ A mÐ→ A = A
idAÐÐ→ A (79)

as an (A, A)-bimodule homomorphism. As alluded earlier, we can then show that every indecomposable left module category over a multi-
fusion category C can be defined as the category of right modules over a separable algebra object in C.41 Furthermore, with the subspace of
bimodule object homomorphisms being stable under composition, we can define the following category:

Definition 26 (category of bimodule objects). Let C be a multi-fusion category and (A, B) be a pair of algebra objects in C. We define the
category BimodC(A, B) as the category with objects (A, B)-bimodule objects and morphisms (A, B)-bimodule homomorphisms.

Given two C-module categories ModC(A) and ModC(B), where A and B are two separable algebra objects in C, the hom-category of
C-module functors between them can be shown to be equivalent to the category of bimodule objects BimodC(A, B).41

Keeping the preliminary remarks above in mind, let us now proceed with our derivation. Mirroring the methodology of the previous
derivation, we begin by introducing the sub-bicategory MOD(Vect(π)

ΛG )∣reg. consisting of a single object, namely, the input multi-fusion cat-
egory thought as the module category over itself, and the monoidal hom-category of Vect(π)

ΛG -module endofunctors of Vect(π)
ΛG . Henceforth,

we shall refer to this single object as the regular Vect(π)
ΛG -module category by analogy with algebra representation theory. We then have the

following lemma:

Lemma 6. Pseudo-natural transformations of the identity 2-functor on MOD(Vect(π)
ΛG ) and modifications are completely determined by

their components on the identity 2-functor of the sub-bicategory MOD(Vect(π)
ΛG )∣reg..

Proof. We begin by remarking that every algebra object in Vect(π)
ΛG can be shown to be separable, and as such, we omit the distinction in

the following. Moreover, the monoidal identity
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𝟙Vect(π)
ΛG

∶= ⊕
g∈Ob(ΛG)

Cidg (80)

corresponds to the trivial algebra object, and the category of modules over it is none other than the regular Vect(π)
ΛG -module category. In

symbols,
ModVect(π)

ΛG

(𝟙Vect(π)
ΛG

) = Vect(π)
ΛG . (81)

We know from the preliminaries above that any left module Vect(π)
ΛG -module category can be expressed as the category of right modules over

an algebra object Aϕ, as defined in Sec. II B. The hom-category of Vect(π)
ΛG -module functors between such a module category and the regular

module category is equivalent to the category of bimodule objects between the corresponding algebra objects, i.e.,

HomMOD(Vect(π)
ΛG )
(Vect(π)

ΛG , ModVect(π)
ΛG

(Aϕ)) = FunVect(π)
ΛG

(Vect(π)
ΛG , ModVect(π)

ΛG

(Aϕ)) (82)

≅ BimodVect(π)
ΛG

(𝟙Vect(π)
ΛG

,Aϕ) ≅ ModVect(π)
ΛG

(Aϕ). (83)

It follows that a choice of module functors (F, s) of this form is specified by a choice of Aϕ-module object MAϕ such that the functor F is
defined via

F = − ⊗MAϕ : Vect(π)
ΛG → ModVect(π)

ΛG

(Aϕ)

: V ∈ Ob(Vect(π)
ΛG ) ↦ V ⊗MAϕ

: f ∈ Hom(Vect(π)
ΛG ) ↦ f ⊗ idMAϕ

,

(84)

and the natural isomorphism s is defined on objects V , V′ ∈ Ob(Vect(π)
ΛG ) as

sV ,V′ : F(V ⊗ V′) → V ⊗ F(V′) (85)

so that we have the identification s−,− = α−,−,MAϕ
. Henceforth, we shall denote such module endofunctors by (FMAϕ

, sMAϕ
). As a corollary, we

obtain that a module endofunctor of the regular module category is fully specified by a choice of ΛG-graded vector space.
Let us now consider a pseudo-natural transformation η ∈ Ob(Dim MOD(Vect(π)

ΛG )) of the identity 2-functor. By definition, it assigns a
module endofunctor to every object and a morphism of module functors to every module functor. We notate via (FVη , sVη) ≡ (− ⊗ Vη,α−,−,Vη)
the module endofunctor of the regular Vect(π)

ΛG -module category η assigned to the object Vect(π)
ΛG , emphasizing that a choice of η specifies,

in particular, a choice of ΛG-graded vector space Vη. Moreover, every module endofunctor of Vect(π)
ΛG is of the form (FW , sW) for some

W ∈ Ob(Vect(π)
ΛG ), and we denote by ηW the isomorphism of module functors η assigns to it according to

(86)

Let us now consider any module category ModVect(π)
ΛG

(Aϕ) and notate via ηAϕ the corresponding module endofunctor. The pseudo-natural

transformation η must further assign an isomorphism of module functors to every module functor (FMAϕAϕ
, sMAϕAϕ

) : ModVect(π)
ΛG

(Aϕ)
→ ModVect(π)

ΛG

(Aϕ) prescribed by a choice of (Aϕ,Aϕ)-bimodule object MAϕAϕ . This isomorphism, which we shall refer to using the

shorthand notation ηMAϕAϕ
, is defined via the following diagram:

(87)

Noticing that ModVect(π)
ΛG

(Aϕ) defines, in particular, a right module category over BimodVect(π)
ΛG

(Aϕ,Aϕ) such that the action bifunctor is

defined from the functors FMAϕAϕ
, the diagram above stipulates that (ηAϕ ,ηMAϕAϕ

) defines a BimodVect(π)
ΛG

(Aϕ,Aϕ)-module endofunctor of
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ModVect(π)
ΛG

(Aϕ). Let us now consider the defining diagram of the isomorphism of functors ηMAϕ
that the pseudo-natural transformation η

assigns to a given module functor (FMAϕ
, sMAϕ

) : Vect(π)
ΛG → ModVect(π)

ΛG

(Aϕ),

(88)

This diagram stipulates that the functor component of ηAϕ is provided by − ⊗ Vη such that M ⊗ Vη with M ∈ Ob(ModVect(π)
ΛG

(Aϕ)) defines

the right module object with action given by

(M ⊗ Vη) ⊗Aϕ
(87)ÐÐÐ→ (M ⊗Aϕ) ⊗ Vη p⊗idVηÐÐÐÐ→M ⊗ Vη. (89)

The diagram further stipulates that the isomorphism of module functors ηMAϕ
is defined for any ΛG-graded vector space V as

ηMAϕ
: (V ⊗ Vη) ⊗MAϕ

∼Ð→ (V ⊗MAϕ) ⊗ Vη, (90)

which is fixed by the family of isomorphisms ηW defined according to (86). Note that for a choice of Vη, it follows from the definition of
the monoidal product in Vect(π)

ΛG that M ⊗ Vη may be the zero vector space for every M ∈ Ob(ModVect(π)
ΛG

(Aϕ)), in which case the Vect(π)
ΛG -

module endofunctor of ModVect(π)
ΛG

(Aϕ) induced by Vη is the zero functor. Let us now consider two module categories ModVect(π)
ΛG

(Aϕ) and

ModVect(π)
ΛG

(Bψ). It follows from the previous derivation that η assigns a homomorphism ηMAϕBψ
to every module functor (FMAϕBψ

, sMAϕBψ
) :

ModVect(π)
ΛG

(Aϕ) → ModVect(π)
ΛG

(Bψ) via

(91)

such that
ηMAϕBψ

: FMAϕBψ
(MAϕ ⊗ Vη) ∼Ð→ FMAϕBψ

(MAϕ) ⊗ Vη. (92)

Crucially, the assignments ηAϕ , ηBψ and ηMAϕBψ
are completely determined by the input data together with the component of η associated with

the regular module category, namely, (FVη , sVη) and the collection of isomorphisms ηW ≡ η(FW ,sW) for W ∈ Ob(Vect(π)
ΛG ). It is immediate to

check that such assignments are indeed compatible with the coherence relations (76) and (77). Similarly, we can show that any modifications
ϑ : η⇛ μ are completely determined by their actions with respect to the regular Vect(π)

ΛG -module category Vect(π)
ΛG . This completes the proof

of the lemma. ◻
Let us now proceed to showing the following lemma:

Lemma 7. The dimension of the sub-bicategory MOD(Vect(π)
ΛG )∣reg. is equivalent, as a braided monoidal category, to the center Z(Vect(π)

ΛG )
of the multi-fusion category Vect(π)

ΛG .

Proof. Let η ∈ Dim MOD(Vect(π)
ΛG )∣reg. be a pseudo-natural transformation of the identity 2-functor. It assigns a unique 1-morphism

to the single object of the bicategory, namely, the module endofunctor (FVη , sVη) ≡ (− ⊗ Vη,α−,−,Vη), where Vη ∈ Ob(Vect(π)
ΛG ). Moreover, η

assigns to every Vect(π)
ΛG -module endofunctor (FW , sW) : Vect(π)

ΛG → Vect(π)
ΛG , with W ∈ Ob(Vect(π)

ΛG ), an isomorphism of module functors [see
Eq. (86)],

η(FW ,sW) ≡ ηW : (V ⊗ Vη) ⊗W ∼Ð→ (V ⊗W) ⊗ Vη, ∀V ∈ Ob(Vect(π)
ΛG ). (93)
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Picking V = C, this yields an isomorphism
RVη ,− : Vη ⊗ − ∼Ð→ −⊗Vη. (94)

Furthermore, it follows from the coherence relation (76) satisfied by the Vect(π)
ΛG -module functors assigned by η that the collection of natural

isomorphisms RVη ,− fulfils the hexagon relation (29). It follows that objects in Dim MOD(Vect(π)
ΛG )∣reg. are in one-to-one correspondence with

objects (Vη, RVη ,−) ∈ Ob(Z(Vect(π)
ΛG )).

Given two pseudo-natural transformations η,μ ∈ Dim MOD(Vect(π)
ΛG )∣reg., let us consider a modification ϑ : η⇛ μ. This modification

assigns a morphism of module functor between (FVη , sVη) and (FVμ , sVμ) to the unique object Vect(π)
ΛG of the bicategory. Denoting by ϑ𝟙 this

morphism—in reference to the fact that Vect(π)
ΛG = ModVect(π)

ΛG

(𝟙Vect(π)
ΛG

)—it is required to satisfy

(95)

for every Vect(π)
ΛG -module endofunctor (FW , sW) of the regular module category Vect(π)

ΛG , with W ∈ Ob(Vect(π)
ΛG ), ηW ≡ η(FW ,sW), and

μW ≡ μ(FW ,sW). In terms of the objects (Vη, RVη ,−), (Vμ, RVμ ,−) ∈ Ob(Z(Vect(π)
ΛG )), ϑ𝟙 is identified with a morphism Vη → Vμ satisfying

the coherence relation (31). Therefore, morphisms of Dim MOD(Vect(π)
ΛG )∣reg. are in one-to-one correspondence with those of the center

Z(Vect(π)
ΛG ). Putting everything together, we have established the equivalence of categories,

Dim MOD(Vect(π)
ΛG )∣reg. ≅ Z(Vect(π)

ΛG ). (96)

It is instructive to rephrase this derivation as follows: By definition, (FVη , sVη) is a module endofunctor of the left Vect(π)
ΛG -module category

over itself. However, Vect(π)
ΛG is also a right Vect(π)

ΛG -module category with respect to the action bifunctor defined via the set of functors
FW in such a way that (FVη ,ηW) for every W defines a right module endofunctor of Vect(π)

ΛG over itself. It follows that η is in one-to-one
correspondence with a (Vect(π)

ΛG , Vect(π)
ΛG )-bimodule endofunctor over Vect(π)

ΛG , the category of which is known to be equivalent to the center
Z(Vect(π)

ΛG ), i.e.,
FunVect(π)

ΛG ∣Vect(π)
ΛG

(Vect(π)
ΛG , Vect(π)

ΛG ) ≅ Z(Vect(π)
ΛG ). (97)

Let us now extend the equivalence (96) to a monoidal equivalence. Let us consider two objects η,μ ∈ Ob(Dim MOD(Vect(π)
ΛG ))∣reg.. The

monoidal structure is provided by the composition η ○ μ of the pseudo-natural transformations in MOD(Vect(π)
ΛG ). By definition, the com-

posite η ○ μ assigns to the regular module category Vect(π)
ΛG the composite (FVη , sVη) ○ (FVμ , sVμ), where FVη ○ FVμ ○ t(π)−,Vη ,Vμ = FVη⊗Vμ .

Given a module endofunctor (FW , sW) : Vect(π)
ΛG → Vect(π)

ΛG , with W ∈ Ob(Vect(π)
ΛG ), (η ○ ν) assigns an isomorphism of module functors

(η ○ μ)W : FW(V ⊗ (Vη ⊗ Vμ)) ∼Ð→ FW(V) ⊗ (Vη ⊗ Vμ) defined via (77) for every V ∈ Ob(Vect(π)
ΛG ). Applied to V = C, this yields an

isomorphism
RVη⊗Vμ ,− : (Vη ⊗ Vμ) ⊗ − ∼Ð→ −⊗(Vη ⊗ Vμ) (98)

satisfying relation (32). This establishes the monoidal equivalence between Dim MOD(Vect(π)
ΛG )∣reg. and Z(Vect(π)

ΛG ). The braided equivalence
follows immediately from the same arguments. ◻

Putting the previous two lemmas together yields Theorem 3, and thus, we have shown that

DimZ π
G(S1) (24)= Dim MOD(Vect(π)

ΛG )
(78)
≅ Z(Vect(π)

ΛG )
(34)
≅ Mod(C[Λ2G]t

2
(π)) (23)= Z π

G(T2), (99)

as required. Recall from Sec. II C that the bicategory MOD(Vect(π)
ΛG ) encodes boundary conditions for the endpoints of a string-like excitation

of the lattice Hamiltonian realization, quantum numbers associated with string-like topological excitations that are constrained by a choice of
endpoints boundary conditions, and the renormalization of string-like excitations that are glued along their endpoints. On the other hand, the
category Mod(C[Λ2G]t(π)) encodes the loop-like (bulk) excitations and their statistics. As such, the computation performed in this section
formalizes the process upon which loop-like excitations are formed out of string-like ones. Heuristically, this process can be interpreted as
follows: Consider an open four-manifold whose boundary, which is itself open, contains a two-torus boundary component that we decompose
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into a left and a right copy of the manifold S1 × [0, 1]. The TQFT functor assigns (Vect(π)
ΛG , Vect(π)

ΛG )-bimodule categories to the circles at
which the two copies of S1 × [0, 1]meet. Furthermore, it assigns left (respectively, right) Vect(π)

ΛG -module functors to the copies of S1 × [0, 1].
Choosing the regular (Vect(π)

ΛG , Vect(π)
ΛG )-bimodule category to be assigned to the copies of S1, we find that the TQFT assigns the category

FunVect(π)
ΛG

(Vect(π)
ΛG , Vect(π)

ΛG ) ≃ Vect(π)
ΛG to the left copy of the manifold S1 × [0, 1] and analogously to the right copy. Within this specific

context, the category Vect(π)
ΛG encodes string-like excitations with a special kind of boundary conditions. It follows that the TQFT assigns to

T2 the category FunVect(π)
ΛG ∣Vect(π)

ΛG

(Vect(π)
ΛG , Vect(π)

ΛG ) of bimodule endofunctors of Vect(π)
ΛG over itself, which is equivalent to the category of

bulk loop-excitations. Loosely speaking, this should be interpreted as two string-like excitations whose endpoints are identified so as to form
a loop-like excitation.

V. BRAIDING STATISTICS OF LOOP-LIKE EXCITATIONS
Building upon the previous results, we shall argue in this section that Vect(π)

ΛG -module endofunctors induced from objects of Z(Vect(π)
ΛG )

describe the salient features of the loop-like excitations hosted by the lattice Hamiltonian realization of the (3 + 1)d Dijkgraaf–Witten theory. In
particular, we shall revisit the fact that Z(Vect(π)

ΛG ) define representations of the linear necklace braid group.

A. Motion groups
Given a quantum physical system and a collection of n ∈ Z+ indistinguishable particles, the transformation properties of their joint wave-

function upon exchanging their positions along specified trajectories is known as the exchange statistics. For instance, bosons and fermions
are characterized by symmetric and antisymmetric joint wave functions, respectively, with respect to the exchange process of two particles.
More generally, the exchange process corresponds to the action of a symmetry group G on the joint Hilbert space, so that the wavefunction
defines a representation of G. For instance, given n indistinguishable particles in Dd with d ≥ 3, the permutation of the n entries in the joint
wavefunction is governed by the symmetric group 𝒮n so that bosons and fermions are given by the trivial and the sign representations of 𝒮n,
respectively.

In (2 + 1)d, it is well-known that quantum physical systems can host particles with more exotic statistics. Indeed, the exchange statistics
of n indistinguishable particles is described by the so-called braid group ℬn, defined in the following. Anyons are then defined as particles
whose exchange statistics define representations of the braid group that are neither the trivial nor sign representations. This phenomenon
is specific to two-dimensional systems since the path of a particle exchanging position with another via a half-turn clockwise rotation is not
necessarily homotopic to that of exchanging position via a half-turn counter-clockwise rotation.

Although point-like anyons cannot exist in a (d + 1)-dimensional system with d ≥ 3 for the topological reason evoked above, extended
quasi-particles may have exotic exchange statistics, generalizing the notion of anyons to higher dimensions. As we know, such extended
quasi-particles arise as excitations in higher-dimensional topological models. In order to provide a unified description of the symmetry group
characterizing the exchange statistics of point-like and extended quasi-particles, we shall discuss the notion of motion groups, of which 𝒮n and
ℬn are examples.

Consider an oriented d-manifold Σ and choose an oriented submanifold Ξ. Letting Homeo(Σ) be the orientation-preserving home-
omorphism group of Σ, we notate via Homeo(Σ,Ξ) ⊂ Homeo(Σ) the subgroup of auto-homeomorphisms that are additionally auto-
homeomorphisms of Ξ. A motion of Ξ is defined as a map f : [0, 1] × Σ→ Σ such that for all t ∈ [0, 1], ft ≡ f (t,−) is a path in Homeo(Σ)
satisfying f0 = idΣ and f1 ∈ Homeo(Σ,Ξ). Given a pair of motions ( f , g), composition is obtained by translating g via multiplication in
Homeo(Σ) so that f1 and g0 coincide and then use the composition of paths, i.e.,

( f ○ g)t =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f2t for 0 ≤ t ≤ 1
2

,

g2t−1 ○ f1 for
1
2
≤ t ≤ 1.

(100)

The reverse motion f̄ of a motion f is then defined via f̄ t = f1−t ○ f −1
1 . Furthermore, two motions f and g are said to be equivalent if the motion

f̄ ○ g is smoothly homotopic to a stationary motion, i.e., a motion h such that ht ∈ Homeo(Σ,Ξ) for every t ∈ [0, 1]. Finally, we define the motion
group Mot(Σ,Ξ) as the group of equivalence classes of motions of Ξ in Σ, with the multiplication rule induced from the composition (100) of
motions, and inverse map the reverse operation.35,55,56 In the following, we shall consider three examples of motion groups, namely, the braid
group, the linear necklace group, and the loop braid group.

B. Braid group
Given Σ = D2 and the disjoint union Ξ = ⊔i=1,...,nD2 ⊂ Σ of n copies of D2, the n-strand braid group ℬn is defined as the motion group

Mot(D2,⊔i=1,...,nD2). It admits a presentation in terms of generators {σi}i=1,...,n−1 subject to the relations

B1. σiσj = σjσi, for ∣i − j∣ > 1,
B2. σiσi+1σi = σi+1σiσi+1.

J. Math. Phys. 63, 081901 (2022); doi: 10.1063/5.0061214 63, 081901-25

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

Labeling each copy of D2 ⊂ Ξ by a unique integer i ∈ [ [1, n] ] and placing them along a segment embedded in D2, each generator σi can be
thought as an operator performing the exchange of the disks i and i + 1 via a half-turn rotation in the counter-clockwise direction. This can
be conveniently visualized in terms of the corresponding worldlines as

(101)

where we also represented the identity element and the inverse σ−1
i for convenience. This graphical representation can also be used to con-

veniently visualize the relations above. Doing so would reveal that the second relation can be interpreted as the third Reidemeister move,57

which plays a crucial role in knot theory.58

An important feature of the braid group is that for any i ∈ [ [1, n] ], σ2
i ≠ 1. Geometrically, this is the statement that the braid resulting

from performing twice the exchange in the same direction cannot be continuously deformed in D2 × [0, 1] to the trivial one without cutting
the strands. If we were to change the spatial manifold from D2 to Dd with d > 2 and consider Ξ = ⊔i=1,...,nDd to be the disjoint union of n
d-balls, the motion group Mot(Dd,⊔1,...,nDd) would be found to be isomorphic to the symmetric group 𝒮n on n objects. Indeed, the braid
associated with the double exchange of two copies of Dd along the same trajectory can always be disentangled. It follows from the definition
of the braid group that the symmetric group 𝒮n admits a presentation in terms of generators {si}i=1,...,n−1 subject to the relations

S1. sisj = sjsi for ∣i − j∣ > 1,
S2. sisi+1si = si+1sisi+1,

S3. s2
i = 1.

Each generator si can still be thought as an operator exchanging the position of the disks i and i + 1. As we mentioned earlier, this implies that
in order to have anyon-like exchange statistics in spatial dimension higher than three, extended objects must be considered.

C. Linear necklace group
Let Σ = D3 and Ξ ⊂ Σ be the n-component linear necklace. More precisely, given Σ ∶= [0, n + 1] × [−1, 1] × [−1, 1] with axes labelled by

x, y, and z, respectively, the linear necklace Ξ is defined as K0 ⊔n
i=1 Ki, where the “necklace” K0 is a local neighborhood of the x-axis, and

the ith “loop” K i is a local neighborhood of a Euclidean unit circle in the yz-plane centered around x = i. The corresponding motion group
Mot(D3,Ξ) is known as the linear necklace group ℒ𝒩 n. Interestingly, it was shown in Ref. 31 that ℒ𝒩n is isomorphic to the n-strand braid
group ℬn, and as such, it admits a presentation akin to the one provided above in terms of the generators {σi}i=1,...,n−1. In this new context,
each generator σi can now be thought as an operator performing the exchange of the loops i and i + 1 such that the loops i + 1 passes through
the center of i as follows:

(102)

In Sec. II C, we reviewed that the category Mod(C[Λ2G]t
2
(π)) encodes the loop-like excitations of the lattice Hamiltonian realization of

Dijkgraaf–Witten theory. Moreover, its braided monoidal structure, which is prescribed by the comultiplication map Δ and the invertible
algebra element R introduced in Sec. III B, encodes the fusion and the braiding statistics of the excitations. Given the above, we showed in
Ref. 19 that the loop-like excitations define representations of the linear necklace group. Let us briefly review the main argument here. Recall
from Sec. III B that objects of Mod(C[Λ2G]t

2
(π)) are C[Λ2G]t

2
(π)-modules of the form (V , ρ), where V = ⊕[g′]∈π0(Λ2G)V[g′] with π0(Λ2G)

being the set of connected components in the groupoid Λ2G, whose objects are characterized by pairs of commuting group elements in G.
Given a choice of equivalence class [g′] ∈ π0(Λ2G), the corresponding C[Λ2G]t

2
(π)-module further decomposes as V[g′] = ⊕g∈[g′]Vg, where

every object g ≡ x aÐ→ ∈ End(ΛG) is interpreted as a loop-like excitation with flux a ∈ G, which is constrained by the presence of a flux x ∈ G
that threads the loop-like excitation, via the requirement [a, x] = 𝟙G. The representation associated with the vector space Vg then corresponds
to the charge of the loop-like excitation. Furthermore, it was established in Refs. 16 and 19 that we have the following decomposition:

Mod(C[Λ2G]t
2
(π)) ≅ ⊕

[g]∈π0(Λ2G)
Mod(C[Aut(g)]t

2
(π)∣g) ≅ ⊕

[g]∈π0(Λ2G)
Rep(Aut(g), t2(π)∣g), (103)
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where Rep(Aut(g), t2(π)∣g) is the category of t2(π)∣g-projective representations of the stabilizer group Aut(g) ⊆ G, with t2(π)∣g being
the restriction in H2(Aut(g), U(1)). It follows from this decomposition that the simple objects in Mod(C[Λ2G]t

2
(π)), which encode the

elementary loop-like excitations of the model, correspond to pairs ([g] ∈ π0(Λ2G), ρ : Aut(g) → End(V[g])) such that [g] and ρ provide the
magnetic and electric quantum numbers, respectively.

Definition (49) of the map Δ indicates that two (non-necessarily elementary) loop-like excitations whose magnetic components are
prescribed by a pair of objects (g, g′) can fuse if and only if g and g′ are composable as morphisms in End(ΛG), i.e., they must share the
same threading flux. Similarly, the braiding isomorphism that is prescribed by the invertible algebra element R introduced in (55) encodes the
exchange of two loop-like excitations while being threaded by the same flux. Such a braiding precisely corresponds to the process depicted in
(102), and thus, the braided monoidal category Mod(C[Λ2G]t

2
(π)), or equivalently Z(Vect(π)

ΛG ), define representations of the linear necklace
group. This process is often referred to as the three-loop braiding statistics in the condensed matter literature.18,32,59,60

We now would like to revisit this argument using the results established in this paper. We begin by introducing a pseudo-graphical
calculus for MOD(Vect(π)

ΛG ), where “pseudo” indicates here that this calculus should not be used to perform rigorous computations partly due
to the weak associativity of the composition of 1-morphisms but rather serves as a useful visual support. Recall from Sec. IV C that any object in
MOD(Vect(π)

ΛG ) can be obtained as the category ModVect(π)
ΛG

(Aϕ) of right modules over an algebra object Aϕ. As we mentioned before, these

objects are interpreted as boundary conditions for a string-like excitation, such boundary conditions including, in particular, the allowed
fluxes for the corresponding excitations as measured by a closed holonomy following the non-contractible cycle perpendicular to the length
of the string. Henceforth, we shall represent such objects as colored points, e.g.,

(104)

Furthermore, recall that we have the equivalence

HomMOD(Vect(π)
ΛG )
(ModVect(π)

ΛG

(Aϕ), ModVect(π)
ΛG

(Bψ)) ≅ BimodVect(π)
ΛG

(Aϕ,Bψ) (105)

for every pair of algebra objects (Aϕ,Bψ) so that every 1-morphism on the lhs, which is by definition a Vect(π)
ΛG -module functor, is specified

by a choice of (Aϕ,Bψ)-bimodule object MAϕBψ . These 1-morphisms are interpreted as dyonic quantum numbers associated with string-like
excitations whose endpoints are given by the corresponding objects. Such a dyonic quantum number contains a magnetic component that
encodes the gauge orbit of parallel transports along the string, as well as an electric charge that decomposes the symmetries of the gauge
actions on the corresponding strings.20 In the following, we shall utilize the following graphical notation to refer to such 1-morphisms:

(106)

where the nomenclature is that of (104). Given a triple (Aϕ,Bψ ,Cφ) of separable algebra objects, the composition of two 1-morphisms MAϕBψ
and MBψCφ specified by a choice of (Aϕ,Bψ)- and (Bψ ,Cφ)-bimodules, respectively, results in a 1-morphism specified by a choice of (Aϕ,Cφ)-
bimodule MAϕBψ⊗Bψ MBψCφ , whose precise definition can be found in Ref. 20. Graphically, we represent this composition via horizontal stacking
as

(107)

Similarly, morphisms of Vect(π)
ΛG -module functors are depicted as per the following example:

(108)

As mentioned earlier, the associativity of the composition would need to be accounted for in order to make this graphical calculus more
precise.

In Sec. IV C, we showed the equivalence Dim MOD(Vect(π)
ΛG ) ≅ Z(Vect(π)

ΛG ), which relies on the fact that objects (V , RV ,−) ∈
Ob(Z(Vect(π)

ΛG )) are identified with (possibly zero) Vect(π)
ΛG -module endofunctors of all Vect(π)

ΛG -module categories that satisfy the pseudo-
naturality conditions given in Eq. (91). Graphically, given a choice of Vect(π)

ΛG -module category, we depict the special kind of endofunctor
identified with an object (V , RV ,−) ∈ Ob(Z(Vect(π)

ΛG )) as

(109)

Let us clarify why we choose to represent such 1-morphisms in MOD(Vect(π)
ΛG ) as loops. We reviewed above that objects in Z(Vect(π)

ΛG ), or
equivalently Mod(C[Λ2G]t

2
(π)), encode the loop-like bulk excitations of the Hamiltonian realization. More specifically, such an object is
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identified with the dyonic quantum number of a loop-like excitation that is constrained by the presence of a threading flux. The magnetic
component of this loop-like excitation is measured by a closed holonomy that originates from the parallel transports along two string-like
excitations whose endpoints were matched so as to obtain a loop-like object. On the other hand, the module category ModVect(π)

ΛG

(Aϕ)
encodes among other things a set of possible threading fluxes. In other words, the 1-morphisms under consideration correspond to loop-like
excitations whose threading flux is constrained by the source object. Given two such 1-morphisms, the fusion of the corresponding loop-like
excitations can then be depicted as the following composition:

such that only loop-like excitations with compatible threading fluxes can be fused.
Given two 1-morphisms of the form (109), the isomorphism (87) induces the braiding isomorphism for the corresponding objects in

Z(Vect(π)
ΛG ), which, in turn, yields the following 2-isomorphism in MOD(Vect(π)

ΛG ):

(110)

Given that the braiding isomorphism R(V ,RV ,−),(W,RW,−) in Z(Vect(π)
ΛG ) defines a representation of the braid group ℬn and that ℬn≃ℒ𝒩 n, the

2-isomorphism presented above yields a representation of the linear necklace group ℒ𝒩 n. More specifically, given any n-tuple of Vect(π)
ΛG -

module endofunctors of ModVect(π)
ΛG

(Aϕ) induced by objects {(Vi, RVi ,−)}i=1,...,n ⊂ Ob(Z(Vect(π)
ΛG )), we can define an action of ℬn on the

object
− ⊗V1 ⊗ ⋅ ⋅ ⋅Vi ⊗ Vi+1 ⊗ ⋅ ⋅ ⋅Vn ∈ Ob(EndMOD(Vect(π)

ΛG )
(ModVect(π)

ΛG

(Aϕ))) (111)

by identifying the generator σi∈ℬn with the natural isomorphism

id− ⊗ idV1 ⊗ ⋅ ⋅ ⋅ ⊗ RVi ,Vi+1 ⊗ ⋅ ⋅ ⋅ ⊗ idVn :

− ⊗V1 ⊗ ⋅ ⋅ ⋅ ⊗ Vi ⊗ Vi+1 ⊗ ⋅ ⋅ ⋅ ⊗ Vn
∼⇒−⊗V1 ⊗ ⋅ ⋅ ⋅ ⊗ Vi ⊗ Vi+1 ⊗ ⋅ ⋅ ⋅ ⊗ Vn (112)

in Hom(EndMOD(Vect(π)
ΛG )
(ModVect(π)

ΛG

(Aϕ))), which permutes the ith and (i + 1)th objects in the n-fold tensor product. It follows from

the coherence relations satisfied by the braidings R−,− in the center Z(Vect(π)
ΛG ) that such Vect(π)

ΛG -natural isomorphisms satisfy the braid
group relations B1 and B2. This process has an interpretation in terms of the Aharonov–Bohm effect whereby a charge localized on a loop-like
excitation is acted upon via the flux component of the other loop-like excitation.61–63

D. Loop braid group
We conclude this section by showing that our construction yields representations of another motion group. Let Σ = D3 and Ξ ⊂ Σ be the

disjoint union of n pairwise unlinked “loops” obtained by removing the “necklace” K0 from the n-component linear necklace. The motion
group Mot(D3,Ξ) is known as the loop braid group ℒℬn. It admits a presentation in terms of generators {si, σi}i=1,...,n−1 subject to the
relations

Braid group relations:
⎧⎪⎪⎨⎪⎪⎩

B1. σiσj = σjσi for ∣i − j∣ > 1,

B2. σiσi+1σi = σi+1σiσi+1,

Symmetric group relations:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

S1. sisj = sjsi for ∣i − j∣ > 1,

S2. sisi+1si = si+1sisi+1,

S3. s2
i = 1,

Mixed relations:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

M1. σisj = sjσi for ∣i − j∣ > 1,

M2. sisi+1σi = σi+1sisi+1,

M3. siσi+1σi = σi+1σisi+1.
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The generators σi and si correspond in this context to elementary motions, which can be visualized in terms of worldsheets of the
corresponding loops as

(113)

and

(114)

respectively. We represented on the rhs the “movie” diagrams that display projections of time slices of the corresponding four-dimensional
worldsheets following the conventions of Ref. 35. Both moves correspond to the exchange of two loops. However, σi corresponds to the loop
i + 1 braiding with loop i by passing through its center, whereas si corresponds to the exchange of loops i and i + 1 without threading through
each other. The graphical presentation provided above can be conveniently used to graphically represent the eight defining relations of the
group.35 Furthermore, we can easily show that the braid group ℬn is the subgroup of ℒℬn generated by {σi}i=1,...,n−1, while the symmetric
group 𝒮n is the subgroup generated by {si}i=1,...,n−1.

By construction, the loop braid group differs as a motion group from the linear necklace group by the fact that the pairwise unlinked
loops are not linked to the necklace that passes through the x-axis, allowing for the symmetric exchanges governed by the generators
{si}i=1,...,n−1. Physically, the role of the necklace is played by the threading flux. This suggests that loop-like excitations whose threading
fluxes are trivial should yield representations of the loop braid group. Given the decomposition (103), considering loop-like excitations with
trivial threading fluxes amounts to restricting the direct sum to connected components of objects in Λ2G of the form 𝟙

gÐ→ with g ∈ G so that
Mod(C[Λ2G]t

2
(π)) reduces to

⊕
[𝟙

gÐ→]∈π0(Λ2G)

Rep(Aut(𝟙 gÐ→)) ≅ ⊕
[g]∈π0(ΛG)

Rep(Aut(g)) ≅ Mod(C[ΛG]) ≅ Z(VecG), (115)

where we used the fact that the loop-groupoid cocycle t(π) is normalized so that it equals the unit in U(1) whenever any of the arguments
is an identity morphism. In the equation above, [g] ∈ π0(ΛG) simply corresponds to a conjugacy class of G and Aut(g) to the corresponding
stabilizer subgroup. As explained earlier, when thinking of Mod(C[Λ2G]t

2
(π)) as the dimension of MOD(Vect(π)

ΛG ), a choice of threading flux
is constrained by a choice of object. We recover the loop-like excitations with trivial threading flux by choosing the Vect(π)

ΛG -module category
to be the category of module objects over the algebra object A 0 ≡ (⊕g∈G C

𝟙
gÐ→ , m, u) with

m : A 0 ⊗A 0 → A 0

: C
𝟙

gÐ→ ⊗C
𝟙

g′Ð→
↦ C

𝟙
gg′ÐÐ→

and u(𝟙Vect(π)
ΛG

) ∶= C
𝟙

𝟙Ð→
. (116)

Note that Vect(π)
ΛG -module endofunctors of the category of module objects over A 0 induced from n-tuple objects {(Vi, RVi ,−)}i=1,...,n in the

center Z(Vect(π)
ΛG )) are only non-zero if for all i = 1, . . . , n, we have the following isomorphism of objects in Vect(π)

ΛG :

Vi ⊗C
𝟙

𝟙Ð→
≃ Vi. (117)

The full braided fusion subcategory of Z(Vect(π)
ΛG ) given by objects satisfying condition (117) can then be checked to be equivalent, as a

braided fusion category, to Z(VecG).
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As previously, we define an action of ℬn on the n-fold monoidal product − ⊗ V1 ⊗ ⋅ ⋅ ⋅ ⊗ Vn of objects in
EndMOD(Vect(π)

ΛG )
(ModVect(π)

ΛG

(A 0)) induced from n-tuple objects {(Vi, RVi ,−)}i=1,...,n ⊂ Ob(Z(Vect(π)
ΛG )). Let us now demonstrate

that the module endofunctor − ⊗ V1 ⊗ ⋅ ⋅ ⋅ ⊗ Vn admits an action of the symmetric group 𝒮n in addition to that of ℬn. Given the
generator si∈ 𝒮n, we identify the corresponding natural isomorphism of Vect(π)

ΛG -module functors defined on the single simple object of
ModVect(π)

ΛG

(A 0) provided by the regular A 0-module object (A 0, m), and a fortiori all objects, via

A 0 ⊗ V1 ⊗ ⋅ ⋅ ⋅ ⊗ Vi ⊗ Vi+1 ⊗ ⋅ ⋅ ⋅ ⊗ Vn

= ⊕
g,{gi}∈G

C
𝟙

gÐ→ ⊗ (V1)
𝟙

g1ÐÐ→ ⊗ ⋅ ⋅ ⋅ ⊗ (Vi)
𝟙

giÐ→ ⊗ (Vi+1)
𝟙

gi+1ÐÐ→ ⊗ ⋅ ⋅ ⋅ ⊗ (Vn)𝟙 gnÐÐ→
∼⇒⊕

g̃,{gi}∈G
C
𝟙

g̃Ð→
⊗ (V1)

𝟙
g1ÐÐ→ ⊗ ⋅ ⋅ ⋅ ⊗ (Vi+1)

𝟙
gi+1ÐÐ→ ⊗ (Vi)

𝟙
giÐ→ ⊗ ⋅ ⋅ ⋅ ⊗ (Vn)𝟙 gnÐÐ→

= A 0 ⊗ V1 ⊗ ⋅ ⋅ ⋅ ⊗ Vi+1 ⊗ Vi ⊗ ⋅ ⋅ ⋅ ⊗ Vn, (118)

where g̃ = gg1 ⋅ ⋅ ⋅ gi+1gig−1
i+1g−1

i ⋅ ⋅ ⋅ g−1
1 and

∼⇒ denotes a grading preserving isomorphism. It is straightforward to verify that such an action
satisfies the symmetric group relations S1, S2, and S3. Furthermore, a direct computation demonstrates that the actions of ℬn and 𝒮n satisfy
the mixed relations M1, M2, and M3, thus establishing a representation of ℒℬn inside EndMOD(Vect(π)

ΛG )
(ModVect(π)

ΛG

(A 0)). Let us empha-

size that, in general, for an arbitrary choice of group G and [π] ∈ H4(G, U(1)), the symmetric group action will fail to define a morphism in
EndMOD(Vect(π)

ΛG )
(ModVect(π)

ΛG

(Aϕ)) for a choice of algebra object Aϕ not Morita equivalent to A 0. Physically, the action of the symmetric

group defined above is interpreted as the exchange of two loop-like excitations whose internal Hilbert spaces are transposed while acting as
the identity on the corresponding states.

Note that it had been established before that braid group representations arising from the data of Z(VecG) could be lifted to represen-
tations of the loop braid group.19,36,64,65 However, it was not known in which categorical framework such extended representations existed.
Here, we presented one answer by demonstrating that such representations of ℒℬn are defined in terms of Vect(π)

ΛG -module endofunctors of
ModVect(π)

ΛG

(A 0) by analogy with bulk loop-like excitations in the lattice Hamiltonian realization of the (3 + 1)d Dijkgraaf–Witten theory.
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