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a b s t r a c t 

Previous literature has focused on predicting a diagnostic label from structural brain imaging. Since subtle 

changes in the brain precede a cognitive decline in healthy and pathological aging, our study predicts fu- 

ture decline as a continuous trajectory instead. Here, we tested whether baseline multimodal neuroimag- 

ing data improve the prediction of future cognitive decline in healthy and pathological aging. Nonbrain 

data (demographics, clinical, and neuropsychological scores), structural MRI, and functional connectivity 

data from OASIS-3 (N = 662; age = 46–96 years) were entered into cross-validated multitarget random 

forest models to predict future cognitive decline (measured by CDR and MMSE), on average 5.8 years 

into the future. The analysis was preregistered, and all analysis code is publicly available. Combining 

non-brain with structural data improved the continuous prediction of future cognitive decline (best test- 

set performance: R2 = 0.42). Cognitive performance, daily functioning, and subcortical volume drove the 

performance of our model. Including functional connectivity did not improve predictive accuracy. In the 

future, the prognosis of age-related cognitive decline may enable earlier and more effective individualized 

cognitive, pharmacological, and behavioral interventions. 

© 2022 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

 

 

 

 

 

 

 

 

1. Introduction 

Cognitive decline, such as worsening memory or executive

functioning, occurs in healthy and pathological aging. Crucially, the

noticeable decline may be preceded by subtle changes in the brain.
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It is this sequence that enables using brain imaging data to predict

the current cognitive functioning of a person or related surrogate

markers. For example, structural brain imaging has been used to

predict patients’ current cognitive diagnosis ( Rathore et al., 2017 ),

or brain age ( Cole and Franke, 2017 ), a surrogate biomarker related

to cognitive impairment ( Liem et al., 2017 ). Together, these find-

ings demonstrate the clinical potential of neuroimaging data used

in combination with predictive analyses. 

While predicting current cognitive functioning enables insight

into related brain markers, predicting future cognitive decline from
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Table 1 

Comparison of a nonexhaustive selection of studies that perform prediction of future cognitive decline in the context of AD. Compared with the literature, which is often 

concerned with predicting discrete class assignment, our approach predicts rates of cognitive decline based on a wide selection of input features. 

Targets Inputs Analysis method 

(Eskildsen et al., 2015) MCI to AD conversion Regional cortical thickness, nonlocal hippocampal 

morphological grading scores, clinical scores 

(MMSE, RAVLT), age 

Linear discriminant analysis with 

multivariate feature selection 

( Korolev et al., 2016 ) Clinical scores (risk factors, clinical assessments, 

medication status), regional GM morphometry, 

(cortical and subcortical volumes, mean cortical 

thickness, standard deviation of cortical thickness, 

surface area, curvature), plasma proteomics 

biomarkers 

Probabilistic multiple kernel 

learning (pMKL) with multivariate 

feature selection 

(Gaser et al., 2013) Estimated “brain age” score, baseline clinical 

scores, age, hippocampal volume 

Cox regression, ROC analysis 

Davatzikos et al., 2011) Automated marker of atrophy (SPARE-AD), CSF 

biomarkers 

SVM 

(Bhagwat et al., 2018) Membership to clusters of MMSE 

and ADAS-13 trajectories 

Regional cortical thickness, APOE4 status, age and 

baseline clinical scores 

Longitudinal siamese network 

Current study Rate of MMSE and CDR-SOB 

change 

Mean cortical thickness, GM, WM and CSF total 

volumes, regional subcortical volumes, functional 

connectivity, age, APOE status, baseline clinical 

scores, demographic information, health status, 

neuropsychological assessment 

Multitarget Random Forest 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

baseline data poses a greater challenge with more substantial clin-

ical relevance ( Davatzikos, 2019 ). Using current brain imaging data

to predict a current diagnostic label (such as dementia), targets a

label that can fairly easily be determined via other means such

as clinical assessments (and usually with less cost than brain

imaging). When predicting future cognitive change, however, brain

imaging might aid a prognosis with greater clinical utility that can-

not be easily obtained otherwise. Most previous studies that pre-

dicted future change restricted their analysis to whether patients

with mild cognitive impairment (MCI) converted to Alzheimer’s

disease (AD) (e.g., Eskildsen et al., 2015 ; Korolev et al., 2016 ;

Gaser et al., 2013 ; Davatzikos et al., 2011 ) or predicted membership

in data-driven trajectory-groups of future decline ( Bhagwat et al.,

2018 ). See Table 1 for a comparison. Predicting future cognitive de-

cline on a continuum (instead of forming distinct diagnostic labels

from cognitive data) better characterizes the underlying change in

abilities on an individual level. This approach can also be used to

widen the scope of applications by including healthy aging. Brain

data is a rich source of information that might help us better un-

derstand and even reorganize diagnostic syndromes or categories. 

While most previous predictive studies used structural brain

imaging alone, integrating structural and functional imaging has

been shown to improve predictions. Since both brain structure

( Oschwald et al., 2019 ) and brain function ( Liem et al., 2020 )

change in aging, the most accurate predictions of brain age have

come from combining them ( Liem et al., 2017 ; Engemann et al.,

2020 ; Schulz et al., 2022 ). Multimodal gains have also been

shown in more complex predictions such as current diagnosis in

AD ( Rahim et al., 2016 ) and conversion from MCI to AD (e.g.,

Hojjati et al., 2018 ; Dansereau et al., 2017 ; Tam et al., 2019 ). There-

fore, integrating multiple brain imaging modalities enables more

complete characterization of brain aging and provides increased

predictive power. 

Demographic, health, and clinical variables, which are straight-

forward to obtain and non-invasive, were demonstrated to reliably

predict the conversion to cognitive impairment in elders over a 2-

year period ( Na, 2019 ) in the absence of any brain imaging data,

demonstrating the value of nonbrain data. Likewise, nonbrain data

pertaining to mood, demographics, lifestyle, education, and early-

life factors were shown to be on par with brain imaging data in the

prediction of intelligence and neuroticism, but not brain-age delta

( Dadi et al., 2021 ). 
The present study aimed to predict future cognitive decline

from baseline data in healthy and pathological aging. We combined

nonbrain data, such as scores from clinical assessments and de-

mographics, with multimodal brain imaging data to test whether

adding brain imaging to nonbrain data improves predictive per-

formance, and whether multimodal imaging outperforms single

imaging modalities. We showed that structural imaging in particu-

lar improved continuous prediction of future cognitive decline. An

early prognosis of future cognitive decline might enable earlier and

more effective pharmacological or behavioral treatments to be tai-

lored to the individual, resulting in more efficiently allocated med-

ical resources. 

2. Methods 

The analysis presented here was preregistered ( Liem et al.,

2019 ). We largely followed this preregistration and deviations are

described in the supplement ( 6.1.2 Deviation from preregistration ).

The deviations concern minor details in data analysis and do not

affect the qualitative conclusions we draw. Additionally, we per-

formed nonpreregistered validation analyses that were suggested

by the main results. 

2.1. Sample and session selection 

The present analysis aimed to predict future cognitive de-

cline from baseline nonbrain (e.g., age and clinical scores) and

brain imaging data (regional brain volume and functional con-

nectivity). We used data from the publicly available, longitudinal

OASIS-3 project, a collection of data from several studies at the

Washington University Knight Alzheimer Disease Research Cen-

ter ( LaMontagne et al., 2019 ). OASIS-3 acquired data in different

types of sessions ( clinical sessions: nonbrain data describing per-

sonal characteristics, cognitive and everyday functioning, health;

neuropsychological sessions: nonbrain data from neuropsychologi-

cal tests; MRI sessions: structural and functional MRI). The count

and spacing between sessions varied between participants. To pre-

dict future cognitive decline, baseline sessions were used as input

data and follow-up sessions as targets. The study design required

a matching approach to select: (1) baseline sessions (from clini-

cal, neuropsychological, and MRI sessions) to be used as input data,

https://paperpile.com/c/wvSo9h/49ZUL
https://paperpile.com/c/wvSo9h/l77nL
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Table 2 

Sample characteristics. N = 662 (302 male). See Table 3 for a list of abbreviations 

M SD min max N missing 

Demographics 

Age baseline 71 8.2 46 96 

Sex 302 M; 360 F 

Years of education baseline 15 2,7 7 29 11 

Clinical scores 

MMSE baseline 28 2.2 16 30 

CDR-SOB baseline 0.62 1.37 0.00 8.00 

FAQ baseline 1.35 3.38 0.00 23.0 14 

NPI-Q 

Presence baseline 0.95 1.64 0.00 10.0 15 

Severity baseline 1.4 2.8 0.0 18 15 

GDS baseline 1.5 2.0 0.0 12 17 

Genotyping (APOE alleles) 

E2 count 0: 565; 1: 91; 2: 5 1 

E3 count 0: 61; 1: 272; 2: 328 1 

E4 count 0: 403; 1: 223; 2: 35 1 

Diagnostic and sessions 

Clinical Diagnosis baseline 509 HC; 12 MCI; 111 DE 30 

N clinical sessions 5.8 2.4 3 15 

Years between clinical 

sessions 

1.2 0.6 0.003 5.5 

Years in study 5.8 2.5 1.6 10.9 

Outcomes 

MMSE slope (1/y) -0.31 0.93 -7.5 2.9 

CDR-SOB slope (1/y) 0.25 0.61 -1.3 4,4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

List of abbreviations of clinical tests. 

CDR-SOB Clinical Dementia Rating - Sum of Boxes 

FAQ Functional Activities Questionnaire 

GDS Geriatric Depression Scale 

MMSE Mini-Mental State Examination 

NPI-Q Neuropsychiatric Inventory Questionnaire 

TMT Trail Making Test 

WAIS-R Wechsler Adult Intelligence Scale-Revised 

WMS-R Wechsler Memory Scale-Revised 

BNT Boston Naming Test 

 

 

 

 

 

 

 

 

 

 

and (2) follow-up clinical sessions to estimate the future cognitive

decline. 

First, baseline data were established by matching sessions from

the different types (clinical, neuropsychological, MRI). We matched

each MRI session that had at least 1 T1w and 1 fMRI scan with the

closest clinical session. For each participant, the first MRI-clinical-

session pair with an absolute time difference of < 1 year was se-

lected as the baseline session. If no such pair was available, the

participant was excluded from the analysis. Additionally, the clos-

est neuropsychological session (within 1 year of the MRI baseline

session) was also considered as baseline data. Baseline information

from neuropsychological testing, however, was considered optional,

and not finding a matching neuropsychological session was not a

criterion for exclusion. All data preceding the selected baseline ses-

sions were disregarded for the analysis. 

Second, all clinical sessions after the baseline clinical session

were included as follow-up sessions to estimate cognitive decline.

To reliably estimate decline, participants were only included if they

had at least 3 clinical sessions (baseline plus 2 follow-up sessions).

This matching approach reduced the sample (N total = 1098) to 662

participants (302 male; Table 2 ). 1 The majority were cognitively

healthy at baseline (509 healthy controls, 12 were diagnosed with

MCI, and 111 with dementia; for 30 no diagnosis was available for

the baseline session). 

MRI data was downloaded in BIDS format ( K. J. Gor-

golewski et al., 2016 ) via scripts provided by the OASIS project. 2

Nonbrain data was downloaded via XNAT central. 3 

2.2. Data 

2.2.1. Nonbrain data 

Non-brain data described personal characteristics at baseline,

such as demographics, cognitive, and everyday functioning, genet-

ics, and health ( Table 3 shows the abbreviations of tests). For fur-
1 The selected participants and session can be found here: https://github.com/ 

fliem/cpr/tree/0.1.2/info . 
2 https://github.com/NrgXnat/oasis-scripts . 
3 https://central.xnat.org/ . 

 

 

 

 

 

ther information on the measurements, see relevant publications

by the OASIS team ( LaMontagne et al., 2019 ; Morris et al., 2006 ;

Weintraub et al., 2009 ). 

The specific measures included: 

1. Demographic information: sex, age, education 

2. clinical scores: MMSE ( Folstein, Folstein, and McHugh, 1975 ) ,

CDR ( Morris, 1993 ), FAQ ( Jette et al., 1986 ), NPI-Q ( Kaufer et al.,

20 0 0 ), GDS (Geriatric Depression Scale, Yesavage et al., 1982 ) 

3. neuropsychological scores: WMS-R ( Elwood, 1991 ), Word

fluency, TMT ( Bucks, 2013 ), WAIS-R ( Franzen, 20 0 0 ), BNT

( Borod, Goodglass, and Kaplan, 1980 ) 

4. APOE genotype 

5. a cognitive diagnosis (healthy control, MCI, dementia) 

6. health information: cardio/cerebrovascular health, diabetes, hy-

percholesterolemia, smoking, family history of dementia 

7. the number of clinical sessions conducted before the selected

baseline session (for instance sessions without a matching MRI

session) to account for retest effects 

2.2.2. MRI data 

MRI data were acquired on Siemens 3T scanners, with the ma-

jority coming from a TrioTim model (622 of 662 participants), and

the rest from the combined PET/MRI Biograph mMR model. Each

participant had between 1 and 4 T1w scans (1.7 on average). In

total, the sample had 1 ′ 119 T1w images. The parameter combina-

tion most used (in over 1 ′ 070 scans) was voxel size = 1 × 1 × 1

https://github.com/fliem/cpr/tree/0.1.2/info
https://github.com/NrgXnat/oasis-scripts
https://central.xnat.org/
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Fig. 1. Overview of the predictive approach. (A) Features from non-brain, structGS (global and subcortical structural), and func (functional connectivity) modalities are 

extracted from baseline data. The number of features is provided in parentheses. (B) Feature concatenation produces sets of multimodal input features. For instance, red 

represents nonbrain features only, while orange represents a combination of nonbrain and structGS. (C) Extraction of slopes representing a cognitive change from CDR 

(Clinical Dementia Rating) and MMSE (Mini-Mental State Examination). (D) Models are trained to predict cognitive decline based on the input features. Here, we used a 

multitarget random forest model within a nested cross-validation approach to predict CDR and MMSE change simultaneously. (For interpretation of the references to color 

in this figure legend, the reader is referred to the Web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mm 

3 , echo time (TE) = 0.003 second, repetition time (TR) = 2.4

seconds. Where available, T2w images were also used to aid sur-

face reconstruction. In total, 618 participants had a T2w image. The

parameters for the T2w images were voxel size = 1 × 1 × 1 mm 

3 ,

TE = 0.455 second, TR = 3.2 seconds. 

Each participant had between 1 and 4 functional resting-state

scans (M = 2.0). In total, the sample had 1 ′ 327 functional images.

The parameter combination most used (in over 1 ′ 300 scans) was

voxel size = 4 × 4 × 4 mm 

3 , TE = 0.027 second, TR = 2.2 seconds,

scan duration = 6 minutes. For further information regarding the

imaging data see (LaMontagne et al., 2019) . 

See Table S1 for complete information about T1w, T2w and

fMRI scans acquisitions. 

2.3. MRI preprocessing 

Functional and structural MRI data were preprocessed using the

standard processing pipeline of fMRIPrep 1.4.1 ( Esteban et al. 2018 ),

which also includes running FreeSurfer 6.0.1 on the structural im-

ages ( Fischl, 2012 ). A detailed description of the preprocessing can

be found in the supplement ( 6.1.1 Details on MRI preprocessing ). Ex-

cept for basic validity checks in a random subset of participants,

data quality of the preprocessed data was not rigorously assessed.

Notably fMRIPrep has been shown to robustly work across many

datasets ( Esteban et al. 2018 ). 

2.4. Feature extraction 

Input data from nonbrain and brain imaging modalities at base-

line were used to predict future cognitive decline (predictive tar-

gets). In the following sections we provide further details on the

features that entered the predictive models. 

2.4.1. Input data 

Input data for the predictive models came from 3 modalities:

non-brain , global and subcortical structural ( structGS ), and func-
tional connectivity ( func ; Fig. 1 A). Modalities were entered into

the models on their own and in combination. For instance, non-

brain + structGS models received horizontally concatenated input

features from the nonbrain and structGS modalities ( Fig. 1 and 2 ).

This allowed testing whether combining nonbrain with structural

data improved predictive accuracy as compared to nonbrain data

alone. The following paragraphs describe the input data modalities

and Table S2 gives an overview of features entered into the mod-

els. 

2.4.1.1. Nonbrain data. Nonbrain features included demographics,

scores of clinical and neuropsychological instruments, APOE geno-

type, and health information. For a detailed list see Table S2. In

total, 66 features entered the models from the nonbrain modality. 

2.4.1.2. Structural MRI (structGS). For the structGS modality (global

and subcortical structure), anatomical markers were extracted from

the FreeSurfer -preprocessed anatomical scans. Following our previ-

ous work (Liem et al., 2017) , we extracted global structural mark-

ers (volume of cerebellar and cerebral GM and WM, subcortical

GM, ventricles, corpus callosum, and mean cortical thickness) and

the volumes of 7 subcortical regions (accumbens, amygdala, cau-

date, hippocampus, pallidum, putamen, thalamus; for each hemi-

sphere separately). Most markers were extracted from the aseg

file, except for mean cortical thickness, which was extracted from

the aparc.a2009s parcellation ( Desikan et al., 2006 ). To account for

head-size effects, volumetric values were normalized by estimated

total intracranial volume. In total, 35 features entered the models

from the structGS modality. 

2.4.1.3. Functional MRI (func). Functional connectivity was com-

puted from the fMRIPrep -preprocessed functional scans. Denoising

was performed using the 36P model ( Ciric et al., 2017 ), which in-

cludes signals from 6 motion parameters, global, white matter, and

CSF signals, derivatives, quadratic terms, and squared derivatives.
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Fig. 2. Adding structural data (orange) to nonbrain data (red) improved the prediction of cognitive decline. Test performance (R2, coefficient of determination, x-axis) across 

splits (Nsplits = 10 0 0) for the combinations of input modalities (y-axis). Targets: cognitive change measured via CDR (Clinical Dementia Rating, middle) and MMSE (Mini- 

Mental State Examination, right). Input modalities: non-brain, structGS (global and subcortical structural volumes), func (functional connectivity). The left panel represents 

combinations of input modalities (e.g., orange is nonbrain + structGS). The number represents the median, the dashed vertical line marks the median of the best-performing 

combination of modalities (within a target measure). For the full results that include single-modality brain imaging, see Figure S2. (For interpretation of the references to 

color in this figure legend, the reader is referred to the Web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time series were extracted from 300 cortical, cerebellar, and sub-

cortical coordinates of the Seitzman atlas ( Seitzman et al., 2020 )

using balls of 5 mm radius. The signals were band-pass filtered

(0.01–0.1 Hz) and linearly detrended. Connectivity matrices were

extracted by correlating the time series using Pearson correlation

and applying Fisher-z-transformation. If multiple fMRI runs were

available, the z-transformed connectivity matrices were averaged

within participants. The vectorized upper triangle of this connec-

tivity matrix was entered into the predictive pipeline and was fur-

ther downsampled to 100 PCA components within cross-validation

(see below). Denoising and feature extraction was performed with

Nilearn 0.6.0 ( Abraham et al., 2014 ). 

Due to the dimensionality of connectivity matrices, we opted

to perform PCA-based dimensionality reduction on the fMRI data.

In its raw form, the fMRI connectivity has 44,850 unique features,

a prohibitive amount that eclipses the other modalities. Because

trees are grown sampling both data points and variables, this num-

ber would complicate the training of Random Forests, requiring an

increase in the number of trees to reliably expose the different

modalities to the model. This problem is alleviated by reducing

this feature set to 100 components. Because the degrees of free-

dom are greatly decreased, it also reduces the risk of overfitting.

This solution has been successfully applied in many examples in

the literature. Schulz et al., (2022) , for example, use PCA so that

comparisons between modalities and modality combinations use

the same number of features. 

2.4.2. Predictive targets 

To quantify future cognitive decline, trajectories of 2 clinical

assessments, the CDR (Clinical Dementia Rating, Sum of Boxes

score) and the MMSE (sum score of the Mini-Mental State Ex-

amination) were estimated using an ordinary least squares lin-

ear regression model for each participant and assessment inde-

pendently ( Fig. 1 –3 ; for information on the count and timing

of sessions, see Table 2 ). A linear slope was fitted through the

raw scores of the follow-up session with the intercept fixed at

the raw score of the baseline session ( scor e f ol l ow −up, assessment ∼
scor e baseline, assessment + βslope, assessment × time ) . This approach was

chosen over a linear mixed-effects model, as the mixed-effects

model requires data from multiple participants, making cross-

validation more convoluted. The resulting 2 parameters ( βslope, CDR 

and βslope, M M SE ) were the 2 targets that were simultaneously pre-

dicted in the predictive analysis using a multitarget approach

( Rahim et al., 2017 ). Slopes were estimated with Statsmodels 0.10.1
( Seabold and Perktold, 2010 ). The distribution of the estimated tar-

gets is plotted in Figure S1. 

Two factors were fundamental to the adoption of the CDR and

MMSE slopes as predictive targets. First, the number of participants

with CDR and MMSE baseline scores is slightly higher than the

number of participants with FAQ and NPI-Q scores. See Table 2 .

Second, both the CDR and MMSE are widely regarded as reliable

tests for the clinical assessment and staging of dementia. FAQ, for

example, is a questionnaire designed for bedside assessment and

research based on instrumental activities of daily life ( Pfeffer et al.,

1982 ), which entails a degree of subjectivity, and NPI-Q is a brief

informant-based questionnaire for general neuropsychiatric assess-

ment (Kaufer et al., 20 0 0) . We believe the CDR and MMSE were the

best candidates as specific measures of cognitive status for these 2

reasons. 

2.5. Predictive analysis 

The predictive pipeline ( Fig. 1 –4 ) consisted of a multivariate

imputer ( Scikit-learn’s IterativeImputer) ( Buck, 1960 ) and a multi-

target random forest (RF) regression model ( Breiman, 2001 ). Mul-

tivariate imputation has recently been shown to work in combi-

nation with predictive models in different missingness scenarios

( Josse et al., 2019 ). It comprises using all other input variables to

estimate missing values in each input variable vector. The proce-

dure is then repeated now including the previously imputed val-

ues as inputs for a number of iterations. RF is a nonparametric

machine-learning algorithm based on ensembles of decision trees.

Trees are trained in parallel over bootstrap samples, also includ-

ing the sampling of input variables. The final output is obtained by

aggregating the outputs of a predetermined number of trees. 

Predictive models were trained using nested cross-validation

via a stratified shuffle-split (10 0 0 splits, 80% training, 20% test par-

ticipants, stratified by the targets). In the inner loop, the RF’s hy-

perparameters were tuned via grid search on the training partic-

ipants (the tree depth was selected among [3, 5, 7, 10, 15, 20,

40, 50, None], where None leads to fully grown trees; the crite-

rion to measure the quality of an RF-split was tuned with ‘mean

squared error’ and ‘mean absolute error’). The best estimator was

carried forward to determine its out-of-sample performance on the

test participants. To derive an estimate of chance performance, null

models were also trained and evaluated with permuted target val-

ues. For each cross-validation split, we calculated the coefficient of
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Fig. 3. Cognitive performance, daily functioning, and subcortical volume were among the most informative features. Permutation importance of the top 15 features of 

the nonbrain + structGS model (median across splits). Permutation importance is quantified as the decrease in test performance R2 with the feature permuted. Red: 

nonbrain features, light orange: structGS features. CDR, clinical dementia rating; FAQ, functional assessment questionnaire; L, left; MMSE, mini-mental state examination; 

LOGIMEM, Total number of story units recalled from this current test administration; MEMUNITS, Total number of story units recalled (delayed); R, right; REMDATES, 

difficulty remembering dates; SOB, sum of boxes; SOB, sum of boxes score; TRAIL B, trail making test B; WF, word fluency, WMS, Wechsler memory scale. (For interpretation 

of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 4. Multimodal imaging improves brain age prediction. Input modalities: non-brain, structGS (global and subcortical structural volumes), func (functional connectivity). 

The number represents the median, the dashed vertical line marks the median of the best-performing combination of modalities. For the full results that include single- 

modality brain imaging, see Figure S6. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

determination (R 

2 ) on the test predictions. All predictive analyses

were performed using Scikit-learn 0.22.1 ( Pedregosa et al., 2011 ). 

Model comparison was used to determine whether 1 model

offered better prediction accuracy than another (for instance, to

check whether a given model outperformed the null model, or

whether a model with added brain imaging data improved accu-

racy as compared to a model using only nonbrain data). Model

comparison in cross-validation needs to take the dependence be-
tween splits into account, complicating statistical tests ( Bengio and

Grandvalet, 2004 ). Thus, instead of calculating a formal statistical

test, we calculated the number of splits for which the model in

question outperformed the reference model, resulting in a percent

value, with numbers close to 100% denoting models which robustly

outperformed the reference model (Engemann et al., 2020) . 

To inspect which features contributed to a prediction, permuta-

tion importance was calculated (Breiman, 2001) . Permutation im-
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portance evaluates the effects of features on the predictive per-

formance by permuting feature values. If shuffling a feature does

decrease performance, it is considered important for the model.

It must be noted that this approach might underestimate the im-

portance of correlated features. This is attributable to the fact that

when one of the features is permuted, the second 1 retains some

of the information that both shared. For example, this might hap-

pen with baseline MMSE and CDR-SOB scores, which are correlated

in the general population ( Balsis et al., 2015 ), and are both used in

the nonbrain data. Furthermore, learning curves were estimated to

assess whether the number of participants in the analysis was suf-

ficient. For these comparisons, models were trained with increas-

ing sample size while observing the test performance. 

We performed additional analyses to diagnose the predictive

pipeline and present our results in context. First, to validate

the pipeline and analysis code, the same predictive methodol-

ogy was used to predict age, a strong and well-established effect

(Liem et al., 2017) . For this validation, age was removed from the

input data and the approach followed in the main analysis was

repeated using a ridge regression model and 200 cross-validation

splits. All features were normalized for this analysis since ridge re-

gression is sensitive to the variance of individual features. Ridge

regression was selected for this analysis because research shows

that linear models tend to perform on par with nonlinear models

in age prediction ( Schulz et al., 2020 , 2022 ) and other benchmarks

( Dadi et al., 2019 ), especially in the current sample size. 

Second, to better compare our results with previous work

that predicted decline using class labels, we repeated the original

pipeline to classify extreme groups of participants that are cogni-

tively stable vs. participants with cognitive decline using random

forest classifiers and 200 cross-validation splits. Participants with

CDR-SOB slopes > 0.25/y were labeled as declining (N = 156), and

a randomly drawn equal number of participants without change in

CDR-SOB (N = 366) were labeled as stable. The threshold of 0.25/y

was selected based on statistical considerations: it is the mean of

CDR-SOB slopes, as shown in Table 2 and it also corresponds to the

80th percentile, so choosing a higher threshold would result in a

much smaller number of cases available. 

2.6. Open science statement 

All data used in the analysis are publicly available via the

OASIS-3 project (LaMontagne et al., 2019) . The analysis plan was

preregistered (Liem et al., 2019) . All preprocessing and analyses

were performed in Python using open-source software and the

code for preprocessing and predictive analysis is publicly available

( Liem, 2020 ). 4 Furthermore, a docker container that includes all

software and code to reproduce the preprocessing and predictive

analysis is also provided. 5 

3. Results 

3.1. Predicting cognitive decline 

A combination of nonbrain and structural data gave the best

predictions of future cognitive decline. Adding structural data im-

proved the prediction for both the CDR (median test performance

R 

2 increased from 0.36 to 0.42; Fig. 2 , red vs. orange; for a scat-

ter plot showing true vs. predicted values, see Figure S3) and

the MMSE (0.32–0.34), as compared to predictions from nonbrain

data alone. This increase occurred in a large majority of splits
4 http://github.com/fliem/cpr . 
5 https://hub.docker.com/r/fliem/cpr . 

 

 

 

(91% of splits for CDR, 78% for MMSE; Table S3). In contrast,

adding functional connectivity features to non-brain features, or to

nonbrain + structGS features, slightly decreased predictive perfor-

mance. 

To tune the RF models to the given problem, hyperparameters

were optimized in a grid search approach. Tuning curves showed

the results to be robust across a wide range of hyperparameter set-

tings (Figure S4). Furthermore, learning curves demonstrated a suf-

ficient sample size in the current setting (Figure S5). 

The models consistently outperformed null models. Comparing

the predictions against a null model with permuted predictions

showed that most modalities outperformed chance-level in 100%

of splits (Table S4). The predictions based on functional connec-

tivity were an exception and outperformed null-models to a lesser

degree (91% of splits for CDR, 73% for MMSE). 

3.2. Features that predict cognitive decline 

We used permutation importance to characterize the most

predictive features of the best performing modality (non-

brain + structGS). Within the top-15 features, nonbrain included

memory scores, the baseline scores of the targets (CDR, MMSE),

and scores from the FAQ (functional assessment questionnaire).

The structural features predominantly included subcortical regions

(left and right hippocampus and amygdala, left accumbens; Fig. 3 ).

3.3. Validation analyses 

Although functional connectivity models predicted cognitive de-

cline poorly, functional data improved accuracy when predict-

ing brain-age. Since functional connectivity alone did not predict

cognitive decline well and did not increase the predictive accu-

racy of the nonbrain model (Figure S2), we conducted a vali-

dation analysis to ensure that our functional connectivity mod-

els were able to predict brain-age, a well-established surrogate

biomarker. Here, we predicted age from the same input data

as in the main analysis after first removing age from the input

features set. In line with our expectations, functional connectiv-

ity increased predictive performance when combined with other

modalities (e.g., in combination with non-brain, performance in-

creased from 0.45 to 0.53; Fig. 4 ), and functional connectivity alone

could predict age reasonably well (median R 

2 = 0.33, Figure S6),

suggesting that its negligible contribution to decline prediction

cannot be attributed to general methodological or data quality

issues. 

In the main analysis, the predictive target of cognitive decline

was quantified as a continuous score. To compare our analysis to

previous work that predicted classes of cognitive decline, we per-

formed a further analysis that predicted extreme groups of cog-

nitive decline (stable vs decline). Overall, extreme groups could

be accurately predicted from the input data (most F1-scores [har-

monic mean of the precision and recall] in the range of 0.8–0.9;

Figure S7). 

4. Discussion 

In the present study, we found that combining baseline struc-

tural brain imaging data with nonbrain data improved the predic-

tion of future cognitive decline. In contrast, functional connectivity

features did not improve prediction. By predicting future cognitive

decline as a continuous trajectory, rather than a diagnostic label,

our study broadens the scope of applications to cognitive decline

in healthy aging. It also allows for more nuanced predictions on

an individual level. In the future, these continuous measures may

facilitate dimensional approaches to pathology ( Cuthbert, 2014 ). 

http://github.com/fliem/cpr
https://hub.docker.com/r/fliem/cpr
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The benefit of combining structural with nonbrain data found

in the present study is well in line with previous work that

predicted conversion from MCI to AD ( Korolev et al., 2016 ),

and classes of cognitive decline ( Bhagwat et al., 2018 ). Nonbrain

data alone predicted cognitive decline and the model was ro-

bustly improved by adding structural data (R2 increased from

0.36 to 0.42 for CDR and from 0.32 to 0.34 for MMSE). These

findings are consistent with prior work ( Korolev et al., 2016 ;

Bhagwat et al. 2018 ). In general, the range of accuracies re-

ported in our study is well in line with previous work predict-

ing a related continuous target (time to symptom onset in AD)

( Vogel et al. 2018 ), as well as with work predicting diagnostic la-

bels (e.g., Eskildsen et al., 2015 ; Korolev et al., 2016 ; Gaser et al.,

2013 ; Davatzikos et al., 2011 ). After having established that a com-

bination of nonbrain and structural data gives predictions wor-

thy of consideration, next, we assessed which features drove the

predictions. 

We found that clinical and neuropsychological assessments and

subcortical structures drove the performance of our model. Mea-

surements of memory, verbal fluency, executive function, and a

wide set of cognitive and daily functions (MMSE, CDR, and FAQ)

were the most informative nonbrain features for predicting cog-

nitive decline. This matches well with Korolev et al., (2016) who

found memory scores and clinical assessments (ADAS-Cog, FAQ)

to be among the most informative nonbrain features. On the

other hand, hippocampus and amygdala volume were the most

informative structural features in our analysis, which is well in

line with previous work predicting conversion from MCI to AD

( Korolev et al., 2016 ; Eskildsen et al., 2015 ). In contrast, risk fac-

tors (such as age, APOE, or health risks) and markers that quan-

tify general brain atrophy and regional cortical brain structure did

not add markedly to model performance. It should be noted that

features were assessed using permutation importance, which un-

derestimates the importance of correlated features. Baseline MMSE

and CDR-SOB scores are substantially correlated in the general

population (Balsis et al., 2015) and are thus susceptible to this at-

tenuation. We note, however, that both still figure among the top

15 features in Fig. 3 . Alternative approaches, such as mean decrease

impurity, might complement the permutation-based approach in

future studies to improve the sensitivity (Engemann et al., 2020) .

Nevertheless, taken together, our results suggest that memory, ev-

eryday functioning, and subcortical features better predict future

cognitive decline at the individual level than risk factors or global

brain characteristics. 

Functional connectivity, in contrast to brain structure, did not

improve predictions when added to other modalities, nor did it

predict cognitive decline on its own. While many previous stud-

ies predicted cognitive performance or decline based on structural

imaging, studies using functional connectivity are rare and contain

widely varying estimates of its predictive power (Dansereau et al.,

2017; Hojjati et al., 2018; Vogel et al., 2018) . Although functional

connectivity in our study did not predict future cognitive decline,

it did predict brain age. Assuming that functional connectivity is at

least somewhat predictive of future cognitive decline, our analy-

sis may suggest that the processing of functional connectivity data

was not a good fit for the cognitive targets. Furthermore, data with

better spatial and temporal resolution might be able to better cap-

ture decline. This calls for future studies that benchmark different

processing options as these can severely impact predictive accu-

racy ( Dubois et al., 2018 ). 

In the following, we will sketch possible future developments

along 4 themes: implications of and possible improvements to

the continuous targets of cognitive decline, multimodal input data,

predictive models , and the importance of generalization to new

datasets. 
Quantifying cognitive decline continuously rather than dis-

cretely enables a more fine-grained and robust prediction, but also

requires methodological choices. By predicting a diagnostic label,

previous studies were often restricted to MCI patients and aimed

to distinguish stable from converting patients. Considering decline

as a continuum better characterizes the underlying change in abil-

ities and allows for capturing changes that occur in healthy aging.

Overcoming the scarcity of diagnosed conditions, widens the scope

of applications and has methodological advantages: the resulting

increased sample size yields more robust models, which is crit-

ical to avoiding optimistic bias in estimating prediction accuracy

( Woo et al., 2017 ; Varoquaux, 2018 ). Furthermore, our approach

also does not require assigning a diagnostic label, which entails

subjective clinical judgment and arbitrary cut-off values. Consid-

ering cognitive decline as a continuous target does, however, re-

quire a model to aggregate multiple longitudinal measurements.

Here, we used participant-specific linear slopes estimated through

longitudinal data from clinical assessments. Since cognitive decline

also shows nonlinear trajectories ( Wilkosz et al., 2010 ), one could

argue that accounting for nonlinearity is called for when extract-

ing the predictive targets. However, robustly estimating nonlinear-

ity requires more longitudinal measurements per participant and

more complex models. In contrast, linear trajectories can robustly

be estimated with 3 measurements, hence, they provide a use-

ful approximation of cognitive decline. Notably, the baseline val-

ues of the clinical assessments used to define the slopes have a

special role: they are input features and the slopes are defined rel-

ative to them. This might result in a bias due to regression to the

mean ( Barnett, van der Pols, and Dobson, 2005 ), where unusually

extreme baseline values (due to noise) might result in unusually

extreme slopes (returning to the mean). This issue is relevant as

well when defining diagnostic labels where it might result in pa-

tients switching between labels due to noise. Future studies should

consider more complex models that can better account for these

effects. Taken together, quantifying cognitive decline continuously

allows for a more nuanced representation of decline and widens

the scope of applications. However, while refining the definition of

cognitive decline is warranted, it requires more complex analytical

approaches and appropriate data. 

In this study, we quantified cognitive decline using 2 clinical

assessments (CDR and MMSE), which measure a heterogeneous set

of cognitive and everyday life functions. While these clinical as-

sessments have the advantage of being used in practice, they lack

the specificity to target single cognitive constructs. Measuring cog-

nitive constructs more homogeneously might potentially improve

accuracy, especially if those constructs are strongly linked to spe-

cific brain regions or networks. This could be achieved by ad-

ditionally employing neuropsychological assessments. The multi-

target approach outlined in this study is well-suited to including

these additional targets. 

Beside additional targets, future studies should also consider

additional multimodal input data to characterize the brain in

greater detail. The present study used data derived from struc-

tural and functional MRI (T1w and resting-state fMRI). These

might be complemented by information from diffusion-weighted

imaging, arterial spin labeling, or positron emission tomography

(Rahim et al., 2016) . Additionally, the presently used modalities

could also be refined and alternative representations could be

considered. For instance, different methods for quantifying brain

structure ( Pipitone et al., 2014 ) or brain function ( Rahim, Thirion,

and Varoquaux, 2019 ), and adding data on structural asymme-

try ( Wachinger et al., 2016 ) or dynamic functional connectivity

( Filippi et al., 2019 ) could provide improved predictive perfor-

mance. Furthermore, the influence of MR data quality on accuracy

should be assessed in future studies. While our past work showed
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that brain-age prediction from multimodal neuroimaging is robust

against in-scanner head motion (Liem et al., 2017) , the present

study has not assessed the influence of MR data quality on predic-

tive accuracy. Addressing this issue would yield recommendations

regarding the required data quality to predict cognitive decline. 

The predictive approach could also be expanded to better ac-

commodate high-dimensional data and the messiness of real-world

data acquisition. The present study concatenated low-dimensional

features across modalities and fed them into 1 random forest

model. Including all features in 1 model allowed us to consider

feature-level interactions across modalities. Alternatively, prediction

stacking could be used to facilitate the integration of multimodal

data (Liem et al., 2017; Rahim et al., 2016; Engemann et al., 2020) .

While the stacking approach accounts for modality-level interac-

tions it does not consider feature-level interactions across modal-

ities. However, it scales well to high-dimensional data and allows

for block-wise missing data, for instance, a missing modality. The

present work only included participants if data from all modal-

ities (nonbrain, structural, functional) were available. In clinical

practice, this is often not feasible. As we demonstrated previously,

stacking can be used to include participants with missing modali-

ties, which increases the sample size and the scope of application

(Engemann et al., 2020) . 

In practice, the benefit of adding multimodal neuroimaging data

to a set of clinical assessments needs to be considered against

the additional costs. Its clinical utility also depends on the ac-

tionable insight that can be drawn from an earlier prognosis. Of

course, this concern is not specific to this study; it applies broadly

to almost every effort to incrementally predict clinically mean-

ingful outcomes from brain-based measures. At the moment, no

causal treatment for cognitive decline is available. However, an

early prognosis might aid intervention studies and be even more

helpful once effective treatments are available. Hence, future stud-

ies should further exploit the information yielded by the model

to focus on participant-specific predictions. In general, predictive

models don’t perform equally well in all circumstances. For some

participants or sub-groups, a more confident prediction is possible.

Recent work demonstrated a higher prediction accuracy in partici-

pants with certain characteristics, for example, older, female, etc.

(Korolev et al., 2016) . This enables increased accuracy by focus-

ing on high-confidence predictions ( Tam et al., 2019 ) and might

even suggest a participant-tailored clinical workflow depending on

the prediction confidence (Bhagwat et al., 2018) . While the present

study has not yet investigated these effects, it is well set up to de-

termine optimal conditions for model performance. A large num-

ber of cross-validation splits yields a distribution of predictive per-

formance, not only a point estimate. This will also allow us to as-

sess whether the predictions across sub-groups are driven by the

same features. 

For a predictive model to be useful in real-world applica-

tions, it needs to generalize well to datasets from different sites

( Scheinost et al., 2019 ). While characteristics of our study facili-

tate generalization, a future study is required to empirically es-

tablish the generalization of our models to independent datasets.

First, we have aimed to provide full transparency throughout this

study to improve reproducibility and generalizability. We used data

from a large, publicly available dataset, preprocessed them with

well-established open-source tools, and inputted them into well-

established models. The analysis code is publicly shared and af-

ter further developing this approach, trained models will also be

shared. Importantly, the analysis was preregistered to avoid overfit-

ting due to analytical flexibility ( Carp, 2012 ; Hosseini et al., 2020 ).

Second, the OASIS-3 project is set up heterogeneously regarding

the number of sessions, the intervals between sessions, and the

participants’ duration in the study. This heterogeneity is expected
to provide less opportunity for an algorithm to overfit to dataset-

specific idiosyncrasies, resulting in more generalizable models that

also perform well in other settings. 

While a heterogeneous dataset and open/reproducible ap-

proaches certainly improve generalizability, we trained and tested

models using only one dataset. Thus, the cross-validated perfor-

mance in our study provides a biased estimate of the generaliz-

ability to independent datasets. This bias might even be modality-

specific, in that non-brain features might generalize better than

brain imaging features (Bhagwat et al., 2018) . Training predictive

models on data from multiple sites has been shown to improve

generalization ( Abraham et al., 2017 ; Orban et al., 2018 ; Liem et al.,

2017 ). Hence, future studies should use models trained and tested

on data from multiple sites, which requires further suitable longi-

tudinal and publicly available datasets (Varoquaux, 2018) . This also

provides an opportunity to take preregistration even further. After

conducting experiments in an initial dataset, a trained model could

be preregistered and applied to an independent dataset that hasn’t

yet been analyzed. 

Future research could investigate the impact of different pre-

processing strategies on predictive performance. This encompasses

everything from individual settings to the software used itself. For

example, on the volumetry of subcortical structures, substantial

differences are noted between different software ( Mulder et al.,

2014 ; Bartel et al., 2017 ). 

5. Conclusions 

In summary, we have shown that adding structural brain imag-

ing data to nonbrain data (such as memory scores or everyday

functioning) improves the prediction of future cognitive decline in

healthy and pathological aging. Conversely, adding functional con-

nectivity data, as used in the present approach, did not aid the

prediction. Importantly, our work has potential for clinical util-

ity by predicting future cognitive decline, rather than a current

diagnosis. Future studies should include additional brain imaging

modalities and independent datasets and should determine the

potential of functional connectivity using alternative methodologi-

cal approaches. Quantifying future decline continuously allows for

more nuanced predictions on an individual level. In the future,

these continuous measures may facilitate dimensional approaches

to pathology ( Cuthbert, 2014 ) 

Increased personal and societal costs due to healthy and patho-

logical age-related cognitive decline are one of the most press-

ing challenges in an aging society. An early and individually fine-

grained prognosis of age-related cognitive decline allows for earlier

and individually targeted behavioral, cognitive, or pharmacological

interventions. Intervening early increases the chances to attenuate

or prevent cognitive decline, which will alleviate both personal and

societal costs. Importantly, our work targets applications to healthy

aging, widening the scope beyond the pathological to the entire

aging population. 
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