2208.07729v1 [cond-mat.mtrl-sci] 16 Aug 2022

arxXiv

Exchange torque in noncollinear spin density functional theory with a semilocal
exchange functional

Nicolas Tancogne—Dejean,l’Q’ Angel Rubio,""?34 and Carsten A. Ullrich®

Y Maz Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science,
Luruper Chaussee 149, 22761 Hamburg, Germany
2 European Theoretical Spectroscopy Facility (ETSF)
8 Nano-Bio Spectroscopy Group, Universidad del Pais Vasco UPV/EHU, 20018 San Sebastidn, Spain
4 Center for Computational Quantum Physics (CCQ), The Flatiron Institute,
162 Fifth Avenue, New York, New York 10010, USA
5 Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, USA

We present a new semilocal exchange energy functional for spin density functional theory (SDFT)
based on a short-range expansion of the spin-resolved exchange hole. Our exchange functional is
directly derived for noncollinear magnetism, U(1) and SU(2) gauge invariant, and gives rise to non-
vanishing exchange torques. The functional is tested for frustrated antiferromagnetic chromium
clusters and shown to perform favorably compared to the far more expensive Slater potential and
optimized effective potential for exact exchange. This provides a path forward for functional develop-
ment in noncollinear SDFT and the ab initio study of magnetic materials in and out of equilibrium.

In the framework of density functional theories
(DFTs), the key to success in describing the equilibrium
and time-dependent behavior of an electronic system,
such as its electronic or magnetic properties, is inherently
related to the quality of approximations of the exchange-
correlation (xc) energy and its functional derivatives. In
the quest to develop more accurate xc functionals, most
of the recent effort has been devoted to the construc-
tion of approximations for spin unpolarized systems or
for systems well described by collinear spins [1H3].

Considering the ever growing interest in the fields of
spintronics and optical control of magnetism, reliable
functionals going beyond going beyond the widely used
local spin density approximation (LSDA )are highly desir-
able. In particular, one of the features expected from the
exact xc magnetic field (By.) of spin density functional
theory (SDFT) [, [5] is to generate locally a non-zero
xc torque, which arises from the fact that in SDFT the
Kohn-Sham current is not the same as the exact many-
body current [G]. Globally, this xc torque must average
to zero, which is known as the zero-torque theorem [6].
However, the practical significance of xc torques is still
relatively little explored [7, 8], and a better understand-
ing would be beneficial for the application of SDFT to
noncollinear magnetism and spin dynamics [9].

In frustrated antiferromagnetic systems, such as free-
standing Cr monolayers, local xc torques can be sizable
in the vicinity of the Cr atoms [I0], based on calculations
performed at the level of the optimized effective poten-
tial (OEP) for exact exchange (EXX) [11l 12]. How this
nonzero xc torque affects the static and dynamical prop-
erties of magnetic systems, such as light-induced demag-
netization [9] or the dispersion of spin waves [I3], is an
open question that needs to be addressed in order to gain
understanding and control of the magnetization dynam-
ics in these systems. More recently, it was demonstrated
using a source-free version of the LSDA [14] that the xc
torque affects the light-demagnetization process [15].

Two main approaches are available for constructing xc
functionals for noncollinear systems. A first approach,
which is most commonly employed, consists in promoting
existing functionals for collinear systems to work for non-
collinear ones. This was initiated by the work of Kiibler
and others [I6] [I7], who showed how to carry out non-
collinear LSDA calculations by performing a rotation of
the spin density matrix in the frame of the local mag-
netization m. The drawback of this approach is clear:
because the resulting local By, is aligned with m, this
cannot produce any local xc torques. Various extensions
of this approach to generalized spin gradient approxima-
tion (GGA) functionals have been proposed since then
[18, 19]. While these different schemes can produce non-
zero xc torques, they tend to suffer from numerical insta-
bilities and can encounter difficulties in reproducing the
collinear limit unless special care is taken [20].

In this work, we follow a second approach for con-
structing xc functionals for noncollinear magnetism,
which consists in developing directly xc functionals
for noncollinear systems instead of promoting existing
collinear functionals to the noncollinear case. This gen-
eral philosophy was used in some earlier studies, such as
the transverse spin-gradient functional developed by Eich
and Gross [21]. More recently, it was proposed to build a
meta-GGA (MGGA) functional for noncollinear systems
[22] based on the short-range expansion of the exchange
hole in the noncollinear case, but no numerical imple-
mentation of this was reported so far. Finally, a class
of orbital-dependent functionals for noncollinear SDFT
was proposed in Ref. 23 and applied to the asymmetric
Hubbard dimer and other small lattice systems [8].

In this Letter, we show how to use a short-range ex-
pansion of the exchange hole to build an MGGA func-
tional for noncollinear SDFT. We propose an effective
noncollinear exchange hole that can be properly approx-
imated by existing models for the exchange hole. From
this, we obtain an MGGA exchange functional that not



only depends locally on the direction of m but also on
the direction of the curvature of the exchange hole, which
implies that the resulting B,. can exert a local torque on
m. We then apply this functional to planar Cr clus-
ters with frustrated antiferromagnetic magnetic interac-
tions and show that not only the functional produces a
nonzero exchange torque, but that it properly reproduces
the most salient features of the exchange torque obtained
by the far more complicated noncollinear Slater potential
and EXX-OEP. We mention that it was shown for model
systems that Slater and EXX-OEP yield decent approx-
imations to the exact xc torques, as long as the systems
are not too strongly interacting [g].

Our starting point is the exchange energy of a system
of N electrons,

E, = —;//WTr['y(r,r’)’y(r’,r)} , (1)
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where Tr is the trace over spin indices of the one-particle
spin density matrix v, (r,r’) = Zjv Vo (r)Yj,(r'), con-
structed from two-component spinor Kohn-Sham or-
bitals, where o =1, ] and likewise for 7. Here and in the
following, doubly underlined quantities such as v rep-

resent 2 x 2 matrices. Here, Ey is U(1)x SU(2) gauge
invariant [22]; directly approximating EY is therefore a
good strategy to produce meaningful exchange function-
als for noncollinear SDFT.

From Ey of Eq. it is possible to derive the non-
collinear OEP EXX potential, as well as the Slater po-
tential for noncollinear spins [23]. This allows us to gen-
eralize the definition of the exchange hole to systems
with noncollinear spin, as discussed in the Supplemen-
tary Material (SM) [25]. However, the exchange hole is
now a 2 x 2 matrix in spin space, it would be necessary
to approximate its diagonal as well as off-diagonal terms.
The existing models for the collinear exchange hole [20]
rely on the fact that the modeled exchange is positive
and normalized to unity. These properties are obviously
not fulfilled by the off-diagonal terms of the noncollinear
exchange hole, which makes these terms complicated to
approximate using existing collinear models.

To circumvent this problem, we seek an alternative
quantity to approximate, for which we could use already
existing collinear models. For this, we rewrite Eq. as

B, - —;/drn(r)/dr’m, 2)

defining hy(r,x’) = Tr[y(r,r’)y(r',r)]/n(r), where
n(r) = Y Neo(r) is the total density. The quantity
hy, which we refer in the following as the effective ex-
change hole, displays the same properties as the physical
exchange hole for unpolarized or collinear-spin systems.
Indeed, Tr[y(r,r')y(r,r)] is always positive, and hence
hy is always positive, too. Moreover, hy has the right
normalization condition, i.e., [dr'hy(r,r’) = 1. There-
fore, hy is suited to be approximated by already existing

models for the collinear exchange hole. A recent review
[26] of the existing models for the collinear exchange hole
found that the hydrogenic model [27] seems to perform
best, at least for the systems considered. We therefore
employ this model in the following to approximate hy and
construct a noncollinear MGGA exchange functional.

Only the spherical average of the effective exchange-
hole function around a given reference point r is relevant
for the exchange energy. We therefore perform a Taylor
expansion of the spherical average of hy to obtain its
short-range behavior around a reference point r, which
gives, up to second order in the distance s from r, its on-
top value and its curvature, see SM [25]. Omitting the
explicit dependence on r, we obtain, up to second order
in s,
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Here, 7 is an effective kinetic energy density defined by
the matrix equation

nit+in=nr+zn—-2V(j-jn)-2j-j, (4
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with 7o = 32 (Vihja(r)) - Vijs(r) the usual kinetic en-
ergy density, and j is the paramagnetic current density.
The quantity 7 is U(1) gauge invariant but is not invari-
ant under a local SU(2) gauge transformation [22]. Of
course, the entire curvature is SU(2) invariant. Thus, in
order to obtain an expression for the spherically averaged
effective exchange hole that is made of SU(2) invariant
building blocks, we rewrite hy(s) as
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where 7 is given by

One can show (see SM [25]) that in the one-electron limit
7 reduces to the von Weizsédcker kinetic-energy density
™ = |Vn|?/4n and in the uniform gas limit 7 reduces
to 7 = 3k2(n/2 + |m[?/2n), with kg = (672n)1/3,
Similar to common collinear MGGAs [28, 29], we in-
troduce a dimensionless parameter a(n,|m|,|Vn|,7) =
(7 — W) /7" which in the one-electron and uniform

gas limits reduces to a = 0 and a = 1, respectively, as in



the collinear case. We also define a dimensionless Lapla-

cian ¢(n, |m|) = The different compo-
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nents of the exchange-hole curvature, in particular 7, are
all U(1) and SU(2) gauge invariant. Note that the SU(2)
gauge invariance implies o > 0.

Let us comment here on the importance of the gauge
invariance. Already at the level of collinear MGGAs, the
U(1) gauge invariance is very important, especially for
the dynamical case in which the current is non-zero or
for the description of current-carrying states, as realized
by several authors [30H33]. For noncollinear systems, a
semi-relativistic theory including on equal footing elec-
tromagnetic fields and spin-related terms in the Hamil-
tonian (Zeeman term, spin-orbit coupling) should also
preserve the local SU(2) gauge invariance [22]. This is
the case of the exact-exchange energy, but also in our
proposed functional.

It is clear that building a functional from the quan-
tities (o, g, 7) will directly recover the collinear limit,
which is a strong requirement for any noncollinear xc
functional. Moreover, we see that while the on-top term
is determined by the direction of m, the curvature has its
own direction, which is independent of that of m. This
implies that the resulting By is in general not aligned
with m, thus producing a nonvanishing local exchange
torque. Finally, note that we introduced a scaling factor
v in Eq. to ensure the correct homogeneous electron
gas limit, as done in the collinear case [27]. This scaling
factor does not break the gauge invariance of the energy,
as it acts on a building block which is gauge invariant by
itself. The limit of hydrogenic systems (a = 0) is there-
fore not affected by the choice of v. In the following, we
use v = 0.8 unless stated otherwise.

Having at hand the short-range behavior of the effec-
tive exchange hole, we now express it via a hydrogenic
model [27]:

pii(r;s) = 1“ é;l [(a(r)|b(r) 8| 4 1)emamlb) —s|
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where a(r) and b(r) are positive parameters of the model
that need to be determined. The equations for a(r) and
b(r) are found to be identical to the collinear case, with
the difference that the on-top part of the exchange hole
is not given by the density (see SM [25] for more de-
tails). Once these parameters are determined for each
r, we obtain the final expression of our noncollinear ex-
change energy functional:

E,=- /drn(r)3(37;_)1/3 (n(r)

Here,
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plays the role of an enhancement factor, where x(r) =
a(r)b(r). Importantly, because the on-top effective ex-
change hole as well as the exchange hole curvature are
U(1) and SU(2) gauge invariant, ¢ and b invariant under
a local rotation of the spin, and our functional is then
U(1) and SU(2) gauge invariant and also recovers natu-
rally the collinear limit. Moreover, because the functional
is based on the exchange hole of a physical system (the
H atom), the energy is constrained to reasonable values.

By making the total energy stationary with respect to
spinor orbital variations, we obtain a differential operator
rather than a local multiplicative Kohn-Sham potential,
because of the explicit dependence on the kinetic energy
density, see SM [25]. This treatment, first used by Neu-
mann, Nobes, and Handy [34], is usually referred as gen-
eralized Kohn-Sham (gKS). We refer to MGGA treated
using this approach as MGGA-gKS. Alternatively, one
can construct a local multiplicative Kohn-Sham poten-
tial using the OEP formalism, which we will refer to
as MGGA-OEP. This approach tends to be less used
as the solution of the OEP equation can be numeri-
cally involved [I2]. While these two approaches usually
give similar total energies, they can yield different re-
sults for other quantities of interest such as the nuclear
shielding of small molecules [35] or the bandgap of solids
[36], and it is therefore interesting to explore how gKS
and OEP can differ for noncollinear systems. In order
to perform this analysis, we derived an explicit solution
for the Krieger-Li-lafrate (KLI) approximation [II] to-
ward the exact OEP result for noncollinear spins (see
SM [25]). The implementation of this solution and of
our MGGA functional was done using the real-space code
Octopus [31].

As a critical check of the functional, we consider a pla-
nar Crg cluster with frustrated antiferromagnetic interac-
tions, which is typically used to test noncollinear versions
of collinear functionals [I8, 19, [38]. Calculations were
performed using a grid spacing of 0.1 Bohr, employing
norm-conserving fully relativistic Hartwigsen-Goedecker-
Hutter (HGH) pseudo-potentials [39], including semicore
electrons as valence ones and spin-orbit coupling in all
the simulations. The distance between the Cr atoms is
taken to be 3.7 Bohr.

As an important measure of the performance of the
functional, we first consider the local magnetic moment
of the Cr atoms, see Table[l} Interestingly, the exchange-
only LSDA (LSDAx) gives much larger magnetic mo-
ments than the full LSDA, showing the importance of
correlation effects in this system. However, our focus
in the present work is an exchange functional. We note
that several models have been proposed which locally
rescale the exchange hole in order to include correlation
effects [40H43]; this might be explored in subsequent work
to construct a noncollinear exchange-correlation MGGA.

The proposed MGGA exchange functional significantly
improves the description of the magnetic structure of the
Crs cluster compared to the LSDAx; all results are rela-
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FIG.1. The z component of the local xc torque m(r) X Byc(r)
around the Cr atoms in a Cr3 cluster, computed from a) Slater
potential, b) EXX-KLI, c) MGGA functional at the gKS level,
d) MGGA at the OEP-KLI level.

TABLE I. Local magnetic moment m, in pup, and ionization
potential I,, in eV, of the Cr atoms in Crs obtained for differ-
ent levels of theory (see text). The moments are obtained by
integrating the density in a sphere of radius 1.8 Bohr around
the atoms.

Functional m I

P
LSDA 1.67 2.90
LSDAx 2.66 2.30
MGGA-gKS (v =0.8) 3.04 3.65
MGGA-gKS (y=1) 3.07 3.53
MGGA-KLI (v =0.8) 3.09 3.59
MGGA-KLI (y=1) 3.14 3.47
Slater 3.48 6.52
EXX-KLI 3.81 4.68
Hartree-Fock 3.86 4.86

tively insensitive to the choice of v. We note that there is
indeed a difference between using the MGGA functional
within the gKS framework and using the KLI scheme.
This observation is in line with previously reported re-
sults for magnetic moments in solids [44] [45], in which
it was found that MGGA for collinear magnetism only
slightly changes the magnetic moments compared to the
ones obtained by GGAs. These two works both used the
gKS approach. Our results for Crs reveal that more de-
tailed studies of the impact on the choice of gKS versus
OEP for treating MGGA in magnetic systems is needed.
We also report in Table [[] the ionization potential com-
puted from the different functionals. Similar conclusions
are obtained as from the magnetic moments.

Next, we analyze the exchange torque along the out-
of-plane direction of the cluster (the z direction). Figure
[} shows the torque obtained with our MGGA, compared

with Slater and EXX-KLI. Clearly, while the Slater po-
tential provides decent magnetic moments, the exchange
torque does not resemble that obtained by EXX-KLI,
apart from regions close to the atoms. As expected
for our proposed MGGA, we obtain a nonzero exchange
torque as a consequence of the fact that the curvature
of the noncollinear exchange hole is not aligned with the
magnetization direction. The alternation of positive and
negative local torques leads to an overall zero torque, as
required by the zero-torque theorem [46]. Overall, our
functional agrees well with the Slater/EXX-KLI torques
in the regions around the atoms. In fact, our MGGA
yields fewer torque features than Slater, in better agree-
ment with EXX-KLI, especially in the interstitial region,
except that the signs of the features are inverted. There
are slight differences between the gKS and OEP imple-
mentations of the MGGA, but these are small compared
to the differences between MGGA and Slater/EXX-KLI.
Further away from the atoms, it is clear that the pro-
posed MGGA does not capture all the details of the ex-
change torque, as expected for a functional based on a
short-range expansion of the noncollinear exchange hole.

It is important to note that compared to the spin-
spiral wave noncollinear functional proposed by Eich and
Gross [21], which produces a six-fold symmetric exchange
torque around all the Cr atoms, our functional yields
a torque that depends on the local environment of the
atoms, as obtained by the Slater potential, EXX-KLI, or
EXX-OEP for Cr monolayers [10]. We can also compare
with the noncollinear GGA by Scalmani and Frisch [19],
where the exchange torque is also found to depend on
the local environment of the atoms, but their result for
the torques displays a wrong number of positive-negative
features around the atoms compared to those of Slater,
EXX-KLI, and our MGGA. Overall, while our MGGA re-
sults for Crs leave some room for improvement, they do
provide a realistic description of the exchange torques.

We also performed calculations for a Crs cluster, see
Fig. ] using a distance of 3.7 Bohr between the Cr
atoms. Similar to the case of Crs, our functional pro-
duces an exchange torque of the same order of magni-
tude and with similar features around the atoms as that
obtained by Slater or EXX-KLI. As for Crs, the sign of
the exchange torque is inverted in the interstitial region.
Again, we attribute this to the short-range nature of our
expansion, which has difficulties producing the correct
sign of the By away from the atomic centers.

In conclusion, we have developed a new semilocal ex-
change functional for noncollinear SDFT derived from
the short-range behavior of the noncollinear exchange
hole. The functional, which belongs to the class of MG-
GAs, is numerically well behaved and computationally
much cheaper than nonlocal exchange functionals of com-
parable quality (Slater and KLI) that scale quadratically
with the number of state and require the calculation of
Coulomb integrals for each pair of occupied Kohn-Sham
states. Potential applications of this new exchange func-
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FIG. 2. Out-of-plane component of the exchange torques for a Crs cluster, calculated with MGGA-gKS, Slater, and EXX-KLI.

tional range from ab initio equilibrium studies of uncon-
ventional spin structures like skyrmions to a variety of dy-
namical phenomena in magnetic materials such as spin-
wave dispersions and the demagnetization in light-driven
magnetic solids. From a more fundamental perspective,
this work highlights the important and interesting role
of xc torques in SDFT, which should motivate further
study. Finally we note that while we employed here a spe-
cific hydrogenic model for the effective exchange hole, it
should be possible to apply our approach to other models
and to build new functionals for noncollinear magnetism
following similar ideas.
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