
D E V E L O P M E N T O F E N H A N C E D
S A M P L I N G M E T H O D S F O R

M O L E C U L A R S I M U L AT I O N S
—

WAV E L E T S A N D B I RT H - D E AT H

Dissertation zur Erlangung des Grades
“Doktor der Naturwissenschaften”

am Fachbereich Physik, Mathematik und Informatik
der Johannes Gutenberg-Universität Mainz

Mainz, 2022

benjamin pampel
geboren in Nürnberg

Arbeitskreis Theorie der Polymere
am Max-Planck-Institut für Polymerforschung Mainz



ii

Für L.

1. Gutachter:
2. Gutachterin:

Tag der Einreichung: 01. März 2022
Tag der Prüfung: 09. Juni 2022



A B S T R A C T

To overcome the time scale problem of molecular simulations, methods that
enhance phase space sampling are developed. Two complementary enhanced
sampling approaches are investigated: Improving the bias representation in the
variationally enhanced sampling method, as well as a novel sampling algorithm
using birth-death moves.

The variationally enhanced sampling method is based on a variational
principle, where a bias potential is constructed in the space of a few slow
degrees of freedom by minimizing a convex functional. Typically, the bias
potential is taken as a linear expansion in some set of basis functions. In
this work, properties of good basis functions for the method are identified to
subsequently propose new basis functions and assess their performance. In
particular, Daubechies wavelets are investigated, which construct orthogonal
and localized bases that exhibit an attractive multiresolution property. Their
theory is studied and they are implemented into the PLUMED2 software,
together with other new basis functions. The parameters of the new basis
sets are tuned. Benchmarking studies on systems of increasing complexity
are performed, from the simulation of the movement of a single particle in a
one-dimensional potential to the study of the association process of calcium
carbonate in water. The wavelet bases are found to exhibit excellent performance
and yield much better convergence of the bias potential than the previously
existing basis functions.

Also, a novel sampling algorithm that augments Langevin dynamics with
birth-death moves is investigated. This is a modification of a previously pro-
posed algorithm that provides an approximation of a stochastic birth-death
process for a particle-based implementation. The method connects multiple
parallel Langevin dynamics simulations of the same system with a birth-death
scheme to facilitate global sampling according to the equilibrium distribution.
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iv abstract

The algorithm is investigated theoretically, implemented into a custom molec-
ular simulation code, and tested via numerical simulations. The behavior of
the algorithm under change of parameters is investigated. In this process, the
desired sampling is observed for all tested systems. It is found that the perfor-
mance of the method is independent of the intrinsic time scales and barriers of
the system, which is favorable for systems with processes on long time scales.



Z U S A M M E N FA S S U N G

Es werden Methoden entwickelt die besseres Sampling des Phasenraums er-
möglichen um Zeitskalenprobleme bei molekularen Simulationen zu über-
winden. Zwei komplementäre Enhanced-Sampling-Ansätze werden untersucht:
Eine verbesserte Darstellung des sogenannten Bias-Potentials in der Variationally-
Enhanced-Sampling-Methode, sowie ein neuartiger Sampling-Algorithmus, der
Birth-Death-Schritte verwendet.

Die Variationally-Enhanced-Sampling-Methode basiert auf einem Variation-
sprinzip, bei dem ein zusätzliches Potential durch Minimierung eines konvexen
Funktionals konstruiert wird. Dieses Bias-Potential verbessert das Sampling
im Unterraum einiger langsamer Freiheitsgrade und wird typischerweise mit-
tels einer Linearkombination von Basisfunktionen dargestellt. In dieser Arbeit
werden die Eigenschaften guter Basisfunktionen für die Methode ermittelt, um
darauf aufbauend neue Basisfunktionen vorzuschlagen und deren Verhalten
zu evaluieren. Insbesondere werden die von Daubechies entwickelten Wavelets
untersucht, aus denen orthogonale und lokalisierte Basen konstruiert werden
können, die zudem eine attraktive Mehrskalen-Eigenschaft aufweisen. Ihre
Theorie wird untersucht und sie werden zusammen mit anderen neuen Basis-
funktionen in die PLUMED2-Software implementiert. Optimale Parameter der
neuen Basissätze werden empirisch bestimmt. Es werden Benchmarking-Studien
an Systemen mit zunehmender Komplexität durchgeführt, von der Simulation
der Bewegung eines Teilchens in einem eindimensionalen Potential, bis hin zur
Untersuchung des Assoziationsprozesses von Calziumcarbonat in Wasser. Es
wird festgestellt, dass die Wavelet-Basen ausgezeichnete Ergebnisse produzieren.
Insbesondere wird deutlich bessere Konvergenz des Bias-Potenzials beobachtet
als mit zuvor gebräuchlichen Basisfunktionen.

Weiterhin wird eine neuartige Methode entwickelt, die Langevin-Dynamik-
Simulationen mit Birth-Death-Schritten ergänzt. Dabei handelt es sich um
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vi zusammenfassung

eine Modifikation eines zuvor vorgeschlagenen Algorithmus, welcher eine
mathematische Beschreibung eines stochastischen Birth-Death-Prozess mittels
einer partikelbasierte Implementierung als Annäherung annähert. Die Meth-
ode verbindet mehrere parallele Langevin-Dynamik-Simulationen desselben
Systems mit einem Birth-Death-Schema, um das globale Sampling gemäß der
Gleichgewichtsverteilung zu verbessern. Der Algorithmus wird theoretisch
untersucht, in einen eigens angefertigten molekularen Simulationscode im-
plementiert und durch numerische Simulationen getestet. Das Verhalten des
Algorithmus unter Variation verschiedener Parameter wird untersucht. Das
gewünschte Sampling wird dabei für alle getesteten Systeme beobachtet. Es
wird zudem festgestellt, dass die Methode unabhängig von den systemeigenen
Zeitskalen und Barrieren arbeitet, was vorteilhaft für Systeme mit Prozessen
auf langen Zeitskalen ist.
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1
I N T R O D U C T I O N

Molecular simulations are routinely used in chemistry, biology, and materials
science to obtain a microscopic understanding of physical processes, offering in-
sight into equilibrium and kinetic properties and possible pathways [1–6]. How-
ever, one major problem impeding conventional molecular dynamics (MD) [7]
or Langevin dynamics (LD) [8, 9] simulations is the time scale or rare event
problem. For many systems, the molecular process of interest occurs on a much
longer time scale than one can simulate in practice; in other words, it is a rare
event. Thus, the system stays in a metastable state during the simulation, and
one does not observe transitions to other metastable states. Despite impressive
developments in specialized hardware [10–12] and simulation codes [13–15] that
make very efficient use of modern graphics processing units, it is unlikely that
accessible time scales will increase significantly in the near future. The speedup
of processing units has come to an end and high-performance computing relies
on the usage of massive parallelization [16], and time is not easily parallelizable.
Thus, there has been considerable interest in developing advanced methods
that enhance phase space sampling and overcome this time scale problem.

A popular family of such enhanced sampling methods introduces a bias
potential as a function of a few essential slow degrees of freedom, the so-called
collective variables (CVs). By flattening barriers, this bias potential allows for
transitions between metastable states on much shorter timescales and results
in faster and more comprehensive exploration of the configurational space.
Variationally enhanced sampling (VES) is a recently developed method of this
family that is based on a variational principle [17, 18]. It introduces a convex
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2 introduction

functional of the bias potential that is related to the relative entropy and the
Kullback-Leibler divergence. To minimize the functional, the bias potential is
generally taken as a linear expansion in some basis function set. So far, the
employed basis sets have been primarily sets of orthogonal functions that are
delocalized in the CV space, such as plane waves, Chebyshev, or Legendre
polynomials, although Gaussian basis functions have also been used [19, 20].
Additionally, bias potentials constructed from neural networks [21] or free
energy models [22–25] are considered in the literature. However, there has
not been an extensive study of how the choice of the basis functions affects
the convergence behavior. In particular, it remains an open question if basis
functions that are localized in the CV space might perform better. While Gaus-
sian basis functions might be the type of localized basis functions that first
comes to mind, they have the disadvantage of not forming orthogonal basis
sets. Instead, a more appealing option might be Daubechies wavelet-based
basis sets [26], as they are orthogonal and exhibit an attractive multiresolution
property. Daubechies wavelets have recently been used as basis functions for
other applications within molecular simulations, such as density functional
theory [27, 28] or coarse-grained potentials [29].

Another possibility to obtain better sampling is offered by multiple replica
methods. In their basic form, molecular simulation algorithms (such as MD
or LD) generate snapshots by moving a single representation of the system
through configuration space. To get more comprehensive sampling, multiple
copies of the system can be used; each exploring the same underlying energy
landscape but set up with different initial conditions. These copies can also be
interpreted as a set of imaginary particles, the “walkers” or “replicas”, exploring
the phase space of the system. Using snapshots from multiple independent
short simulations instead of a single long one allows for the usage of parallel
hard- and software but does not overcome the time scale problem. Therefore,
interactions between the replicas can be introduced to realize additional benefits.
In the family of cloning methods [30–37], replicas are duplicated and killed via
birth-death processes. The replicas then typically do not sample the desired
distribution individually, but the correct sampling is obtained by selected
replicas, collectively, or can be calculated in a post-processing step after the
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simulation. Enforcing an equilibrium distribution of the replicas in the relevant
states via a birth-death mechanism results in sampling the desired distribution
collectively via the ensemble average of the samples from all replicas. This allows
obtaining accurate estimates of rare event systems even if the configurational
space was only partially covered and no transitions between the states occurred
from the molecular sampling scheme.

1.1 objectives of the thesis

In this thesis, two complementary enhanced sampling approaches are investi-
gated: Improving the bias representation in the variationally enhanced sampling
method, as well as a novel sampling algorithm using birth-death moves.

Building on the existing framework of variationally enhanced sampling, a
thorough analysis of the bias representation in this method is performed. Crucial
aspects of good basis functions are identified to subsequently propose new
basis functions that might be better suited for the method. Because Daubechies
wavelets are found as a promising candidate, their theoretical framework is
studied before they are implemented as basis functions into the PLUMED2
software [38, 39], together with cubic B-splines and Gaussians as other new basis
functions that are localized in the CV space. Good sets of parameters for the
new basis functions are obtained through empirical studies. The performance
of the new basis functions is assessed in numerical simulations by comparison
with the performance of established basis functions. Benchmarking studies on
systems of increasing complexity are performed, from the simple movement of
a particle in a one-dimensional potential to the study of the association process
of calcium carbonate in water.

Also, a novel sampling algorithm that augments Langevin dynamics with
birth-death moves is investigated. This research is part of a project within
the collaborative research center TRR146, which is funded by the Deutsche
Forschungsgesellschaft. In this project, a modification of an algorithm proposed
by Lu, Lu, and Nolen [30] is investigated theoretically, implemented into molec-
ular simulation software, and tested via numerical simulations. The original
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algorithm provides an approximation of a stochastic birth-death process for a
particle-based implementation. Alternative approximations of the birth-death
term with desirable properties are proposed in the current research, together
with modifications of the algorithm for better computational efficiency. Addi-
tionally, extending the applicability of the algorithm is investigated: While the
original proposal and theory are only for the combination of the birth-death
scheme with overdamped Langevin dynamics, using the algorithm with more
general dynamics is of interest for future application to realistic chemical or
biological systems. Thus, the behavior of the algorithm when augmenting gen-
eral (or underdamped) Langevin dynamics with the birth-death scheme is also
studied. The main objective of this work for the research project is to implement
the modified algorithm and assess its behavior through numerical simulations.
The theoretically derived sampling is verified by application to different model
systems and the behavior of the algorithm is investigated under change of
various parameters.

1.2 outline

This thesis is organized into several parts, to account for the different research
presented here.

Part I presents the theoretical background and some fundamental principles
used in this thesis. After the basics of two popular molecular simulation meth-
ods, molecular and Langevin dynamics, are introduced in Chapter 2, the focus
of Chapter 3 is on enhanced sampling methods. There, fundamental principles
of bias-based enhanced sampling methods are provided, as well as the details of
the metadynamics and variationally enhanced sampling methods. Additionally,
multiple replica methods and selected performance measures for molecular
simulations are introduced.

The investigation of Daubechies wavelets as basis functions for the varia-
tionally enhanced sampling method is presented in Part II. Chapter 4 discusses
the properties of good basis functions, first in general and then specifically
for the VES method. The fundamental theory of Daubechies wavelets is pre-
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sented in Chapter 5, with a focus on algorithms used for their construction.
Afterward, Chapter 6 provides details about the properties of the new localized
basis functions (wavelets, Gaussians, cubic B-splines) and their implementation
into the VES module of PLUMED2. Short studies of the optimal parameters
for each basis set are also included. In Chapter 7, the performance of the dif-
ferent types of basis functions is compared in benchmarking studies. Starting
with simple model systems to assess the general behavior, simulations with
increasing complexity are performed. Concludingly, the performance of the
VES method with a wavelet-based bias potential is investigated on a realistic
chemical system, the association process of calcium carbonate in water, where it
is compared to existing basis functions as well as the metadynamics method.
The short Chapter 8 summarizes the findings and gives some perspective on
further applications and improvements of the method.

Part III provides the research on the novel birth-death augmented Langevin
sampling scheme. A short motivation is given in Chapter 9. After providing
fundamentals of the theory of stochastic processes, Chapter 10 introduces the
theoretical framework of the algorithm as well as the different approximations
of the birth-death term. Chapter 11 presents details on the implementation of the
algorithm. Numerical studies of the algorithm are provided in Chapter 12. There,
the behavior of the algorithm with respect to the different approximations, as
well as several other parameters, is investigated. In Chapter 13, the state of the
research is recapitulated and an outlook on possible subsequent steps of the
project is given.

Finally, Part IV provides a summary of the findings of the thesis and presents
perspectives on how both research projects might be combined into a joint
enhanced sampling method.
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Part I

B A C K G R O U N D A N D F U N D A M E N TA L S

“In the right light, study becomes insight”

— Zacharias Manuel de la Rocha [40]





2
S I M U L AT I O N M E T H O D S F O R M O L E C U L A R S Y S T E M S

To simulate molecular systems, different methods have been developed. In
the following, a system with a fixed number of atoms N with coordinates r =

{r1, r2, . . . , rN}, momenta p = {p1, p2, . . . , pN}, and masses m = {m1, m2, . . . , mN}
is considered. Usually, the goal is to obtain a series of configurations of the
system (“samples”) that are sampled according to the underlying physical
principles. In the canonical ensemble, the probability of exploring a specific
point of the phase space P(r,p) is given by

P(r,p) =
exp(−βU(r)) exp(−β ∑i p2

i /2mi)

Z . (2.1)

Here, Z =
∫ ∫

dr dp exp(−βU(r)) exp(−β ∑i p2
i /2mi) is the partition sum,

β = (kBT)−1 is the inverse of the thermal energy, and U(r) denotes a potential
energy function depending on the position of all particles. The potential incor-
porates all interactions between the particles, as well as possible interactions
with the surroundings. While the full probability density of eq. (2.1) defines
the dynamics of the system, often only the distribution of the atoms P(r) is of
interest, which is proportional to the Boltzmann factor

P(r) ∝ exp(−βU(r)). (2.2)

9



10 simulation methods for molecular systems

Limiting the discussion to the atomic coordinates or configurations of the
system, the expected value of an observable O is given by

⟨O⟩ =
∫

drO(r)P(r) (2.3)

and can be approximated from the Ns independent samples drawn from P(r)
by the ensemble average

⟨O⟩ ≈ 1
Ns

Ns

∑
n=1

O(rn). (2.4)

In Monte-Carlo methods [41, 42] the sampling happens in a purely stochastic
manner. The obtained series of configurations have no temporal meaning and
do not contain information about the actual dynamics of the system. On the
contrary, Molecular dynamics (MD) [7] and Langevin dynamics (LD) [8, 9] are
simulation methods that generate time series by evolving the system according
to equations of motion. This results in trajectories that can also be used to
study time-dependent processes. The following will give an introduction to
these dynamic methods. The section on molecular dynamics was inspired by
Refs. 43–46, and for Langevin dynamics studying Refs. 46–48 gives further
insight.

2.1 molecular dynamics

In molecular dynamics simulations, the particles are evolved according to
Newton’s equations of motion

ri(t) =
pi(t)
mi

, (2.5a)

pi(t) = fi(t) = −∇⃗ri
U(r). (2.5b)

Here, the force acting on particle i at time t was introduced as fi(t). To solve
this system of ordinary differential equations, a finite-difference approach can
be used. Given the state of the system at time t, including the particle positions,
velocities, and possibly other information, the state at a later time t + δt is
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computed. Desirable algorithms should match the real trajectory given by
eqs. (2.5) as closely as possible while allowing a large time step δt.

A very popular algorithm to integrate Newton’s equation was introduced
by Verlet [49]. It generates positions that are accurate up to O(δt4). The later
introduced velocity Verlet variant [50] also directly calculates the velocities of
the particles at each time step. The new positions and velocities when advancing
the particles by a time step δt are given by

ri(t + δt) = ri(t) +
δt
mi

pi(t) +
δt2

2mi
fi(t), (2.6a)

pi(t + δt) = pi(t) +
δt
2

(
fi(t) + fi(t + δt)

)
. (2.6b)

Implementations of the algorithm typically use an equivalent three-step
procedure since eq. (2.6b) would require to store the forces both at time t and
t+ δt in memory. The three steps come in the form of the symmetric propagation
triplet

pi

(
t +

1
2

δt
)
= pi(t) +

δt
2

fi(t), (2.7a)

ri(t + δt) = ri(t) +
δt
mi

pi

(
t +

1
2

δt
)

, (2.7b)

pi(t + δt) = pi

(
t +

1
2

δt
)
+

δt
2

fi(t + δt), (2.7c)

where the force evaluation happens between the second and third step.

Force evaluation

For systems with many atoms, the evaluation of the forces is usually the most
time-consuming part of the algorithm. While the true physical interactions
would require quantum mechanical calculations, classical molecular dynamics
simulations model the approximately correct behavior via empirical force fields
such as AMBER [51, 52] or CHARMM [53, 54]. Typically, the interactions are
split into bonded and non-bonded interactions.
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1

2
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4
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6

7

bo
nd

r 12

angle θ345

torsion φ4567

non-bond

Figure 2.1: Illustration of force field terms and the respective variables used in eq. 2.8
on exemplary atoms of two molecules. Numbered circles denote atom positions and
molecular bonds are shown as blue curvy lines. The bonding distance rij is shown for
atoms 1 and 2, and the bond angle θijk for atoms 3, 4, and 5. The angle between the two
planes defined by atoms 4, 5, 6 and 5, 6, 7 is the torsion angle ϕ4567.

The bonded interactions restrain for example bond distances and angels
between atoms within a molecule. A simple model can have the following form,
which is illustrated in Figure 2.1:

Ubonded = ∑
bonds

1
2

kr
(
rij − r0

)2

+ ∑
angles

1
2

kθ

(
θijk − θ0

)2

+ ∑
torsions

∑
n

kϕ,n
[
cos
(
nϕijkl + δn

)
+ 1
]

(2.8)

The first sum is over all bonded atom pairs. Here, a harmonic restrain is
used to keep the bond distances close to the equilibrium value r0 with a spring
constant kr. The second term is a sum over all bonding angles θijk between three
connected atom positions ri, rj, rk in a molecule, with a harmonic spring constant
kθ enforcing the equilibrium value θ0. The third term sums over all torsions ϕijkl

of four connected atoms ijkl and is an expansion in trigonometric functions with
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n minima per full rotation. The parameters kϕ,n and δn are used to model the
specific form of the torsion potential. Some force fields also include “improper”
torsions of atoms not directly connected. The presented model assumed the
same parameters for all given sets of atoms, while in practice the parameters are
not the same across different atom types. For example, the constants kr and r0

of the bonds have to be adjusted for every pair of different atom types directly
connected by bonds in a system.

Additionally to these interactions of the atoms within a molecule, non-
bonded interactions between all atoms have to be taken into account. Often, the
atoms already interacting via bonds and angles are excluded and the atoms
connected via torsions have a modified set of parameters for the non-bonded
interactions [55]. Many force fields use potentials modeling the interaction of
neutral atoms and an additional term for the electrostatic interactions. Consid-
ering two particles i, j with charges qi, qj, they often have a general functional
form similar to

Unonbonded = Urepulsive −
(

C
rij

)6

+
qiqj

4πϵ0rij
, (2.9)

where the first term models the repulsive interactions at short distances, the
second term accounts for attractive Van-der-Waals interactions, and the third
term is the electrostatic Coulomb potential. A requirement for the first two
terms on the right hand side of eq. (2.9) is that the repulsive interactions have
to go to zero faster than the attractive interactions. The most common choice is
the Lennard-Jones(12-6) potential [56]

ULJ = 4ϵ

( σ

rij

)12

−
(

σ

rij

)6
 . (2.10)

In the presented form, which is illustrated in Figure 2.2, the two parameters σ

and ϵ have a descriptive meaning: The distance at which the potential switches
from repulsive to attractive behavior is at σ, while the minimal energy of
the potential is given by −ϵ at distance 6

√
2σ. Improving on this purely phe-
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Figure 2.2: Exemplary form of the Lennard-Jones and Buckingham potentials. The
parameters of the Lennard-Jones potential were set to σ = ϵ = 1. For the Buckingham
force field, the parameters were adjusted to match the form of the Lennard-Jones
potential at large distances.

nomenological approach at modeling, Buckingham proposed an exponential
form for the repulsive interaction based on the theory of overlapping electronic
densities [57]:

UBuckingham = A exp(−Brij)−
C
r6

ij
. (2.11)

The three parameters A, B, and C offer more possibilities of adjusting the
potential to experimental data. A choice that approximates the Lennard-Jones
potential for large distances can be seen in Figure 2.2.

The non-bonded interactions need to be calculated for every pair of particles.
The number of force computations for these interactions is therefore propor-
tional to the number of distinct pairs, O(N2), and becomes increasingly large
for systems with many atoms. Because the strength of non-bonded interactions
is going to zero for long distances, usually only particles within some distance
to each other are taken into account for the force calculations. The exact value of
this spherical cutoff rcut depends on the force field being used and the system
under investigation. Usually it is on the order of a few σ for Lennard-Jones-like
force fields.
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Additional speedup can be achieved by using neighbor lists. To find the
particles that have to be considered for non-bonded interactions, the distances
between all atoms would have to be calculated at every time step, and then
decided if they are within the cutoff distance. Instead, Verlet proposed the
use of neighbor lists that store all particles within a certain skin distance rskin

slightly larger than the cutoff. Only the distances of particles inside the lists
are calculated at every step. The list of particles to consider is updated every
couple of time steps. This update time for the lists has to be chosen such that
particles do not travel all the way through the skin region when coming from
the outside between subsequent list updates.

Periodic boundary conditions

The size of the system to be simulated limits the time scales that can be observed
within a given computational time. While modern customized hardware is able
to simulate up to hundred microsecond of trajectory per day for systems with
as many as 100 million atoms [12], broadly available hardware is typically only
used for much smaller systems. On the typically available simulation clusters,
simulations of small isolated systems, such as liquid droplets or microcrystals,
are possible without further modifications of the scheme. But when simulating
extended systems, such as solvated molecules in bulk liquid, the number of
atoms required to capture the correct behavior quickly grow beyond what is
feasible to simulate.

Therefore, the simulation box is often modified to have periodic boundary
conditions: The box is replicated in space to form an infinite lattice. When an
atom moves in the simulation box, its periodic images move in exactly the same
ways. Thus, when an atom crosses the boundary and leaves the box, a periodic
image at the opposite side of the box enters. In practice, only the atoms in the
central box need to be stored and the atoms crossing the box reenter at the
opposite face of the box with the same momentum. This allows to significantly
reduce the number of atoms to be simulated, although care has to be taken that
the box is chosen large enough to avoid finite-size effects. It is therefore crucial
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to study the effect of the box size to obtain the desired macroscopic physics
from the small periodic system.

When using a periodic box, the forces between the atoms are calculated
based on the “minimal image convention” [58], which means that for each atom
only the force of the periodic image with the smallest distance is considered.
The periodic boundary conditions are now combined with neighbor lists and
cutoff distances for the non-bonded interactions to obtain an efficient simula-
tion protocol. To satisfy the minimal image convention intrinsically, the cutoff
distances must not be larger than half the size of the periodic box. While this is
typically satisfied for the short-ranged repulsive and van-der-Waals interactions,
the electrostatic interactions are of much longer range and can quickly extend
outside the simulation box. While extending the box would solve the problem,
this comes at high additional costs for the simulation. Therefore, methods that
approximate the long-range electrostatic interactions are common, for example
the Ewald sum [59]. The Ewald sum does not use only the minimal image but
attempts to calculate the electrostatic interactions of all the periodic images up
to a given layer of boxes around the center by using a lattice. Even more efficient
are modern extensions that do the calculations via fast Fourier transforms, such
as the particle-particle particle-mesh (PPPM) method [60, 61].

Sampling from other thermodynamic ensembles

When simulating the motion of atoms through Newton’s equation and classical
force fields, the total energy of the system

Etot = Ekin + U(r) =
N

∑
i=1

p2
i

2mi
+ U(r) (2.12)

is conserved.

Using a fixed number of atoms and a simulation box of fixed volume, this
results in sampling from the microcanonical (NVE) ensemble where the temper-
ature and pressure are not fixed. This does not resemble realistic experimental
conditions for most applications. To perform simulations in the canonical (NVT)
or isothermal-isobaric (NPT) ensemble, the MD algorithm has to be extended
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to keep the temperature, and in the second case also the pressure, constant on
average.

To keep the temperature constant, one simple idea is to rescale the velocities
of the atoms in the system based on the equipartition theorem

kBT =
⟨2Ekin⟩

N f
, (2.13)

for a system with N f degrees of freedom.
Other thermostatting approaches couple the system by random interactions

with imaginary heat bath particles, that is they reselect at certain times the
atomic velocities of a random particle from the Maxwell-Boltzmann distribution

P(pi) =
exp

(
−β( p⃗i)

2

2m

)
∫

dp exp
(
−β( p⃗)2

2m

) . (2.14)

While this Andersen thermostat [62] does indeed sample the NVT ensemble, the
random momentum changes do not result in correct momentum transport in
the system and dynamic properties such as the diffusion or viscosity cannot be
obtained correctly. Therefore, deterministic methods that modify the equations
of motion have become more common than statistical approaches. Popular
variants are the ones by Berendsen et al. [63], Nosé and Hoover [64, 65], or
Bussi et al. [66]. The thermostat developed by Nosé and Hoover [64, 65] adds
an additional “thermal reservoir” variable or “friction coefficient” η to rescale
the momenta [58]:

ri(t) =
pi(t)
mi

(2.15a)

pi(t) = fi(t)− ηpi (2.15b)

η̇(t) = v2
T

(
T
T
− 1
)

(2.15c)

The friction coefficient varies during the simulation depending on the ratio
between the instantaneous mechanical temperature T , calculated from the
kinetic energy of the atoms, and the desired temperature T. For T > T the
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value of η increases, where the parameter vT can be seen as relaxation rate for
the thermal fluctuations. If ζ is positive, the momenta of all particles will be
scaled down at every time step and the system becomes gradually “colder”.
For a too cold system, that is T < T, the opposite happens. Under certain
circumstances, such as small or very stiff systems, the proposed Nosé-Hoover
dynamics can be slow at sampling the full configurational space and non-
ergodic behavior might be observed. This can be rectified by thermostat chains
that also drive the fluctuations of the thermostat variables [67].

For simulations that keep the pressure constant, similar approaches in the
form of barostats are used. In the NPT-ensemble, a common set of equations of
motions based on the Nose-Hoover dynamics given in eq. (2.15) were proposed
by Martyna et al. [68].

2.2 langevin dynamics

Langevin dynamics was originally developed to describe Brownian motion, that
is, free diffusion of particles in a fluid. When investigating the behavior of the
solute particles, interesting processes can often be observed on much longer
time scales than the ones related to the solvent. The idea is therefore to separate
the scales and approximate the fast degrees of freedom from the solvent only as
stochastic contribution to the dynamics of the solute particles.

The Langevin equations to be considered here are the stochastic differential
equations

dri(t) =
pi(t)
mi

dt, (2.16a)

dpi(t) = fi(t)dt− γpi(t)dt + ξi dWi, (2.16b)

where the second and third terms of eq. (2.16b) act as linear dissipation with
friction coefficient γ and stochastic force with strength ξi, respectively. The noise
of the stochastic term is uncorrelated between all particles i and directions α

and interpreted as a Wiener process in the Itô convention. Assuming a time
step of length δt, each component Gi,α of dWi = Wi(t + δt)−Wi(t) =

√
δt Gi
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is an independent Gaussian random variable with mean zero, ⟨Gi,α⟩ = 0, and
variance one, ⟨Gi,α(t)Gj,β(t′)⟩ = δi,jδα,βδ(t− t′). Of note is, that the stochastic
force is completely independent of the particle positions or momenta as well as
time.

In the case of pure Brownian motion, the deterministic force fi(t) is zero.
Then Einstein’s expression for the diffusion coefficient,

D =
1

γβm
, (2.17)

holds. The strength of the random forces and the friction coefficient are related
by the fluctuation-dissipation theorem

ξi =

√
2γmi

β
. (2.18)

The Langevin equations can be interpreted as the movement of Newtonian
particles in contact with a thermal reservoir at temperature T [47]. Although
the temperature does not directly appear in the equations of motion (2.16),
the thermal energy of the system connects the friction and noise term in the
fluctuation dissipation theorem.

An often studied special case is the overdamped limit of the Langevin
dynamics. This represents a system where the inertia of the particles is much
smaller than the friction: γ/mi → ∞. In this limit, the left side of eq. (2.16b)
vanishes and the equations of motion reduce to

dri(t) = Dβ fi(t)dt +
√

2D dW, (2.19)

where the diffusion coefficient is used for shorter notation.

Integrators

To obtain particle trajectories, the stochastic differential equations of eq. (2.16)
or (2.19) need to be integrated. A multitude of algorithms has been developed
to this end. For general Langevin dynamics, early attempts did not result in a



20 simulation methods for molecular systems

stable molecular dynamics method in the overdamped limit. Later suggestions
solved this issue by using a Verlet-like scheme. Modern variants typically use
operator-splitting to derive algorithms similar to the velocity Verlet method.
Bussi and Parinello [48] introduced an integrator with the following steps:

pi(t+) = c1pi + c2Gi(t) (2.20a)

pi

(
t +

1
2

δt
)
= pi(t+) +

δt2

2
fi(t) (2.20b)

ri(t + δt) = ri(t) +
δt
mi

pi

(
t +

1
2

δt
)

(2.20c)

pi(t− + δt) = pi

(
t +

1
2

δt
)
+

δt
2

fi(t + δt) (2.20d)

pi(t + δt) = c1pi(t− + δt) + c2G′i(t) (2.20e)

The algorithm consists of a velocity Verlet triplet in steps (b) to (d) of the
algorithm enclosed by two “thermostat” steps accounting for the stochastic
force. The two coefficients

c1 = exp(−γ
δt
2
), (2.21a)

c2 =

√
(1− c2

1)
m
β

, (2.21b)

were introduced for a shorter notation and Gi, G′i denote vectors of random and
independent numbers drawn from a Gaussian probability distribution with
mean 0 and standard deviation 1.

While this algorithm is also valid in the overdamped limit, the simpler
Euler-Maruyama method [69] can be used to integrate eq. (2.19) directly. The
algorithm consists of a one-step update rule for the particle positions [70]:

ri(t + δt) = ri(t) + Dβ δt fi(t) +
√

2D δt Gi (2.22)
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E N H A N C E D S A M P L I N G

To calculate meaningful estimates from atomistic simulations via eq. (2.4), the
obtained samples need to cover all relevant parts of the configuration space
sufficiently. Formally, this is expressed as ergodicity: given infinite time all
accessible configurations of the system are explored. Additionally, the dynamics
of the system have to be sensitive to the starting conditions, such that different
initial states lead to uncorrelated trajectories. This also results in a behavior of
the system at late times that is completely uncorrelated to the initial state. In
other words, the system has to display an approach towards equilibrium. In
ergodic theory, this condition is named “mixing” [71].

Ergodicity is hard to prove in systems with many degrees of freedom
and it will often be assumed blindly that ergodic trajectories were obtained.
Indeed, typical systems that are studied with molecular simulations are ergodic,
although the simulation time required to visit all configurations might be quite
long. Especially for systems where the energy landscape possesses high barriers
between metastable states (“rare event” systems), obtaining ergodic simulation
trajectories is usually very difficult in practice [72]. The system might become
“trapped” in some state of the system and be unable to transition to other parts
of the configurational space within time scales feasible for simulation. Methods
that improve the sampling in rare event systems, such that all releveant parts
are visited, are also called “enhanced sampling” methods.

21
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Collective variables

Many methods do not enhance sampling globally, but rather focus on enhancing
fluctuations along a few collective variables (CVs), which are sometimes called
reaction coordinates. These CVs usually correspond to critical slow degrees of
freedom [73]. Ideally, they should describe all characteristics of the physical
process of interest. Additionally, they should be able to clearly distinguish
between all the relevant states, which means that their values at the different
states do not coincide. Most methods also put an upper limit on the number of
CVs, usually not more than three to five, either because of theoretical restrictions
or simply for computational efficiency.

Clearly, identifying a set of CVs is not an easy task. Missing a crucial degree
of freedom yields suboptimal sampling and might lead to misinterpretation of
results due to hidden barriers and hysteresis effects. On the other hand, the
limited number of allowed CVs does not allow to include more and more de-
grees of freedom if a sparse set cannot be found. In the literature, the committor
function is sometimes proposed as the optimal reaction coordinate that is able
to describe the process of interest by a single CV. Its definition in a system with
two metastables states is given by the probability that a given configuration will
evolve to the final product state before it reaches the initial reactant state [74].
This also allows for a simple definition of the transition state as the points where
the commitor function is 0.5, that is, the configurations where it is equally likely
that the system will reach the reactant or the product state first.

While the committor function indeed satisfies the requirements for a good
CV, it is hard to determine in practice. Instead, CVs are typically selected by
hand using physical and chemical intuition [75–77]. This is often an iterative
process involving trial-and-error: Starting with a set of CVs obtained from, for
example, experimental or theoretical information, a short enhanced sampling
simulation is performed to assess the quality of the CVs and get further infor-
mation on the system. With the additional information, the CVs can then be
refined to describe the process of interest better and another short run of an
enhanced sampling simulation is performed. This process is repeated until a
satisfactory set has been determined.
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Alternatively, methods such as principal component analysis [78], time-
lagged component analysis [79], path collective variables [80], sketch map [81],
spectral gap optimization of order parameters [82], reweighted autoencoded
variational Bayes [83], Gaussian mixture variational encoders [84], or encoder
map [85] have been used to facilitate the identification of slow degrees of
freedom with algorithms, where especially algorithms based on machine learn-
ing [74, 83–87] are becoming popular recently.

In the following sections, it is assumed that an appropriate set of CVs,
s = {s1(r), s2(r), . . . , sN(r)}, has already been identified. The corresponding
equilibrium probability distribution is then defined as the marginal density of
the CVs

P(s) =
∫

dr δ(s− s(r)) P(r), (3.1)

and the standard definition of the free energy is given by

F(s) = −β−1 log P(s) + C. (3.2)

This low-dimensional description of the free energy as a function of the CVs
is also called the free energy surface (FES). The surface property can be made
clear by rewriting the marginal density in eq. (3.1) as an integral over surface
elements [88]. Often only relative differences in free energies are of interest and
the additive constant C in eq. (3.2) is omitted.

Overview on enhanced sampling methods

Methods that enhance the sampling along the identified CVs include, but
are not limited to, umbrella sampling [89, 90], free energy perturbation [91],
thermodynamic integration [92], local elevation [93], adaptive biasing force [94,
95], energy landscape paving [96], conformational flooding [97, 98], Gaussian-
mixture umbrella sampling [99], basis function sampling [100], Green’s function
sampling [101], on-the-fly probability enhanced sampling [102, 103], adaptive
topography of landscape for accelerated sampling [104], metadynamics [73, 105,
106], and variationally enhanced sampling [17, 18].
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While the present research focuses on CV-based methods, some alterna-
tives that enhance the sampling globally rather than focussing on few relevant
degrees of freedom are mentioned here for the sake of completeness. A non-
exhaustive list of these methods consists of multicanonical ensemble simula-
tions [107, 108], the Wang-Landau algorithm [109], hyperdynamics [110, 111],
accelerated molecular dynamics [112], temperature-accelerated dynamics [113],
and simulated tempering [114]. Additionally, some methods rely on simulating
multiple interacting copies of the system. These will be considered separately
in Section 3.3.

A typical approach to enhance sampling is adding a bias in form of an
external potential to the system. This bias can be either constant during the sim-
ulation or updated adaptively in intervals from the already accumulated data.
It is used to drive the system towards the parts of interest of the configuration
space. The basic idea for CV-based methods can be traced back to the umbrella
sampling method [89, 90], where the addition of a bias potential V(s) leads to
a biased CV distribution given by

PV(s) ∝ e−β[F(s)+V(s)]. (3.3)

A concept similar to enhancing sampling with a bias potential is the so-called
importance sampling proposed originally for Monte Carlo simulations [115].
There, instead of sampling a difficult probability distribution directly, the idea
is to draw samples from an alternative distrubtion that focuses sampling on
the important parts of the problem. Although it is typically expressed quite
differently, the overlap to enhanced sampling methods is significant. In fact,
if certain conditions are satisfied an importance sampling method can be also
seen as an enhanced sampling method and vice versa [116].

In enhanced sampling simulations the biasing introduces an additional
biasing force. Because the bias potential is described in the space of CVs, the
actual forces on the atoms have to be calculated by the chain rule

fV(ri) = −∑
j

∂sj

∂ri

∂V(s)

∂sj
. (3.4)
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Figure 3.1: Effect of adding a bias potential V(s) to a prototypical rare event system
consisting of two states separated by a high barrier.
Left column: The original probability distribibution (top) and associated FES (bottom).
Right column: Probability distribution (top) and FES (bottom) with added bias potential
that lowers the barrier and increases sampling in previously low-probability regions.
The colored area in the right panel denotes the added bias potential while the orange
line is the combination of the original FES and the bias potential that is now being
sampled. In this example, the bias potential was taken as VG(s) = − 3

4 F(s).

In Figure 3.1 the effect of the biasing potential can be seen on an exemplary
system consisting of two states separated by a high barrier. The original distribu-
tion in the top left panel has only neglectable probabilities in the area between
the two states. Due to the missing overlap between the states, transitions be-
tween the states are unlikely and can be observed only on long time scales. On
the other hand, by biasing the system some overlap between the distributions is
introduced, which can be seen in the top right panel. The exact form of the bias
potential depends highly on the system of interest and the method used: Taking
again the example of a rare event system, desired is usually a distribution that
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facilitates sampling by reducing barriers or even flattening them completely. In
the example shown in Figure 3.1, the barriers of the free energy surface that can
be seen in the bottom left panel were only reduced but not completely flattened
after the bias potential was added in the bottom right panel. This results in
shorter transition times between the two states, which makes observation of
the associated processes more likely within typical simulation times. The main
differences between CV-based enhanced sampling methods are in how they
construct the bias potential and which kind of biased sampling they lead to.

Two methods are introduced in more detail in the following sections: meta-
dynamics and variationally enhanced sampling.

3.1 metadynamics

Metadynamics is a highly popular enhanced sampling method originally intro-
duced by Laio and Parrinello in 2002 [105]. It has been employed in a wide range
of different applications, some examples include protein folding [117–119], ion
association [105, 120], phase transitions [121–123], ion conduction [124–126],
chemical reactions [127, 128], and diffusion [129–131].

Several extensions or modifications to the original algorithm have been
proposed over time. Among them are well-tempered metadynamics (WT-
MetaD) [106], multiple-walker metadynamics [132], metadynamics with adap-
tive Gaussians [133], infrequent metadynamics [134], combining metadynamics
and hyperdynamics [135], parallel bias metadynamics [136], or combining
metadynamics and free energy perturbation [137]

Notable is also the number of theoretical studies available of which two
shall be explictily mentioned here: Laio et al. [138] derived how the accuracy of
a metadynamics simulation depends on the method parameters, while Dama
et al. [139] showed that the bias potential in the well-tempered variant converges
exactly to a theoretical value, given infinite simulation time.

For further details, the reader is referred to one of the many review papers,
for example by Valsson et al. [77], Bussi et al. [73], or Barducci et al. [140].
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Following the ideas of these papers, the next sections will introduce the basic
method as well as the well-tempered variant.

3.1.1 Basic algorithm

The original metadynamics algorithm is based on the idea of gradually filling the
potential energy wells with a bias potential, such that the landscape becomes
flat. Then the corresponding probability distribution P(s) is approaching a
uniform distribution and free diffusion in the chosen space of CVs is achieved.
By looking at eq. (3.3), the desired bias potential for uniform sampling can be
identified as exactly the negative of the free energy

V(s) = −F(s). (3.5)

The metadynamics method iteratively builds a bias potential that approximates
this ideal case by the successive addition of small repulsive Gaussian kernels
K(s, s′) centered at the current CV value s′ = s(t′)

K(s, s′) = h exp

(
− (s− s′)⊤Σ−1(s− s′)

2

)
. (3.6)

Other choices than this multivariate Gaussian kernel are also possible. In
eq. (3.6), the parameter h defines the height of the Gaussian while the covariance
matrix Σ, or rather its inverse Σ−1, corresponds to the spread of the Gaussian
hill. For the covariance most of the time a diagonal matrix Σi,j = δi,jσ

2
i is used.

Without loss of generality, the following will assume this case and refer to the
standard deviation σi also as the “width” of the Gaussian for CV si. While the
covariance matrix will be kept fixed for all applications presented here, the
usage of adaptive Gaussians, where the optimal width is estimated on the fly,
has also been proposed [133].
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In the standard algorithm of metadynamics, Gaussians will be added to
the bias potential at regular intervals, for example with frequency τG. The bias
potential acting on the system at time t is now given by

V(s) = ∑
t′=τG,2τG,···

t′≤t

h exp

(
−

N

∑
i=1

(si − si(t′))2

2σ2
i

)
, (3.7)

where the first sum runs over all times where Gaussians were deposited and
the inner sum over the CVs.

The Gaussians are added to the parts of the CV space that were already
visited during the simulation and the resulting bias potential pushes the system
toward the yet unexplored parts. Assuming a typical rare event system with
several minima separated by high barriers, the algorithm will start filling the
well of the minimum in which the simulation was initialized until the barrier is
reduced enough to transit to the next minimum. This process is repeated until
all the minima are filled and uniform sampling is achieved. The trajectory and
time evolution of the bias potential for an exemplary metadynamics run can be
seen in Figure 3.2.

In this example, a particle is moved in a three-minima potential, shown as
thick black line in the bottom panel. The dynamics is generated by a Langevin
equation with friction constant γ = 10, time step δt = 0.01, and temperature
T = 0.5/kB, where the particle was initialized in the central minimum. As the
barriers to the other minima are significantly higher than the thermal energy,
transitions to other states are unlikely and would only be observed on long time
scales without enhanced sampling. Adding Gaussians of width σ = 0.25 and
height h = 0.1 to the metadynamics bias potential every 300 Langevin time steps
results in the aforementioned filling of the wells. After 1250 deposited Gaussians
all three minima are filled and the combined F(s) + V(s) is becoming flat. At
this point, eq. (3.5) holds and an approximation to the free energy of the system
can directly be determined from the bias potential up to a time-dependent
constant:

F(s) = −V(s) + C(t) (3.8)
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Figure 3.2: Illustration of the metadynamics method for a simple Langevin dynamics
simulation.
Top panel: The trajectory of the Langevin particle moved in an external one-dimensional
potential U(s) = F(s) shown as a thick black line in the lower panel. The dynamics is
biased with a metadynamics potential VG created on the fly with parameters σ = 0.25,
h = 0.1, and τG = 300δt.
Middle panel: Time evolution of the bias potential.
Bottom panel: Time evolution of the sum of the external and the metadynamics potential.
The gray lines in the lower two panels show snapshots after each 120 added Gaussians,
the colored lines denote when the bias potential has filled a specific minimum. Red
line: The first minimum around s = 0 is filled and the particle can escape to the second
minimum. Orange line: The second minimum is filled and the particle diffuses freely in
the first two minima. Green line: The bias potential has filled the combined well of the
first two minima. Blue line: The last minimum is filled and the particle diffuses freely
in the whole potential range. Graphic similar to Fig. 1 of Ref. [73].
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Because Gaussians are still added to the bias potential, this can only be accurate
up to the order of the height of the deposited Gaussians. Therefore sometimes
not just the instantaneous value of the bias, but a time average over the last part
of the simulation is taken [141]. Additionally, the stopping point of the simula-
tion might be crucial: stopping too late might result in exploring undesired high
energy regions of the system, while stopping before the free energy has been
completely flattened by the bias potential makes analyzing the results prone to
errors. To prevent sampling of undesired regions of the CV space, additional
bias potentials in form of walls can be used. These static restraints push the
system back when trying to cross the wall.

In summary, metadynamics provides a simple to implement method to drive
the system towards unexplored parts also over high barriers. It does not require
a-priori knowledge of the FES or the different metastable states and inherently
explores the low energy regions of the system first. The choice of parameters
depends on the system under investigation, though. An exemplary sequence of
the algorithm steps in pseudocode can be found in Appendix A.1.

A way to ameliorate the accuracy of the free energy estimate is to decrease
the height of the deposited Gaussians over time. Well-tempered metadynamics,
the most popular variant using that principle, will be introduced in the next
section.

3.1.2 Well-tempered metadynamics

For the basic metadynamics algorithm, the bias potential is never becoming
stationary but continues to increase at a finite rate. This non-equilibrium behav-
ior means that in practice F(s)−V(s) = C(t) is not actually true because the
constant C(t) will fluctuate also in CV space.

Therefore, the well-tempered variant of metadynamics was introduced by
Barducci et al. in 2008 [106]. The idea is to reduce the height of the added
Gaussians by a factor that depends on the already existing bias at the current
CV value

h = h0 exp
(
− 1

ζ − 1
βV(s)

)
, (3.9)
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where h0 is the initial height of the Gaussians and ζ ≥ 1 is the so-called bias or
biasing factor. The factor (ζ − 1)β−1 is sometimes also written as kB∆T, where
the parameter ∆T has the dimensions of a temperature. Clearly, for ζ → ∞
the non-tempered variant of metadynamics is recovered, while finite values of
ζ result in a decreasing rate at which the bias potential grows over time. For
ζ → 1 the height of the Gaussians tends to zero and an unbiased simulation is
performed.

With Gaussians of decreasing heights added at the current CV value every
τG time steps, the bias potential of the well-tempered metadynamics method at
time t is given by

V(s) = ∑
t′=τG,2τG,···

t′≤t

h0 exp
(
− 1

ζ − 1
βV(s, t′)

)
exp

(
−

N

∑
i=1

(si − si(t′))2

2σ2
i

)
, (3.10)

where the first sum runs over all times t′ at which Gaussians have been previ-
ously deposited.

In practice, calculating eq. (3.10) becomes increasingly time-consuming
with more Gaussians being added. Evaluating thousands of possibly multiple
dimensional kernel functions at each time step leads to significant overhead
and might slow down the simulation a lot. Alternatively, one can express the
time evolution of the bias by an update rule

Vn(s) = Vn−1 + K(s, s′) exp
(
− 1

ζ − 1
βVn−1(s

′)

)
, (3.11)

where V0(s) = 0, and s′ is again the CV value at the time of adding another
Gaussian.

The bias does not change between Gaussian depositions. Therefore, to avoid
unnecessary calculations, the bias can be stored on a grid. This is typically done
for all but the shortest simulations. The evaluation of the bias becomes a simple
grid lookup, and only a single kernel evaluation has to be done when adding
another gaussian via the update rule of eq. 3.11. An exemplary implementation
of the WTMetaD algorithm in pseudocode can be found in Appendix A.1.
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The remarkable property of the WTMetaD variant is that the bias converges
asymptotically. In Ref. 139 it was shown that the bias potential of eq. (3.10)
converges exactly to

V(s) = −
(

1− 1
ζ

)
F(s) + c(t) (3.12)

in the limit of long simulation times and short times between added Gaussians.
Thus, the bias is simply a tuneable fraction of the unbiased free energy. This
holds regardless of the kernel being used [142] and the now time-independent
constant is given by

c(t) = β−1 log

( ∫
ds e−βF(s)∫

ds e−βF(s)+V(s)

)
. (3.13)

Inserting eq. (3.12) into the probability distribution of eq. (3.3) gives also a
more intuitive meaning to the bias factor ζ and the associated parameter ∆T:

PV(s) ∝ exp
[
−βF(s)

ζ

]
= exp

[
− F(s)

kB(T + ∆T)

]
(3.14)

After convergence of the bias, the temperature of the sampling along the biased
CVs is increased by ∆T. Alternatively, one could say that the simulation samples
the unbiased FES scaled down by a factor of 1/ζ. The barriers are therefore not
completely flattened but reduced by a factor of 1/ζ.

To obtain the free energy from a metadynamics simulation, one can estimate
it directly from the bias up to some constant by inverting eq. (3.12)

F(s) = −
(

ζ

ζ − 1

)
V(s, t). (3.15)

In Ref. 142 it was shown that this is only the zeroth-order estimator and it can
be made more accurate by adding a first-order term. However, the higher-order
terms vanish for sufficiently converged bias potentials, that is long enough
simulation times, and are typically neglected.
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Another method to estimate the free energy or any other observable from
the biased simulations is to reweight the obtained trajectory data [143]. The
unbiased probability distribution can be calculated from the biased distribution
at time t by

P(r) = PV(r) e β[V(s(r),t)−c(t)], (3.16)

which means that the average of an observable in the unbiased ensemble can be
calculated from the trajectory in the biased ensemble via

⟨O(r)⟩ =
〈

O(r) e β[V(s(r),t)−c(t)]
〉

V
. (3.17)

This relation requires the value of c(t). It can be calculated during the simulation
by

c(t) = β−1 log

∫ ds exp
[

ζ
ζ−1 βV(s)

]
∫

ds exp
[

1
ζ−1 βV(s)

]
, (3.18)

which was obtained by inserting eq. (3.15) into eq. (3.13). Reweighting makes it
also possible to obtain the FES for other variables s′ than the biased CVs s, by
calculating

F(s′) = −β−1 log
〈

δ
(
s′ − s′(r)

)
e βV(s(r))

〉
V

. (3.19)

In practice, eq. (3.19) is often obtained by taking a weighted histogram of
the trajectory data. Besides discrete histogramming of the data into bins, the
usage of kernel density methods is found frequently. There, the delta function
in eq. (3.19) is replaced by a kernel function, typically a Gaussian, and the
ensemble average is then obtained by summing over all kernels. This can help to
get a smoother estimate of the FES, although the choice of the kernel parameters
is crucial to avoid oversmoothing of the relevant features or obtaining a sum
of non-overlapping kernel functions. Other possibilities for obtaining smooth
estimates from the discrete data include technices like the averaged shifted
histogram [144–146].
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3.2 variationally enhanced sampling

Variationally enhanced sampling (VES) is another CV-based enhanced sampling
method, which was first introduced in 2014 by Valsson and Parrinello [17].
While the working principles behind the method are quite different, many of
the ideas that were described in the previous section on metadynamics apply
also to it. The VES method can be applied in a similar fashion to the same
kind of problems by biasing the sampling along a set of CVs. Exemplary appli-
cations described in the literature include nucleation processes [22, 147, 148],
protein folding [149], kinetic rate calculations [150], phase transitions [24, 25],
metal-organic frameworks [19], Monte Carlo renormalization group [151–153],
crystallization processes [21, 154], characterizing high dimensional free energy
landscapes [155], photoisomerization [156], catalytic reaction kinetics [157], or
calculating the chemical potential in fluids [158].

In the following the fundamental principle of the method will be introduced,
the reader is referred to the literature [17, 18, 77, 159] for further details.

3.2.1 Variational principle

The VES method is based on a variational principle, where the optimization
problem is to find the minimum of a functional Ω[V] depending on the bias
potential. This functional is defined as

Ω[V] =
1
β

log

∫
ds e−β[F(s)+V(s)]∫

ds e−βF(s)
+
∫

ds p(s)V(s), (3.20)

where p(s) is a normalized probability distribution. This functional has some
interesting properties: It is invariant under the addition of a constant to the
bias potential V(s), that is, Ω[V + c] = Ω[V], and is a convex functional, which
means Ω

[
V1+V2

2

]
≤ 1

2 Ω[V1] +
1
2 Ω[V2].

The stationary point of this functional is given up to a constant by

V(s) = −F(s)− 1
β

log p(s), (3.21)
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which, due to the convexity of Ω[V], is the global minimum. At this minimum,
the sampling of the CVs is according to p(s), which is consequently called a
“target distribution”. This can be verified by inserting the bias potential into the
biased probability distribution of eq. (3.3).

In Ref. 24 it was shown that the functional Ω[V] is related to the Kullback-
Leibler divergence (or relative entropy). Using the Kullback-Leibler diver-
gence [160]

DKL(P(x) |Q(x)) =
∫

dx log
(

P(x)
Q(x)

)
P(x), (3.22)

which is a measure of the distance of the probability distribution Q(x) from
the distribution P(x), or in other words, the relative entropy from Q to P, the
functional can be rewritten as

βΩ[V] = DKL(p | PV)− DKL(p | P). (3.23)

Because only the first term depends on the bias potential, minimizing the
functional is equivalent to minimizing the Kullback-Leibler divergence from the
biased distribution to the target distribution.

3.2.2 Target distribution

By minimizing Ω[V], a bias potential can be constructed that leads to a sam-
pling of the CVs according to the specified target distribution p(s). The most
straightforward choice of the target distribution is a uniform target distribution,
leading to completely flat sampling in CV space. Inserting a uniform distribu-
tion into eq. (3.21) yields the same expression as eq. (3.8). Similar to the basic
metadynamics method, this means that the stationary bias potential fills all
the wells of the underlying free energy surface and is given exactly by the
negative of the free energy up to some constant. However, the constant is not
time-dependent but static in this case.
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Another choice that is inspired by the well-tempered metadynamics variant
is the so-called well-tempered target distribution [18, 159] given by a normalized
version of eq. (3.14)

PV(s) =
exp

[
− βF(s)

ζ

]
∫

ds exp
[
− βF(s)

ζ

] =
[P(s)]1/ζ∫
ds[P(s)]1/ζ

, (3.24)

where ζ ≥ 1 is a biasing factor that can be set freely by the user. Just as in
WTMetaD, for finite ζ the barriers are just reduced, but not completely flattened.
This focuses sampling on the low energy regions that are usually most relevant
while enhancing fluctuations in a controlled manner to allow for transitions
between the desired states on shorter time scales. In practice, this distribution
requires knowledge of the a priori unknown free energy surface F(s). Therefore,
an iterative scheme was designed that updates the target distribution based
on the current estimate of the free energy surface during the course of the
simulation. Starting with some initial distribution p(0)(s), that is usually taken
to be the uniform distribution, the update rule of the well-tempered target
distribution is given by

p(k+1)(s) =
exp

[
−βζ−1F(k+1)(s)

]
∫

ds exp
[
−βζ−1F(k+1)(s)

] . (3.25)

The current estimate of the free energy is obtained from eq. (3.21)

F(k+1)(s) = −V(k)(s)− β−1 log p(k)(s), (3.26)

using the bias potential V(k) and target distribution p(k) from the previous
iteration.

In general, the framework of target distributions is very flexible and allows
tailoring specific forms of sampling by the VES method: There are only minimal
requirements and nearly every normalized probability distribution can be cho-
sen. This can be used to prohibit sampling in undesired regions of the CV space
or to localize sampling in the desired parts [17, 148]. More complicated schemes
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have also been proposed, such as targeting the multithermal-multibaric ensem-
ble [161]. In practice, the well-tempered target distribution is an appropriate
choice for most applications.

3.2.3 Optimization schemes

Up to now, many properties of the stationary point of the functional Ω[V]

were described but not how to actually find the minimum. In practice, the
minimization of the functional Ω[V] is performed by assuming a functional
form of the bias potential V(s,α) that depends on a set of variational pa-
rameters α = {α1, α2, . . . , αM}. Thus the task is now the minimization of the
multi-dimensional function Ω(α) instead of an abstract functional. For this,
the variational parameters are typically updated iteratively via some optimiza-
tion scheme. Most optimization schemes require the gradient ∇Ω(α), whose
elements are defined as

∂Ω(α)

∂αi
= −

〈
∂V(s,α)

∂αi

〉
V(α)

−
〈

∂V(s,α)
∂αi

〉
p

(3.27)

where the expectation values are obtained either over the bias potential or over
the target distribution. If the second derivatives are also required, the elements
of the Hessian matrix H(α) can be defined similarly as

∂2Ω(α)

∂αiαj
=−

〈
∂2V(s,α)

∂αi∂αj

〉
V(α)

−
〈

∂2V(s,α)
∂αi∂αj

〉
p

+ β Cov

[
∂V(s,α)

∂αi
,

∂V(s,α)
∂αj

]
V(α)

,

(3.28)

where Cov[. . .] denotes the covariance.

Averaged stochastic gradient descent

Due to statistical sampling, the estimates of the gradient and Hessian are gener-
ally noisy. Therefore, the minimization of Ω(α) is performed using stochastic
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optimization algorithms. In particular, the averaged stochastic gradient descent
algorithm from Ref. 162 has proven a convenient choice. In this algorithm, in
addition to the instantaneous parameters, their averages ᾱ(n) = 1

n+1 ∑n
i=0 α

(i)

are used. The parameters are updated according to the following recursive
equation

α(n+1) = α(n) − µ
[
∇Ω(ᾱ(n)) + HΩ(ᾱ

(n))(α(n) − ᾱ(n))
]

, (3.29)

where µ is a constant step size and the gradient and Hessian are obtained from
the averaged parameters. The bias potential is constructed from the averaged
parameters only. The averaging results in small changes per parameter update,
which leads to a smooth convergence of the bias potential and the estimated FES.
The averaging also allows using relatively few samples per iteration, usually on
the order of 1,000 is sufficient. In practice, only the diagonal part of the Hessian
is used for the optimization. In Figure 3.3, the time evolution of an exemplary
set of parameters α, that is being optimized by this algorithm, is shown. The
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Figure 3.3: Illustration of the averaged stochastic gradient descent optimization method.
Shown is the time evolution of five parameters (thin lines) and their averages (thick
lines). While the instantaneous parameters still fluctuate after 2,000 iterations, the
averages have already converged.

averaged parameters evolve smoothly and do not change significantly at the
end of the displayed 2,000 iterations. On the other hand, the instantaneous
parameters fluctuate still significantly around their respective average value.
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Adaptive moment estimation (Adam)

Stochastic optimization algorithms have recently seen lots of research due
to the popularity of machine learning methods. Many new algorithms with
promising properties have been developed, two popular ones are the adaptive
gradient (AdaGrad) algorithm [163], and the adaptive moment estimation
(Adam) algorithm [164]. Here, only the Adam stochastic gradient descent
algorithm will be described in detail while the reader is referred to other
literature (e.g., Ref. 165) for a more exhaustive overview. The Adam algorithm
was previously introduced for VES in combination with neural networks [21].
It uses a running average m(α) and second moment v(α) of the gradient
g(α) = ∇Ω(α), where at iteration k these are updated with the current value
of the gradient according to

m(k) = c1m
(k−1) + (1− c1)g

(k), (3.30a)

v(k) = c2v
(k−1) + (1− c2)g

(k)g(k). (3.30b)

Here, the explicit dependency on the parameters α was omitted for a more
concise notation. The meta parameters c1, c2 ∈ (0, 1) determine the “memory”
of the averaging process, the default values given in the literature are c1 = 0.9
and c2 = 0.999. The Adam optimization algorithm does not use the second
derivatives in form of the Hessian.

As m and v are initialized to zero, the algorithm of eq. (3.30) would be
biased towards that value in the first few steps. To overcome this, a correction
was proposed directly with the algorithm

m̂(k) =
m(k)

1− ck
1

, (3.31a)

v̂(k) =
v(k)

1− ck
2

, (3.31b)

that unbiases the average and variance. Because c1 and c2 are smaller than one,
the denominator quickly approaches 1 and the the correction is only relevant
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for small k, that is, the first iterations. The update rule for the coefficients is
given by

α(k) = α(k−1) − η√
v̂(k) + ϵ

m̂(k) (3.32)

where ϵ = 10−8 is a small parameter preventing division by zero and η is a
stepsize to be set by the user. The algorithm scales the stepsize by the variance,
thus coefficients with larger fluctuations get updated in smaller steps. For
the stepsize, the literature proposes a default value of η = 0.001. Since the
algorithm was developed with machine learning applications in mind, this
proposed default set of parameters might not be well-suited for the application
in VES.

Of note is in that context, that both AdaGrad and Adam have yet not been
used “as-is” in the typical fashion of the VES method but only in modified
ways: a novel optimization combination of AdaGrad and the averaged stochastic
gradient descent was proposed and employed by Invernizzi and Parrinello [25],
and the Adam optimizer was only used in combination with a neural network
by Bonati et al. [21]. Further investigation of their behavior is therefore required
before they can be employed in production simulations.

3.2.4 Basis functions

To obtain a functional form of the bias potential, a natural way is to use a linear
expansion in some set of basis functions f = { f0, f1, f2, . . . , fM},

V(s,α) =
M

∑
i=0

αi fi(s). (3.33)

The expressions for the gradient ∇Ω(α) and the Hessian HΩ(α) then simplify
to

∂Ω(α)

∂αi
= − ⟨ fi(s)⟩V(α) + ⟨ fi(s)⟩p , (3.34a)

∂2Ω(α)

∂αiαj
= β Cov[ f j(s), fi(s)]V(α). (3.34b)
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If the number of CVs is larger than one, multidimensional functions would
be required. In practice, the higher dimensional bias potentials are usually
constructed as a tensor product of one-dimensional basis functions. For example,
in the case of two CVs, the expansion can be written as

V(s1, s2,α) = ∑
i,j

αi,j gi(s1) hj(s2), (3.35)

where the set of one-dimensional basis functions g(s1) is along the first CV
and the basis functions h(s2) along the second CV. Because higher dimensional
bias potentials are easily constructed via the tensor product as in eq. (3.35),
the following discussions will be limited to the description of one-dimensional
basis functions.

The VES method was historically designed with basis functions from spectral
methods in mind, such as the Fourier series or polynomials of the Gegenbauer
family [166].

Fourier series

The Fourier series is a periodic basis set consisting of plane waves with different
frequencies. Therefore, it is employed when dealing with CVs defined on a
periodic domain. Its complex form is given by V(s) = ∑k αkeiks, where i is the
imaginary unit and k ∈ Z goes also over the negative integers. The coefficients α

are generally complex values, but the bias potential is desired to be a real-valued
function. To ensure real-valued coefficients, instead of the concise complex form
an expansion in cosine and sine functions

V(s) = α0 +
M/2

∑
k=1

αcos
k cos

(
2π

p
ks
)
+

M/2

∑
k=1

αsin
k sin(

2π

p
ks) (3.36)

is used for the VES method, where αcos
k and αsin

k are two independent sets of
M/2 real-valued parameters and the desired interval of the bias potential is
given by [a, b] with periodicity p = b− a.
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Legendre and Chebyshev polynomials

The Gegenbauer polynomials, also called “ultraspherical” polynomials, are a
family of polynomials that includes the Legendre and Chebyshev polynomials
as special cases. For a fixed value of the parameter m, they are orthogonal on
the interval [−1, 1] with respect to the weight function w(x) = (1− x2)m−1/2

and can be defined via a recurrence relation as

G(m)
1 (x) = 1, (3.37a)

G(m)
2 (x) = 2mx, (3.37b)

(n + 1)G(m)
n+1(x) = 2(n + m)x Gm

n (x)− (n + 2m− 1)G(m)
n−1(x). (3.37c)

Two special cases are the Legendre polynomials, for m = 1/2, and the
Chebyshev polynomials of the first kind, for m → 0 [167]. Their recurrence
relations are given by

L1(x) = 1, (3.38)

L2(x) = x, (3.39)

Ln+1(x) =
2n + 1
n + 1

x Ln(x)− n
n + 1

Ln−1(x), (3.40)

for the Legendre polynomials and

C1(x) = 1, (3.41)

C2(x) = x, (3.42)

Cn+1(x) = 2x Cn(x)− Cn−1(x), (3.43)

for the Chebyshev ones. As the previously described polynomials are defined
intrinsically on the interval [−1, 1], they need to be scaled and shifted when
employed on different intervals. For a given interval [a, b], the following function
is used to transform t ∈ [a, b] to x ∈ [−1, 1]

x(t) =
2t− (a + b)

(b− a)
. (3.44)
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Figure 3.4: Functional form of the first four Legendre (left panel) and Chebyshev (right
panel) polynomials.

Exemplary, the functional form of the first four Legendre and Chebyshev
polynomials can be seen in Figure 3.4. Besides their clear similarity, the different
weighting over the interval is also apparent.

Which kind of basis function should be employed depends on the problem
under investigation. For example, when using a periodic CV (e.g. for a molecular
angle or torsion), the Fourier series is clearly better suited than non-periodic
polynomials. Nevertheless, it is often not clear a priori what basis functions will
yield the best results. Until now, no extensive study regarding the choice of basis
function for the VES method has been published. This is one of the topics under
investigation in this work, which is considered in detail starting with Chapter 4.
There, after some theoretical considerations on the choice of good basis functions
are provided, the focus is on the development of new basis functions for the
VES method. These new functions are “localized” in CV space, in contrast to the
“global” functions that were just presented, that is, each function is non-zero
on a small part of the CV space only. After their introduction, a comprehensive
investigation of their performance, also in comparison to the established basis
functions, is executed by means of simulating several model systems as well as
a realistic chemical systems.
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3.2.5 Reweighting

The FES can be determined directly from the bias potential through eq. (3.21)
after the optimization process has reached a point close to the minimum of the
functional, that is the bias has converged sufficiently and is quasi-stationary.

Alternatively, the FES can be obtained, both for the biased CVs and also
for any other set of CVs, in a similar vein as eqs. (3.16, 3.17, 3.19) for metady-
namics simulations. This is done by using a reweighted histogram where each
configuration is weighted by the bias acting on it, P(r) ∝ PV(r)eβV[s(r)]. While
the VES bias potential is time-dependent, it quickly becomes quasi-stationary.
Therefore, this reweighting procedure is valid after a short initial transient in
the time series that is excluded from the calculation. The unbiased average of
an observable can then be calculated as

⟨O(r)⟩ = ⟨O(r)eβV[s(r)]⟩V
⟨eβV[s(r)]⟩V

(3.45)

from the expectation values obtained in the biased ensemble. The determination
of the FES as a function of any desired variables can be done via eq. (3.19) just
as for the metadynamics method.

Note that differently from metadynamics [77, 143], there is generally no
need to account for time-dependent constants when performing reweighting
with VES. Furthermore, under certain conditions, the VES method can also be
used to obtain kinetic properties [150].

3.3 multiple replica methods

The molecular and Langevin dynamics methods presented in Chapter 2 generate
samples by moving a single representation of the system through configuration
space. Especially for systems with high barriers and unlikely transitions between
different metastable states (“rare event systems”), getting an adequate represen-
tation of the relevant parts of the system requires many independent samples
and therefore long simulation times. The previous sections presented two meth-
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ods to push the system towards the most relevant parts of the configuration
space, metadynamics and VES.

Alternatively, or on top of these methods, parallelization can be used: multi-
ple copies of the system, usually with different initial conditions, are simulated
at the same time. This can be seen as imaginary particles (“walkers” or “repli-
cas”) following the same underlying dynamics. While using snapshots from
different copies of the system can already help to get better coverage of the
configuration space, that is running multiple short simulations instead of a long
one, additional benefits can be realized by introducing interactions between
the replicas. The individual replicas then usually do not all sample the desired
distribution. Typically, either a single one of the replicas samples the correct
distribution and is augmented by the others, or the correct distribution is only
sampled by way of an ensemble average over multiple replicas.

Different strategies have been developed, very popular is the family of
parallel tempering or replica exchange algorithms [168–170], where the replicas
of the system are simulated in a ladder of temperatures. The replica at the lowest
temperature is the one of actual interest, while the ones at higher temperatures
explore the configuration space faster. Periodically the replicas attempt to swap
their current configuration with the ones at adjacent temperatures via Monte
Carlo moves, which provides more comprehensive sampling also at the desired
temperature.

Another family of multiple replica methods are algorithms that use popula-
tion dynamics, that is, they use mechanisms that manipulate the distribution
of the replicas in the configuration space. While some methods only enhance
the dynamics of the replicas with a term depending on all replicas [171, 172],
the focus of this work is on “cloning” methods that involve the duplication
and killing of replicas [30–35]. A new method belonging to this family will be
presented in Part III.

Additionally to the usage of multiple replica methods to improve the sam-
pling in molecular simulations, they can often be combined with other enhanced
sampling methods. For example, the previously described metadynamics has
been used together with parallel tempering [119], solute tempering [173], or
in the form of bias exchange metadynamics [117]. Besides these more sophisti-
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cated algorithms, the basic framework of multiple walkers has been employed
in combination with many different methods, including metadynamics [132],
variationally enhanced sampling [24, 159], or adaptive biasing force [174].

Multiple walkers metadynamics and variationally enhanced sampling

For metadynamics and VES, multiple walkers are implemented by running
multiple independent simulations in parallel that are coupled by using the same
bias potential. Each of the simulations starts from different initial conditions
but is biased by the same bias potential V(s) and also contributes equally to
its time evolution. For metadynamics, this means that Gaussians are added to
the bias potential from the positions of all walkers, typically at regular intervals
as in the case of a single simulation. For VES the implementation is even more
intuitive: The ensemble averages for the gradient and hessian of eqs. (3.27,
3.28) are collected from all walkers simultaneously. The just introduced variants
of multiple walkers for metadynamics and VES are used for applications in
Chapter 7. Besides the increased number of samples, the better coverage of
different parts of the CV space can help to improve the optimization in the VES
method. However, there is an upper limit for the number of walkers that can
be used: Beyond a certain number their motion often becomes correlated. The
usage of cloning algorithms might help to break these correlations.

3.4 performance measures

To evaluate and compare the performance of enhanced sampling simulations,
different performance measures can be considered. While many different quan-
tities are used in the literature [19, 133, 138, 159, 175, 176], the focus will here be
on measures that assess the accuracy of the free energy surface obtained from
the simulation.

For biased simulations with the metadynamics or VES methods presented in
Sections 3.1 and 3.2, respectively, a FES estimate can be estimated directly from
the bias via the eqs. (3.8, 3.15, 3.21). Alternatively the FES can be obtained by
reweighting the samples of the trajectory by eq. (3.19). For unbiased simulations,
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eq. (3.2) is used directly: The required equilibrium probability distribution can
be estimated from the obtained samples, for example by histogramming or a
kernel density estimation. When using a suitable, normalized histogram H, the
free energy can be calculated by

F(s) = −β−1 log H(s) + C, (3.46)

where the constant C is typically chosen such that min F(s) = 0.

To measure the quality of a FES estimate F(s), it can be compared to a
known reference Fref(s). Since the FES is usually determined only up to a
constant (see eq. (3.2)), it needs to be aligned. The simplest option would be to
choose the constant C such that min F(s) = 0 for both the obtained FES and
the reference. If the obtained FES is not accurate at its minimum, this choice
negatively influences the outcome of any comparison. It is therefore better to
shift the FES by the average value of the low-energy region Γ, that is

F̃(s) = F(s)−
∫

Γ
ds F(s) +

∫
Γ

ds Fref(s). (3.47)

Typically, Γ is chosen as the area of CV space where the reference free energy is
below a certain threshold νshift∫

Γ
ds =

∫
ds θ(νshift − Fref(s)), (3.48)

with θ being the Heaviside step function.

Root mean square error

A possible error measure is to calculate the root mean square (RMS) error of
the FES with respect to the reference, as it was done in Refs. 133, 159:

ϵ =

√√√√∫ ds
[
F̃(s)− Fref(s)

]2
θ(νerror − Fref(s))∫

ds θ(νerror − Fref(s))
(3.49)
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The region of interest is defined similarly as for the shifting, that is, by the
regions where the reference free energy is smaller than another parameter νerror.
In this measure, every point within the region of interest contributes equally.
Typically, the focus of simulations is on the low energy regions and on obtaining
accurate estimates of the relative differences between states.

Kullback-Leibler divergence

Another possible measure, that weights the low energy regions significantly
more than the high energy regions, is the Kullback-Leibler divergence that was
already introduced in eq. (3.22). To calculate it, the FES has to be transferred to
a probability distribution, P(s) = exp(−βF(s))/

∫
ds exp(−βF(s)). Then the

distance between the obtained distribution P(s) and the reference distribution
Pref(s) is given by

DKL(Pref(s) | P(s)) =
∫

ds log
(

Pref(s)

P(s)

)
Pref(s). (3.50)

For this measure, the areas with high probabilities (corresponding to low free
energies) contribute most due to the weighting of the integral with the reference
probability. Because of the exponential dependency of the probability on the
FES, this effect is rather large and already the regions with moderately high
free energies do not significantly contribute to this measure. Therefore, the
high energy regions do not need to be excluded explicitily as for the RMS
error. Of note is, that the Kullback-Leibler divergence is not symmetric, that is
DKL(Pref(s) | P(s)) ̸= DKL(P(s) | Pref(s)), and it is therefore not a metric in the
mathematical sense, although it can be related to actual metrics via Pinsker’s
inequality [177].

Free energy difference ∆F

For chemical and physical applications, often not the full free energy surface but
only the relative free energy difference between (meta-)stable states is of interest.
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Taking two states A and B, it can be determined from the FES by integrating
over the associated probabilities

∆FA,B = FA − FB = − 1
β

log
PA

PB
= − 1

β
log

∫
A ds exp[−βF(s)]∫
B ds exp[−βF(s)]

, (3.51)

where the domains of integration are the regions in CV space associated with the
states A and B, respectively. This only represents the experimentally accessible
free energy difference if the CVs s clearly separates the states A and B.

Averaging over multiple simulations

The results from a single simulation might not yield a good representation
of equilibrium properties [71]. It is therefore good practice to use quantities
that represent the results of an ensemble of multiple independent runs, started
for example with different initial conditions, to measure the performance of a
method. A simple way to achieve this is to average over measures for the indi-
vidual runs. For example, the average RMS error of N independent simulations
is given by

⟨ϵ⟩ = 1
N

N

∑
i

ϵi. (3.52)

A benefit of this approach is that it also allows to assess fluctuations between
runs, by calculating the standard deviation

σϵ =

√√√√ 1
N − 1

N

∑
i
(ϵi − ⟨ϵ⟩)2. (3.53)

Here, the factor of N − 1 in the denominator arises from Bessel’s correction,
which unbiases the estimate when plugging in the mean value calculated from
the same data. From the standard deviation the standard error is obtained via

σ̂ϵ =
σϵ√

N
. (3.54)
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Whether to use the standard deviation or the standard error depends on the
property under investigation: The standard deviation measures the fluctuations
of the different values and is therefore useful to assess the quality of predictions
from individual runs. It is typically preferred when comparing the performance
of different methods. On the other hand, if of interest is the quality of the mean
value, that is how much the prediction can be trusted, the standard error is the
quantity of choice.

Choice of measure

Which performance measure to use depends on the problem under investigation,
if a reference FES is available, and personal preferences. An illustration of the
differences between the presented measures can be seen in Figure 3.5. There,
three quite different estimates of a simple one-dimensional FES, consisting of
two states separated by a barrier, are shown. The first estimate, given in blue,
offers a good representation of the lower-lying regions of the FES and gets the
minima correctly, while drastically overestimating the barrier between the states.
On the other hand, the second shown estimate, given in orange, captures the
height of the barrier approximately but does not yield a good estimate of the
minima. The third estimate, shown in green, is pretty close to the reference
but still has small deviations over the full range, such as a slightly smaller FES
estimate in the barrier region and the right minimum.

This can be seen when looking at the calculated values of the free energy
difference also provided in the figure. While the first estimate matches the refer-
ence value closely (∆Fref = 0.528), the second one is completely off and even
predicts the wrong state to be the global minimum. The third one also yields
a good estimate that is off by only 0.05 kBT. As the value of the free energy
difference is very sensitive to small changes of the FES around the minima, it
typically fluctuates on these scales also when taking FES estimates at different
times of a simulation and the accuracy is therefore limited. When comparing
with experimental results, it is also important to keep the measurement un-
certainty of these methods in mind. Typically the chemical accuracy, which is
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Figure 3.5: Illustration of the different performance measures.
Left side: Three exemplary FES estimates (1 blue; 2 orange; 3 green) together with the
reference (thin black).
Right side: Values of the different performance measures for the two estimates. For
the RMS error, the parameters were νshift = 2 kBT, νerror = 5 kBT. The states for the
estimates of the free energy difference were defined by separating the FES at x = 0 (i.e.
A : x ∈ (−∞, 0), B : x ∈ (0, ∞)), and the value for the reference FES is ∆Fref = 0.528.

the smallest uncertainty that is possible in experiments, is given as 1 kcal/mol
which at 300 K corresponds to approximately 0.4 kBT.

Similar to this approach, the Kullback-Leibler divergence also emphasizes
the low energy regions which results in an order of magnitude difference of the
measure between the first two estimates, in favor of the first estimate. The third
estimate has by far the lowest KL divergence value because it best resembles
the correct distribution.

Differently, the RMS error weights all parts lower than νerror = 5 kBT of the
reference equally, that is roughly the region [−2, 2], incorporating both minima
and the barrier region. Here, the third estimate is again clearly the best, while
the first two estimates yield nearly the same values. This measure therefore
captures the suboptimal result of the first estimate in the barrier region, in
contrast to the other measures. As it is more directly related to the visible
similarity of the FES estimates to the reference, it also matches the expected
result from visual inspection of the figure: Both estimates deviate drastically
from the reference in roughly equally sized parts of the investigated area.
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It has become clear from the example, that the choice of measure depends on
the properties of the FES that are of interest for the problem at hand. Generally
speaking, the Kullback-Leibler divergence measures the distance between the
probability distributions and therefore shows if the sampling of the simulation is
correct. This might be useful if the sampling in general is the focus of the study,
as it is for the birth-death augmented sampling in part III of this thesis. On
the other hand, the RMS error is more flexible and allows for the investigation
of more specific behavior. For example, when looking at the performance of
an enhanced sampling method, the interesting parts are typically not only the
regions of lowest energy, as these would be sufficiently sampled even without
the method. Using the RMS error with a threshold energy on the order of the
barrier energy will put more emphasis on the typically rarely sampled parts that
the method gives access to. It also yields results that are more in line with visual
comparisons of the FES estimates and the reference. Calculating the free energy
difference between states is useful to assess how well chemical properties are
matched, although the fluctuation of this measure even with small changes
should be kept in mind.



Part II

D AU B E C H I E S WAV E L E T S A S B A S I S F U N C T I O N S

F O R VA R I AT I O N A L LY E N H A N C E D S A M P L I N G

“Mathematicians have various ways of judging the merits of new theorems
and constructions. One very important criterion is esthetic — some devel-
opments just ‘feel’ right, fitting, and beautiful. [. . . ] Another important
criterion for according merit to some particular piece of mathematics is the
extent to which it can be useful in applications; this is the criterion almost
exclusively used by nonmathematicians.”

— Ingrid Daubechies [178]





4
P R O P E RT I E S O F G O O D B A S I S F U N C T I O N S

4.1 introduction

For the successful application of the VES method, the choice of a good set of
basis functions plays a crucial role. These are used to represent the bias potential
and can thus severely limit not only the kind of enhanced sampling that can be
achieved but also negatively impact the accuracy of quantities obtained from
the bias, such as the FES via eq. (3.21).

It is therefore surprising that after the fundamental principles of the method
had been developed in Refs. 17, 159, the choice of basis functions played only a
marginal role in the literature of the VES method. The supplemental material of
the first VES paper [17] included results for different numbers of basis functions
of the fourier set. For the simulation of Alanine dipeptide in vacuum and water,
two dihedral angles were used as biased CVs, where the number of fourier
basis functions per CV was modified in the range from 7 to 13. The authors
found that all main features of the FES are observed even with the minimal set
(7 basis functions per CV), although due to the limited flexibility of the small
set some finer features were not ideally represented in the solvated simulations.
It was noted that a better representation even with few basis functions can be
obtained by reweighting the trajectories.

In Ref. 159 another discussion on the choice of the number of basis functions
was given. There, alanine tetrapetide was simulated in water, where the focus
was on the different behavior of the method when using a uniform or a well-
tempered target distribution. In both cases, the number of basis functions per
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biased CV (used were three different dihedral angles) was varied in the range
between 7 and 21. The authors concluded that when using a uniform target
distribution, a smaller number of functions resulted in better convergence
behavior, which shows that a larger set is not always better. The performance
differences were found to be neglectable when using a well-tempered target
distribution.

A special representation of the bias potential was introduced and discussed
by Bonati et al. [21]: Instead of using a fixed set of basis functions, a deep neural
network was employed to construct the bias potential by nonlinear combination
of the CV values over several layers. For this variant, assuming perfect conver-
gence, the final form of the bias potential depends on the functional form of
the individual neurons and the architecture, that is the number of neurons and
network layers. The focus of the paper was on the general introduction of the
method and not on the study of these parameters though, such that only a short
side note on the choice of the network architecture was given in the supplemen-
tal material. Arguably, this adds to the discussion about good basis function
a rather orthogonal answer, by introducing a neural network representation
instead of a linear expansion in fixed basis functions. Neural networks shine
most when they are employed to yield a good representation starting from
many input features that cannot be easily obtained with more direct methods.
In the case of VES, the number of CVs used to build the bias is small such that
the full power of a neural network is typically not required. Of note is also that
the approach was not designed to get a perfect representation of the bias (i.e.,
the minimum of the functional) but rather to get a suitable approximation in
a few iterations to then use as a static bias for further simulations, which it
accomplishes successfully for the tested systems.

Besides these few examples, which also only touch on certain aspects of the
topic, contributions that compare the performance of fundamentally different
basis sets are still missing in the community. Additionally, the development
of new, and possibly better, basis functions has been minimal since the intro-
duction of the method in 2014, besides the already mentioned neural network
representation [21] and free energy models that try to tailor a custom form of
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the potential from physical principles [22–25]. In the following, an attempt to
address this shortage is made.

So far, the basis functions employed in VES have been the ones introduced in
Section 3.2.4, which were plane waves (i.e., Fourier series) [17], Chebyshev poly-
nomials [159], or Legendre polynomials. The usage of such “global” functions
is closely related to the idea of using spectral methods for function approxima-
tion [166]. Global functions are delocalized in the CV space, or in other words,
they are non-zero over the full range of the CV domain to be biased except on
isolated points.

Using global, or delocalized, basis functions means that during the opti-
mization process the bias potential will change even in parts of the CV space
that the simulation is currently not exploring. Even though the simulation does
not provide any samples from these areas for the estimates of the gradient and
Hessian of eq. (3.34), the bias potential is still optimized in the full range. While
this has not proven to be a significant issue, it is clear that delocalized basis
functions might not be the optimal choice, especially for the initial part of the
simulation where sampling is typically restricted to the low energy regions.

For that reason, new basis functions that are localized in CV space, which
means that each function is non-zero only in a small region of the CV space,
are investigated in this work. Examples of such localized basis functions that
come to mind would be Gaussians or splines. In fact, in Refs. 19, 20, the authors
employed VES with Gaussian basis functions. The results obtained with this
VES setup were found to be inferior to some of the results obtained with
other enhanced sampling methods also under investigation (such as umbrella
sampling [89]), but as no other basis functions were used with VES, it is hard
to judge the performance of the Gaussian basis from their results. Although
Gaussians are a simple choice and their usage is common in for example
kernel density estimation [179, 180] or as basis functions in density functional
theory [181–184], they are rarely employed as fixed basis set for general function
approximation. In this area, the family of splines is employed frequently as
an alternative to polynomials, for example, the multidimensional cubic splines
introduced by Habermann and Kindermann [185]. These interpolating splines
were designed with simplicity of their implementation in computer code in
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mind and also allow for a simple multidimensional representation by the tensor
product.

Another concept related to finding smoothed approximations of general
functions is wavelets. These are the main focus here, in particular the family of
orthonormal wavelets introduced by Daubechies [26, 186]. Furthermore, they
have an intrinsic multiresolution property that makes it possible to iteratively
add more basis functions to refine the previously obtained representation. They
have also already been employed for other problems related to molecular or
quantum mechanical calculations, such as in the BigDFT variant of density
functional theory [27, 28], or to obtain coarse-grained potentials [29].

These three families of possible basis functions, namely wavelets, Gaussians,
and splines, are all localized in CV space, that is each basis function contributes
to the bias potential only in a specific, predefined range. Therefore, they should
not suffer from the issue of the bias potential changing in parts of CV space
that the simulation is not currently exploring.

In the following, the term “localized” always refers to the localization in
the space of CVs. This is in contrast to the “global” or “delocalized” basis
functions, for example the Chebyshev polynomials, that represent only isolated
frequencies and are therefore localized in the associated Fourier transformed
space.

A discussion about the performance of these new basis functions is laid
out in the following chapters of the thesis. As a starting point, some general
considerations on the choice of basis functions for VES are given in Section 4.2
In Chapter 5 some fundamental aspects of wavelet theory are presented, with
a focus on the family of Daubechies wavelets and their application as basis
functions for VES. Subsequently, Chapter 6 deals with their implementation into
the VES code, while also other localized basis functions, Gaussians and cubic
B-splines, are introduced. Finally, Chapter 7 puts the different basis functions
to the test, comparing their performance using several model and atomistic
systems.
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4.2 theoretical considerations

In the mathematical sense, a basis of a space of functions is defined as a set of
functions with some special properties [187, 188]. Generally, a Lebesgue space
Lp is defined as the space of all measurable functions with∫

dx | f (x)|p < ∞, (4.1)

and the associated norm || · ||p. For the representation of the VES bias, which is
finite and bounded, the space to be considered is the one of all square-integrable
functions L2, which has the euclidean norm and the well-known inner product
⟨ f , g⟩2 =

∫
dx f (x)g(x).

A basis of the space has to be complete, that is, any L2 function can be
approximated up to arbitrarily small precision by a finite linear combination of
the basis functions. On top of this, the representation has to be unique, such that
no two combinations represent the same function. In mathematical terms this
means that if any combination of the basis functions yields the zero element,

∑i αi fi(x) = 0, then all coefficients must be zero: α0 = α1 = · · · = αN = 0. This
property is also called linear independence.

Another related concept is that of orthonormality. An orthonormal basis is
given if the elements also satisfy orthonormality∫

dx fi(x) f j(x) = δi,j. (4.2)

on top of the previously mentioned condition of completeness (linear indepen-
dence is automatically satisfied for orthonormal basis functions).

For any orthonormal basis in, for example, L2, every function g of that space
can be represented exactly by the basis functions fi

f =
∞

∑
i=0
⟨g, fi⟩ fi =

∞

∑
i=0

αi fi (4.3)

with a unique set of expansion coefficients α.
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Specific to VES

After this theoretical introduction into functional analysis, the question remains
what a “good” basis is. For approximation problems via spectral methods,
Ref. 166 gives a number of desirable properties for basis functions: (1) com-
pleteness, (2) rapid convergence, and (3) easy to compute. To use them as VES
bias an additional property is essential: (4) existence of at least one continuous
derivative.

Completeness is not essential for the VES method. In practice, it is sufficient
to get an adequate representation of the bias. Nevertheless, an incomplete set
of basis functions might not have enough variational flexibility. This makes
convergence of the bias potential difficult and severely limits the accuracy of
the FES obtained directly from the bias via eq. (3.21). However, this can often
be corrected by using reweighting according to eq. (3.19).

The second property, rapid convergence, means that a good approximation
should be achieved with the fewest possible coefficients. This can be understood
better by looking at eq. (4.3): When using a basis with theoretically infinitely
many basis functions, such as a Fourier series or Chebyshev polynomials, it is
beneficial to have a small error when omitting the remaining higher order basis
functions already at low orders of the expansion. For the optimization process
in VES this is crucial, as a lower number of basis functions results also in fewer
degrees of freedom to optimize. It is clear that the number of required basis
functions depends not only on the chosen basis set but also on the problem
at hand. On top of this, this number is typically not determinable a priory. In
practice, it is common to perform the first simulation with a rather small set to
get rapid convergence and add more basis functions if the obtained FES does
not capture all features satisfactorily.

The property of easy computability comes from the implementation side:
any basis set to be used should not only be implementable in code but desirably
also have minimal computational cost for evaluation. To calculate the averages
over the bias potential required for the gradient and Hessian of the functional in
eq. (3.34), each basis function has to be evaluated at each step of the simulation.
Additionally, also the first derivatives have to be evaluated to obtain the force
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acting on the atoms from the bias potential. This makes the fourth requirement
clear: While numerical calculation of the derivatives is possible, these must at
least exist in a continuous way. Ideally, the first derivative also has a functional
form that is easy to evaluate. Although the evaluation of the 2N values (basis
functions and derivatives) is typically only a small overhead compared to the
evaluation of the atomistic forces, it is nevertheless important to keep it in mind
when designing basis functions for the usage in VES.

Established basis functions for VES

For the basis functions that were already described in Section 3.2.4, some insight
on the choice can be found in the literature. When using them as basis functions
for spectral methods, Boyd [166] says it rather explicit:

“(i) When in doubt, use Chebyshev polynomials unless the solution is
spatially periodic, in which case an ordinary Fourier series is better. (ii) Unless
you’re sure another set of basis functions is better, use Chebyshev polynomials.
(iii) Unless you’re really, really sure that another set of basis functions is better,
use Chebyshev polynomials.” [166, p. 10]

Both Legendre and Chebyshev polynomials are part of the same family of
orthogonal polynomials, the difference lies in the weighting on their intrinsic
interval [−1, 1]. The Chebyshev weighting, w(x) = (1− x2)−1/2, is heavily biased
towards the endpoints and the best choice for expanding general functions. On
the contrary, the Legendre polynomials have no weighting at all. Their error is
thus smaller than for Chebyshev polynomials on most of the interval but much
larger near the endpoints. In Ref. 166 the difference in error when truncating
the expansion after N basis functions is given as roughly O(N1/2) larger for
Legendre polynomials when considering the whole range.

For the expansion of the bias potential in the VES method, the boundary
areas are often not of huge importance, as they are typically placed at regions of
high energy away from the states and processes under investigation. Depending
on the problem at hand, Legendre polynomials therefore often fare better in
comparison to Chebyshev polynomials than expected from the considerations
for spectral methods.
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Also, the situation for the VES method is not as clear as in spectral methods
or approximation theory in general: The function to be approximated by the set
of basis functions is the bias potential that is not static but changes during the
course of the optimization. To further complicate the matter, the input for the
optimization is also not ideal or static data but obtained from sampling with
the current version of the bias potential. This results in a feedback loop: During
the optimization process of the bias potential, the basis functions approximate a
temporary estimate of the bias potential. This estimate is then used during the
next iteration to obtain sampling closer to the desired target distribution and
then again update the estimate of the bias potential. The optimization process
therefore relies on a good bias representation also during the intermediate steps.

This limits what can be theoretically deduced: Assuming a system for which
the minimum of the functional and the associated optimal bias potential can
be calculated (e.g., for a model system where the FES is known), it would be
possible to determine the set of basis functions that offers the best representation.
In practice, however, the basis functions are not only required to yield a good
approximation of the converged potential, but also a good representation at the
intermediate steps and a smooth evolution with changing coefficients. These
intermediates cannot be easily calculated, due to the self-learning nature of the
optimization and its dependency on sampling. Additionally, while a higher
number of basis functions, for example of the Fourier series, is always better
at representing a specific functional form of the bias potential, the increased
number of optimization parameters might lead to worse convergence behavior,
as observed in Ref. 159. It is also not clear how much different optimization
algorithms and the associated parameters play a role. For example, when
using the averaged stochastic gradient descent algorithm, the coefficients for all
basis functions are updated with the same stepsize. This might not be optimal
if the chosen basis set requires vastly different values of the coefficients for
convergence.

In summary, it is difficult to tell a priori which basis set works best in general
or even a specific problem at hand. Therefore for VES typically a few short
simulations with different sets are run initially to see which shows the best
performance, before starting the productive simulation runs.
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Strang and Nguyen present a very strong motivation for using wavelets as
basis functions: “For [approximating] piecewise smooth functions, a wavelet
basis is better” [189, p. 229]. The FES to be approximated by the bias potential
in the VES method are typically rather smooth. The aforementioned motivation
makes a wavelet basis a good choice if the FES consists of features with different
shapes and sizes.
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5
T H E O RY O F D AU B E C H I E S WAV E L E T S

The view on Wavelets has evolved a lot since the 1980s when their theoretic
foundation was first studied in a comprehensive way and previously existing
ideas were collected and refined to form the field that is now called wavelet
analysis. Many books and articles with different approaches to the theory exist.
The book by Daubechies [186] is considered to be a comprehensive classic on
the topic of wavelet analysis. There, she collected her work on orthonormal
wavelets coming from the theory of “frames”. Another approach is the con-
cept of “filters”, used for example by Kahane and Lemarié-Rieusset [190] or
Strang and Nguyen [189]. In the following, a short introduction to wavelets
will be given, following ideas of these theoretical approaches. Concepts from
Daubechies’ book will provide most of the fundamental aspects of wavelet
analysis, while the more practical aspects such as algorithms for the numeric
construction will come from the book of Strang and Nguyen.

Besides the already mentioned works, interested readers are referred to
Refs. 191–193 for further studies.

5.1 windowed fourier transform and wavelet transform

Many of the initial ideas of wavelet analysis come from the field of time-
frequency analysis for signal processing. There, typically the frequencies of a
signal f (x) are analyzed via the Fourier transform

(F f )(ω) = f̂ (ω) =
1√
2π

∫ +∞

−∞
dx e−ixω f (x). (5.1)
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Here the normalization was chosen such that the inverse transform also has the
prefactor (2π)−1/2:

f (x) =
1√
2π

∫ +∞

−∞
dω eixω f̂ (ω). (5.2)

The problem with this approach comes from the fact that most signals are
evolving with time, where the concept of fixed frequencies applies only to
specific points in time. Thus, the full signal can no longer be represented by a
superposition of plane waves. Instead, the idea of wavelets introduces a locality
in time: The signal is described by a superposition of short wave-like functions,
the wavelets.

One critical aspect is the so-called “uncertainty principle” of signal process-
ing: A wavelet cannot be both very short in time and represent only a small
range of frequencies. In other words, a compromise between resolution in the
frequency and time domain has to be made. The following will continue to
speak of the “time” domain of the signal for an intuitive and short description,
while this could also be replaced by, for example, a spatial domain or the CV
space.

Before wavelet analysis, similar ideas have existed. Already in the 1940s,
the windowed Fourier transform or Gabor transform was developed, which
employs a time-shifted window to analyze the signal:

(G f )(t, ω) =
∫ +∞

−∞
dx g(x− t) e−ixω f (x) (5.3)

Often, a Gaussian function is used as the window g(x− t) that is shifted over
the signal to allow for a local inspection. To analyze signals numerically, the
time shift and frequency modulation can be discretized, t = nt0, ω = mω0 with
fixed t0, ω0 and n, m ∈ Z. Then eq. (5.3) becomes

Gm
n ( f ) =

∫ +∞

−∞
dx g(x− nt0) e−ixmω0 f (x). (5.4)

Given a signal, the coefficients for n, m can be calculated. For a fixed n the
signal is localized around nt0 and the local Fourier coefficients correspond to
the frequencies mω0 inside the windowed region.
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Coming from the analysis of acoustic waves for sedimental analysis, in the
early 1980s, Morlet proposed a new transform that uses dilation (i.e. scaling)
instead of modulation (i.e. shifting in frequency) of the signal:

(T f )(a, b) = |a|−1/2
∫ +∞

−∞
dx ψ

(
x− b

a

)
f (x) (5.5)

This is the wavelet transform, where the signal is convoluted with wavelets

ψa
b(x) = |a|−1/2 ψ

(
x− b

a

)
, (5.6)

which are shifted and dilated versions of a function ψ, that is sometimes called
“mother wavelet”. The discrete variant is again obtained by restricting the
parameters a, b to discrete values. With the choice a = aj

0, b = kb0aj
0, one obtains

T j
k ( f ) = |a0|−j/2

∫ +∞

−∞
dx ψ(a−j

0 x− kb0) f (x), (5.7)

where a0, b0 are fixed and j, k ∈ Z. Similarly to the windowed Fourier transform
of eqs. (5.3, 5.4), the index k shifts a window of constant shape over the signal.
Differently, the wavelet transform uses windows (in the form of wavelets) of
different sizes. When the value of the scale parameter j is changed, the size of
the wavelet and the corresponding frequencies also changes: large values of j
correspond to large wavelets representing small frequencies, while small values
of j correspond to small wavelets and large frequencies. The shift parameter k
determines the localization centers for the wavlets at each scale. An individual
wavelet is centered around kb0aj

0.

The main difference between the windowed Fourier and wavelet transform
is the shape of the analyzing functions gω

t = g(x− t)e−ixω and ψa
b. All functions

gω
t consist of the same window function g(x− t) shifted to a location t, where

the frequencies are evaluated. In contrast, the wavelet functions ψa
b adapt their

widths to the frequencies, that is low-frequency wavelets are wider than the
narrow wavelets representing high frequencies. This means that the wavelet
transform is better suited for signals with features of drastically different sizes
or frequencies.
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5.2 multiresolution analysis

Of special interest for this work are the wavelets proposed by Daubechies. She
found that for some values of a0 and b0, there are wavelets that constitute
orthonormal bases of L2(R) [26]. In the following, ψ ∈ L2(R) is supposed
and only real-valued functions are assumed such that the argument of L2 can
be omitted. Orthonormal bases exist for at least all rational a0 > 1, but most
common and simplest is the choice a0 = 2 and b0 = 1 leading to

ψ
j
k(x) = 2−j/2ψ

(
2−jx− k

)
. (5.8)

Several conditions have to be satisfied to obtain an orthonormal basis. In
general, for the wavelet transform to be invertible, the admissibility condition

∫ +∞

−∞

∣∣ψ̂(ω)
∣∣2

|ω| dω < ∞ (5.9)

has to hold, where ψ̂ is the Fourier transform of the wavelet [194]. It can be
shown that condition (5.9) is equivalent to

∫ +∞

−∞
ψ(x)dx = 0 (5.10)

for all practical purposes. To form orthonormal bases the wavelets have to be
orthonormal across all scales and shifts∫ +∞

−∞
ψ

j
k(x)ψ

j′

k′(x) dx = δjj′δkk′ . (5.11)

If the basis is also complete, any function f (x) ∈ L2 can be represented.

The approximation procedure of a function f (x) can be explained with a
“multiresolution” approach: Starting at some scale j the function is approximated
with a linear combination of the shifted ψ

j
k using some coefficients α

j
k:

f j(x) = ∑
k

α
j
kψ

j
k(x) (5.12)
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Going to the next “fine-grained” scale j− 1, the approximation can be improved
by adding more details at the finer scale

f j−1(x) = f j(x) + ∑
k

α
j−1
k ψ

j−1
k (x). (5.13)

This procedure can then be repeated as often as desired to obtain approxima-
tions at progressively smaller scales.

The multiresolution property can be demonstrated further when looking
at the spaces associated with the approximation levels. Introducing Vj as the
space of the approximation f j, it is clear that the space of the next smaller scale
Vj1 will contain the previous one, which leads to a ladder of spaces:

. . . ⊂ Vj+2 ⊂ Vj+1 ⊂ Vj ⊂ Vj−1 ⊂ Vj−2 . . . (5.14)

These spaces have analog properties to the wavelet basis:

⋂
j∈Z

Vj = {0} (5.15a)

⋃
j∈Z

Vj = L2 (5.15b)

The first condition, eq. (5.15a), is the linear independence or separation property:
The intersection of all spaces is only the zero set. Secondly, eq. (5.15b) requires
that the closure of the spaces is the full function space L2. In other words, the
union of all spaces is dense in L2, or even less mathematical, all L2 functions
are contained. This is the analogon to the completeness of the wavelet basis.

Having introduced the spaces Vj, the multiresolution aspect comes from the
fact that all these spaces are in fact scaled versions of a single space

f (x) ∈ Vj ←→ f (2jx) ∈ V0. (5.16)
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This means, if a function is contained in the space V0, its scaled variant has
to be contained in all other spaces Vj. Additionally, all integer translates of
contained functions have to also be contained, that is

f (x) ∈ V0 −→ f (x− k) ∈ V0 for all k ∈ Z. (5.17)

Although a ladder of spaces with the correct properties to obtain orthonor-
mal bases has now been constructed, for practical purposes a problem remains:
The ladder of spaces is infinite in both directions. While omitting levels at the
finer scales is excusable as it results only in deviations on the missing small
scales, the large scales cannot be omitted without fundamentally breaking the
approximation. This problem can be solved with the introduction of a scaling
function or “father wavelet” ϕ (in contrast to the “mother wavelet” ψ), defined
as the generating function of a set of functions constituting an orthonormal
basis for Vj:

ϕ
j
k(x) = 2−j/2ϕ

(
2−jx− k

)
. (5.18)

The single level of scaling functions now serves as the “most coarse-grained”
approximation. This can be made clear by defining the space of the waveletWj

as the orthogonal complement of the space Vj

Vj ∩Wj = {0}. (5.19)

Now the direct sum connects spaces at different scales

Vj ⊕Wj = Vj−1, (5.20)

which means that Vj contains all the higher level wavelet spaces, for example
when starting at some scale j = 0

V0 =W1 ⊕ V1 =W1 ⊕W2 ⊕ V2 =W1 ⊕W2 ⊕W3 ⊕ V3 = . . . . (5.21)

The full multiresolution analysis is recovered by adding the smaller wavelet
spaces

L2 = V0 ⊕W0 ⊕W−1 ⊕W−2 ⊕W−3 ⊕ . . . (5.22)
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and any function f ∈ L2 can be approximated by

f (x) = ∑
k

αkϕ
j
k(x) + ∑

l≥j
∑
k

αl,kψl
k(x). (5.23)

Left to choose is the specific wavelet and scaling functions to be used.

5.3 filter coefficients

Although different approaches exist, the wavelet and scaling functions are
typically defined by filter coefficients, that is via the refinement relations

ϕ(x) =
√

2
L

∑
k=0

hk ϕ(2x− k), (5.24a)

ψ(x) =
√

2
L

∑
k=0

gk ϕ(2x− k). (5.24b)

The length of the filter L has to be finite for compactly supported wavelets. To
obtain wavelets that satisfy orthogonality relations [191]

∫ +∞

−∞
ϕ

j
k(x)ϕj

k′(x)dx = δkk′ , (5.25a)∫ +∞

−∞
ϕ

j
k(x)ψj′

k′(x)dx = 0 for j ≤ j′, (5.25b)∫ +∞

−∞
ψ

j
k(x)ψj′

k′(x)dx = δjj′δkk′ , (5.25c)

a necessary condition for the coefficients gk and hk is their relation by

hk = (−1)kgL−k. (5.26)

This illustrates that only one of the two sets of filter coefficients has to be found
and fully determines the wavelet. Here the coefficients of the scaling function
hk will be constructed.
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Following the ideas of Daubechies, the required conditions for the coeffi-
cients will be given in the Fourier transformed space. The Fourier transform of
eq. (5.24a) is

ϕ̂(ω) =
1√
2

∑
k

hk e−ikω/2 ϕ̂(ω/2) (5.27a)

= m0(ω/2) ϕ̂(ω/2), (5.27b)

where
m0(ω) =

1√
2

∑
k

hk e−ikω. (5.28)

To construct orthonormal wavelets the following conditions have to hold [186,
195]:

m0(0) = 1 (5.29a)

|m0(ω)|2 + |m0(ω + π)|2 = 1 (5.29b)

|m0(ω)|2 has no zeros in the interval
[
−π

3
,

π

3

]
(5.29c)

Completeness of the multiresolution analysis requires condition (5.29a), which
is equivalent to ϕ̂(0) ̸= 0. The second condition, eq. (5.29b), is necessary for
the orthonormality of the wavelets. Equation (5.29c) is sometimes also named
“Cohen condition” [195]. It ensures L2 convergence of the approximation, that
is, completeness of the basis.

On top of these conditions for orthonormal wavelets, Daubechies suggested
conditions for a family of compactly supported wavelets with the highest
possible number of vanishing moments for their support width. A wavelet is
said to have N vanishing moments if∫

dx xpψ(x) = 0 (5.30)

holds for all p = 0, 1, . . . , N − 1. All polynomials up to order N − 1 are then
orthogonal to the wavelet function and therefore not contained in the spaces
Wj. Because completeness of the multiresolution analysis is required, from
eq. (5.22) follows that these are then in the space of the scaling function V0. This
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is crucial when representing functions by a wavelet multiresolution analysis
via eq. (5.23): All functions consisting of polynomials of order up N − 1 can be
exactly represented by the first sum, that is a single level of scaling functions.

For the construction of the filter coefficients, two additional conditions on
m0 are imposed: First, to obtain compactly supported wavelets, the function m0

has to be a trigonometric polynomial. Second, having N vanishing moments
requires that m0 has a zero of order N at ω = π. This motivates an ansatz of
the form ∣∣∣m(N)

0 (ω)
∣∣∣2 =

(
cos2(ω/2)

)N
PN

(
sin2(ω/2)

)
, (5.31)

where the first term ensures the zero of order N at ω = π and the PN is
a polynomial in sin2(ω/2) =: y. Condition (5.29b) can be rewritten for this
polynomial as

(1− y)NPN(y) + yNPN(1− y) = 1. (5.32)

Daubechies showed the general solution to this equation. The special solution
that yields the wavelets with minimal support, that were named after her, is
given by

PN(y) =
N−1

∑
k=0

(
N − 1 + k

k

)
yk. (5.33)

This is an ordinary polynomial of order N − 1 with the coefficient of yk given
by a binomial.

While this already uniquely defines the wavelet for any positive integer
N, for practical applications the problem of obtaining the filter coefficients
hk from |m0|2 remains. The square root of |m0|2 can be extracted by spectral
factorization.

Spectral factorization

Strang and Nguyen [189] presented a simple and efficient algorithm for the
construction of the filter coefficients from the trigonometric polynomial. It
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relies on finding the zeros of a polynomial for the spectral factorization. A
trigonometric polynomial S(ω) can be rewritten as

|S(ω)|2 =

∣∣∣∣∣ N

∑
k=0

cN e−ikω

∣∣∣∣∣
2

=
N

∑
k=−N

dN e−ikω = R(ω), (5.34)

where the coefficients dN = d−N are symmetric. Introducing a complex variable
z = eiω corresponding to the z-transform of x, this means that R(z) = R(1/z).
For any root zi there is also a root 1/zi of the polynomial. If the root zi is inside
the unit circle, 1/zi is outside and reverse. Any roots exactly on the unit circle
must have even multiplicity. Using these considerations, the polynomial zN R(z)
with leading coefficient dN ̸= 0 and N −M roots on the unit circle must have
2N factors of the form

zN R(z) = dN

M

∏
i=1

(z− zi)

(
z− 1

zi

) N−M

∏
j=1

(z− zj)
2 (5.35)

For the problem at hand, the coefficients cn correspond to hk which are required
to be real coefficients. Therefore, the roots not on the unit circle do not only
come in pairs but actually four at a time: The complex conjugate z̄i is also a root
if zi is a root, which leads to a quadruple of zi, z̄i, 1/zi, and 1/z̄i. All roots on the
unit circle come in pairs, which satisfies the even multiplicity. To construct the
polynomial S(z), one now has to choose either the two roots within or outside
the unit circle for every quadruple zi, as well as one out of every pair of roots
on the unit circle zj. Assuming the choice zi (and the corresponding z̄i) for all
quadruples, this leads to

zN S(z) = |dN|1/2
M

∏
i=1

(z− zi)
N−M

∏
j=1

(z− zj). (5.36)

Although the roots zi are complex, the coefficients cN of the polynomial are
still real because every root comes with its complex conjugate. The problem
of obtaining S(ω) from R(ω) = |S(ω)|2 has thus been reduced to finding the
roots of R(ω). Due to the possibility of choosing the roots zi or 1/zi in the
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construction, it is clear that the resulting coefficients of S(z) are not unique, but
that there are in fact 2M different possibilities. Additionally, S(ω) can always be
multiplied with a factor einω for any integer n.

Algorithm for the filter coefficients of Daubechies wavelets

Returning to the problem of extracting the root of |m0|2 and then obtaining
the filter coefficients hk via the fourier transform (see eq. (5.28)), an explicit
algorithm can now be derived [189]. From sin2(ω/2) = y follows cos(ω) =

1− 2y and a change in the variable of |m0|2 leads to∣∣∣m(N)
0 (y)

∣∣∣2 = (1− y)NPN(y), (5.37)

with PN defined as in eq. (5.33). To perform the spectral factorization, another
transform into the z-domain is required. With

1− y =

(
1 + z

2

)(
1 + z−1

2

)
, (5.38a)

y =

(
1− z

2

)(
1− z−1

2

)
, (5.38b)

the trigonometric polynomial for the Daubechies wavlets becomes

∣∣∣m(N)
0 (z)

∣∣∣2 =

(
1 + z

2

)N (1 + z−1

2

)N N−1

∑
k=0

(
N − 1 + k

k

)(
1− z

2

)k (1− z−1

2

)k

.

(5.39)
This polynomial has 2N zeros on the unit circle (at z = −1) from the first
two terms. Half of these have to go into m0 for the spectral factorization. The
2N − 2 zeros of the sum come in pairs inside and outside the unit circle, just
as described above. The problem is now analog to obtaining the coefficients of
S(z) from R(z):

1. Determine the N − 1 complex roots of the polynomial PN(y)

2. Calculate the 2N − 2 corresponding roots in z via the quadratic formula
z2 + z(4y− 2) + 1 = 0
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3. Choose one of each pair of roots, resulting in N − 1 roots zi

4. Add N roots at z = −1

5. Construct a polynomial from the N + N− 1 roots: ∏N−1
i (z− zi)∏N

j (z+ 1)

6. Obtain the 2N filter coefficients hk by expanding the polynomial: The filter
coefficients are the coefficients of the polynomial

In the last step, the inverse z-transform from m0(z) to the hk was done implicitly,
but without taking the normalization into account. In the literature, different
normalizations for the filter coefficients can be found, the one by Daubechies
that was also given in eq. (5.28) is ∑k hk =

√
2.

Step 3 of the construction algorithm offers flexibility in the choice of the
coefficients. In total 2⌊N/2⌋ different sets of filter coefficients are possible. The
one leading to the “Daubechies” wavelets is the one with extremal phase,
which corresponds to selecting all roots inside the unit circle (or equivalently
all outside). This results in wavelets with good regularity but pronounced
asymmetry, with the highest absolute function values all in the first part. Two
examples, the Db4 and Db8 wavelets, can be seen in the top row of Figure 5.1.
Here the short form denotes the type of wavelet (Db for Daubechies) and the
number of vanishing moments N.

Another popular goal is to obtain more symmetric wavelets, or in other
words, wavelets that have a filter with (nearly) linear phase. In the field of
signal analysis, linear phase filters are often desired because they preserve the
“waveform” of the signal. For compactly supported and orthonormal wavelets,
perfect symmetry or asymmetry can only be achieved for N = 1. Nevertheless,
better symmetry than for the Db wavelets is possible by choosing different roots
in step 3. While a method for selecting the roots to obtain a filter with a near-
linear phase with error up to O(1) is given in Ref. 190, this does not always
result in the most linear choice. To obtain the “least asymmetric” wavelets,
no a-priori criterium is known and one has to actually calculate the phase
for all permutations and then select the one with the phase closest to linear.
The resulting wavelet family is also called Symlets (denoted SymN, with the
number of vanishing moments N), although it is of note that these are not
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Figure 5.1: Functional form of the scaling function (blue) and mother wavelet (orange)
for four exemplary choices of Daubechies filter coefficients. Top row: extremal phase
with 4 (left) and 8 (right) vanishing moments. Bottom row: near-linear phase with the
same vanishing moments. The plot labels give the short notation of the specific wavelet
type. Depicted is exactly the supported range, the functions are zero by definition
outside.

actually symmetric. Exemplary scaling and wavelet functions of the Sym4 and
Sym8 filters are shown in the bottom row of Figure 5.1.

5.4 vector cascade algorithm

Although the filter coefficients hk define the scaling and (mother) wavelet
function uniquely, the task of obtaining their functional value at arbitrary
points remains. No closed analytic form exists for these wavelets, so typically
an iterative scheme is used for the generation on a grid. The most common
algorithm is the cascade algorithm, in the following a vectorized form that
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is discussed in Ref. 189 is described. This vector cascade algorithm starts
by introducing two special matrices M0 and M1 constructed from the filter
coefficients. The values at the integers are given by an eigenvector of M0. An
iterative scheme that involves multiplication with the matrices M0 and M1 is
then used to generate values at intermediate points.

Starting point is the dilation or recursion relation for the scaling function
that was previously given in eq. (5.24a):

ϕ(x) =
√

2
L

∑
k=0

hk ϕ(2x− k) (5.40)

In the previous section, the number of coefficients for Daubechies wavelets has
been determined to be 2N which are assumed to be given by h0, h1, . . . , h2N−1.
Because there is only a finite number of non-zero coefficients, ϕ(x) can only be
non-zero inside [0, 2N − 1).

Analyzing eq. (5.40), it is clear that the value at a specific point depends
only on points at double the position and then shifted by an integer. The values
at the integers therefore only depend on each other. Inserting these into the
equation, that is x = 0, x = 1, . . . , x = 2N− 2, leads to one equation per integer.
Choosing exemplarily N = 3, this set of equations can be written explicitly in a
vector-matrix form

ϕ(0)
ϕ(1)
ϕ(2)
ϕ(3)
ϕ(4)

 =
√

2


h0

h2 h1 h0

h4 h3 h2 h1 h0

h5 h4 h3 h2

h5 h4




ϕ(0)
ϕ(1)
ϕ(2)
ϕ(3)
ϕ(4)

 = M0Φ(0), (5.41)

where the matrix M0 and the vector Φ(t) = {ϕ(t), ϕ(t + 1), . . . , ϕ(t + 2N − 2)}
were introduced for a shorter notation. Also, the zeros at the empty positions of
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the matrix M0 where omitted. Looking closely at the dilation equation (5.40), it
becomes clear that the matrix can be constructed for any N by

M0; i,j =


√

2 h2i−j for 0 ≤ 2i− j ≤ 2N − 1,

0 otherwise,
(5.42)

where the indices for the rows i and columns j of the matrix go from 0 to
2N − 2 for a simpler notation. The “dilation equation for the integers” (5.41)
is an eigenvalue problem for the matrix M0 with the eigenvector Φ(0). For a
nontrivial solution, the eigenvalue λ = 1 must exist. The associated eigenvector
then contains the values of ϕ(x) at the integers.

Assuming that these values were obtained, the construction can be continued
with the intermediate points. Because the argument of ϕ only appears multiplied
by two on the right side of eq. (5.40), the values of ϕ(x) at the half-integers
also only depend on the values at the integers. Explicitly, when inserting the
half-integer values x = 1/2, x = 3/2, . . . , x = (N − 1)/2 into the dilation
equation (5.40), a similar set of equation as for the integers is obtained. Writing
the equations again explicitly in vector-matrix form for the case N = 3 yields

ϕ(1/2)
ϕ(3/2)
ϕ(5/2)
ϕ(7/2)
ϕ(9/2)

 =
√

2


h1 h0

h3 h2 h1 h0

h5 h4 h3 h2 h1

h5 h4 h3

h5




ϕ(0)
ϕ(1)
ϕ(2)
ϕ(3)
ϕ(4)

 = M1Φ(0). (5.43)

A construction rule for the matrix M1 is given by

M1; i,j =


√

2 h2i−j+1 for 0 ≤ 2i− j + 1 ≤ 2N − 1,

0 otherwise,
(5.44)

where again the indices for the rows i and columns j of the matrix start at
0. The values at the half-integers are therefore obtained by a simple matrix
multiplication:

Φ(1/2) = M1Φ(0) (5.45)
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The matrix M1 can be obtained from the matrix M0 by shfting the columns
to the right by 1 and then filling the first column with the odd coefficients.
The following will show that only these two matrices are required to obtain all
values.

Continuing in the same vein with the next intermediate values, for the
values at the quarter integers the scheme is already clear: Only the values at
the half-integers appear in the right side of the dilation equation (5.40). The
coefficient matrix required for this construction is also already known: it is the
matrix M0. Similarly, the values at the three-quarter-integers also only depend
on the values at half-integers but shifted by one compared to the values at the
quarter-integers. The corresponding matrix multiplications are therefore given
by

Φ(1/4) = M0Φ(1/2) = M0M1Φ(0), (5.46)

Φ(3/4) = M1Φ(1/2) = M1M1Φ(0). (5.47)

Continuing with this scheme, the values at all dyadic points, Φ(n/2j) with n
going over all odd integers smaller 2j, are obtained iteratively. The remaining
question is which of the two matrices M has to be multiplied from the left
to obtain the values at the next intermediate points: Each iteration (after the
first) yields two new dyadic points, t/2 and 3t/2, smaller and greater than the
previous point t. A handwaving explanation is, that for the calculation of the
values of the smaller points, the matrix M0 has to be used, while for the values
at the greater points multiplication with M1 has to be done. Mathematically,
the previous considerations yield the vector form of the dilation equation

Φ(t) = M0Φ(2t) +M1Φ(2t− 1), (5.48)

where Φ(t) is zero outside of 0 ≤ t < 1. For t = 0, the eigenvalue problem
of eq. (5.41) follows directly. Clearly for all points 0 < t ≤ 0.5 only the first
summand is non-zero, while for 0.5 < t < 1 only the second term contributes.
This formally explains the point about the order of multiplications to obtain
the value at a specific point. A better visualization of the order of matrix
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multiplications can be obtained by looking at the binary representation of t,
that is the argument of the vector Φ containing the desired point. Using the
examples of eq. (5.46), the binary representations are (1/4)10 = (0.01)2 and
(3/4)10 = (0.11)2. A binary 0 means the choice of the smaller dyadic point from
the previous iteration, while a binary 1 is the larger dyadic point. Therefore,
the digits can be associated with the required matrices: Each digit after the dot
represents now a matrix multiplication, where 0 stands for M0 and 1 for M1.
The vector recursion rule is therefore

Φ(0.t1t2t3 . . .)2 = Mt1Φ(0.t2t3 . . .)2, (5.49)

where the ti denote the digits of t in binary representation.

This concludes the introduction of the vector cascade algorithm to calculate
the values of the scaling function. The values of the wavelet function can
be obtained in a similar fashion. Nevertheless, a few details are still to be
discussed: For the construction of the values at the integers, the eigenvector of
M0 with the eigenvalue λ = 1 was assumed to exist. Without going into further
details here, if condition (5.29b) holds for the filter coefficients, as it does for
Daubechies wavelets, then M0 has a singular eigenvalue λ = 1. Furthermore,
the corresponding eigenvector is not unique. Multiplication by a scalar factor
still gives a solution to the eigenvalue problem. It can be shown that normalizing
the integer values to

∑
k

ϕ(k) = 1 (5.50)

yields a scaling function with the normalization∫
dx ϕ(x) = 1 (5.51)

that satisifies the orthonormality condition (5.25a).

Existence and construction of derivatives

For the usage in VES, at least the first derivative of the basis functions is re-
quired. While these could be obtained numerically, for example using Simpson’s
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rule, this is rather slow from a computational standpoint because it requires
evaluation of the function at several points. Instead, the derivatives of the scaling
and mother wavelet functions can also be created iteratively on a grid. Starting
point is once again the dilation equation (5.40). Taking the derivative of both
sides of the equation with respect to x yields

ϕ′(x) = 2
√

2
L

∑
k

hk ϕ′(2x− k). (5.52)

The chain rule gives a factor of 2 on the right side. Otherwise, only ϕ(x) was
replaced by its derivative ϕ′(x). Equation (5.52) is therefore another dilation
equation, just with the values of the coefficients doubled. To construct the
derivative, the vector cascade algorithm can be used again. The vector dilation
equation now reads

Φ′(t) = 2M0Φ′(2t) + 2M1Φ′(2t− 1), (5.53)

which shows that the same matrices M0 and M1 can be used for the cascade
after all entries have been doubled. Only the starting point of the cascade is
different: to obtain the values at the integers (t = 0) another eigenvalue problem

Φ′(0) = 2M0Φ′(0) (5.54)

has to be solved. The eigenvector yielding the values at the integers Φ′(0) is
now the one corresponding to the eigenvalue λ = 1/2 of M0.

Although the derivatives of higher order are typically not required for the
VES method, the general construction rule is now clear. The vector dilation
equation for the n-th derivative is given by

dnΦ(t)
dxn = 2nM0

dnΦ(2t)
dxn + 2nM1

dnΦ(2t− 1)
dxn , (5.55)

with the values at the integers given by the eigenvalue problem

dnΦ(0)
dxn = 2nM0

dnΦ(0)
dxn . (5.56)
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The derivative can only be obtained if λ = (1/2)n is indeed an eigenvalue of M0.
In Ref. 189 the required condition for the existence of the dyadic eigenvalues
was formulated in the frequency domain of the filters: If m0(ω) has a zero of
order p at ω = π, then the eigenvalues λ = (1/2)n with n < p of M0 exist. For
the Daubechies wavelets, the order of the zero at ω = π is equal to the number
of vanishing moments N of the wavelet. Therefore, for the Daubechies wavelet
with N vanishing moments, the first N − 1 derivatives can be obtained by the
presented method.

Of note is that these derivatives are not necessarily continuous. The con-
struction via the eigenvalue problem yields only the derivative from the right
at each point, which does not necessarily coincide with the derivative from the
left. Conditions for the existence of continuous derivatives are given in the next
section, 5.5.

The vector cascade algorithm was implemented in a standalone python
module that also generates Daubechies filter coefficients. Its source code can be
found in Appendix A.2

5.5 properties of daubechies wavelets

Support length

The domain of support or “length” of the wavelet and scaling functions depends
on the number of non-zero coefficients gk and hk, respectively. For Daubechies
wavelets, the number of coefficients for both is given by 2N, with the number of
vanishing moments N. The functions are then supported on [0, 2N− 1) and zero
outside. In Figure 5.1, wavelet and scaling functions for two different values
of N were shown, where the larger domain of support for larger N is clearly
visible.

Because the basis consists of integer-shifted functions, this means that a
higher value of N results in more overlapping basis functions at each point.
To cover a specific region at a fixed scale, a larger N therefore also requires
more basis functions. For the representation of the bias in VES, larger N allows
for better representation of features at the cost of more variational parameters
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to optimize. Therefore, the choice of N has to be weighed carefully for the
application under investigation.

Smoothness

The smoothness or regularity of a function is measured by differentiability
classes. A function is said to be in Cn if it has n continuous derivatives. For
wavelets, the theoretic maximum that can be achieved is equivalent to the
number of vanishing moments N− 1. The Daubechies wavelets are significantly
less smooth, an asymptotic formula for large N is given by ϕ(N), ψ(N) ∈ CcN

with c ≈ 0.2. For small N, the asymptotic formula does not hold, but explicit
values have been derived. The first derivative is continuous for N ≥ 2, and the
second for N ≥ 5.

To employ Daubechies wavelets as basis functions in VES, N ≥ 2 is therefore
required. In practice, only wavelets with significantly more vanishing moments
are used, so this limit is mostly of theoretical nature.



6
L O C A L I Z E D B A S I S F U N C T I O N S F O R V E S

In the last chapter, the fundamental theory of Daubechies wavelets was pre-
sented and a method for their construction on a grid was introduced. Here,
their usage as basis functions for the VES method will be described. Besides
the Daubechies wavelets, two additional sets of localized basis functions are
introduced in Sections 6.2 and 6.3, Gaussians and cubic B-splines, respectively.
Afterward, Section 6.4 provides technical aspects of the implementation of the
basis functions into the VES code. In Section 6.5, first small studies on the
optimal choice of the basis function parameters are be presented, before more
comprehensive simulations that benchmark the different basis sets are given in
the next chapter.

6.1 daubechies wavelets

For the usage of Daubechies wavelets as basis functions in the VES method,
several choices have to be made. When looking at eq. (5.23), three choices
become apparent directly: (1) the number of approximation levels l, (2) the exact
type of the wavelets ϕ(x), ψ(x), and (3) the scale of the father wavelet j.

Here, the focus will be on the coarsest approximation only, which corre-
sponds to representing the bias with a single level of father wavelets at some
scale j

V(s,α) = ∑
k

αkϕ
j
k(s), (6.1)

85
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with the shift parameter k ∈ Z. Therefore, when the term wavelet is used in the
following, it always refers to the father wavelets.

The wavelet type is determined by the set of filter coefficients hk, as in-
troduced in eq. (5.24). Desirable properties for the employment as VES basis
functions are small support of the individual functions, at least C1 regular-
ity (one continuous derivative), and the reproduction of polynomials up to a
desired order.

The wavelets developed by Daubechies and presented in Section 5.3 satisfy
these properties and in fact result in the minimally supported functions for a
given polynomial order. Here, the “least asymmetric” variant of these wavelets
or so-called symlets [26] will be considered. In practice, the symlets were found
to perform better than the “maximum phase” Daubechies wavelet type. Their
smaller asymmetry comes at the cost of slightly reduced regularity compared to
the “maximum phase” Daubechies wavelets. As only one continuous derivative
is required for VES basis functions, that does not cause problems. The specific
symlet type will be denoted by SymN, where N is equal to the number of
vanishing moments, introduced in eq. (5.30). Recalling from Section 5.5, having
N vanishing moments means that all polynomial functions up to order N − 1
are orthogonal to the mother wavelet. Consequently, any polynomial of order up
to N− 1 can be represented exactly by a single level of the father wavelet ϕ (i.e.,
the scaling function). Employing a wavelet basis with a larger N can thus help
to construct a bias potential with less regularity and steeper slopes. On the other
hand, the range over which the wavelet functions are non-zero is proportional
to 2N − 1. A larger support results in more overlap between functions since the
basis consists of functions shifted by a fixed amount depending on the scale.
Therefore, larger N requires more basis functions to cover a specific region at
a fixed scale j. A study of the optimal number of vanishing moments for an
exemplary test system will be given in Section 6.5.2.

The scale j of the wavelet basis can be chosen freely. Instead of determining
the scale directly, in the following the desired number of basis functions Nbf will
typically be selected. In principle, the sum of eq. (6.1) goes over all integers and
there is an infinite number of shifted wavelet functions in the basis. However,
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only a few of them are supported inside the range [a, b] on which the bias
potential is expanded.

To determine the scale j of the wavelet, the number of integer shifted wavelets
that is at least partially supported inside he bias range has to be calculated as a
function of j. Setting n ··= 2−j in eq. (5.18) yields

ϕn
k (x) =

√
2n ϕ(nx− k). (6.2)

For a given n, the smallest possible number of wavelet basis functions Nbf

contained within the bias range (by setting the start of the first function at
the left edge and the endpoint of the last function at the right edge) is then
determined to be

Nbf = l + n(b− a)− 2, (6.3)

where l is the intrinsic support length of the wavelets (here typically l = 2N− 1,
with N being the number of vanishing moments). The first term accounts for all
shifts due to the length of the functions, the second term adds the functions to
be considered due to the length of the bias interval (in the scale of the wavelets),
and 2 functions can be subtracted at the edges. Setting a fixed number of basis
functions Nb f , the smallest scale that has only this many wavelet functions in the
bias range is obtained by solving eq. (6.3) for n and then taking the logarithm,
which yields

j = − log2(n) = − log2

(
Nbf − l + 2

b− a

)
. (6.4)

As an example, consider expanding the bias in the CV range [−3, 3] with 21
wavelet functions of the Sym8 type. Then n = 4/3 and j = − log2(4/3) ≈ −0.42.
The chosen approach does not result in integer values for j as introduced for the
wavelet transform in eq. (5.7), but this is not a requirement for the application
in the presented case.

Each wavelet function has a support length of l/n in CV space. In the given
example, this would result in each function spanning 11.25 of the CV space,
which is larger than the length of the expanded bias. Because the wavelet
functions have values significantly different from zero only on a small part of
their domain, as it can be seen in Figure 5.1, the scale is typically chosen smaller.
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Only the ϕ
j
k that are at least partially supported and have major contributions

inside the bias range are selected for the linear expansion of the VES bias. By
omitting the ones at the edges that have only small values within the bias range,
the number of basis functions can be reduced while only introducing minor
deviation from the full basis. The amount of contribution of a basis function is
here measured relative to the maximum value: Only the ϕ

j
k with any (absolute)

function value inside the bias range that is at least 1 % of the maximum value
are included for the expansion of the bias. To exclude these “tail wavelets”
from the basis set, the required scaling j is calculated by replacing l with the
“relevant” length of the wavelet in eq. (6.4) to arrive at the desired number
of basis functions. In the simulations, there were no observed disadvantages
from excluding wavelets with minor contributions, while it allows reducing
the number of expansion coefficients to optimize. In the given example with
21 Sym8 basis functions in the range [−3, 3], this changes the scale to j ≈ −1.5
and each basis function now spans 5.32 in CV space, which is less than half
compared to before. In Section 6.5.2, the influence of the number of basis
functions on the resulting bias approximation is investigated for a small test
system. The top left panel of Figure 6.1 exemplarily shows two adjacent basis
functions for a Sym8 basis.

It is also possible to use the wavelet basis to approximate a bias potential
on a periodic CV. The scaling is then chosen such that there is exactly one
basis function that would start at each the left and right border of the CV space.
These two then coincide for a periodic CV and only one of them is included in
the basis set.

Implementation in the VES code

The function values, as well as their derivatives, are constructed on a grid
via the vector cascade algorithm of Section 5.4. The size of the grid can be
specified with the input, for the present purpose a rather large grid of at least
1,000 points is used. Because the algorithm iteratively creates grid points at the
dyadic points between the integers, the actual size of the grid depends on the
support of the chosen wavelet. For example, when using the Sym6 wavelets that
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Figure 6.1: Visualization of different basis functions to expand a VES bias potential in
the range x ∈ [−3, 3]. The Sym8 wavelets, Gaussians, and cubic B-splines are localized
basis functions. For these, only two adjacent functions are shown exemplarily, while
the full basis set includes all shifted functions in the interval with the same spacing.
Each shown localized basis consists of 22 functions and the width of the Gaussians is
set to σ = 3d/4. For comparison, the bottom right panel shows Legendre polynomials
as an example for delocalized basis functions. The Legendre basis set consists of all
polynomials up to a certain order, the figure shows the functions up to the quartic
polynomial.

are supported on [0, 11) this approach results in finding the smallest integer n
for which 11 ∗ 2n ≥ 1000. The smallest n ∈ Z for which this inequality holds
is 7 and results in a grid with 1408 points. Between these grid values, linear
interpolation is used to obtain values at all desired points.

The implementation offers two options to specify the scaling of the basis
functions. Beside the already mentioned specification of the number of basis
functions, there is also the possibility to give the support length of the basis
functions. The scaling of the functions is then directly defined and the code
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includes all basis functions with significant contributions inside the bias range,
just as in the other case (see eq. (6.3) for the calculation of the resulting number
of basis functions). Additionally, in both cases a constant basis function is
included in the basis set.

6.2 gaussians

Gaussian basis functions are given by the mathematical expression

fi(x) = exp

(
− (x− µi)

2

2σ2

)
, (6.5)

where µi is the center of the individual Gaussian and σ is a width parameter. In
the present work, the width parameter is kept constant for all basis functions.
The full basis set is then given by Gaussians functions with centers distributed
evenly on the interval [a, b]. The first center is added at µ0 = a and the shift
between centers is defined as d = µi − µi−1 = (b− a)/N, where N is a user-
specified integer fixing the number basis functions.

To mitigate systematic errors at the boundaries, one additional function
with center outside the range is included on each side, resulting in a total of
N + 4 basis functions including a constant basis function. As the force from
the VES bias is zero outside the chosen interval by design, these additional
functions will only contribute inside the bias range, similarly to the boundary
correction approach for Metadynamics that was proposed by Baftizadeh et
al. [118]. Although more complicated boundary correction algorithms have been
developed [196, 197], this simple approach has been found to work well for the
VES method.

To employ Gaussians for a periodic CV, the basis functions centered on the
right and left border have to coincide. The functions centered outside the CV
range, as well as one function centered on the border, are then excluded from
the set, resulting in only N + 1 basis functions.

Besides the number of basis functions, the width σ of the Gaussians is
also a parameter that can be chosen freely. Keeping the distances between the
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Gaussians fixed, a larger value of σ results in more overlap between the basis
functions. In Section 6.5.3 the influence of this parameter is investigated for a
test system. The top right panel of Figure 6.1 visualizes the Gaussian basis set
by showing two adjacent functions. For this example, the width parameter is
set to σ = 3d/4.

6.3 cubic b-splines

As the last localized basis function to be considered here, the cubic B-spline
basis functions from Ref. 185 are chosen. They are given by the mathematical
expression

fi(x) = h
(

x− µi

σ

)
, (6.6)

where

h(t) =


(2− |t|)3, 1 ≤ |t| ≤ 2,

4− 6|t|2 + 3|t|3, |t| ≤ 1,

0, elsewhere.

(6.7)

The parameter µi is the center of the cubic B-spline basis function and σ sets the
width of the splines (for µi = 0 they are non-zero in the range x ∈ [−2σ, 2σ]).
The full basis set is then given by spline functions with centers distributed evenly
on the interval [a, b]. The first center is set on the left boundary µ0 = a and
the shift between between the centers is defined as d = µi − µi−1 = (b− a)/N,
where N is a user-specified integer fixing the number basis functions. Similar
to the Gaussian basis functions, one function on each side outside the range is
added to avoid boundary effects. This results in a total of N + 4 basis functions
including a constant function.

For a periodic bias, the same strategy as for the Gaussian basis is chosen:
The basis functions centered on the right and left border coincide and the ones
outside the CV range are excluded. This results in N + 1 basis functions in the
periodic range.
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Differently from the Gaussian basis, the width parameter σ of the spline
basis function is fixed and has to be equal to the distance between centers, σ = d.
Therefore, the overlap between adjacent splines is fixed and the only parameter
to be chosen is the number of splines to represent the bias. The bottom left
panel of Figure 6.1 shows two adjacent splines of an exemplary basis with 22
functions in the range [−3, 3].

6.4 implementation into the ves code

The new basis functions were implemented into the VES code. The VES code
is a module of the PLUMED2 software [38, 39], which is written in C++ and
publicly available under the LGPL license. The contributions discussed in this
chapter have been made available for general use. They can be found in release
version 2.8 and newer of the code, which is available in the GitHub repository
(https://github.com/plumed/plumed2).

While it is straightforward to implement Gaussians and splines, wavelets
pose the problem of not having an analytic mathematical expression. Instead, at
the beginning of the simulation, the values and derivatives of the wavelet are
generated on a grid through the vector cascade algorithm that was presented in
Section 5.4. The grid is then used as a lookup table during the simulation. This
means that the computational overhead for using a wavelet basis is minimal.

Modification of optimization scheme

As localized functions are non-zero only in a small region of the total CV
space, the existing optimization schemes might behave suboptimally under
some circumstances. The reason for this can be understood when looking at
the gradient of the functional that was given in eq. (3.34a). It has two terms, of
which the first is obtained from sampling and the second via averaging over the
target distribution. If no sampling has occurred in the region of a basis function,
the first term will be zero. Still, the gradient element for the basis function
might be non-zero due to the average over the target distribution in the second
term. This can actually be desired: the resulting positive gradient transports

https://github.com/plumed/plumed2
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the message that the observed sampling (weighted with the individual basis
function) is less than what is wanted by the target distribution. The optimization
scheme will then try to increase the sampling in the region represented by the
basis function. For localized basis functions, this means that the bias will become
lower or even negative in the regions that are not visited between iterations
of the bias potential. This might lead to a situation similar to the one in the
non-well-tempered metadynamics method: the bias is never becoming static
but continues to gradually change by a constant over the whole range. While
this is not critical for running a biased simulation, it limits the predictions that
can be drawn directly from the bias.

This can be circumvented by increasing the time between bias iterations
such that all regions are sufficiently visited, at the cost of longer times until the
bias has converged. Also, the time required for sampling all regions is changing
during the simulation: In the initial stages the bias is still building up and
transitions between the regions will likely be slower than in the later parts of
the simulation.

Therefore an alternative approach is taken here that modifies the optimiza-
tion scheme slightly: If there is no sampling in the region of a basis function
during one iteration of the bias potential, the elements of gradient and Hes-
sian corresponding to that basis function are set to zero before updating the
variational parameters. Setting them to zero prevents erroneous updates of
variational parameters if no sampling occurred. Note that this procedure is
done only for individual elements so the total gradient vector and Hessian
matrix still include non-zero elements.

In practice, it is not always clear what the “region” of a basis function is.
For example, the Gaussians are theoretically non-zero everywhere, although
the values far from the midpoint are vanishing small. Therefore, the criterion
for turning off the optimization of a coefficient is implemented by setting a
threshold value for the sampling: The elements of the gradient and Hessian are
set to zero if the average from sampling (the first term in eq. (3.34a)) is smaller
than a user-specified value. For all simulations presented in the following, this
threshold is set to 10−6.



94 localized basis functions for ves

6.5 determination of optimal parameters

Before benchmarking studies between the different basis sets are performed,
the influence of the parameters of the individual basis set shall be investigated
separately. For all three localized basis sets, this includes the number of basis
functions. The wavelet basis can also be used with wavelets of different types.
Since initial tests showed good results for the Symlet family, the following will
test only the different members of this family, distinguished by their number of
vanishing moments N. The Gaussian basis additionally has a width parameter
σ that can be varied.

6.5.1 Test system: Langevin dynamics in 1D double-well potential

To be able to run many simulations with different parameters, a small toy
system is employed. The VES code includes the ves_md_linearexpansion com-
mand line tool, which is an implementation of the Bussi-Parinello integrator for
Langevin dynamics [48]. The integrator was presented in Section 2.2 and the ex-
act steps of the algorithm are given by eq. (2.20). The ves_md_linearexpansion

allows specifying an artificial potential in which the movement of a single
particle is simulated.

Here, a simple one-dimensional potential of the form

U(x) = x4 − 4x2 + 0.7x (6.8)

is considered. It has two states separated by a barrier from left to right of
around 5 energy units. The form of this potential can be seen in Figure 6.2. The
x-coordinate is taken as the CV such that the reference FES will be given by
the potential above, F(x) = U(x) (up to an additive constant). Natural units are
used for all values and parameters. For better comparison, the parameters of
the Langevin dynamics are set to the same values for all following simulations:
The temperature is set to T = 0.5/kB such that the barrier height from left to
right is about 10 kBT. Also, a time step of δt = 0.005 and a friction coefficient
of γ = 10 is chosen. Each simulation is run for 5× 106 steps. To minimize the
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Figure 6.2: The free energy surface corresponding to the double-well potential given by
eq. (6.8) at temperature T = 0.5/kB.

influence of the initial conditions, 20 independent simulations are run for each
basis set. The simulations are started in the global minimum of the potential (at
x = −1.41) and are given different random seeds for the initial velocities and
random forces.

Left to set are the parameters of the VES method. The bias is expanded in the
range x ∈ [−3, 3] with the coefficients α of the bias potential being updated every
500 time steps. A uniform target distribution is employed. For the optimization,
the averaged stochastic gradient descent optimization algorithm of eq. (3.29) is
used. Its stepsize parameter is set to µ = 0.5.

To analyze the performance of the basis set, the RMS error of eq. (3.49)
is chosen. For each simulation, the FES is determined directly from the bias
every 5 × 104 steps via eq. 3.21. For each FES estimate, the RMS error ϵ is
calculated, where the reference FES is obtained directly from the potential. The
time evolution of the average value ⟨ϵ⟩ and the standard error σ̂ϵ over all 20
simulations of the basis set are then used for comparison with the other sets.

While some insight can already be gained by plotting the time evolution of
the average RMS error, two points will be investigated explicitly: (1) The time
required for the average error to become lower than a certain threshold value,
and (2) the value of the average error at the end of the simulation. The first
gives an insight into how fast the FES converges to a good approximation of



96 localized basis functions for ves

the reference. The threshold value will be set individually to match the data at
hand. The idea is to set it that the bias has mostly converged after reaching the
threshold and only minor changes are observed afterward. The second point, in
form of the final value of the average error, assesses how good the correct FES
can be represented by the chosen set. To flatten possible fluctuations even at
long times, an average over the last 10 available times is chosen.

6.5.2 Daubechies wavelets basis functions: vanishing moments and number of basis
functions

As discussed in Section 6.1, two parameters can currently be adjusted when
using a wavelet basis in VES. The first parameter of the basis is the type of
wavelet functions to be used. Focusing on the Symlet family, the parameter to
tune is the number of vanishing moments N. Father Wavelets with N vanishing
moments can locally represent polynomials up to order N − 1 well, so steeper
slopes require wavelets with more vanishing moments. With increasing van-
ishing moments also the regularity of the wavelet increases, at the cost of a
larger range at which they are non-zero if used at the same scale. When instead
keeping the number of basis functions fixed, a larger N results in a larger scale.
These properties can be seen in Figure 6.3, where bases constructed by different
Symlets are given.

The performance of different Symlet types (Sym4 to Sym12) was tested
for the one-dimensional double-well potential using the setup explained in
Section 6.5.1. As threshold for the error, ϵ = 0.3 kBT is chosen. The results are
shown in Figure 6.4.

With an increasing number of vanishing moments, the individual basis func-
tions overlap more and are thus able to represent features of higher polynomial
order. While Sym4 wavelets result in only a very coarse approximation that
fails to reach the area of ϵ < 0.3 kBT, starting at Sym6 there are only minimal
differences to be seen. The standard deviation of the error also does not show
substantial differences between the different basis functions. Concludingly, there
is a minimum number of vanishing moments N to properly represent the un-
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Figure 6.3: Visualization of different types of Symlet bases expanding a VES bias in the
range x ∈ [−3, 3]. The Sym8 wavelets can be seen in Figure 6.1. Each basis consists of 22
shifted functions of the same type. Per basis set only two adjacent functions are shown,
while the complete basis includes all shifted wavelets in the given range with the same
spacing. Visible is the increasing length on which the individual wavelet functions
are defined, from only slightly over 2 units to more than the full CV range of 6 units.
This results in more overlapping functions when using wavelets with more vanishing
moments, which makes more “irregular” features, i.e. features of higher polynomial
order, representable. Also, the regularity of the wavelet increases from rougher spikes
at Sym4 to smooth wave-like “oscillations” at Sym12.

derlying free energy surface of the system. This minimum number of vanishing
moments depends on the shape of the free energy and can therefore vary. Based
on these results, Sym8 wavelets were chosen for the benchmark simulations in
the paper.

Secondly, the scaling of the individual basis functions can be chosen. This is
equivalent to choosing the number of basis functions in the range of the bias.
Using more basis functions allows representing finer features better. Therefore,
simulations with different numbers of Sym8 basis functions were conducted
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Figure 6.4: Study of different numbers of vanishing moments for the wavelet basis sets.
Left panel: Average and standard error of the RMS error ϵ for different wavelet types as
a function of the bias iterations. For each line, 20 independent simulations with 22 basis
functions of a specific wavelet type were run, the form of the different functions can be
seen in Figure 6.3. The shaded areas show the standard error and the black dashed line
denotes the threshold value of ϵ = 0.3 kBT.
Right panel: Required number of bias iterations until the threshold value is reached,
together with the final error at the end of the simulation for the different basis sets. The
number of iterations is missing for Sym4 wavelets because the required accuracy was
not reached.

on the double-well potential. Again, the protocol of Section 6.5.1 is used. The
resulting time evolution of the root mean square errors are given in Figure 6.5,
together with the time until the threshold error of ϵ < 0.3 kBT is reached and
the error at the end of the simulation.

The results show that there is a minimum number of basis functions required
to represent the bias adequately. Using only 14 basis functions did not result
in a good approximation of the FES, while good results were obtained when
increasing the number of basis functions to around 20. A good representation
is possible starting at 18 basis functions but even better with 22. Adding more
basis functions does not improve the situation further and the final RMS errors
differ not significantly. It is of note that using more basis functions leads to
a higher number of coefficients to be optimized. The introduction of more
optimization parameters complicates the optimization and slows convergence.
Adding more basis functions after the basis can already adequately represent
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Figure 6.5: Study of different numbers of basis functions for the Sym8 basis set.
Left panel: Average and standard error of the RMS error ϵ for different numbers of Sym8
wavelet basis functions as a function of the bias iterations. For each line, 20 independent
simulations with the specified number of basis functions were run. The shaded areas
show the standard error and the black dashed line denotes the threshold value of
ϵ = 0.3 kBT.
Right panel: Required number of bias iterations until the threshold value is reached,
together with the final error at the end of the simulation for the different basis sets. The
number of iterations is missing for 14 basis functions because the required accuracy
was not reached.

the features of the system might thus lead to worse performance. This is visible
when looking at the number of required iterations until the threshold error
is reached: Increasing the number of basis functions above 22 yields slower
convergence of the bias. In general, though, using too many basis functions is
better than using too few.

6.5.3 Gaussian basis functions: width parameter and number of basis functions

As discussed in Section 6.2, in principle, the width parameter σ of Gaussian
functions, that was defined in eq. (6.5), can be adjusted freely. In Ref. 19,
where Gaussian basis functions had been previously employed for VES, σ = d
was chosen, with d being the distance between centers of adjacent Gaussians.
To evaluate the influence of different choices, simulations with the protocol
described in Section 6.5.1 are performed. Only basis sets with the same width
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parameter for all Gaussian functions are considered. The number of basis
functions is set to 22, which fixes the centers of the Gaussians, and the width
parameter is varied in the range σ ∈ [0.5d, d]. A width of σ = 0.5d latter results
in an only slightly larger overlap than the full width at half maximum of
the Gaussians. The obtained errors of the FES approximations can be seen in
Figure 6.6, together with the time until a threshold error of ϵ < 0.5 kBT is
reached and the error at the end of the simulation.
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Figure 6.6: Study of the width parameter σ of the Gaussian basis sets.
Left panel: Average and standard error of the RMS error ϵ for different values of
the Gaussian width parameter σ as a function of the bias iterations. For each line,
20 independent simulations with the same parameters were run. The width of the
Gaussians is given in units of the distance between the centers of the Gaussian d. The
shaded areas show the standard error and the black dashed line denotes the threshold
value of ϵ = 0.5 kBT.
Right panel: Required number of bias iterations until the threshold value is reached,
together with the final error at the end of the simulation for the different basis sets.

The time evolution of the RMS error shows only minor differences for all
but the extremal choices. It can be seen that a too small choice (σ = 0.5d) results
in a basis set that is not able to represent the underlying FES very well, as the
error stays constant on a moderate level after the initial phase. On the other
hand, the choice of Ref. 19 (σ = d) works well but can be improved further. Of
note is that the bias did not converge correctly for this choice in 2 out of the
20 simulations. As non-converged simulations would largely impact the values
of error measures, these were excluded and replaced by analog simulations.
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Similar problems could not be observed with narrower Gaussians. On the
contrary, choosing a smaller width parameter results in a significantly better
approximation at short times. The time until the threshold error is reached
reduces drastically when using smaller Gaussians compared to the choice σ = d.
As a good middle ground, the range σ ∈ [0.6d, 0.9d] gives the best results for
this system. Within that range, the results are rather robust with respect to
parameter changes. For the further studies, a value of σ = 0.75d is chosen.

As second parameter of the basis set, the number of basis functions is
investigated using the same range as for the Sym8 wavelets in the previous
section. Again, the protocol of Section 6.5.1 is used. The width of the Gaussians
is set to σ = 0.75d and the number of basis functions is varied in the range
Nbf ∈ [14, 34]. For each basis set, the quality of the obtained FES is assessed.
The results are given in Figure 6.7.

0.0

0.5

1.0

1.5

 0  5000  10000

R
M

S
 e

rr
o
r 
ε 

[k
B
T
]

Bias Iterations Niter

Nbf
14
18
22

26
30

 0

 2000

 4000

 6000

 14  18  22  26  30  34
0.0

0.2

0.4

0.6

N
it

e
r 

u
n
ti

l 
ε 

<
 0

.5
 k

B
T

ε a
t N

ite
r =

1
0

0
0

0
 [k

B T
]

Number of Basis Functions Nbf

Figure 6.7: Study of different numbers of basis functions for the Gaussian basis set.
Left panel: Average and standard error of the RMS error ϵ for different numbers of
Gaussian basis functions as a function of the bias iterations. For each line, 20 indepen-
dent simulations with the specified number of basis functions were run. The shaded
areas show the standard error and the black dashed line denotes the threshold value of
ϵ = 0.5 kBT.
Right panel: Required number of bias iterations until the threshold value is reached,
together with the final error at the end of the simulation for the different basis sets. The
number of iterations is missing for 14 basis functions because the required accuracy
was not reached.
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For this study, the trend within the investigated range is very clear: A higher
number of Gaussian basis functions results in a better approximation of the
FES at the end of the simulation. When fewer than 20 basis functions are
used, only a very coarse representation of the bias is possible. On the other
hand, for more than 20 basis functions, the differences are minimal and only
slight improvements can be seen, when adding more basis functions. The time
until the threshold error of ϵ = 0.5 kBT is reached shows a minimum in the
investigated range, that is at 30 basis functions. Due to the increased number
of optimization coefficients, it is expected that increasing the number of basis
functions beyond the investigated maximum of 34, would further increase the
time until a good approximation is obtained. For fewer basis functions, the time
gradually increases until the condition is no longer met within the simulation
time when using only 14 basis functions. Still, already for 22 basis functions
both the approximation and the time of convergence do not differ significantly
from the best results. For a fair comparison with the other localized functions,
this number will be used in the following.

6.5.4 Cubic B-spline basis functions: number of basis functions

The basis set consisting of cubic B-splines has only the number of basis functions
as a tunable parameter. Using the same protocol as before (Section 6.5.1), VES
simulations with spline bases and different numbers of basis functions are
performed. The obtained error of the FES approximations is given in Figure 6.8,
together with the time until a threshold error of ϵ < 0.5 kBT is reached and the
error at the end of the simulation.

When using a spline basis, a good representation of the FES at the end of the
simulation is obtained for all sets with fewer than 30 basis functions. If only 14
are used, the number of iterations until the threshold of ϵ < 0.5 kBT is reached
is significantly longer than for 18 ≤ Nbf ≤ 26. The best approximation with
the fastest convergence is obtained with 22 basis functions. Starting from 30
basis functions, the results from the individual simulations differ significantly
and some of them do only yield a very coarse approximation. Although a
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Figure 6.8: Study of different numbers of basis functions for the cubic B-spline basis set.
Left panel: Average and standard error of the RMS error ϵ for different numbers of
cubic B-spline basis functions as a function of the bias iterations. For each line, 20
independent simulations with the specified number of basis functions were run. The
shaded areas show the standard error and the black dashed line denotes the threshold
value of ϵ = 0.5 kBT.
Right panel: Required number of bias iterations until the threshold value is reached,
together with the final error at the end of the simulation for the different basis sets.

good approximation is still obtained most of the time, the large differences
between runs and the possibility of obtaining clearly subpar results signals that
great care has to be taken to not use too many basis functions for the cubic
B-spline basis set. For comparison simulations with the other basis sets in the
next section, 22 basis functions will be used.
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7
V E S S I M U L AT I O N S W I T H L O C A L I Z E D B A S I S F U N C T I O N S

To evaluate the performance of the new basis functions, simulations on different
systems are performed, going from model potentials in one and two dimensions,
to a realistic system of the association process of calcium with carbonate in
water. Their performance is compared to VES simulations with global functions
(Legendre or Chebyshev polynomials, whichever is found to perform better) and
in the case of calcium carbonate association also to well-tempered metadynamics
simulations.

The data supporting the results of this chapter is openly available at Zen-
odo [198] (DOI: 10.5281/zenodo.5851773). All the input files and analysis
scripts required to reproduce the reported results are available on PLUMED-
NEST (www.plumed-nest.org), the public repository of the PLUMED consor-
tium [39], as plumID:22.001 at https://www.plumed-nest.org/eggs/22/001.
The presented results are also currently under preparation for a publica-
tion [199].

7.1 one-dimensional double-well potential

The first system to be considered is the one already used for determining
optimal parameters of the localized basis sets in Section 6.5. A single particle is
moved in an artificial potential of the form

U(x) = x4 − 4x2 + 0.7x (7.1)

105

https://doi.org/10.5281/zenodo.5851773
https://www.plumed-nest.org/eggs/22/001
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using the ves_md_linearexpansion tool of the VES code as a Langevin dynam-
ics solver.

The same setup and parameters that were specified in Section 6.5.1 are
used: The temperature is set to T = 0.5/kB, such that the barrier height from
left to right is about 10 kBT. The friction coefficient is set to γ = 10 and each
simulation is run for 5× 106 steps with time step δt = 0.005.

Using the x-coordinate of the potential as the CV, the reference FES is given
by the potential of eq. (7.1), F(x) = U(x), ignoring an additive constant. The
reference FES, together with estimates from an exemplary simulation, can be
seen in the left panel of Figure 7.1. VES Simulations with four different basis sets
are run, Sym8 wavelets, Gaussians, cubic B-Splines, and Legendre polynomials.
The number of basis functions is fixed to 22 for each set. The VES bias is
expanded in the range x ∈ [−3, 3] and the coefficients α of the bias potential
are updated every 500 time steps. A uniform target distribution is employed.
For the optimization, the averaged stochastic gradient descent optimization
algorithm of eq. (3.29) is used. The stepsize parameter µ of the optimization
algorithm is adjusted to yield the fastest convergence for each basis set. It is
set to µ = 0.5 for simulations using localized basis functions and decreased to
µ = 0.1 for the simulations with Legendre polynomials. For each basis set, 20
independent simulations are run. These are started in the global minimum of
the potential (at x = −1.41) with different random seeds for the initial velocities
and random forces.

The performance of the basis functions is evaluated by the RMS error given
in eq. (3.49). Analog to the protocol of Section 6.5, the FES is determined
directly from the bias every 5× 104 steps via eq. 3.21. For each FES estimate,
the RMS error ϵ is calculated, where the reference was obtained directly from
the potential. The time evolution of all simulations can be seen in Figure 7.2.

For better comparison, the time evolution of the average value ⟨ϵ⟩ and the
standard error σ̂ϵ is also calculated. It is given in the right panel of Figure 7.1. It
can be observed that, on average, the FES (or equivalently the bias) converges
considerably faster with the localized basis functions than with the delocalized
Legendre polynomials. Furthermore, the localized basis functions converge to a
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Figure 7.1: Results for VES simulations with different basis sets on the one-dimensional
double-well potential.
Left panel: The reference FES, along with the FES estimates obtained directly from the
bias using the wavelet basis functions at different number of bias iterations for one
exemplary run. The estimates have been shifted such that min F(x) = 0.
Right panel: The RMS error of the FES directly from the bias for the different basis
functions as a function of the number of bias iterations. The lines denote the average
over 20 independent runs and the shaded areas the corresponding standard error.

better estimate of the FES as indicated by the smaller RMS error. The wavelets
perform the best of the three localized basis functions.

Noticeable in the right panel of Figure 7.1 are also considerably larger
fluctuations in the average RMS error and larger standard error for the Legendre
polynomials. The reason for this is twofold, as can be seen by looking at
the RMS error for the individual runs, which is given in Figure 7.2. First,
focusing on the difference between Sym8 wavelets and Legendre polynomials,
the bias potential (and thus the error of the FES) is fluctuating more when
using Legendre polynomials than with Sym8 wavelets within each individual
simulation. Second, there is a more significant difference between the runs
for the Legendre polynomials. In comparison, the wavelets show much more
robust behavior with considerably smaller fluctuations within individual runs
and smaller differences between runs. A similar effect can be seen for the
Gaussians and cubic B-splines, though they do not behave as well as the wavelets.
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Figure 7.2: RMS error of the FES of all conducted VES simulations on the one-
dimensional double-well potential.
Each panel shows the obtained RMS error of the FES calculated directly from the bias
potential as a function of the number of bias iterations for a different basis set (top left:
Sym8 wavelets, top right: Gaussians, bottom left: cubic B-splines, bottom right: Legendre
polynomials). Each dashed line gives the result for an individual run, while the solid
lines denote the average over the 20 runs and the shaded areas the corresponding
standard error.

Therefore, for this simple system, already the benefits of using localized basis
functions are visible.

7.2 two-dimensional wolfe-quapp potential

The second model potential to be considered is the two-dimensional Wolfe-
Quapp potential [200, 201], given by

U(x, y) = x4 + y4 − 2x2 − 4y2 + xy + 0.3x + 0.1y. (7.2)
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The potential has two states separated by a barrier along the y-coordinate,
while the system is relatively mobile along the x-coordinate. Still, due to a
strong coupling between the x- and y-coordinate, it is essential to consider
both coordinates as biased CVs to get a good sampling. Both the x-coordinate
and the y-coordinate are taken as CVs, such that the reference FES will be
given by the potential, F(x, y) = U(x, y) (up to an additive constant). The
reference FES can be seen in Figure 7.3 along with projections on the x- and
y-coordinates. Using the VES method, both CVs are biased in the interval [−3, 3].
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Figure 7.3: The reference FES of the Wolfe-Quapp system given by eq. (7.2) along with
free energy projections on the x- and y-coordinates.

The two-dimensional bias potential is thus expanded in a tensor product basis
set of one-dimensional basis functions. For each CV, 22 one-dimensional basis
functions are used, resulting in 484 two-dimensional basis functions in total.
The temperature is set to T = 1/kB. Using the averaged stochastic gradient
descent optimization algorithm, the stepsize parameter is set to µ = 0.5 for all
simulations. For each basis set, 20 independent simulations are run, where the
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Figure 7.4: RMS error for VES simulations with different basis sets on the two-
dimensional Wolfe-Quapp potential.
Shown is the RMS error of the FES directly from the bias for the different basis functions
as a function of the number of bias iterations. The lines denote the average over 20
independent runs and the shaded areas the corresponding standard error.

particle is initially placed in the global minimum at {−1.17, 1.48}. Otherwise,
the same basis functions and simulation parameters are employed as for the
one-dimensional potential in the previous section.

Analog to the protocol of the previous section, the FES is determined directly
from the bias every 5 × 104 steps via eq. (3.21). For each FES estimate, the
RMS error ϵ is calculated, where the reference was obtained directly from the
potential. The time evolution of the average value ⟨ϵ⟩ and the standard error σ̂ϵ

is presented in Figure 7.4. Except for the cubic B-splines, similar trends as for
the one-dimensional system in the previous section can be seen. The simulations
using localized basis functions reach a small RMS error much faster than the
Legendre polynomials. For this system, the final error of the simulations with
Gaussians is of the same order as for the Legendre polynomials, while the final
error with Sym8 wavelets is still smaller. The simulations with cubic B-splines
perform the worst of all the basis functions and do not yield usable results for
this system. The standard error of the simulations with Legendre polynomials
is also larger than for simulations with Gaussians or wavelets.

To further investigate, the free energy difference between the two main
states is calculated. Because the main contributions come from the regions
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with low free energy, the exact definition of the two states has only minor
influence as long as it includes the area around the minimum at {−1.17, 1.48}
and {1.12,−1.49}, respectively. Thus, for simplicity the y = 0 line is chosen to
separate the states, that is A : y ∈ [−3, 0) and B : y ∈ (0, 3]. From the potential
of eq. (7.2), the reference value ∆Fref = 0.223 is calculated.

In Figure 7.5, the free energy difference between the two states is shown
for all four basis sets as a function of bias iterations for the individual runs
together with the average value. Here, the previously given analysis can be
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Figure 7.5: Free energy difference estimates of all conducted VES simulations on the
two-dimensional Wolfe-Quapp potential.
Each panel shows the obtained free energy difference ∆F (Section 3.4, eq. 3.51) between
the two states separated by the y = 0 line as a function of the number of bias iterations
for a different basis set (top left: Sym8 wavelets, top right: Gaussians, bottom left: cubic
B-splines, bottom right: Legendre polynomials). Each dashed line gives the result for
an individual run, while the solid lines denote the average over the 20 runs and the
shaded areas the corresponding standard error. The reference value of ∆Fref = 0.223 is
shown as black solid line.
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further refined: The wavelet simulations exhibit far smaller fluctuations within
individual runs than all other simulations, with the Gaussians coming a close
second. The individual runs of the Legendre polynomials fluctuate most during
the simulation time. This can also be seen when looking at the average value:
For simulations with Gaussians and especially Sym8 wavelets, the average value
shows only minor fluctuations after an initial transient. It is therefore clear that
the wavelet and Gaussian simulations converge substantially better and faster
than the ones with Legendre polynomials.

7.3 rotated wolfe-quapp potential

To test the behavior when biasing only a suboptimal CV, a model potential
that is a rotated and scaled version of the Wolfe-Quapp potential of eq. (7.2) is
considered. It has been previously used as a test case for biasing suboptimal
CVs [21, 25]. Following Ref. 25, the Wolfe-Quapp potential is rotated by an
angle of θ = −0.15π and the resulting potential is given by the equation

U(x, y) = 1.34549x4 + 1.90211x3y + 3.92705x2y2 − 6.44246x2

−1.90211xy3 + 5.58721xy + 1.33481x + 1.34549y4

−5.55754y2 + 0.904586y.

(7.3)

The respective FES at T = 1/kB is shown in Figure 7.6 together with projections
on the x- and y-coordinates.

Only the x-coordinate is taken as a biased CV, which results in missing
orthogonal slow degrees of freedom (the y-coordinate). The reference FES
for the x-coordinate can be obtained by integrating over the y-coordinate,
F(x) = −β−1 log

∫
dy e−βU(x,y). The Langevin dynamics parameters are set to

the same values as in the previous section (T = 1/kB, γ = 10, δt = 0.005). The
VES bias potential is expanded in the range x ∈ [−3, 3] and the number of basis
functions is fixed to 22 for each basis set. As before, a uniform target distribution
is used and the coefficients of the bias potential are updated every 500 steps. For
each of the basis sets (Sym8 wavelets, Gaussians, cubic B-Splines, and Legendre
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Figure 7.6: The reference FES of the rotated Wolfe-Quapp system given by eq. (7.3)
along with free energy projections on the x- and y-coordinates.

polynomials), 20 independent simulations are run, that are initialized in the
global minimum.

For this system, using the averaged stochastic gradient descent optimization
algorithm did not result in good convergence for the localized basis functions.
Therefore, the Adam algorithm [164] is used instead. Details of the Adam
algorithm were presented in Section 3.2.3 and the explicit update rule for the
coefficients is given in eq. (3.32). It has three metaparameters, which are set to
the literature values: c1 = 0.9, c2 = 0.999, and ϵ = 10−8. High sensitivity of the
convergence to the stepsize η of the Adam algorithm was noticed when perform-
ing initial trial simulations. Although the standard value of η = 0.001 works
in most cases, the convergence of the bias is slow, especially for simulations
with Sym8 wavelets. Increasing it to η = 0.005 provides much better behavior,
whereas increasing it even further results in non-converging simulations with
Legendre polynomials. In the following, η = 0.005 is used for all simulations
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with the Adam algorithm but it shall be noted explicitly that the choice of
parameters seems crucial for good convergence.

While the usage of the Adam algorithm helps to improve the convergence
for this system, worse performance in comparison to the averaged stochastic
gradient descent algorithm was found when testing it on the systems that were
described in the previous sections. Therefore, it seems apparent that further
investigation is needed to understand the optimal choice for stochastic op-
timization in the VES method. The choice very likely depends on the form
of the bias potential (e.g., a linear expansion versus a neural network or a
model) and the basis functions used. An interesting idea might be to combine
ideas from different algorithms, similar as it was done in Ref. 25 where the au-
thors introduced a combination between AdaGrad and the averaged stochastic
gradient descent algorithm. However, detailed investigations of the stochastic
optimization algorithm used within VES are beyond the scope of the current
work.

For the assessment of the performance of the different basis sets, the same
measures as before are used: The RMS error ϵ and the free energy difference
∆F between the two major states. To calculate them, the FES is determined
directly from the bias every 5× 104 steps via eq. 3.21. From the estimates of
all simulations, the RMS error ϵ with respect to the reference obtained from
the potential is calculated independently. The time evolution of the average
value ⟨ϵ⟩ and the standard error σ̂ϵ is given in Figure 7.7. The usage of the
Adam optimizer for this system might explain a slightly different behavior
compared to the results for the previous two systems, where the averaged
stochastic descent algorithm was used.

Additionally, the free energy difference between the two main states is cal-
culated. For simplicity, these are defined by the line x = 0, although it is clear
that the suboptimal CV does not really separate the states well. The reference
value, ∆Fref = 3.315, is calculated from the projection on the x-coordinate of
the potential. In Figure 7.8, the free energy difference between the two states is
shown for all four basis sets as a function of bias iterations for the individual
runs together with the average value. As expected, due to the usage of a sub-
optimal CV, the convergence behavior is slightly worse than for the previous
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Figure 7.7: Results for the rotated Wolfe-Quapp potential.
Shown is the RMS error of the FES directly from the bias for the different basis functions
as a function of the number of bias iterations. The lines denote the average over 20
independent runs and the shaded areas the corresponding standard error.

two systems, and a longer simulation time is needed to obtain adequate conver-
gence. Nevertheless, the wavelet simulations exhibit quite decent convergence
behavior that, as before, is more robust than for the Legendre polynomials. The
simulations with Gaussians and the cubic B-splines perform worse than both
wavelets and Legendre polynomials.

After the localized basis functions have been tested on three different model
systems, certain conclusions are drawn. The wavelet basis functions exhibit
much more robust convergence behavior than the Legendre polynomials. For
the wavelets, the fluctuations of the bias potential within individual runs are
smaller. Additionally, the difference between independent runs is considerably
smaller. The Gaussian and the cubic B-spline basis functions perform worse
than the wavelets for all considered systems and do not yield usable results for
some systems. Therefore, their usage is not recommended. Having established
the excellent performance of the wavelets in model systems, their usage is now
tested on a more realistic system.
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Figure 7.8: Free energy difference estimates of all conducted VES simulations on the
two-dimensional rotated Wolfe-Quapp potential.
Each panel shows the obtained free energy difference ∆F (Section 3.4, eq. 3.51) between
the two states separated by the x = 0 line as a function of the number of bias iterations
for a different basis set (top left: Sym8 wavelets, top right: Gaussians, bottom left: cubic
B-splines, bottom right: Legendre polynomials). Each dashed line gives the result for
an individual run, while the solid lines denote the average over the 20 runs and the
shaded areas the corresponding standard error. The reference value of ∆Fref = 3.315 is
shown as black solid line.

7.4 association process of calcium carbonate

To study the performance of wavelet basis functions for a realistic system, the
association process of a calcium carbonate ion-pair in water is considered. For
this, molecular dynamics simulations with explicit solvent are performed. As
molecular dynamics software, the the LAMMPS code [202] (5Jun2019 release)
is used. It was interfaced with the PLUMED2 code [38, 39] to perform biased
enhanced sampling simulations with the VES method. In Refs. 203, 204, a



7.4 association process of calcium carbonate 117

custom calcium carbonate force field was developed, which is used together
with the SPC/Fw water model [205].

Force field

For the water molecules, the bonds and angles between the oxygen and hydro-
gen are restricted with a harmonic restraint. Additionally, the oxygen atoms of
all water molecules interact with a Lennard-Jones potential [56] (see eq. (2.10))
that has a cutoff at 9 Å.

An harmonic restraint is also applied to the bonds of the carbonate ion. The
potential fixing the angles O–C–O of the carbonate ion is a special Class2 type
potential described in Ref. 206. Additionally, the distance between the carbon
atom and the plane formed by the three oxygen atoms of the carbonate ion is
constrained.

The interaction between the calcium and carbonate ion is realized by a
Buckingham style potential [57] that includes a Mei-Davenport-Fernando (MDF)
taper [207]. Instead of setting a fixed cutoff distance, the taper gradually turns
off the strength of the potential in a transition area, that is, the potential is now
given by

UMDF(r) = U(r) fMDF(r), (7.4)

with

fMDF(r) =


1 for r < rm,

(1− r)3(1 + 3r + 6r2) for rm < r < rcut,

0 for r ≥ rcut,

(7.5)

where rm denotes the smaller distance of the spheric transition area and rcut the
cutoff distance at which the potential strength is zero. Potentials of the same
type are used for the interactions between the carbonate oxygens and the water
atoms. The calcium ion and the water oxygens interact by a Lennard-Jones
potential with an additional MDF temper.

The charged interactions between all atoms are conveyed by a Coulomb
potential, where the long-range interactions are calculated in reciprocal space via
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the PPPM method [60, 61]. Neighbor lists with the default LAMMPS parameters
are used to reduce the number of interactions to consider at each time step.

The exact parameters of the force field, as well as an input file for LAMMPS,
can be found in the supporting information of Ref. 204. At the time of the
publication of Ref. 204, the pair potentials with the MDF taper were not available
in the standard version of LAMMPS and had to be included in the code
manually. In the provided input file of Ref. 204, these custom potentials are
denoted by gulp. As the potentials with a MDF temper are now available, the
provided force field can be run in the standard version of LAMMPS by replacing
all gulp style potentials with the mdf ones in the input. An updated version of
the input file can be found on Zenodo [198].

Computational details

The computational setup follows the one of a previous metadynamics study
of the association process [120] using this force field. There, well-tempered
metadynamics simulations with 25 parallel walkers were used to characterize
the FES at different temperatures. To be able to compare the results to this
previous study, the setup and parameters are tried to be matched as close as
possible.

In a periodic cubic box, a single Ca2+– CO3
2- ion-pair and 2448 water

molecules are placed. The system is equilibrated in the NPT ensemble at a
constant temperature of 300 K and a constant pressure of 1 Bar for 500 ps. All
subsequent simulations are performed in the NVT ensemble using a constant
temperature of 300 K and cubic box with side lengths 41.69 Å. A time step of
0.001 ps is used for all simulations. Unbiased MD simulations of 5 ns length are
run from which in total 75 snapshots are selected to use as initial configurations
for the biased simulations. All simulations are performed at a constant temper-
ature of 300 K using a Nosé-Hoover thermostat [64, 65, 208] with a chain length
of 5 and a relaxation time of 0.1 ps. For the NPT equilibration, a Nosé-Hoover
barostat with a relaxation time of 1 ps to keep a constant pressure of 1 Bar is
employed.
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The same CVs as in Ref. 120 are used, namely the distance between the Ca
and C atoms, rCa−C, and the coordination number of Ca with water, Ncoord. In
practice, the coordination number is calculated using a switching function

Ncoord = ∑
i

si = ∑
i

1−
(

ri−d0
r0

)n

1−
(

ri−d0
r0

)m , (7.6)

where the index i runs over all oxygen atoms of the water molecules and ri

denotes the distance from the atom to the calcium atom. The parameters of the
switching function are set to the same values as in Ref. 204, that is, r0 = 1.0 Å,
d0 = 2.1 Å, n = 4, m = 8.

Mirroring the original work [120], the technique of multiple walkers [132] is
used. Convergence of the bias is improved by running 25 walkers in parallel,
where each walker starts from a different initial configuration. As basis functions
for the VES method, Sym10 wavelets and Chebyshev polynomials are employed.
For the CV corresponding to the distance between the Ca ion and C atom of
the carbonate ion, 60 basis functions are used in the range rCa−C ∈ [2 Å, 12 Å].
For the CV corresponding to the coordination number, 30 basis functions are
used in the range NCoord ∈ [5, 9]. The total number of two-dimensional basis
functions is then 1200. Due to the usage of multiple walkers, the coefficients
of the bias potential are updated more frequently, that is every 10 MD steps
(the total number of data points for each iteration is then 250). For the Sym10
wavelets, the averaged stochastic gradient descent optimization algorithm with
a step size of µ = 0.001 is used. For simulations with Chebyshev polynomials,
this did not always result in stable simulations and the step size was lowered to
µ = 0.0005 for these. A well-tempered target distribution (see eq. (3.24)) with
a bias factor of 5 is employed. The target distribution is updated iteratively
every 100 bias potential updates (1000 MD steps). Each walker is run for 3 ns,
resulting in a cumulative simulation time of 75 ns.

For comparison, additional well-tempered metadynamics (WTMetad) [106]
simulations are performed, using the same setup as in Ref. 120. The bias factor is
set to 5. For the Gaussians, an initial height of 1 kBT is used and the widths are
set to 0.2 Å and 0.1 for the distance and coordination number CV, respectively.
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Gaussians are deposited every 1 ps (1000 MD steps). As for the VES simulations,
each walker is run for 3 ns, resulting in a cumulative simulation time of 75 ns.

To focus the sampling in the part of the configuration space of interest
for the association process, an artificial repulsive wall at a Ca–C distance of
11 Å is added in all simulations to prevent the ions from moving further
apart. In practice, this is implemented by adding a harmonic bias of the form
κ(rCa−C − r0)

2 when rCa−C ≥ r0. In the present case, the parameters are set to
κ = 12 eV and r0 = 11 Å.

Besides obtaining FES estimates from the bias via eq. (3.21) or by summing
over the Gaussians via eq. (3.8) for VES and metadynamics, respectively, another
estimate is also obtained for all simulations via a reweighted kernel density
estimation. By reweighting the trajectories via eq. (3.19), where the delta function
is replaced by a Gaussian kernel, a smooth estimate can be obtained. For this, the
implementation of kernel density estimation of PLUMED2 is used, where the
bandwidths of the Gaussians are set to 0.05 Å and 0.05 for the Ca–C distance
and coordination number CV, respectively. To avoid effects from the initial
phase where the bias still fluctuates significantly, the first 200 ps of each walker
trajectory are ignored. From the rest of the trajectories, samples are taken every
0.1 ps. For the metadynamics simulations, the time-dependent constant c(t) is
required when using the reweighting scheme described in Refs. 77, 143. During
the metadynamics simulations, the constant is calculated every time a Gaussian
is added using a grid of 275 × 300 points over the domain rCa−C ∈ [2, 13],
NCoord ∈ [3, 10] and stored together with the trajectory data.

To assess the stability of the simulations, for each of the three biasing
setups (VES with wavelets, VES with Chebyshev polynomials, WTMetaD)
three independent runs with different initial configurations are performed. The
configurations are selected from the 5 ns of unbiased simulation and are the
same for each of the biasing setups.

Results

For all simulations, the two-dimensional FES estimate from the bias at the end
of the simulation, as well as the estimate from reweighting the trajectories are
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Figure 7.9: Obtained free energy surfaces for the Calcium Carbonate system.
Top panel: Projections on the distance CV rCa−C from the FESs obtained directly from
the bias potential. Only one of the runs is shown for each biasing setup. The reference
data are obtained from Ref. 120.
Bottom panel: FES as a function of both biased CVs obtained by reweighting one of the
simulations with Sym10 wavelets.

calculated. An exemplary two-dimensional FES from reweighting is preented
in the lower part of Figure 7.9. It can be seen, that to fully understand the
association process it is necessary to consider both CVs as the solvation state of
the calcium, measured by the coordination number CV, is closely coupled to the
calcium-carbon distance. The minima of the FES with rCa−C < 4 correspond to
the states with contact ion-pair. The lowest state of the FES is the monodentate
associated state at around 3.5 Å. At lower coordination number and smaller
distance, a second minimum corresponding to the bidentate state can be seen.
For larger Ca–C distance, the ions are no longer in direct contact but are
separated by solvent. The states with a distance of around 5 Å correspond to the
solvent-shared ion-pair, while the states around 7 Å denote where the solvation
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shells of the two ions barely touch. For even larger distances, the two ions are
fully solvated.

Additionally to visual inspection of the 2D FESs, projections of the FES
estimates on the distance CV rCa−C are investigated more closely. From the
authors of Ref. 120, it was possible to obtain the FES as a function of this CV for
three independent runs at 300 K. While these are qualitatively similar, there are
some visible fluctuations between the three data sets. Therefore, these are only
used to qualitatively assess the estimates from the newly performed simulations
but not as a reference for quantitative performance measures. In the upper part
of Figure 7.9, these reference sets are shown together with one exemplary FES
directly from the bias for each biasing setup. Besides this direct comparison of
selected runs, Figure 7.10 shows the obtained FES estimates of all simulations
for both methods. All free energy profiles are aligned such that their minimum
is at zero.

Looking at these estimates, it is observed that all free energy profiles obtained
from the simulations are in a decent agreement with each other and the reference
results from Ref. 120. All of the simulations capture the small barrier between
the mono- and bidentate states at about 3 Å reasonably well, though it should
be mentioned that this barrier in the one-dimensional profile does not represent
the true barrier of the physical process due to integration over the solvent
degree of freedom (i.e., the coordination number CV). For the states above
4 Å, some differences between runs are observed. However, similar variance
can be observed between the three reference runs from Ref. 120. Therefore,
it is difficult to say what the correct free energy profile is. Furthermore, the
results in Figure 7.10 are obtained at the end of the simulations and do not
reflect that the bias, and thus the obtained FES, fluctuates during the simulation.
Indeed, one of the main conclusions from the previous Sections 7.1–7.3 was that
the fluctuations of the bias potential within individual runs were considerably
smaller for the wavelets as compared to the polynomial basis functions.

To gauge the time evolution of the bias potential and FES, the free energy
difference between the contact ion-pair and the loosely associated states of
calcium carbonate is considered. For simplicity, the region in CV space with
a Ca–C distance smaller than 4 Å is selected as the contact ion-pair state and
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Figure 7.10: FESs as a function of the ion distance for the calcium carbonate system.
Each panel shows results from three independent simulations with differently shaded
lines.
Top panel: Reference FESs obtained from Ref. 204.
Left column: FES estimates directly from the bias potential for three runs each of Sym10
wavelets, Chebyshev polynomials, and Metadynamics simulations.
Right column: FES estimates obtained by reweighting the trajectories of the same runs.

the region with distances between 4 Å and 8 Å as the loosely associated state.
The free energy difference is calculated according to eq. (3.51). It is of note, that
this selection of the two regions does not necessarily coincide with the chemical
definitions of the contact ion-pair and loosely associated states [120]. Here, the
free energy difference is mainly employed to monitor the stability of the bias
potential and the obtained FES. In the upper panels of Figure 7.11, the free
energy difference obtained every 10 ps simulation time per walker is shown.
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For each of the biasing setups, the results of the three independent runs are
shown for the FES obtained directly from the bias as well as the FES obtained
via reweighting.

When looking at the estimates of the free energy distances obtained directly
from the bias (the left column), it is visible that the free energy differences ob-
tained from the wavelet simulations converge faster and show less fluctuations
than the ones from the Chebyshev polynomial simulations. In particular, there
are considerably larger fluctuations during the runtime of the Chebyshev poly-
nomial simulations. Furthermore, there is less difference between independent
runs for the wavelets as compared to the Chebyshev polynomials. Therefore,
when comparing the two biasing setups using VES, the same conclusions as for
the model systems in the previous Sections 7.1–7.3 can be drawn: simulations
with the wavelet basis exhibit smaller fluctuations of the bias potential within
individual runs and less difference between different independent runs than
when using the Chebyshev polynomials as basis functions.

The metadynamics simulations show a convergence behavior that is slightly
worse compared to the wavelet simulations, but still better than for the Cheby-
shev polynomial simulations.

To further quantify the behavior of the simulations, the average and the
standard deviation of the free energy difference over the last nanosecond of
each simulations are calculated. A visualization is shown in the bottom row of
Figure 7.11 while the numerical values are given in Table 7.1.

Continuing with the values obtained directly from the bias, some spread in
the time-averaged values can be seen between the individual runs, though all
simulations agree with each other within 1 kJ/mol. It is of note, that there is a
similar spread in the three reference metadynamics simulations from Ref. 120
that are shown as grey dotted lines in the bottom row of Figure 7.11. Therefore,
it cannot be said for certain what the exact reference value of the free energy
difference is. Noticeably, and consistent with the time evolution of the free
energy differences in the upper rows, the wavelet simulations have the smallest
standard deviation values while the values are three to six times larger for the
Chebyshev polynomial and metadynamics simulations.
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Figure 7.11: Free energy differences between the contact ion-pair and loosely associated
states of the Calcium Carbonate system.
Top three rows: Time evolution of the free energy difference between the region with
Ca–C distance smaller 4 Å and the region with Ca–C distance between 4 Å and 8 Å. For
each biasing setup, results from three independent runs are shown, where the different
color shades represent the individual runs.
Bottom row: The average of the free energy differences obtained over the last nanosecond
by using 100 samples taken every 10 ps for each simulation. The error bars show the
standard deviation. Additionally the results from Ref. 120 are given as grey dotted
lines.
The left column uses the FES obtained directly from the bias, while the right column uses
the FES obtained through reweighting where the first 200 ps of each simulation were
omitted.
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run 1 run 2 run 3 average

Sym10 (bias) 9.2 ± 0.2 8.81± 0.06 9.32± 0.09 9.1 ± 0.2
Sym10 (reweighted) 9.08± 0.06 9.12± 0.04 9.21± 0.03 9.13± 0.04
Chebyshev (bias) 9.2 ± 0.6 8.9 ± 0.3 8.7 ± 0.6 8.9 ± 0.1
Chebyshev (reweighted) 9.4 ± 0.1 8.87± 0.03 8.62± 0.07 9.0 ± 0.2
WTMetad (bias) 10.0 ± 0.2 9.6 ± 0.5 9.9 ± 0.5 9.8 ± 0.1
WTMetad (reweighted) 9.79± 0.04 9.4 ± 0.1 9.38± 0.04 9.5 ± 0.1
Reference 9.94 9.08 9.78 9.6 ± 0.3

Table 7.1: Calculated values for the free energy difference between the contact ion-pair
and loosely associated states of the Calcium Carbonate system.
All values are given in units of kJ/mol. For every simulation, the values were calculated
from the average of the last nanosecond both directly from the bias as well as via
reweighting. The given uncertainty of the runs is the standard deviation of the values of
the last nanosecond. Only a single value per run could be obtained from the reference
data and it is therefore not possible to give an uncertainty in this case. For the average
of the three runs, the given uncertainty is the standard error from the combination of
the three runs, where the uncertainties of the individual runs were neglected.

Therefore, from the results of the left column of Figure 7.11, it can be
concluded that the wavelets perform the best when considering the difference
between independent simulations and fluctuations within runs.

So far, the discussion was only about the estimates of the free energy differ-
ences obtained directly from the bias potential. An alternative way to obtain
the FES is through reweighting. In fact, it is always a good practice to estimate
the FES both directly from the bias potential and via reweighting and compare
the results. The reweighting procedure assumes that the bias potential (i.e., the
weights) is quasi-stationary. Therefore, it is expected that the wavelets perform
better in this respect.

The right column of Figure 7.11 shows the free energy difference values
obtained from the reweighted FESs. The average values and the standard devia-
tion over the last nanosecond are given in the bottom row. Less fluctuation of
the free energy difference can be seen for all of the simulations when compared
to the estimates directly from the bias in the corresponding left panels. All of
the wavelet results agree well with each other while there is more spread for
the Chebyshev polynomial and the metadynamics simulations, but as before
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the spread is within 1 kJ/mol. The reweighted metadynamics values tend to
be lower than values obtained directly from the bias potential and closer to the
wavelet results. Like for the results obtained directly from the bias potential, it
is found also for the reweighted results that the wavelets perform the best when
considering the difference between independent simulations and fluctuations
within runs.

Overall, from the simulations of the calcium carbonate association, it is
concluded that the wavelet basis functions exhibit excellent performance. The
simulations using wavelets show considerably better convergence behavior than
the ones with Chebyshev polynomials. On top, the wavelet simulations also
show better convergence behavior than the metadynamics simulations.
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8
C O N C L U S I O N S

In this part of the thesis, the usage of Daubechies wavelets as basis functions
for variationally enhanced sampling was introduced. Their performance was
evaluated on Langevin dynamics simulations of model systems and molecular
dynamics simulations of the calcium carbonate association process. Overall, the
localized wavelet basis functions exhibit excellent performance and much more
robust convergence behavior than the delocalized Chebyshev and Legendre
polynomials used as basis functions within VES so far. In particular, the wavelet
bases exhibit far smaller fluctuations of the bias potential within individual runs
and smaller differences between independent runs. Less fluctuation of the bias
potential is important when obtaining FESs and other equilibrium properties
through reweighting, as the reweighting procedure assumes a quasi-stationary
bias potential. Based on the overall results, wavelets can be recommended as
basis functions for variationally enhanced sampling.

Additionally, Gaussians and cubic B-splines were tested as other types of
localized basis functions. However, the Gaussian and the cubic B-spline basis
functions were shown to perform worse than the wavelets for all the model
systems in Sections 7.1–7.3 and did not even yield usable results in some cases.
Therefore, Gaussians and cubic B-splines are currently not recommended to be
used as basis functions for the VES method.

One attractive feature of the wavelets basis functions is the multiresolution
property displayed in eq (5.23). Starting with the father wavelets at some given
scale, a more accurate approximation of the FES can be obtained by adding
mother wavelets at finer scales. In this work, only a single level of father wavelets

129
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was employed to expand the bias potential. An interesting future work would
be to go beyond this and implement a multiresolution bias potential where
the resolution can be increased on the fly during the simulation. Coupling this
with a method to evaluate the quality of the current bias potential on the fly
(for example, by using the effective sample size [102, 209, 210]) would allow
to automatically construct the VES bias potential with a predefined accuracy,
without the need to adapt the parameters manually.

Also, the present work was focused on a single type of wavelets, the family
of Daubechies wavelets in their least asymmetric form. Although no results
were shown, the Daubechies wavelets with extremal phase had also been tested
initially. Due to clearly worse results compared to the Symlets, they were not
included in the extensive studies. Nevertheless, other wavelet families could
yield better performance for specific systems.

The basis formed by Daubechies wavelets spans an infinite range in theory.
In the presented implementation, only basis functions with significant contri-
butions within the bias range were taken into account. For the systems under
investigation in this work, the bias was always expanded in a range significantly
larger than the relevant states or processes of interest and no problems could
be observed from this approach. However, it might result in inaccuracies at the
boundaries if the bias cannot be expanded beyond the states of interest, for
example if the relevant CV has only a finite range. Therefore, wavelets that are
designed to be used on finite intervals, such as the boundary wavelets [211],
might be worthwhile to investigate for systems with relevant states close to the
boundaries of the bias.

Another possibility would be multiwavelets, which are used for example in
electronic structure calculations [212]. There, instead of using a single scaling
and mother wavelet function, a combination of several functions is used. The
refinement equations (5.24) then use vectors for ϕ(x) and ψ(x) and the filter co-
efficients hk and gk have a matrix form [213]. One specific type of multiwavelets
that could be considered are the ones developed by Donovan, Geronimo, and
Hardin [214, 215]. These are piecewise-polynomial wavelets that are compactly
supported and sufficiently regular for the usage as basis functions in VES.



Part III

B I RT H - D E AT H AU G M E N T E D S A M P L I N G

“Markovian process, lead us not in vain
Prove to our descendants what we did to them

Then make us go away”

— Greg Graffin [216]
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I N T E R A C T I N G R E P L I C A S O F M O L E C U L A R S I M U L AT I O N S

The molecular dynamics simulations of the association process of calcium
carbonate that are presented in Section 7.4 use the technique of multiple walkers.
The idea for this, as already explained in Section 3.3, is that a single simulation
might require long simulation times for good coverage of the phase space
related to the problem under investigation. To reduce wall-clock time, multiple
copies of the system are simulated in parallel at the same time. This is similar to
running an ensemble of multiple short and independent simulations instead of a
single long one, which is often beneficial for estimating macroscopic properties
of the system [71].

Nevertheless, even if all states are sufficiently sampled by individual simula-
tions, the approach of using multiple independent simulations does not over-
come the rare event problem in systems with high barriers between metastable
states: While local observables (such as the position and shape of free energy
minima) are typically estimated correctly, good estimates of global observables
(for example, the free energy difference between states) can only be obtained
if multiple transitions between the states are observed within the simulation
time. Simulating multiple copies of the system in parallel allows to couple
the simulations to get better global sampling. Figure 9.1 shows schematically
that this coupling can be viewed as adding interactions between imaginary
particles (the “replicas” or “walkers”) that represent the state of the system
in one simulation. An example for such a coupled scheme is metadynamics
simulations with multiple walkers [132], like the ones performed in Section 7.4.
There, the replicas interact only indirectly by sharing the same bias potential.
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Independent simulations of same system
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Figure 9.1: Schematic description of a simulation with multiple interacting replicas.
The top row shows snapshots of four independent simulations where the current state
of the system is depicted as colored circle on a two-dimensional (free) energy surface.
The bottom row shows the situation when adding interactions between the different
simulations: The dynamics of the simulations is no longer independent but they can be
thought of as a simulation with four coupled particles exploring the same underlying
(free) energy surface. Only exemplary interactions of the first simulation (particle) are
shown with red arrows.

Other algorithms introduce direct interactions between the particles. While
some interacting particle methods only enhance the dynamics of the particles
with a term depending on all particles [171, 172], in the following the focus
is on cloning methods that involve the duplication and killing of particles.
These have been applied to solve reaction diffusion problems [31], train neu-
ral networks [32], explore branching graphs [33], solve quantum mechanical
problems [34], or generate polymer configurations [35]. To sample rare event
systems, methods that force sampling of rare trajectories [36] or distribute the
particles favourably [30, 37] have been developed.
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In this part of the thesis, Langevin sampling is combined with a birth-death
algorithm that is a modification of the algorithm proposed in Ref. 30. The
method leads to equilibrium sampling, which means that the combination of
all walkers samples the equilibrium distribution of the system. This is done by
killing particles in states that are currently sampled too much, and duplicating
them where more sampling would be needed. The decision to perform a birth-
death event is made by calculating an estimate of the current particle density
via smoothing kernels and subsequent evaluation of a birth-death probability.
The probability of the event then depends on the distance of the estimate to the
desired equilibrium density as well as the time between evaluations.

The obtained equilibrium sampling contrasts nicely with bias-based en-
hanced sampling methods, such as metadynamics and VES, that do not focus
on sampling the equilibrium distribution but rather enhance sampling of the
full configurational space. Using both approaches together might lead to an
interesting method that combines exploration and exploitation: First, the biasing
method results in quick exploration of the configurational space and detects
new metastable states that were not sampled beforehand due to high barriers.
Second, the birth-death algorithm results in a quick equilibration of the simu-
lated replicas, such that the information of the new states is quickly exploited
and good global estimates are obtained. While this combination is out of the
scope of the current work, future research in that direction is to be kept in mind.

In the remainder of this thesis part, the fundamental development of the
combination of Langevin dynamics with a birth-death algorithm is presented.
Chapter 10 provides the theory for augmenting overdamped Langevin dynam-
ics with birth-death processes, where convergence to the correct distribution
can be proven mathematically. Additionally, some information for the general
Langevin case is provided. Chapter 11 presents the algorithm and details of
the implementation. In Chapter 12, the algorithm is applied to different model
systems and the behavior of the method is investigated when iterating over
different parameters. The method is compared to pure LD and it is shown that
accurate sampling of rare event systems can be obtained where pure LD fails.



136 interacting replicas of molecular simulations



10
T H E O RY O F B I RT H - D E AT H AU G M E N T E D L A N G E V I N
D Y N A M I C S

10.1 fokker-planck equations for langevin dynamics

To describe the stochastic nature of Langevin dynamics, some fundamental
ideas of stochastic processes need to be introduced. The notation will mostly
follow Ref. 47, while some ideas are also adapted from Refs. 42 and 217.

Markov processes and the Chapman-Kolmogorov equation

Here, only stochastic processes with the Markov property are considered, which
means roughly that the process does not have memory and the time evolution
at a specific point in time depends only on the present state of the system. A
related concept is that of Markov chains [42]: Consider for a moment a system
with discrete states xi ∈ Γ, where the state of the system at time t is denoted by
Xt. Although the state space is usually multidimensional, for a simpler notation
and discussion, x ∈ R is assumed in the following. Generalization of the theory
to the multi-dimensional case is straight-forward and the presented concepts
hold just as well. Starting from some initial condition X0 = xt0 , the conditional
probability of the system being in state xtn at time tn, that is Xn = xtn given that
X1 = xt1 , X2 = xt2 , . . . , Xn−1 = xtn−1 , is denoted by

P
(
Xn = xtn

∣∣Xn−1 = xtn−1 , Xn−2 = xtn−2 , . . . , X0 = xt0

)
. (10.1)
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This probability depends on the probability of the system being in state xtn−1 at
the preceding time as well as the probability of the system being in state xtn−2

at the time two earlier, and in fact on the probabilities of all previous states.

This becomes a Markov process if the conditional probability depends only
on the directly previous state, that is

P
(
Xn = xtn

∣∣Xn−1 = xtn−1 , . . . , X0 = xt0

)
= P

(
Xn = xtn

∣∣Xn−1 = xtn−1

)
, (10.2)

and then the corresponding time series of states X = {X0, X1, . . . , Xt, . . .} is
called a Markov chain. This leads to an interpretation of the conditional proba-
bility of eq. (10.2) as the transition probability for going from state xi to state
xj

Pij = P
(
xi → xj

)
= P

(
Xn+1 = xj

∣∣Xn = xj
)
, (10.3)

where the transition probabilities are assumed to satisfy

Pij ≥ 0, (10.4a)

∑
j

Pij = 1. (10.4b)

From this description of a Markov process in discrete time and with discrete
states, a process continuous in both can easily be obtained as well [47, 217]. For
this, the state space variable x ∈ R and time t ∈ R are defined to be contin-
uous and the conditional probability of eq. (10.3) is switched for a transition
(probability) density ρ defined by

P(Xt+δt ∈ Γ |Xt = x) =
∫

Γ
dy ρ(y, t + δt | x, t) (10.5)

with the normalization ∫
dx ρ(x, t|x0, t0) = 1. (10.6)

Assuming the initial condition

ρ(x, t0|x0, t0) = δ(x− x0), (10.7)
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the evolution of this density can be described by the Chapman-Kolmogorov
equation

ρ(x, t|x0, t0) =
∫

R
dx1 ρ(x, t|x1, t1)ρ(x1, t1|x0, t0). (10.8)

This equation states that the probability of going from state x0 to state x can be
obtained by integrating over all intermediate states x1. The factorization in the
integral is possible due to the Markov property of the process.

Kramers-Moyal expansion and Fokker-Planck equation

The next step is to derive the time evolution of the transition density, the so-
called Fokker-Planck or forward Kolmogorov equation [217, 218]. Assuming
the intermediate time t1 is close to the final time t in eq. (10.8), that is τ = t− t1

is small, the moments of the transition density

⟨(x− x1)
n⟩(t, t1) =

∫
dx (x− x1)

nρ(x1, t1|x, t) (10.9)

are then also small. For n ≥ 1, they can therefore be approximated up to linear
order in τ by

⟨(x− x1)
n⟩(t, t1) = n!D(n)(x, t)τ +O(τ2), (10.10)

where the D(n) are the so-called Kramers-Moyal coefficients. If the moments
exist, the probability density is uniquely determined by them:

ρ(x1, t1|x, t) =
∞

∑
n=0

(
− ∂

∂x

)n
δ(x− x1)

1
n!
⟨(x− x1)

n⟩(t, t1). (10.11)

Entering this expansion into the Chapman-Kolmogorov equation (10.8) yields

ρ(x, t|x0, t0) =
∫

Rd
dx1

∞

∑
n=0

(
− ∂

∂x

)n
δ(x− x1)

1
n!
⟨(x− x1)

n⟩(t, t1)ρ(x1, t1|x0, t0)

=
∞

∑
n=0

(
− ∂

∂x

)n 1
n!
⟨(x− x0)

n⟩(t, t− τ)ρ(x, t− τ|x0, t0). (10.12)
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To obtain the difference quotient, the n = 0 term is substracted and both sides
are divided by τ:

ρ(x, t|x0, t0)− ρ(x, t− τ|x0, t0)

τ

=
1
τ

∞

∑
n=1

(
− ∂

∂x

)n 1
n!
⟨(x− x0)

n⟩(t, t− τ)ρ(x, t− τ|x0, t0)
(10.13)

Taking the limit τ → 0 and approximating the terms on the right hand side by

⟨(x− x0)
n⟩(t, t− τ) = n!D(n)(x, t− τ) τ +O(τ2) ≈ n!D(n)(x, t) τ (10.14)

ρ(x, t− τ|x0, t0) ≈ ρ(x, t|x0, t0) (10.15)

leads to the generalized Fokker-Planck equation

∂

∂t
ρ(x, t|x0, t0) =

∞

∑
n=1

(
− ∂

∂x

)n
D(n)(x, t) ρ(x, t|x0, t0) (10.16)

= Lρ(x, t|x0, t0), (10.17)

where the Fokker-Planck operator Lwas introduced. For the stochastic processes
considered in the following, only the first two Kramers-Moyal coefficients are
non-zero, that is the drift D(1) and diffusion D(2) coefficients.

Fokker-Planck equation for overdamped Langevin dynamics

After having derived the generalized Fokker-Planck equation, the special equa-
tion for overdamped Langevin dynamics can be given. Setting the physical
parameters β = D = 1 in eq. (2.19), the time evolution of a particle with initial
position r(0) = r0 is given by

dr(t) = −∇U(r(t))dt +
√

2 dW(t), (10.18)

where U(r) is a smooth d-dimensional potential and W is d-dimensional Wiener
process, as before. The solution X = (r(t))t≥0 to eq. (10.18) is a Markov Process
with a unique stationary distribution, the density of which is given by π(r) =
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C · e−U(r). Since adding a constant to the potential U does not change the
dynamics, the normalizing constant of the stationary density is set to C = 1.
Then U(r) = − log π(r), which allows to write everything in terms of π(r) in
the following. Additionally, the argument r will be omitted for functions of the
space variable unless it is specifically needed.

The Fokker-Planck operator associated with the Markov process X of the
overdamped Langevin dynamics of eq. (10.18) is given by

L f = ∆ f −∇ · ( f∇ log π) = ∇ ·
(

f∇ log
f
π

)
(10.19)

for any smooth function f . The transition densities ρt (omitting the explicit
dependency on the initial state and the current spatial position) then follow the
corresponding Fokker-Planck equation

∂ρt

∂t
= Lρt, (10.20)

with the stationary solution
Lπ = 0. (10.21)

The Fokker-Planck equation of particle distributions is also known as the
Smoluchowski equation.

10.2 overdamped langevin dynamics with a birth-death process

To introduce non-local moves, the Fokker-Planck equation corresponding to
overdamped Langevin dynamics (10.18) can be augmented by a non-local
term απ depending on the current transition densities

∂ρt

∂t
= Lρt − απ(ρt)ρt. (10.22)
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Following the idea from Ref. 30, this term is interpreted as a birth-death term
of the form

απ( f , g)(x) = log
f (x)
π(x)

−
∫

log
(

f (y)
π(y)

)
g(y)dy. (10.23)

where απ(ρt) = απ(ρt, ρt) is used for shorter notation. Because απ(π) = 0, the
stationary solution of this birth-death augmented Fokker-Planck equation is
still π.

10.2.1 Interacting particle approach

The goal is now to obtain a stochastic differential equation that corresponds
to the Fokker-Planck-Birth-Death equation (10.22), that means finding a purely
probabilistic object which is to eq. (10.22) what the overdamped Langevin
dynamics of eq. (10.18) is to the corresponding Fokker-Planck equation of
eq. (10.20). Therefore, an interacting particle system is introduced similar to the
description in Ref. 30. First, eq. (10.22) is approximated by

∂ρt

∂t
= Lρt −Λ(ρt)ρt, (10.24)

where Λ(·) is a smoothened approximation of the birth-death term απ(·). Sec-
ond, the transition densities are replaced by interacting particles. This is done
by choosing a system of N particles with positions r1(t), r2(t), . . . , rN(t) that
have the empirical measure

µN
t =

1
N

N

∑
i=1

δ⃗ri(t). (10.25)

These particles move independently according to the overdamped Langevin
dynamics defined in eq. (10.18) but additionally interact via a birth-death
mechanism. The probability of killing or duplicating a particle grows with time,
which in practice is handled by independent exponential clocks: Each particle
has an independent exponential clock that strikes with the rate |Λ(µN

t )(ri(t))|
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depending on the current configuration of the system. If the exponential clock
for the i-th particle strikes at time t, then the particle is either killed or duplicated,
depending on the sign of Λ:

• If Λ(µN
t )(ri(t)) > 0, then the i-th particle is killed and a uniformly chosen

other particle is duplicated.

• If Λ(µN
t )(ri(t)) < 0, then the i-th particle is duplicated and a uniformly

chosen other particle is killed.

The empirical measure µN
t is a sum of delta distributions and therefore not a

smooth function. For the approximation of the birth-death term απ by Λ, the
empirical density has to be smoothened. Convolutions with a centered Gaussian
kernel

KΣ(x) =
1

(2π)d/2|Σ|1/2 exp

(
−x⊤Σ−1x

2

)
, (10.26)

with the covariance matrix Σ and its determinant |Σ| are considered, where d is
the dimensionality of the potential U, as before. Since Σ is assumed to be fixed
during simulations, the shorter notation K = KΣ will be used. In the following,
the covariance matrix is typically chosen to be diagonal, Σij = δijσ

2
i with σi > 0.

In this case, σ = {σ1, . . . , σd} is referred to as the bandwidths of the smoothing
kernel.

In Ref. 30, the authors use the approximation

Λ0( f ) = απ(K ∗ f , f ), (10.27)

where the operator ∗ denotes the convolution. This choice has one crucial
shortcoming, because

Λ0(π) = απ(K ∗ π, π)(x) = log
K ∗ π(x)

π(x)
−
∫

log
(

K ∗ π(y)
π(y)

)
π(y)dy ̸= 0,

(10.28)
which means that π is not a stationary solution of the corresponding approx-
imation of the Fokker-Planck-Birth-Death equation when entering Λ0 into
eq. (10.24).
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Therefore, two alternative approximations shall be proposed here. The first
is obtained by adding a correction term to Λ0:

Λad( f ) = Λ0( f )−Λ0(π) = απ(K ∗ f , f )− απ(K ∗ π, π). (10.29)

For this choice, Λad(π) = 0, and the stationary solution π is recovered. The
second option is to do a “multiplicative” correction of Λ0 by also convoluting
the stationary distribution:

Λmu( f ) = αK∗π(K ∗ f , f ) (10.30)

Again, Λmu(π) = 0 and π is a stationary solution of eq. (10.24) when using
Λmu.

In the limit of Gaussian kernels with zero width, that is Σ→ 0, the kernel
can be interpreted as the Dirac delta. Then all three approximations, Λ0, Λad,
and Λmu, coincide with the original birth-death term απ.

10.2.2 Convergence behavior

Although the details are out of the scope of this thesis, the convergence be-
havior of the proposed interacting particle system has been investigated with
mathematical methods. Two properties could be established when using the ap-
proximation Λmu: First, it can be shown that for fixed times t > 0, the empirical
measure µN

t converges weakly to the solution ρt of eq. (10.24), if the number
N of particles tends to infinity. Secondly, under reasonable assumptions the
limiting distribution ρt and the equilibrium distribution π coincide, as the time
t goes to infinity.

This means that in the limit of infinitely many particles and long simulation
times, the equilibrium distribution π of the system is obtained. The equilib-
rium distribution can therefore be sampled with the proposed birth-death
augmented Langevin dynamics approach. The corresponding mathematical
proofs of convergence are currently under preparation for publication [219]
together with the numerical analysis that is presented in the following chapters.
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These proofs were carried out for the approximation Λmu because it turned out
to be mathematically convenient. Similar properties were established in Ref. 30
for the approximation Λ0. Equivalent properties likely also exist for Λad, but
are currently not theoretically proven. Nevertheless, all approximations will be
considered in the following numerical studies.

10.3 general langevin dynamics with a birth-death process

Examining the behavior of the birth-death term for overdamped Langevin
dynamics makes it feasible to mathematically prove convergence to the right
distribution. For accurate simulations of physical and chemical systems, often
more general dynamics are required that take inertia into account and thus
have to track not only the particle’s position r(t), but also its momentum p(t).
This is described by the general (or underdamped) Langevin equations

dr(t) =
p(t)
m

dt, (10.31a)

dp(t) = −∇U(r(t))dt− γp(t)dt +

√
2mγ

β
dW(t), (10.31b)

that were already given in eq. (2.16). As before, m denotes the particle mass, γ

is a friction constant, and β−1 is the thermal energy.

The solution (X, Y) = (r(t), p(t))t≥0 of eq. (10.31) is a 2d-dimensional
Markov process that has a unique invariant distribution Π. For a sufficiently
damped system, the relevant time scales of the momentum dissipation are much
shorter than the ones related to the spatial position of the particle. Then in
equilibrium position and momentum become independent and the marginal of
the distribution Π with respect to the position r coincides with π. If this holds, it
is justified to introduce a birth-death mechanism by following the approach for
the birth-death augmented overdamped Langevin dynamics in the last section
and still use the same birth-death term Λ(µN

t )(ri(t)) that depends only on
the positions and ignores the momenta. This means that if the i-th particle is
killed (or duplicated), the entire tuple (ri, pi) is killed (or duplicated). While
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this assumption of independent momentum and position distributions is taken
without further conditions here, it is investigated in numerical simulations in
Section 12.2.2 of the next chapter. There, it will be verified that the birth-death
method can also be used to successfully sample the equilibrium distribution π

in the general Langevin dynamics case.
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I M P L E M E N TAT I O N O F B I RT H - D E AT H AU G M E N T E D
S A M P L I N G

11.1 explicit expressions for the birth-death terms

For the particle-based view that was presented in Section 10.2.1, the mathe-
matical expression of the birth-death term can be derived explicitly. Entering
eq. (10.23) into eq. (10.30) yields

Λmu( f )(x) = log K ∗ f (x)− log K ∗ π(x)

−
∫ (

log K ∗ f (y)− log K ∗ π(y)
)

f (y)dy.
(11.1)

When plugging the empirical measure of the N particles

µN
t =

1
N

N

∑
k=1

δ⃗rk(t) (11.2)

as f into Λmu of eq. (11.1), the convolution of the delta function with the kernel
has to be calculated. Because

K ∗ δy(x) =
∫

K(x− z)δy(z)dz = K(x− y) (11.3)

147
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holds, eq. (11.1) can be rewritten as

Λmu(µN
t )(ri) = log

[
1
N

N

∑
j=1

K(ri − rj)

]
− log(K ∗ π)(ri)

− 1
N

N

∑
k=1

{
log

[
1
N

N

∑
j=1

K(rk − rj)

]
− log(K ∗ π)(rk)

}
.

(11.4)

where the time dependence of the particle positions r1(t), r2(t), . . . , rN(t) was
dropped for notational convenience. Also, in the sequel Λmu

i ··= Λmu(µN
t )(ri)

will be written for short. Expressions for the other approximations can be
derived similarly:

Λ0(µN
t )(ri) = log

[
1
N

N

∑
j=1

K(ri − rj)

]
− log(π(ri))

− 1
N

N

∑
k=1

{
log

[
1
N

N

∑
j=1

K(rk − rj)

]
− log(π(rk))

} (11.5)

Λad(µN
t )(ri) = log

[
1
N

N

∑
j=1

K(ri − rj)

]
− log(π(ri))

− 1
N

N

∑
k=1

{
log

[
1
N

N

∑
j=1

K(rk − rj)

]
− log(π(rk))

}
− log(K ∗ π)(ri) + log(π(ri))

+
∫ [

log(K ∗ π)(r)− log(π(r))
]
π dr

= log

[
1
N

N

∑
j=1

K(ri − rj)

]
− log(K ∗ π)(ri)

− 1
N

N

∑
k=1

{
log

[
1
N

N

∑
j=1

K(rk − rj)

]
− log(π(rk))

}

+
∫ [

log(K ∗ π)(r)− log(π(r))
]
π dr

(11.6)
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In all following numerical simulations, the covariance matrices of the Gaus-
sian kernel are chosen as diagonal, Σij = δijσ

2
i with the bandwidths σ =

{σ1, . . . , σd} for the d dimensions of the potential U(r) satisfying σi > 0. Then
eq. (10.26) turns into

K(r) = Kσ(r) =
1

(2π)d/2 ∏d
i=1 σi

exp

(
−

d

∑
i=1

(
xi√
2σi

)2
)

, (11.7)

where r = {x1, . . . , xd}.

11.2 calculation of the birth-death probabilities

The used algorithm mostly follows Algorithm 1 of Ref. 30 but with modifica-
tions to make it less computationally involving and the mentioned different
approximations of the birth-death term.

In the algorithm, the exponential clock associated with each particle is
replaced with the probability of performing a birth or death event at a specific
time, which will be called birth-death probability q. After the calculation at
fixed times of the simulation, the probability q is subsequently evaluated against
a random number z drawn uniformly from [0, 1) and the associated event is
executed in case of success (i.e., z ≤ q). Assuming that a time interval of length
θ has passed since the last evaluation, the birth-death probability of particle i is

qi = 1− exp (−|Λi|θ) . (11.8)

In Ref. 30, it was proposed to attempt birth-death events after every Langevin
time step δt, that is θ = δt. While this choice works, it is computationally more
efficient to attempt birth-death events less often. Therefore, the time interval
between subsequent attempts is generalized to be θ = Mδt with M ∈N, that is,
the birth-death probabilities are calculated every M Langevin time steps. The
birth-death probabilities become

qi = 1− exp (−|Λi|Mδt) . (11.9)
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with an integer parameter M that can be varied freely. This parameter will be
refered to as birth-death stride in the following. The Λ values, which require
the computationally involving density estimate ρt, are calculated less often
with increasing M. For M > 1, the calculations are less often than in the
original proposal of Ref. 30. Additionally, the longer time between interactions
of the different particles is beneficial for implementations that parallelize the
computation of the individual replicas of the system. On top of the overhead
from the computation itself, all replicas need to be time synced when attempting
the birth-death interactions. It will be tested in Section 12.1.4 if using longer
times between birth-death attempts results in deviating sampling.

The original algorithm in Ref. 30 iterates over the particles, where it indi-
vidually calculates the birth-death probability and executes successful events
immediately. The values Λi have therefore to be calculated for each particle
individually, or at least recalculated from the new positions after each successful
birth-death event. Differently, in the newly proposed algorithm all birth-death
rates Λi are calculated only once from the positions before the birth-death step.
Only the order in which the birth-death events are applied is randomized. No
disadvantages could be found from this approach as long as the probabilities
of birth-death events remain low. In Section 12.1.4, the case of high birth-death
probabilities will be examined more closely.

11.3 description of the algorithm

As described in Section 10.3, the same birth-death method is applied to both
overdamped and general Langevin dynamics. The algorithm was therefore
implemented in a custom python code, together with Langevin solvers. The
Euler-Maruyama scheme [69, 70] was chosen for overdamped Langevin dynam-
ics, while the Bussi-Parinello scheme [48] was chosen for the general Langevin
dynamics case. The code performs independent Langevin dynamics of particles
in artificial potentials and couples the particles via birth-death steps at user-
specified intervals. A description of the steps of the algorithm is provided in
Algorithm 1.
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The code is published under the LGPL license and can be found in a public
Github repository (https://github.com/bpampel/bdld). Version v0.3.1 [220]
was used for all numerical simulations that are presented in the following.

https://github.com/bpampel/bdld
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Algorithm 1: Birth-Death augmented Langevin dynamics
The algorithm remains the same regardless of the Langevin dynamics
solver L or the birth-death approximation Λ chosen.

Input: Potential U corresponding to the equilibrium distribution π

N particles with initial positions X = {ri}N
i=1

and momenta P = {pi}N
i=1

Langevin solver L(X, P, U, δt) with corresponding parameters
number of Langevin time steps T
Langevin time step δt
number of Langevin time steps between birth-death attempts M
smoothing Kernel K

Output: A set of particles whose empirical measure approximates π

m← 0 // Langevin steps since birth-death step
for t← 1 to T do

update X and P by Langevin solver L(X, P, U, δt)
m← m + 1
if m = M then

Calculate Λ for all particles
Draw N random numbers {zi}N

i=1 uniformly from [0, 1)
Make list χ of indices i for which zi ≤ 1− exp (−|Λi|Mδt)
Shuffle χ randomly
foreach i ∈ χ do

Select particle j uniformly from all other particles
if Λi > 0 then

ri ← rj; pi ← pj
else if Λi < 0 then

rj ← ri; pj ← pi
end if

end foreach
m← 0

end if
end for
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S I M U L AT I O N S W I T H B I RT H - D E AT H P R O C E S S E S

In this chapter, the proposed Algorithm 1, which was presented in the last chap-
ter, is verified through numerical simulations. Also, the different options that
were proposed for the birth-death approximation Λ are investigated. Addition-
ally, the influence of the input parameters (number of particles N, bandwidth
of the kernel K, stride between birth-death calculations M) is examined by
varying them systematically. As test cases, simulations of the movement of
sets of particles in different artificial potentials are chosen. The focus is on
prototypical rare-event systems, where many applications are envisioned that
can benefit from the method.

After the basic algorithm has been verified with overdamped Langevin
dynamics, Section 12.2 assesses the behavior of the algorithm for the general
Langevin case, which provides an important step towards real-life applications.
The input files and data supporting the results of this chapter are openly
available at Zenodo [221] (DOI: 10.5281/zenodo.5873265).

12.1 overdamped langevin dynamics

12.1.1 Comparison of approximations Λ

Instead of going directly to rare-event systems, the behavior when using the
different approximations Λ shall be in the foreground first. Therefore, a system
with a moderate barrier height is used beforehand, such that transitions are also
observed within moderate simulation time by pure Langevin sampling. Over-
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damped Langevin dynamics sampling (with β = D = 1) of a one-dimensional
double-well system is chosen, that is described by the mathematical expression

U(x) = x4 − 4x2 + 0.2x, (12.1)

and a plot of which can be seen as black lines in Figure 12.1 or in Figure 6.2. This
is the same potential that was already described in in eq. (7.1) and simulated
with the VES method in Section 7.1.

It features two metastable states at the local minima, at xL ≈ −1.4 and
xR ≈ 1.4, separated by a barrier of about 4.3 energy units from the left state.
The barrier is centered at the local maximum at x0 ≈ 0. In equilibrium, the
probability of a particle being in the basin of attraction BL : x ∈ (−∞, x0) of
the lower energy metastable state xL on the left is π(BL) =

∫ x0
−∞ π(x)dx ≈ 0.63.

Similarly, π(BR) = π((x0, ∞)) ≈ 0.37 is the probability for the higher energy
metastable state xR.

First, the influence of the newly proposed approximations Λmu and Λad on
the sampling is tested and compared to the approximation Λ0. For this, 100
particles are used and an initial distribution far from equilibrium is chosen:
Only 10 particles are placed in the more likely state at xL, while the remaining
90 particles start in the less likely state at xR. The overdamped Langevin solver
with a time step of δt = 0.001 is used for in total 2,000,000 steps. The number
of steps between birth-death attempts is fixed to M = 100, while both the
approximation Λ as well as different kernel widths σ are varied between the
simulations.

To assess the correctness of the sampling, estimates of the free energy are
constructed via histogramming. While omitting the first 100,000 time steps, the
positions of all particles are collected into a histogram H with 200 equally sized
bins in the range x ∈ [−2.5, 2.5]. At the end of the simulations the free energy
is calculated via eq. (3.46),

F(x) = −β−1 log H(x) + C, (12.2)
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Figure 12.1: Comparison of different approximations Λ via the obtained FES estimates.
Each plot shows estimates obtained after 2,000,000 steps of simulation using different
values of the kernel bandwidth σ. The black line denotes the reference obtained directly
from the potential.

where the constant C is chosen such that min F(x) = 0. Results for selected
kernel bandwidths σ can be seen in Figure 12.1, together with the reference
from the potential.

Although all obtained FES qualitatively agree with the reference and sample
the basins correctly, deviation from the reference FES is observed in the barrier
region for some simulations. Therefore, the height of the barrier when starting
from the left state is estimated by the highest value of the FES in the respective
region (xL, xR). The obtained values for all simulations are shown in the left
panel of Figure 12.2 as a function of the kernel width σ together with the value
from the reference.

To numerically assess the correctness of the sampling, the Kullback-Leibler
divergence DKL(π | η) is used, which was defined in eq. (3.50). As reference,
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Figure 12.2: Performance comparison of the different approximations Λ.
Left panel: Height of barrier from left basin as a function of the kernel width σ for the
three approximations. The reference from the potential is shown as black horizontal
line.
Right panel: Kullback-Leibler divergence between the obtained probability distributions
and the reference distribution from the potential.

the equilibrium probability distribution π is calculated from the potential. Then
the estimated distribution η, obtained from normalizing the histogram H of the
simulations, is plugged into eq. (3.50) together with the reference. The resulting
values for all simulations can be seen in the right panel of Figure 12.2.

Looking at the FES estimates in Figure 12.1, it is observed that although
all simulations give a correct estimate for the low-energy regions, the barrier
region is not always sampled correctly. For the original proposal Λ0, the barrier
region is always undersampled compared to the reference, which results in a
higher estimate of the barrier as it can be seen in the left panel of Figure 12.2.
On the other hand, for both new proposals Λmu and Λad this occurs only if
the bandwidth of the kernel is small. The kernel density estimate of eqs. (11.4–
11.6) is likely responsible for this effect, as a very small bandwidth results in
a very spiky density. The lowest value of σ which results in correct sampling,
σcrit, depends on the system and the used number of particles, which will be
investigated further in Sections 12.1.3 and 12.2.3. Similar conclusions about
the behavior of the different approximations can be drawn when looking at
the Kullback-Leibler divergence in the right panel of Figure 12.2: All simula-
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tions with the approximation Λ0 yield worse estimates of the true equilibrium
distribution (a larger value of the KL divergence) when compared to the new
approximations Λmu and Λad. The slightly lower values for Λad compared to
Λmu are a coincidence that comes from using only a single simulation per data
point. The same simulations were repeated with different initial seeds of the
random number generator. The results from different runs show fluctuations
on the same order as the differences visible here and no clear trend which of
the two approximations is better. In the following, the discussion will therefore
be focussed on only one approximation. The approximation Λmu is chosen
because it provides better properties for mathematical analysis while showing
the same behavior in numerical simulations as Λad. All presented data will use
this approximation unless explicitly stated otherwise.

The performance of the different approximations is further examined by
evaluating how quickly the birth-death algorithm manages to distribute the
particles in the two basins BL and BR according to the equilibrium distribution.
Figure 12.3 shows the number NL of particles in the basin BL of the lower
energy state divided by the total number N of particles for the initial part of
the simulation. Additionally, the data of a simulation without the birth-death
steps is shown, which is a pure overdamped Langevin dynamics simulation
with the same parameters. Clearly, the simulation without the birth-death steps
tends only slowly towards the equilibrium value (π(BL) ≈ 0.63). The moderate
barrier of the system allows for transitions from the Langevin dynamics within
the simulation time, although the respective time scale of transition is long. In
contrast, all simulations that employ the birth-death scheme quickly approach
the equilibrium value of the particle distribution and reach it within only a few
thousand Langevin time steps. After the initial phase, only small fluctuations
around the equilibrium value can be seen. No difference in equilibration speed
is visible between the birth-death simulations. The aforementioned differences
to equilibrium sampling for the approximation Λ0 and small values of the
kernel width σ are therefore verified to mostly affect the barrier region, and are
not significant for the low lying regions of the system that are most relevant for
the number of particles in each state.
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Figure 12.3: Fraction of particles in the left basin for different approximations Λ during
the initial part of the simulations. For both Λ0 and Λmu, two simulations with different
kernel widths are given. Solid lines denote a kernel width σ = 0.2, while dotted and
dashed lines denote σ = 0.5. The dashed purple line denotes a Langevin dynamics
simulation without birth-death steps. The black horizontal line shows the equilibrium
value π(BL) ≈ 0.63 from the potential.

12.1.2 Behavior for large kernel bandwidths

In the last section, it was observed that for Λmu and Λad good sampling is
obtained as long as the bandwidth σ of the kernel is chosen large enough. Of
interest is, what happens when the bandwidth is increased further or even
in the limit σ → ∞. This will be deduced theoretically and then verified via
simulations.

In the limit of infinite width, the Gaussian kernel of eq. (10.26) converges
pointwise to a constant. Because the probability densities f used in the birth-
death scheme are normalized,

lim
σ→∞

Kσ ∗ f
Kσ

= lim
σ→∞

∫ ∞

−∞
dy

Kσ(x− y)
Kσ(x)

f (y) =
∫ ∞

−∞
dy f (y) = 1 (12.3)

holds, where dominated convergence was used to switch the integral and limit.
Then

lim
σ→∞

Kσ ∗ f
Kσ ∗ π

= lim
σ→∞

Kσ ∗ f
Kσ

Kσ

Kσ ∗ π
= 1 (12.4)
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follows, which can be entered into the approximation Λmu of eq. (10.30) to yield

lim
σ→∞

Λmu( f ) = 0. (12.5)

This means that the probabilities of birth-death events become zero in the limit
of infinitely large kernel widths, or more casually speaking, that the birth-death
term is gradually turned off for large kernel widths.

To demonstrate this effect, simulations with the overdamped Langevin
solver are performed for the one-dimensional double-well potential defined
in eq. (12.1). The simulation protocol is kept the same as in Section 12.1.1: 100
particles are used with an initial distribution of 10 in the left state at xL and 90
at the right minimum xR. A total of 2,000,000 Langevin steps are run with a time
step of δt = 0.001. Every 100 Langevin steps, the birth-death probabilities are
calculated via the approximation Λmu, and the respective accepted events are
executed. The width of the Gaussian kernels is varied in the range σ ∈ [0.5, 5] in
steps of 0.5. Additionally, one simulation without the birth-death algorithm is
performed. The resulting distribution of the particles in the two states, as well
as the percentage of accepted birth-death events is presented in Figure 12.4. The
rate of accepted birth-death events Pacc is calculated by counting the number of
executed birth-death steps during the simulation and dividing it by the total
number of attempted birth-death moves.

Looking at the time evolution of the particle distribution, it can be observed
that with increasing bandwidth σ the convergence towards the equilibrium
distribution takes more and more time. For the largest values of σ, the evolution
gradually approaches the behavior of the simulation without birth-death events,
as predicted by the theory. It is of note that the same set of random numbers
was used for the noise term of the Langevin solver in all simulations to reduce
differences from the Langevin dynamics, which is visible in the similarity of the
time evolution. Looking at the percentage of accepted birth-death events in the
right panel of Figure 12.4, a drastic reduction of about one order of magnitude
is observed between the smallest and largest chosen value of σ. This exponential
decrease confirms the assertion that large bandwidths can be used to gradually
turn off the birth-death algorithm. This can also be explained intuitively: In the
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Figure 12.4: Effect of choosing large bandwidths on the performance of the birth-death
algorithm.
Left panel: Number of particles in the left state as a function of simulation time for the
different bandwidths σ as well as one simulation without birth-death events. Shown are
only the first 13,000 time steps. The solid black line is the equilibrium value calculated
from the potentials.
Right panel: Percentage of accepted birth-death events from the total number of birth-
death events.

limit of infinite width, the Gaussians locally resemble a uniform distribution, so
that the values of the first and second terms in eq. (11.4) are independent of the
particle position. Since the third term is the average of these two terms over all
particles, the birth-death rates become zero. For the presented algorithm, this
means that the birth-death part of the dynamics can be gradually turned off by
increasing the bandwidth. In the limit of infinitely wide kernels, pure Langevin
sampling is performed.

Looking at the other approximations, the picture is less clear: Starting with
Λad, the limit σ→ ∞ does not give the same result as for Λmu. While the first
term of the definition

Λad
π ( f ) = log

KΣ ∗ f
KΣ ∗ π

−
∫ (

log
KΣ ∗ f

π

)
f dx

+
∫ (

log
KΣ ∗ π

π

)
π dx,

(12.6)
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also goes to zero for σ → ∞ due to eq. (12.4), the remaining terms become
in general only independent of the position x. The birth-death term becomes
not necessarily zero, but it is still constant over the range. Hence, even though
the birth-death mechanism may not be turned off entirely in the limit, it no
longer distinguishes between the different particles and does birth-death events
randomly.

For the approximation Λ0, the limit σ→ ∞ does not yield a constant over
the range or even zero but continues to be position-dependent.

In summary, when using the approximation Λmu the effect of the birth-death
term gradually reduces with increasing kernel bandwidth. This effect seems
to be only significant for kernel widths that are clearly too large, such as the
unreasonabe σ = 5 (compare also Figure 12.3 for results with different smaller
widths). In practice, σ should therefore be chosen large enough to get a smooth
density estimate for correct sampling, while keeping in mind that too large
values reduce the effectiveness of the method. For the other approximations,
the behavior in the limit of large kernel widths is more complex, which makes
usage of Λmu favorable.

12.1.3 Influence of the number of particles N on the critical bandwidth σcrit

Up to this point, only results for simulations with 100 particles were shown. It
was already found that there is a critical kernel bandwidth σcrit below which the
sampling is no longer accurate in the high-energy regions. The dependence of
σcrit on the potential is hard to investigate systematically, but the influence of the
number of particles for a fixed system shall be investigated in the following. The
protocol of Section 12.1.1 is used to perform additional simulations with 10, 30,
300, and 1000 particles. The simulation parameters are kept the same as before:
The particles were placed in the two states of the 1D potential of eq. (12.1) with
a relative distribution of 0.1 to 0.9, as before. The number of Langevin steps
per particle is adjusted in the simulations to always have a total number of
200,000,000, matching the previous simulations with 100 particles. The time step
is set to δt = 0.001. Every 100 Langevin steps, the birth-death probabilities are
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Figure 12.5: Influence of the number of particles N on the critical bandwidth σcrit.
Left panel: Kullback-Leibler divergences from the estimated probability distribution to
the equilibrium distribution for simulations with different number of particles N and
bandwidths σ.
Right panel: Value of the critical bandwidth σcrit defined as the lowest value of σ for
which DKL(π|η) ≤ 10−6 for the simulation series given in the left panel. The value for
10 particles is missing as the criterion is not met in the investigated range.

calculated via the approximation Λmu, and the respective accepted events are
executed. For each fixed number of particles, the bandwidth is varied in the
range σ ∈ [0.05, 0.75] in steps of 0.05.

The Kullback-Leibler divergence DKL(π|η) from the obtained sampling dis-
tribution η to the true equilibrium distribution π is calculated for all simulations.
In the left panel of Figure 12.5, the result for each set of simulations with fixed
particle number is shown as a function of the bandwidth σ. The KL divergence
decreases with increasing σ for all sets of simulations. At larger σ nearly iden-
tical values below 10−6 are obtained for all sets except N = 10, which means
that sampling very close to the equilibrium distribution is achieved. For the
present purpose, σcrit is defined as the lowest bandwidth at which the threshold
DKL(π|η) ≤ 10−6 is achieved. The right panel of Figure 12.5 shows the values
that were obtained with this criterion. For the simulations with just 10 particles,
the required sampling accuracy could not be observed within the range of σ

under investigation. The value of σcrit decreases with increasing number of
particles.
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This observed effect of a critical bandwidth can be explained by the mech-
anism of the density estimation used for the birth-death probabilities. A very
small bandwidth and a small number of particles lead to a rather spiky density
estimate with sparse isolated peaks at the particle positions, while increasing
the bandwidth and the number of particles yields a smoother density estimate.

Taking an exponential fit to the obtained critical bandwidth values shown
in the right panel of Figure 12.5 yields approximately σcrit ∝ N−1/2. An ex-
ponential behavior is in line with the literature, where theoretical values for
the relationship between the number of data points and the optimal width of
the Gaussian kernel used in the density estimation have been deduced [222],
assuming a normal distribution of the data.

Concludingly, the parameter σ has to be chosen large enough to get a smooth
estimate of the density, where the critical bandwidth decreases with the number
of particles used. Further investigation of this behavior is required before an
a-priori rule-of-thumb can be given.

12.1.4 Influence of the birth-death stride M

Next, the effect of having multiple Langevin dynamics time steps in between
birth-death attempts is estimated. To this end, a set of simulations with the
same double-well potential as before is performed. The parameter M is varied
while keeping the number of particles N = 100 and the kernel width σ = 0.4
of the approximation Λmu fixed. Starting with a particle distribution of 10 to
90, the protocol and parameters of Section 12.1.1 are used again to obtain FES
estimates via histogramming. The resulting FESs are shown in the top left panel
of Figure 12.6.

Also, in the right panel of the figure, the time evolution of the particle
distribution in the two states is shown, which was obtained the same way as in
the previous section. The bottom left part of Figure 12.6 shows two different
values as a function of the birth-death stride M: The upper part presents the
percentage of accepted birth-death events Pacc, given by the number of accepted
birth-death moves divided by the total number of attempted ones. The other set
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Figure 12.6: Influence of the birth-death stride M.
Top left panel: Estimates of the free energy from sampling by using different values M
of Langevin dynamics step between attempted birth-death events. All but the data for
M = 10000 cannot be distinguished from the reference.
Bottom left panel: Percentage of accepted birth-death events of the total number of
birth-death attempts (top) and the time-averaged fraction of particles in the left state
(bottom). The error bars of the bottom part denote the standard deviation and the
black horizontal line is the expected equilibrium value. The first 50,000 time steps were
omitted before averaging over the fraction of particles at all time steps.
Right panel: Fraction of particles in the left state as a function of simulation time.
The colored lines are from the same simulations as in the top right panel, the black
horizontal line is the expected equilibrium value. The inset shows a magnification of
the first 12,000 time steps where each abscissa tic denotes 1,000 steps.

of values shows the time-averaged fraction of particles in the left state ⟨NL/N⟩,
together with the respective standard deviation. The first 50,000 Langevin time
steps were excluded before averaging over the values at all time steps.

Looking at the top left panel of Figure 12.6, it is observed that all simulations
yield a good estimate of the FES, however, the one with M = 10000 shows a
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slight deviation at the minimum of the higher state. The estimate of the equilib-
rium distribution of the particles in the two states, which can be calculated from
the histogram, is slightly off for this simulation: η(BL) = 0.64 instead of 0.63
that the reference and all other simulations give. Examining the time evolution
of the particle distribution, all simulations with M < 10000 reach the correct
equilibrium value within the first 4,000 time steps and there are only small
fluctuations around this value afterward. A smaller M results in slightly faster
equilibration, although this effect is found to be rather small.

For the simulation with M = 10000, the birth-death events result in over-
shooting, such that the number of particles in the left states becomes either
too small or too large directly after the events were performed. Between the
birth-death events, the slow equilibration process due to the Langevin dynamics
can be seen because the moderate barrier makes transitions only rare but not
completely unlikely. The overshooting happens because the birth-death proba-
bilities are calculated for all particles at once and then the respective events are
performed simultaneously. The time between birth-death calculations enters
exponentially in the event probabilities given by eq. (11.9). For large values of
M, the event probabilities become very large, in the case of M = 10000 around
70 % of the particles are killed or duplicated each time. Because the birth-death
probabilities are calculated for all particles at the beginning of the birth-death
step, changes of the particle distribution and of the resulting birth-death prob-
abilities after each accepted birth-death event are not taken into account. As
long as only a few birth-death events occur, these changes are not significant
and only minor differences are observed during the birth-death step of the
algorithm.

To verify that the combination of high average birth-death probabilities
together with the bulk calculation and execution of the events is indeed re-
sponsible for this, an additional simulation with M = 10000 is run using the
same parameters and seed for the random number generator, but with a slightly
modified algorithm: Instead of executing all accepted birth-death events simulta-
neously, the probabilities are recalculated during the birth-death step whenever
an accepted event has been carried out. Hence, the changed particle distribution
is taken into account during the course of the birth-death step. The resulting
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time evolution of the particle distribution can be seen in Figure 12.7, together
with the previous data without recalculation of the probabilities.
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Figure 12.7: Effect of recalculating the birth-death probabilities after each accepted
birth-death event.
Shown is the fraction of particles in the left state as a function of simulation time.
The data is for M = 10000 when recalculating the birth-death probabilities after each
accepted event (red) or in bulk (orange), the black horizontal line is the expected
equilibrium value. Depicted are only the first 200,000 time steps. The orange line is the
same data as for the M = 10000 line in the right panel of Figure 12.6.

Looking at the first birth-death step at t = 10000 δt, the fraction of particles
in the left state was roughly 0.35 immediately before it. This is far from the
equilibrium distribution of 0.63 which results in high probabilities of getting
killed for the particles in the right state, and high probabilities of getting
duplicated for particles in the left state. When applying the birth-death moves
simultaneously for all particles without recalculation of the probabilities in
between, this results in overshooting, such that too many particles transfer to
the left state. On subsequent birth-death steps, the same effect is observed, which
results in large fluctuations around the mean value. For the simulation where
the events are applied one at a time and the probabilities are recalculated in case
of acceptance, this overshooting effect does not occur and the birth-death step
results in particle distributions close to the equilibrium. To assess the change
numerically, the rate of accepted birth-death events Pacc and the standard
deviation of the fraction of particles in the left states is calculated for this
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simulation as well. The average birth-death probability decreases significantly
from Pacc = 0.68 to Pacc = 0.21, and the standard deviation as a measure of the
fluctuation of NL/N shrinks from 16.4 to 3.3.

The per-particle approach with recalculation of the probabilities after each
accepted event thus solves the problem of overshooting but requires a lot more
computational effort. Because the lower effort is the reason for not calculating
the probabilities at every Langevin timestep in the first place, it is concluded
that as long as birth-death events remain relatively rare, performing multiple
Langevin steps between birth-death attempts helps to speed up simulations
without negative side effects. To quantify this for the given system, another look
at the lower left panel of Figure 12.6 is taken: Significant changes in the average
particle distribution are observed only for M > 1000, which corresponds to
Pacc ⪆ 5 %. Monitoring this probability during the simulation provides a simple
way to ensure that the scheme of Algorithm 1 can be used in the proposed form.

12.2 general langevin dynamics

12.2.1 Dependency of the speed of equlibration on the barrier height

After investigating the influence of the parameters of the birth-death algorithm,
the behavior in the general Langevin case is evaluated. To simultaneously assess
the speed of convergence for different barrier heights, the double-well potential
of eq. (12.1) is generalized, using two parameters a and b:

U(x) = ax4 − 4ax2 + bx (12.7)

In Table 12.1, sets of coefficients are given where a is systematically increased
and then b is set such that the equilibrium distribution of the particles in the
two states remains fixed at about π(BL) ≈ 0.63 to π(BR) ≈ 0.37, as it was in
Section 12.1.1. This results in double-well potentials with similar properties of
the basins, but systematically increased barrier height FB. In the remainder of
this section, the different potentials will be referred to by their associated barrier
height FB, where for shorter notation only the integer part is used. For example,
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Table 12.1: Coefficients for potentials according to eq. (12.7) with increasing barrier
height FB while keeping the equilibrium distribution of particles in the two states fixed
(≈ 63 % in lower energy state).

a b barrier height

1 0.2 4.285
2 0.1918 8.272
4 0.1889 16.267
8 0.1877 32.262

FB = 4 refers to the potential with a = 1 and b = 0.2 that was previously
described in eq. (12.1).

For each set of coefficients, simulations with a general Langevin integrator,
according to the Bussi-Parinello scheme [48] of eq. (2.20), are performed. The
parameters of the Langevin dynamics are set to β = 1, m = 1 and γ =

10. In total 100 particles are simulated for 2,000,000 steps with a time step
δt = 0.005, where again 10 particles are initially placed in the left and 90 in
the right basin. Birth-death events are performed after every 100th time step
with the approximation Λmu and a Gaussian kernel with bandwidth σ = 0.5.
For comparison, pure Langevin dynamics simulations without birth-death
events but otherwise the same parameters are performed additionally. The
obtained FESs from histogramming the samples with the same protocol as in
Section 12.1.1 can be seen in Fig. 12.8.

For the simulations with birth-death, the estimated FES agrees well with
the reference in all cases, although the higher barrier regions are not sampled
due to the insufficient simulation time. On the contrary, it is observed that the
pure Langevin dynamics simulations are only sampling the system correctly
if the barrier is low. Already for a slightly higher barrier of FB = 8, there is a
visible difference in the height of the right minimum, that is, it estimates it to
be lower in energy than the reference. For higher barriers, the estimates from
pure Langevin sampling are completely off. They give the right state as lower
in energy than the left one by several kBT, opposite to the reference FES of the
system obtained directly from the potential.
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Figure 12.8: FES estimates from general Langevin sampling with and without birth-
death moves.
Shown are estimates of the FES from sampling four potentials with different coefficients
according to Table 12.1. The solid lines are from simulations with birth-death events,
the dashed lines from pure Langevin dynamics simulations with independent particles,
and the thin black lines denote the reference from the potential.

The reason for this can be seen when looking at the distribution of the
particles in the two states, which is presented in Figure 12.9. With increasing
barrier height, crossings between the states by Langevin dynamics become rarer.
While the probability of crossing the barrier is not zero, they are too slow to
equilibrate the particles across the two states within the simulation time for the
higher barriers. In fact, not a single transition could be observed from Langevin
dynamics when simulating the system with a barrier height of 32 kBT.

On the other hand, the simulations with birth-death events reach the equilib-
rium distribution of the particles within the first 1,000 steps of the simulation.
It is clearly visible that the barrier height has only a negligible influence on the
speed of equilibration, which is in accordance with a similar theoretic result
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Figure 12.9: Number of particles in the left state as a function of simulation time for
the different potentials. Shown are only the first 5,000 time steps. The lines without
birth-death are on top of each other for all but the FB = 4 case. The solid black line is
the equilibrium value calculated from the potentials.

for an overdamped system with no smoothing kernel (compare Theorem 3.3 of
[30]). Here, this theoretical derivation is found to be also true when using an
approximation (in this case Λmu) to the birth-death term.

12.2.2 Investigation of momentum behavior

As discussed in Section 10.3, it was chosen for the general Langevin case to
have the birth-death rates depend only on the particles’ positions and not
on their momenta. This approach is valid if it does not severely disturb the
distribution of the momenta. An undisturbed distribution can be assumed if
the momenta equilibrate on timescales shorter than the average time between
accepted birth-death events.

Here, this assumption is verified by looking at the time evolution of the
momenta as well as their distribution. For this, data from the simulations with
the general Langevin integrator of the previous section 12.2.1 are considered.
The first 200,000 time steps of the simulation with birth-death events of the
potential with the lowest barrier (FB = 4) are used. The momentum of every
Langevin time step from all 100 particles is collected in a histogram with 1,000
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bins in the range [−5, 5], which is subsequently compared to the expected
distribution after normalization. The theoretical equilibrium distribution of the
momentum is given by the Maxwell-Boltzmann distribution of eq. (2.14). In one
dimension, eq. (2.14) simplifies to [223]

P(p) =

√
β

2πm
exp

(
−βp2

2m

)
. (12.8)

A plot of the probability distributions can be seen in the left panel of Fig-
ure 12.10. Good agreement between the data from the simulation and the
expected equilibrium distribution is observed.
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Figure 12.10: Analysis of momentum behavior when using the birth-death scheme with
general Langevin dynamics.
Left panel: Momentum distribution from the simulation (orange solid line) compared to
the expected Maxwell-Boltzmann distribution (black dashed line).
Right panel: Normalized autocorrelation function of the momentum of one selected
particle. The lag time is given in units of the time step.

To further verify that the proposed approach does not distort the momen-
tum distribution, the relevant timescales are investigated. The autocorrelation
function of the momentum is defined as

Z(τ) = ⟨p(τ) · p(0)⟩, (12.9)
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where the average runs over the time series of a particle within a simulation.
The momentum autocorrelation is calculated from the first 200,000 time steps
of the simulation data for selected particles. The results are very similar for
all chosen particles, the plot of one exemplary autocorrelation function is
presented in the right panel of Figure 12.10. It is also of note, that there are no
visible differences to autocorrelation functions calculated from pure Langevin
dynamics simulations of the same system.

The momentum autocorrelation, as exemplarily shown in the right panel
of Figure 12.10, decays to zero within a few hundred Langevin time steps.
This time scale of momentum equilibration can be compared to the average
time between accepted birth-death events. During the simulation, birth-death
moves are attempted after every 100th Langevin time step, of which 1.67 %
are accepted. The average time between birth-death moves is therefore roughly
6,000 Langevin time steps. This is more than one order of magnitude larger
than the time required for the momentum to equilibrate. It is concluded that
the birth-death events have no noticeable effect on the momentum distribution.
Therefore the presented approach of Algorithm 1 is justified even with general
Langevin dynamics in the presented case.

12.2.3 Simulations in higher dimensions

All the previous results were for a system with only one spatial dimension.
Because the theory from Chapter 10 holds for higher dimensions just as well,
the performance of the method is tested on the two-dimensional Wolfe-Quapp
potential [200, 201]

U(x, y) = x4 + y4 − 2x2 − 4y2 + xy + 0.3x + 0.1y, (12.10)

that was previously described in eq. (7.2) and used for simulations in Section 7.2.
Transitions between the states in y-direction are rare events, while the mobility
in x-direction is high. The potential can be seen in Figure 7.3.

Simulations are run for 200,000 time steps with the overdamped Langevin
integrator using 1,000 particles and otherwise the same parameters as for the
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one-dimensional case in Section 12.2.1. The initial distribution is again chosen
to be far from equilibrium: 100 particles are placed in the metastable state at
{−1.17, 1.48} and 900 particles in the other local minimum at {1.12,−1.49}.
The bandwidths of the Gaussian kernel are chosen to be symmetric in both
directions, σ = σx = σy, because the low-energy regions of the potential have
roughly the same size in both dimensions. It shall be noted that this is not
a requirement and asymmetric kernels can be employed just as well. The
kernel bandwidths are varied in the range σ ∈ [0.05, 0.75] in steps of 0.05 in
independent simulations. Additionally, a pure Langevin dynamics simulation
without the birth-death events but otherwise the same simulation protocol is
performed for comparison.

Omitting the first 10,000 time steps, the samples are again collected in a
histogram. 200 equally sized bins in the range x, y ∈ [−2.5, 2.5] are used for
each direction. Because visual inspection of the FES in 2D is difficult, the FES is
also projected on the y-direction. A selection of the resulting estimates of the
FES as a function of the y-coordinate is presented in Fig. 12.11.
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Figure 12.11: Estimates of the FES of the Wolfe-Quapp potential projected on the
y-direction. Colored solid lines are from simulations with birth-death events using
different kernel widths σ. The lines for σ = 0.55 and σ = 0.75 are hardly distinguishable
because they are basically on top of each other. The dashed line is from a pure Langevin
dynamics simulation. For clarity, it was omitted in the inset. The black line is the
expected free energy calculated from the potential.
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Similar behavior is observed as for the 1D potential: Above a certain ker-
nel width σcrit, the estimates from sampling are very close to the reference
calculated from the potential. For too narrow kernels the barrier regions are
overestimated. The simulation without the birth-death algorithm does not man-
age to adequately sample the system and significantly deviates not only in the
barrier region but also in the relative height of the two states.

To numerically assess the correctness of the sampling, the Kullback-Leibler
divergence DKL(π | η) from the obtained sampling distribution η to the true
equilibrium distribution π is used, which is defined in eq. (3.50) and calculated
in the same way as in Section 12.1.1. For this, not only the projections on the
y-dimension but the full two-dimensional probability densities are used. The
obtained KL divergences for different values of the kernel width σ are shown
in the left panel of Figure 12.12, together with the KL divergence for the pure
Langevin simulation.
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Figure 12.12: Comparison of performance of the birth-death method on the Wolfe-
Quapp potential for different bandwidths σ.
Left panel: Kullback-Leibler divergences from the estimated probability distribution
to the equilibrium distribution for simulations with different kernel widths σ. For
comparison, the dashed horizontal line denotes the value from a simulation without
the birth-death algorithm.
Right panel: Fraction of particles in the state with y > 0 as a function of simulation
time. The black horizontal line is the expected equilibrium value. The different lines
represent the same simulations as in Figure 12.11.
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Additionally, a look at the equilibration process during the first time steps is
taken. For this, the system is separated into two states with y = 0 as the dividing
line. Monitoring the number of particles in these two states allows observing
the slow transitions between the two main basins. A reference equilibrium value
is obtained from the potential by integrating over the respective regions in the
same way as it was done in Section 12.1.1 for the 1D potential. This yields
π(y > 0) ≈ 0.56 as the equilibrium probability for each particle to be in the
region y ∈ (0, ∞). The right panel of Figure 12.12 shows the time evolution of
the number of particles in this state, Ny>0, for the first 5,000 time steps of the
simulation.

Looking at the values of the Kullback-Leibler divergence in the left panel of
Figure 12.12 confirms the findings from the FES projections: While suboptimal
sampling is obtained for low kernel bandwidths, increasing σ above a certain
value σcrit yields sampling very close to the theoretical distribution denoted
by low Kullback-Leibler divergence. The value of σcrit can be determined to
be approximately 0.4 here, although the discussion in Section 12.1.3 makes it
clear that this value also depends on the number of particles employed in the
simulation. To obtain a good estimate of the density from the current particle
positions, with increasing dimension also more particles are required. Using the
rather large number of 1,000 particles in this simulation ensured good estimates
and allowed to focus on the behavior of the algorithm itself, while it is not
required to obtain good sampling. For simulations of more complex systems,
the number of parallel representations will typically be chosen much smaller.

Simulating the system without birth-death events clearly results in subopti-
mal sampling. The calculated Kullback-Leibler divergence for this simulation
is about two orders of magnitude worse than the results for the birth-death
augmented simulations with σ > σcrit. This behavior can be explained when
looking at the time evolution of the particle distribution in the right panel of
Figure 12.12: Due to the moderate barrier, transitions by Langevin dynamics
happen only on relatively long timescales. Subsequently, without the usage of
additional moves, such as in the presented birth-death scheme, estimates from
the sampling are not correct. With additional birth-death moves, the correct
distribution is sampled and the correct equilibrium distribution of the parti-
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cles is reached within less than 1,000 time steps. In conclusion, the presented
algorithm can also be used to improve sampling in multiple dimensions.
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S U M M A RY A N D O U T L O O K

In this part of the thesis, a new method to enhance sampling was introduced.
It augments molecular sampling schemes with a cloning algorithm similar
to the one proposed in Ref. 30. The presented algorithm enhances Langevin
sampling with birth-death moves, which enables accurate sampling also for
rare event systems. While theoretical treatment allows only to prove correct
sampling for long times and infinitely many particles in the overdamped case,
numerical simulations were able to show that the correct probability distribution
is sampled also in simulations with finite particles.

The algorithm was tuned for better computational efficiency by increasing
the time between birth-death calculations. It was found that this does not cause
problems, as long as the average probabilities of birth-death events remain small.
The proposed method also offers a way to gradually turn off the birth-death
part of the algorithm.

Additionally, the algorithm can not only be used in the overdamped Langevin
case, but with more general dynamics. When applying the birth-death algorithm
only to the particle positions in simulations with general Langevin dynamics,
correct sampling could also be observed.

A remarkable result of the algorithm was presented in Section 12.2.1: the
speed of equilibration is independent of the barrier height of the simulated
system. This is beneficial for rare event systems and might prove fruitful when
the method is applied to physical or chemical systems that require more complex
dynamics.
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Although the theory of the method holds for potentials of any dimension,
in practice the number of particles has to be increased with the number of
dimensions to get smooth estimates of the particle distribution. This limits
the dimensions in which the algorithm can be applied to only a few. For high
dimensional systems with many degrees of freedom, such as typical chemical
systems, the method will need to be modified. Similar to the CV-based enhanced
sampling methods that were used in Part II, in these cases the birth-death
algorithm might be applied only to a few selected slow degrees of freedom.
Applying the birth-death moves only to the position distribution of the particles
in the general Langevin simulations of Section 12.2 while omitting the faster
degrees of freedom from the momentum can be seen as a first step in that
direction.

Also, to calculate the birth-death probabilities Λmu during a simulation,
eq. (10.30) requires knowledge of the equilibrium distribution π in the region
of interest. Typically, this knowledge will not be available a priori but has to
be obtained, for example, by estimation from the sampling. Therefore, further
methodologival development is needed before the presented method can be
applied to real chemical systems. Extensions of the algorithms that include
on-the-fly estimates of π are currently under investigation, but this is beyond
the scope of this work.



Part IV

C O N C L U S I O N

“In this song, we’ll interrupt ourselves
And never come to an end

All conclusions remain to be drawn
Everything recalculated”

— Ampere [224]
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C O N C L U S I O N

This thesis introduced two newly developed aspects of enhanced sampling meth-
ods for molecular simulations. Part II analyzed the existing bias representation
of the VES method and developed new basis functions. Part III presented a new
sampling algorithm that employs birth-death processes to obtain equilibrium
sampling even for systems with high barriers.

In Part II, criteria for good basis functions of the VES method were assembled.
Numerical simulations were used to assess the performance of newly proposed
localized basis sets. In particular, the basis sets constructed from Daubechies
wavelets were shown to have favorable properties. For all model systems, as
well as the simulation of the association process of calcium carbonate, better
results than for the previously described basis sets were obtained. Especially
the stability of the bias, both during the optimization process of an individual
simulation as well as between different simulation runs, was found to be greatly
improved. Additionally, the bias typically converged within shorter simulation
times when compared to simulations that employed other basis functions. These
are favorable properties when estimating observables from the simulation data.
As an example, for the association process of calcium carbonate, the obtained
free energy differences showed significantly smaller error bars when compared
to the other biasing methods, both for the results of a single simulation and
also when combining data from all three runs. Therefore, constructing the VES
bias from wavelets might allow for shorter simulation times to obtain the same
quality of estimates when compared to the previously proposed basis functions.
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Although the presented results give a promising perspective of using wavelet-
based bias potentials, the current methodology can be further extended: The
multiresolution property of the wavelet basis allows to refine the resolution
of the bias potential on the fly during a simulation. Also, different wavelet
types might be better suited for specific systems under investigation. The
presented work can therefore be seen as starting point for further studies of the
performance of wavelet-based bias potentials.

Part III presented an orthogonal enhanced sampling approach to the biasing
strategies of Part II: The newly proposed Algorithm 1 couples multiple copies
of the system under investigation by birth-death processes. Simulating multiple
replicas of the system helps to sample the configurational space more exten-
sively and the birth-death algorithm ensures equilibrium sampling even in the
presence of high barriers, independently of the barrier height. The mathematical
proof of convergence to the correct sampling in the limit of infinitely many par-
ticles and infinite time was verified in the finite case via numerical simulations.
Even with a moderate number of particles, equilibrium sampling was observed
as long as smooth estimates of the particle density could be obtained via a
kernel density estimation. The influence of several parameters of the algorithm
on its behavior was studied, such as the number of particles or the width of the
smoothing kernel.

To go toward simulations of chemical systems, the algorithm was also
applied to more general dynamics (in the form of underdamped Langevin
dynamics) while keeping the same protocol and omitting the particle momenta
from the birth-death considerations. Omitting these fast degrees of freedom is
the first step to a sparser application of the birth-death method: Because the
number of dimensions that the method can be applied to is limited in practice,
future development of the method toward a CV-based approach is suggested.
Then, only a few selected slow degrees of freedom of the process of interest
(the CVs) are taken into account for the birth-death events. This fits nicely with
bias-based enhanced sampling methods, such as metadynamics and VES, that
also employ a bias only on along certain CVs.

Using both bias-based and birth-death approaches together might help to
solve difficulties in either method. The presented birth-death method leads
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to equilibrium sampling, which means that states with low probabilities are
rarely sampled. The interacting particle approach can be seen as assigning each
state a desired equilibrium number of particles. When simulating systems with
metastable states at vastly different energy levels with a limited number of
particles, this might be less than a single particle for the high energy states.
The birth-death algorithm will then not be able to sample these states reliably.
This can be cured by employing a biasing method that lowers the energy
differences between states. Using, for example, the VES method with a well-
tempered target distribution and biasing factor γ, reduces the sampled free
energy difference between the lowest and all other states by a factor 1/γ

which results in increased equilibrium probabilities at the higher states. On
the other hand, the birth-death scheme helps to quickly equilibrate the system
and prevents walkers from becoming correlated. Future developments might
therefore lead to a combination of two orthogonal methods, where the biasing
method explores and detects new states and the birth-death method exploits
the new information to quickly obtain good statistics: The biasing method
quickly explores the configurational space and allows sampling of previously
inaccessible states by flattening barriers. The birth-death algorithm then quickly
redistributes the replicas according to the equilibrium distribution, such that
good estimates can be obtained already shortly after.

While the presented research of Parts II and III can be applied individualy to
interesting problems, this thesis provides also a step towards the development
of such a combined method. Using the robustness and quick convergence of
the introduced wavelet-based bias potentials might allow for relatively short
explorative segments of the algorithm, and combined with the birth-death ap-
proach this could lead to a method that provides good estimates from sampling
in a efficient way within short simulation times.
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A
A P P E N D I X

a.1 metadynamics algorithms in pseudocode

Here, exemplary steps of the metadynamics method are given in commented
pseudocode. Algorithm 2 gives the basic algorithm that was introduced by Laio
and Parinello [105] and described in Section 3.1.1 of this work. Algorithm 3
presents the well-tempered variant, where the height of the Gaussians is reduced
during the course of the simulation. It was introduced by Barducci et al. [106]
and described in Section 3.1.2.
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Algorithm 2: Metadynamics
Exemplary steps of a metadynamics simulation as introduced in
Ref. 105

Input: NT: Number of time steps
NG: Stride (in time steps) between depositing Gaussians
r = {r1, r2, . . . , rN}: Coordinates of particles
U(r): Potential energy function
D(r, f): Propagator of coordinates (MD, LD)
s = {s1(r), s2(r), . . . , sn(r)}: Collective variables
h: Fixed height of Gaussians
σσσ = {σ1, σ2, . . . , σn}: Width of Gaussians per collective variable

t← 1 // Current time step
tG ← 1 // Time steps since last added Gaussian
nG ← 0 // Counter of added Gaussians
while t ≤ NT do // Loop over time steps

u← U(r) // Calculate current potential energy

fi ← −∇r⃗i
u // Calculate forces from potential energy

s = {s1(r), s2(r), . . . , sn(r)} // Update CV values

vG ← ∑nG
k=1 h exp

(
−∑n

j=1
(sj−s̃k,j)

2

2σ2
j

)
// Calculate Metad bias

fG,i ← −∇r⃗i
vG // Calculate Metad biasing force

if tG = NG then // Metad stride is matched: add Gaussian

nG ← nG + 1 // Update counter of Gaussians
s̃nG ← s // New Gaussian at current CV value
tG ← 0 // Reset counter since last Gaussian added

end if
x⃗← D(⃗x, f + fG) // Propagate coordinates
t← t + 1
tG ← tG + 1

end while
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Algorithm 3: Well-tempered metadynamics
Exemplary steps of a well-tempered metadynamics simulation as intro-
duced in Ref. 106

Input: NT: Number of time steps
NG: Stride (in time steps) between depositing Gaussians
r = {r1, r2, . . . , rN}: Coordinates of particles
U(r): Potential energy function
D(r, f): Propagator of coordinates (MD, LD)
s = {s1(r), s2(r), . . . , sn(r)}: Collective variables
h: Fixed height of Gaussians
σσσ = {σ1, σ2, . . . , σn}: Width of Gaussians per collective variable
h0: Initial height of Gaussians
γ: Biasfactor
β: Inverse thermal energy of system (β−1 = kBT)

t← 1 // Current time steps
tG ← 1 // Time steps since last added Gaussian
nG ← 0 // Counter of added Gaussians
while t ≤ NT do // Loop over time steps

U(⃗x) // Calculate current potential energy
F⃗ ← −∇x⃗U(⃗x) // Calculate force from potential energy
s← {s1(⃗x), s2(⃗x), . . . , sn (⃗x)} // Update CV values

VG(s)← ∑nG
k=1 hk exp

(
−∑n

j=1
(sj−s̃k,j)

2

2σ2
j

)
// Calculate Metad bias

F⃗G ← −∇x⃗VG(s) // Calculate Metad biasing force
if tG = NG then // Metad stride is matched: add Gaussian

nG ← nG + 1 // Update counter of Gaussians
s̃nG ← s // New Gaussian at current CV value

hnG ← h0 · exp
(
− 1

γ−1 βVG(s)
)

// Height of new Gaussian

tG ← 0 // Reset counter since last Gaussian added
end if
x⃗← D(⃗x, U(⃗x) + VG(s), F⃗ + F⃗G) // Propagate coordinates
t← t + 1
tG ← tG + 1

end while
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a.2 source code for the generation of daubechies wavelets

1 #!/usr/bin/env python3
2 """
3 Calculate the scaling function and its derivative for Daubechies Wavelets
4 Can also be used to print out the filter coefficients
5

6 Copyright (C) 2021 Benjamin Pampel
7

8 This program is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by

10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12

13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17 """
18

19 import argparse
20 import numpy as np
21 from scipy.special import comb
22

23

24 def parse_args():
25 """Get cli args"""
26 parser = argparse.ArgumentParser()
27 parser.add_argument("-N", "--moments",
28 required=True, type=int,
29 help="Number of vanishing moments of the wavelet",
30 )
31 parser.add_argument("-r", "--recursion",
32 type=int, default=6,
33 help="Depth of recursion,\
34 i.e. 2**d points will be calculated per integer.\n\
35 Defaults to 6 (64 points per int)."
36 )
37 parser.add_argument("-d", "--derivs",
38 type=int, default=0,
39 help="Number of derivatives to also calculate.\n\
40 Defaults to 0 (no derivatives)."
41 )
42 parser.add_argument("-f", "--filename",
43 help="Name of the output file.\n\
44 Defaults to DbN.data if wavelets are calculated.",
45 )
46 parser.add_argument("-c", "--coeffs",
47 action="store_true",
48 help="Only calculate the filter coefficients.\n\
49 Output is by default to screen\
50 but can be to file if the -f flag is given.",
51 )
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52 parser.add_argument("-n", "--coeffsnorm",
53 type=float, default=np.sqrt(2),
54 help="Normalization of the filter coefficients to be printed.\n\
55 Will be ignored if the -c flag is not specified.\n\
56 Defaults to sqrt(2).",
57 )
58 return parser.parse_args()
59

60

61 def filter_coeffs(N, norm=np.sqrt(2)):
62 """Calculate the filter coefficients for Daubechies Wavelets
63

64 see Strang & Nguyen - "Wavelets and Filters", 1997, ch. 5.5
65 :param p: number of vanishing moments
66 :param norm: specifies the sum of the final coefficients
67 """
68 if N < 1:
69 raise ValueError("The Wavelets must have at least 1 vanishing moment")
70 if N > 34:
71 raise ValueError("Sorry, the implementation does not work for N > 34")
72 if norm <= 0:
73 raise ValueError("The norm must be larger than 0")
74 poly = np.polynomial.polynomial
75

76 # find roots of the defining polynomial B(y)
77 B_y = [comb(N + i - 1, i, exact=True) for i in range(N)]
78 y = poly.polyroots(B_y)
79 # calculate the roots of C(z) from the roots y via a quadratic formula
80 roots = [poly.polyroots([1, 4 * yi - 2, 1]) for yi in y]
81 # take the ones inside the unit circle and add roots at -1
82 z = [root for pair in roots for root in pair if np.abs(root) < 1]
83 z += [-1] * N
84 # put together the polynomial C(z) and normalize the coefficients
85 C_z = poly.polyfromroots(z)
86 C_z = np.real(C_z) # imaginary part may be non-zero because of rounding errors
87 C_z *= norm / sum(C_z)
88 return C_z[::-1]
89

90

91 def highpass_from_lowpass(h):
92 """Get lowpass filter coefficients g from the highpass coefficients h"""
93 alternating_sign_list = [(1 if i % 2 == 0 else -1) for i, _ in enumerate(h)]
94 g = h[::-1] * alternating_sign_list
95 return g
96

97

98 def m_matrices(h):
99 """Calculate the matrices M0 and M1 for the vector cascade

100

101 :param h: filter coefficients, with norm 1
102 :return [M0, M1]: matrices
103 """
104 # initialize matrices to zero
105 n = len(h) - 1
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106 M0 = np.zeros((n, n), dtype=np.float64)
107 M1 = np.zeros((n, n), dtype=np.float64)
108 # 'c style' construction
109 for i in range(n):
110 for j in range(n):
111 if 0 <= 2 * i - j <= n:
112 M0[i, j] = 2 * h[2 * i - j]
113 if -1 <= 2 * i - j <= n - 1:
114 M1[i, j] = 2 * h[2 * i - j + 1]
115 return [M0, M1]
116

117

118 def normalize_eigenvector(eigvec, derivnum):
119 """Normalize eigenvector to obtain values at the integers
120

121 :param eigvec: eigenvector of the M0 matrix
122 :param derivnum: derivative currently calculated
123 :return: phi at the integer values
124 """
125 weighted_sum = np.sum(eigvec * ((-np.arange(len(eigvec))) ** derivnum))
126 norm = np.math.factorial(derivnum) / weighted_sum
127 return eigvec * norm
128

129

130 def wavelet(N, d=6, derivs=0):
131 """Calculate the scaling and wavelet function for Daubechies Wavelets
132

133 :param N: number of vanishing moments N
134 :param d: recursion number. returned array will have 2**d values per integer
135 :param derivs: number of derivatives to also calculate
136 :return (x, phi, psi): phi is the scaling and psi the wavelet function
137 both are lists containing the function and derivatives
138 """
139 if derivs > N - 1:
140 raise ValueError(f"Only {N-1} derivatives exist but {derivs} were requested")
141

142 h = filter_coeffs(N, 1)
143 g = highpass_from_lowpass(h)
144

145 H = m_matrices(h)
146 G = m_matrices(g)
147

148 step = 1 << d # number of values between integers
149 # set up arrays of values to be calculated
150 phi = np.empty((N, (2 * N - 1) * step), dtype=np.float64)
151 psi = np.empty((N, (2 * N - 1) * step), dtype=np.float64)
152

153 # get eigenvalues and vectors of matrix
154 H0_eigvals, H0_eigvecs = np.linalg.eig(H[0])
155

156 # identify the indices corresponding to the required derivatives in H0_eigvals
157 # and H0_eigvecs
158 # the eigenvalues are 2**(-deriv) starting with 0
159 # prefix 'dy' is for the dyadic values



A.2 source code for the generation of daubechies wavelets 219

160 dy_eigval_indices = [
161 np.argmin(np.absolute(H0_eigvals - 2 ** (-j))) for j in range(derivs + 1)
162 ]
163

164 values_at_int = np.empty((N, 2 * N - 1), dtype=np.float64)
165

166 for j, k in enumerate(dy_eigval_indices):
167 # j is order of derivative (0:derivs), k the position of the corresponding
168 # eigenvector
169 values_at_int[j] = normalize_eigenvector(H0_eigvecs[:, k], j)
170

171 # multiply matrices with factor (less flops)
172 factor = 1 << j
173 H_temp = [factor * H[0], factor * H[1]]
174 G_temp = [factor * G[0], factor * G[1]]
175

176 # fill first two datasets by hand
177 binarydict = {"0": values_at_int[j]}
178 binarydict["1"] = H_temp[1] @ values_at_int[j]
179 phi[j][::step] = binarydict["0"]
180 phi[j][step >> 1 :: step] = binarydict["1"]
181 psi[j][::step] = G_temp[0] @ values_at_int[j]
182 psi[j][step >> 1 :: step] = G_temp[1] @ values_at_int[j]
183

184 # do the recursion
185 oldbits = ["1"]
186 for depth in range(2, d + 1):
187 newbits = ["%d%s" % (new, old) for new in [0, 1] for old in oldbits]
188 for binary in newbits:
189 start = int(binary, 2) * step >> depth
190 firstbit = int(binary[0])
191 binarydict[binary] = H_temp[firstbit] @ binarydict[binary[1:]]
192 phi[j][start::step] = binarydict[binary]
193 psi[j][start::step] = G_temp[firstbit] @ binarydict[binary[1:]]
194 oldbits = newbits
195

196 # corresponding x values
197 x = np.arange(0, 2 * N - 1, 1 / step)
198

199 return (x, phi, psi)
200

201

202 if __name__ == "__main__":
203 args = parse_args()
204

205 if args.coeffs: # print only file coeffs
206 coeffs = filter_coeffs(args.moments, args.coeffsnorm)
207 if args.filename is None: # print to screen
208 [print("{:.32e}".format(c)) for c in coeffs][0]
209 else:
210 header = "#! FIELDS coeff"
211 header += "\n#! SET type Db" + str(args.moments)
212 np.savetxt(args.filename, coeffs.T, header=header)
213
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214 else: # do the main program, i.e. calculate and print the wavelet functions
215 x, scaling_func, wavelet = wavelet(args.moments, args.recursion, args.derivs)
216 if args.filename is None: # default names
217 args.filename = f"Db{args.moments}.data"
218 header = "#! FIELDS x Phi Psi"
219 header += "".join([f" Phi_d{i} Psi_d{i}" for i in range(1, args.derivs + 1)])
220 header += "\n#! SET type Db" + str(args.moments)
221

222 # collect all data into one array
223 data = np.empty((3 + args.derivs * 2, len(x)))
224 data[0] = x
225 for deriv in range(args.derivs + 1):
226 data[2 * deriv + 1] = scaling_func[deriv]
227 data[2 * deriv + 2] = wavelet[deriv]
228 np.savetxt(args.filename, data.T, header=header)
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