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We demonstrate theoretically that the thermal Hall effect of magnons in collinear antiferromagnetic insulators
is an indicator of magnetic and topological phase transitions in the magnon spectrum. The transversal heat
current of magnons caused by a thermal gradient is calculated for an antiferromagnet on a honeycomb lattice.
An applied magnetic field drives the system from the antiferromagnetic phase via a spin-flop phase into the
field-polarized phase. Besides these magnetic phase transitions we find topological phase transitions within the
spin-flop phase. Both types of transitions manifest themselves in prominent and distinguishing features in the
thermal conductivities; depending on the temperature, the conductivity changes by several orders of magnitude,
providing a tool to discern experimentally the two types of phase transitions. We include numerical results for the
van der Waals magnet MnPS3.

Introduction. In electronic systems, details of the elec-
tronic structure and of the magnetic configuration manifest
themselves in the transport properties. As an example, the
quantum anomalous Hall effect, in which the transversal trans-
port coefficient is quantized, is a clear signature of a topolog-
ically nontrival phase. Moreover, topological phases of the
electronic states can be clearly identified spectroscopically,
e. g. in topological insulators [1–5].

The field of topology is not restricted to fermions, but also
applies to bosons. The topological features of phonons [6–
12], photons [13–17], and magnons [18–25], however, are
more subtle due to the lack of the Pauli exclusion principle
which results in quantized transport. In this Paper we focus
on magnons, because they are easily manipulated by external
magnetic fields. The identification of magnon edge states, the
hallmarks of a nontrivial system, is notoriously difficult. On
the one hand, angle-resolved photoelectron and spin-polarized
scanning tunneling spectroscopy cannot be applied at all or
not without severe restrictions [26–31]. On the other hand,
inelastic neutron scattering succeeds in detecting gapped bulk
spectra, but fails in resolving edge modes [32]. These apparent
shortcomings call for identifying clear signatures of magnetic
and topological phase transitions in the magnetotransport of
magnons, for example in the thermal Hall conductivity.

In this Paper, we aim at bridging the apparent gap sketched
in the preceding paragraph. For this purpose we investigate the-
oretically an antiferromagnet that exhibits spin-split, nonrecip-
rocal magnon bands and both magnetic and topological phase
transitions induced by an applied magnetic field. These phase
transitions show up as clear characteristic signatures in the
field and temperature dependence of the thermal Hall conduc-
tivity, that are explained by the magnonic band structure and
the Berry curvature. We exemplarily calculate the thermal Hall
magnetoconductivity at two phase transitions, which quantifies
the influence of the transitions on the Hall response, to convey
the strong tunability and sensitivity of the thermal Hall effect.
Our findings suggest a means for identifying magnetic and
topological phases via transport measurements. Conversely,
they insinuate a way to externally control the thermal Hall

effect due to the significant changes across the phase transi-
tions. The numerical results for MnPS3, which is known for
its nontrivial magnon transport [33], ask for comparison with
experimental data.

Previous reports addressed thermal Hall effects in collinear
ferromagnets with Dzyaloshinskii-Moriya interaction (DMI)
and dipolar interactions [18, 19, 34–58], in weak ferromag-
nets with scalar spin chirality or due to magnetic fields [59–
73], in noncollinear antiferromagnets [74] or in paramagnets
[12, 41, 44, 59, 75–80]. Here, we present a thermal Hall ef-
fect in collinear antiferromagnets without DMI, which may
even be present without external fields. While noncollinear
antiferromagnets rely exclusively on their magnetic order to
break an effective time-reversal symmetry (which is a prereq-
uisite for the thermal Hall effect), collinear antiferromagnets
need nonmagnetic atoms in addition to break it. The under-
lying mechanism is the magnonic analogue of the Hall effect
reported in Ref. 81.

Model and methods. We consider a magnet on a two-
dimensional (2D) honeycomb lattice (in the xy plane; depicted
in Fig. 1). In the ground state without a magnetic field the
spins of sublattice A (B) point in +z (−z) direction.

The spin Hamiltonian

H = Hnn +Hon +HB (1)

comprises the coupling of nearest-neighbor spins,

Hnn =
1

2~2

∑
〈i j〉

Sᵀi

J + Ja cos θi j −Ja sin θi j 0
−Ja sin θi j J − Ja cos θi j 0

0 0 Jz

 S j. (2)

Both in- and out-of-plane spin components are coupled anti-
ferromagnetically, but with different strengths (Jz > J > 0).
The traceless and symmetric coupling, introduced by Ja, orig-
inates from spin-orbit coupling (SOC) [82]. It is related to
the nearest neighbor bonds 〈i j〉 by the bond-dependent angles
θi j = 0, 2π/3, and −2π/3 (cf. angles near bonds in Fig. 1).
The classical collinear configuration favored by J and Jz is
maintained as long as Ja is sufficiently small.
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FIG. 1. Honeycomb lattice with antiferromagnetically coupled spins
on sublattices A (blue) and B (orange). The spin configuration shown
here is paradigmatic for the spin-flop phase with A , 0 and a magnetic
field applied along −z.

This model was proposed for manganese thiophosphate
MnPS3 in Ref. 82 and produces a nonreciprocal magnon spec-
trum. The nonreciprocity may also be caused by DMI (which
would not cause the spin splitting of the bands) [83] and dipole-
dipole interactions [84]. An experimental work by Wildes et
al. did not reveal convincing signatures of an asymmetric band
structure, however, (i) based on the band splitting DMI was
ruled out in MnPS3 [85] (ii) bond-dependent exchange interac-
tion Ja is allowed by symmetry [82], and (iii) while Ja causes
nonreciprocal magnon bands, it cannot be excluded due to the
limited experimental resolution. In favor of neglecting DMI
we recall that the bond-dependent exchange reproduces the
band splitting reasonably well. Nevertheless, further insights
into the spin-spin interactions are desirable, for example by
comparing experimental results with the predictions for the
transport properties reported here.

We extend the model of Ref. 82 by considering an on-site
anisotropy

Hon = −
A
~2

∑
i∈A

(
S z

i

)2
(3)

for the spins on sublattice A, which breaks the inversion sym-
metry on the level of the Hamiltonian. It may be brought about
by placing the sample on a substrate or in a heterostructure
[e. g., on a transition-metal dichalcogenide (TMDC)], thereby
producing local environments of the atoms that differ for the
two sublattices [86]. The anisotropy translates into a sublattice-
dependent on-site potential of the magnons.

The Zeeman Hamiltonian

HB =
gµBBz

~

∑
i

S z
i (4)

accounts for an out-of-plane magnetic field that destabilizes the
antiferromagnetic (AFM) order and induces magnetic phase
transitions. Below the critical magnetic field B(m)

1 , with energy

gµBB(m)
1 /S =

√
(3Jz + K)2 − 9J2 − K, (5)

the classical ground state is a collinear antiferromagnet with a
Néel vector pointing in z direction. Between B(m)

1 and B(m)
2 ,

gµBB(m)
2 /S = 3Jz +

√
9J2 + K2 − K. (6)

the system is in a coplanar spin flop (SF) phase, and in the
field-polarized (FP) phase (fields larger than B(m)

2 ) all spins
point along +z. The ground state’s spin configuration has been
obtained by analytical and numerical methods; for details see
the Supplementary Material (SM) [87].

A Holstein-Primakoff transformation rewrites the spin op-
erators Si in terms of bosonic operators ai and a†i [88]. Af-
ter a Fourier transformation the Hamiltonian with magnon-
magnon interactions neglected reads H2 = 1

2
∑

k ψ
†

kH kψk,

with ψ†k =
(
a†1,k a†2,k a1,−k a2,−k

)
and wave vector k. In order

to diagonalize the matrixH k we introduce the matrix T k which
satisfies Ek = T †kH kT k, G = T †kGT k. Here, the diagonal ma-
trix Ek = diag(ε1,k ε2,k ε1,−k ε2,−k) contains the magnon
energies εn,k of both bands (n = 1, 2). G = diag(1 1 −1 −1)
is the bosonic metric.

The topological phases of the magnon spectrum are charac-
terized by the Chern numbers Cn = − 1

2π

∫
1. BZ Ωnk d2k, which

are integrals of the Berry curvature [74]

Ωn,k = −2 Im
4∑

m=1
m,n

(
GT †k∂xH kT k

)
nm

(
GT †k∂yH kT k

)
mn[(

GEk

)
nn
−

(
GEk

)
mm

]2 (7)

over the first Brillouin zone (BZ). Since the Chern numbers of
all bands add up to zero (C1 + C2 = 0), it suffices to specify
one Chern number, say, C1 of the lowest band n = 1.

The Berry curvature also enters the thermal Hall conductivity
[36]

κxy = −
k2

BT
~V

∑
k

N∑
n=1

c2[ρ(εn,k)]Ωn,k, (8)

in which kB, T , V , ρ(x) =
[
exp (x/kBT) − 1

]−1 are Boltzmann’s
constant, the temperature, the system’s volume (or area), and
the Bose distribution, respectively. The magnon energies εn,k
appear in c2(x) = (1 + x) ln2 1+x

x − ln2 x − 2Li2(−x) with the
Spence function Li2(z) = −

∫ z
0 ln(1 − t)/t dt.

We continue with parameters for MnPS3: next-neighbor dis-
tance a = 3.503 Å [89, 90], coupling strengths J = 1.54 meV,
Jz = 1.541 meV, Ja = 0.02 meV, and spin S = 5/2 [85, 91].
Jz is estimated by identifying the anisotropy field gµBHA =

8.6 µeV given in Ref. 91 with the strength of the (two-ion)
anisotropy that is associated with 3S (Jz − J) (the factor of 3
accounts for the coordination number). We neglect interlayer
interactions and divide the 2D thermal conductivity by the in-
terlayer distance of 7.278 Å to obtain the conductivities of the
three-dimensional (3D) system [89, 90].

Regarding the on-site anisotropy A, we consider two cases.
First, the bulk properties of MnPS3 are modeled by setting A =

0. Second, we account for a substrate by setting A = 0.1 meV,
which is a realistic value in the range of predictions by ab initio
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FIG. 2. Magnetic, topological, and transport properties of (bulk)
MnPS3 (A = 0). (a) Classical ground state magnetization versus the
magnetic field. Inset: angles θA and θB of the sublattice A (blue) and B
(orange) spins with the xy plane. (b) Thermal Hall conductivity κxy for
four selected temperatures (T = 1.0 K, 4.2 K, 15 K, and 30 K). The
white/blue/red background color indicates topological phases with
Chern numbers C1 = 0,−1,+1 of the lowest magnon band. Dashed
red lines mark the magnetic phase transitions at the critical fields B(m)

1

and B(m)
2 . All four panels have logarithmic ordinates and abscissae

with linear-scale segments around 0, which are identified by equally
spaced minor ticks. For parameters see text.

TABLE I. Critical fields at which topological (t) and magnetic
(m) phase transitions occur depending on the sublattice-specific
anisotropy A. All values in meV.

A gµBB(m)
1 gµBB(m)

2 gµBB(t)
1 gµBB(t)

2 gµBB(t)
3

0 0.416 23.107 0.416 1.901 13.368
0.1 2.202 22.860 — — —

calculations for other van der Waals magnets [86]. Our choice
for A renders the respective calculations semiquantitative, since
the precise numerical value of A depends presumably on the
selected substrate.

Below, we describe and explain the field-dependent Hall
conductivity κxy(Bz) for increasing field starting at zero. Mag-
netic (m) and topological (t) phase transitions occur at B1 <
B(t)

2 < B(t)
3 < B(m)

2 (Table I). If a topological and a magnetic
phase transitions coincide (e. g. at B1), the notation B(m) and
B(t) becomes redundant. Changes in κxy are traced back to the
evolution of the magnon spectrum and the Berry curvature.

Discussion of results for bulk MnPS3. For A = 0 and zero
magnetic field, the AFM phase, in which A (B) spins point
along +z (−z), is invariant under simultaneous space inversion
P and time reversal T , which causes κxy = 0. The otherwise

FIG. 3. Magnon band structures and Berry curvatures of (bulk) MnPS3

(A = 0) for selected strengths |gµBBz| of the magnetic field. Magnon-
dispersion and Berry-curvature panels appear in pairs, indicated by
a common gray background, with identical strength of the magnetic
field (in meV; the positioning with respect to the phase transitions
is sketched at the bottom). The magnon energies εnk (in meV) are
shown along high-symmetry lines of the first Brillouin zone; the
Berry curvatures Ω1k of the lowest band are displayed as color maps
in reciprocal space (the black hexagons indicate the first BZ). The kx

and ky axes are given in Å
−1

. Parameters are chosen as in Fig. 2.

degenerate magnon bands are spin-orbit split by Ja , 0, with
the exception of the Γ and K’ points in the BZ [82]. The Berry
curvature vanishes because of the aforementioned symmetry.

A small magnetic field breaks this symmetry and lifts the
band degeneracies at Γ and K’. The resulting increase of κxy

(in absolute value) with temperature [cf. Fig. 2(b)] is explained
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by the magnon band structure and the Berry curvature. As an
example we discuss the case |gµBBz| = 0.01 meV [Fig. 3(a)].
The lifting of the band degeneracies at Γ [Ωnk > 0, red in
the right panel of (a)] and K’ (Ωnk < 0) brings about Berry
curvature of opposite sign. The higher thermal occupation
of the states around Γ and the minus sign in Eq. (8) explain
that κxy is negative. The higher the temperature, the larger the
occupation at Γ and the larger |κxy|. The three-fold rotational
symmetry of the spin-lattice is reflected in the Berry curvature.

Magnons belonging to the lower (upper) band are located
mostly on the B (A) sublattice, whose spins are destabilized
(stabilized) by the magnetic field (applied along −z). Hence,
the lower (upper) band is shifted to lower (higher) energies by
the magnetic field. As the field strength increases, the positive
Berry curvature around Γ is gradually redistributed towards
the K points and the negative Berry curvature at K’ extends
towards Γ [not shown but similar to Fig. S6(a) in SM [87]],
which explains the non-monotonic behavior of κxy.

At the first-order AFM-SF phase transition at gµBB(m)
1 =

0.416 meV, also identified by a diverging susceptibility, both A
and B spins are abruptly rotated into the xy plane but obtain a
small (ferromagnetic) component parallel to the magnetic field.
This redirection is seen in the angles θA and θB between the xy
plane and the spins (inset: A blue, B orange) and in the jump of
the magnetization from zero to negative values [Fig. 2(a)]. The
experimentally measured critical field in the range of gµBB1 =

0.42 meV to 0.54 meV [92, 93] agrees reasonably well with
our analysis. Moreover, the magnetization Mz(Bz) as a function
of the external field reported in Ref. 92 features the same linear
dependence as in Fig. 2(a) (the linear dependence remains with
linear x and y axes) and the magnetic moment of 0.6 µB just
above the transition point is close to our calculations.

In the SF phase, the lower band is pinned at zero energy at
Γ [94]. The symmetry of the spectrum and the Berry curvature
are reduced by the spontaneous breaking of the three-fold
rotational symmetry. (The Berry curvature is symmetric to
the kx = 0 line because of the choice of the in-plane Néel
vector.) The Berry curvature of band n = 1 is dominantly
positive, and the Chern number C1 jumps from 0 to −1. Thus,
the magnetic phase transition is accompanied by a topological
phase transition and |κxy| is abruptly increased.

Ramping up the magnetic field further, the large Berry cur-
vature around Γ [cf. Fig. 3(b)] becomes redistributed to high-
energy magnons [cf. Fig. 3(c)], with the consequence that |κxy|

decreases with the B field [cf. Fig. 2(b)].
The second topological phase transition is attributed to a

band inversion. More precisely, at gµBB(t)
2 = 1.901 meV the

two bands intersect again and their Chern numbers are inter-
changed, that is C1 = −1→ C1 = +1. This band inversion oc-
curs near the BZ edge: just before B(t)

2 , e. g., |gµBBz| = 1.8 meV
the dominating positive Berry curvature appears near the BZ
edge and is spread along kx [red in Fig. 3(c)]. And after the
transition, e. g., at |gµBBz| = 2 meV, this dominating Ωnk has
changed sign [blue in Fig. 3(d)]. As a consequence, the band
inversion manifests itself in κxy prominently at elevated tem-
peratures, for which it even causes sign changes [cf. red line in

0 5 10 15 20 25 30
Temperature T (K)

0.25

0.50

0.75

1.00

1.25

1.50

1.75

TH
M

C

B1

B(t)
2

FIG. 4. Thermal Hall magnetoconductivity THMC as a function of
temperature T at the AFM-SF transition (blue line) and the second
topological phase transition (orange line).

Fig. 2(b)].
The band inversion is reversed again (C1 = +1→ C1 = −1)

at gµBB(t)
3 = 13.368 meV, again most clearly seen in κxy at

30 K, which, as before, features a sign change. Approaching
B(t)

3 the elongated distribution of the Berry curvature seen for
B(t)

2 becomes concentrated around the K and K’ points, and
the band inversion then occurs at these points at the BZ edge
(not shown). In short, the higher the temperature (but still well
below the ordering temperature), the stronger κxy reflects the
topological phase transitions.

The second-order magnetic SF-FP phase transition at
gµBB(m)

2 = 23.107 meV, also identified by a jump in the suscep-
tibility, shows clear temperature-dependent signatures in κxy

[Fig. 2(b)]. On the one hand, the dominating positive contribu-
tion of the Berry curvature is located at the BZ edges (magnons
with higher energies), on the other hand a small annular, neg-
ative contribution shows up near the BZ center (low-energy
magnons) [Fig. 3(e)]. Thus, the weighting between these com-
peting contributions can be altered by the occupation of the
respective magnon states and, therefore, by the temperature. To
be more specific, low temperatures freeze out the high-energy
contribution, allowing the small low-energy contribution to
dominate in the transport and leading to a peak with a sign
change in κxy. At elevated temperatures, however, magnons
with positive, eventually dominating Ωnk are significantly pop-
ulated. Since the high-energy contribution, being induced by
the topological phase transition, exists independently of the
magnetic phase transition, it does not show up as a pronounced
peak.

At the transition point the in-plane Néel vector vanishes and
the out-of-plane spin components have reached their maxima
[inset in Fig. 2(a)]. The FP phase is hence characterized by a
saturated (classical) magnetization [cf. Fig. 2(a)]. Beyond this
second-order transition the magnetic field shifts both bands to
higher energies, thereby suppressing thermal transport (κxy →

0) [Fig. 2(b)].
Based on the above we conclude that κxy exhibits clear sig-

natures of magnetic phase transition at low temperatures and
of topological phase transitions at higher temperatures.
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Thermal Hall magnetoconductivity. The previous analysis
revealed the need for a quantity that precisely measures the
sensitivity of κxy(Bz) on the phase transitions. In analogy to
the magnetoresistance, we define the thermal Hall magneto-
conductivity (THMC)

THMC =

∣∣∣∣∣∣κxy(B̄z + ∆Bz) − κxy(B̄z − ∆Bz)
κxy(B̄z + ∆Bz) + κxy(B̄z − ∆Bz)

∣∣∣∣∣∣. (9)

By definition the THMC corresponds to the relative change
of κxy upon the phase transition at B̄z. In Fig. 4 the THMC is
shown with temperature for (i) the AFM-SF transition (blue
line) and (ii) for the topological phase transition at B(t)

2 (or-
ange line) [95]. For (i) the THMC is close to 1 near 1 K and
monotonically decreases with temperature. (ii) The topological
phase transition shows the expected behavior, i. e., the THMC
is small at low temperatures indicating that κxy does not change
by much, when the topological transition is crossed, but it
escalates and takes values close to 175 % at 30 K. Based on
these results, the drastic changes of κxy at the phase transitions
can be exploited for a “thermal Hall switch,” in which the
transverse heat current (or the transverse temperature gradient)
is controlled by the external field.

Results for MnPS3 on a substrate. A substrate or a het-
erostructure breaks the sublattice symmetry, which is mim-
icked by setting A = 0.1 meV. There are three key differences
to bulk MnPS3 (A = 0): (i) the AFM-SF transition becomes
continuous. While the A spins are only slightly deflected
and rotated back to their z orientation, the B spins perform
a 180° rotation from being parallel to −z via an in-plane ge-
ometry to eventually being parallel to z. (ii) The nonmagnetic
atoms, which are responsible for A , 0, break an effective time-
reversal symmetry PT and a thermal Hall effect in a collinear
antiferromagnet without a magnetic field ensues. A similar
situation has been reported for the anomalous Hall effect in
an electronic system [81]. κxy(Bz = 0) can become large in
materials with sizable Ja that is responsible for strong nonzero
Berry curvature associated with the low-energy magnon states
near Γ (cf. SM [87]). (iii) A opens a trivial gap in the FM
phase and it dominates over Ja. Since the AF phase is always
trivial, there are no topological phase transitions. We present
the magnon spectra, Berry curvature, thermal Hall effect, and
heat capacity for A = 0.1 meV in the SM [87]. The critical
fields are arranged in Table I.

Wrap up. Our theoretical investigation of the temperature
and magnetic-field dependence of the transversal heat conduc-
tivity κxy of a honeycomb magnet proves that κxy is very sensi-
tive to the magnetic structure at low temperatures: it exhibits
pronounced peaks at the magnetic phase transitions, but is
rather unaffected by topological phase transitions. Conversely,
κxy traces the topological phase transitions at high temperatures,
but is insensitive to the magnetic transitions. Its reading may
change several orders near a phase transition and it may also
change sign. To paraphrase, magnetic and topological phase
transition cause distinct signatures in κxy, the measurement of
which may be used to identify the phase transitions. On the
other hand, the strong change under the phase transitions may

be exploited as a “thermal Hall switch” in which the transport
properties are manipulated by external means.

Detecting topological (edge) magnons is more difficult than
for electrons, since transport of bosons is not quantized —
what is a clear signature of nontrivial topology in electronic
systems. Instead, κxy(B) may be investigated as a ‘substitute,’
its prominent features evidencing the existence of topological
magnons. Although there are other sources of drastic changes
in κxy(B), a combination with measurements of, e. g., heat
capacity CV (B), which is insensitive to topology, could be used
to verify the topological nature of the signatures (proof of
concept in SM [87]).

Our findings call for experimental validation. The numerical
results for MnPS3 suggest that κxy lies within the experimen-
tally accessible range. We point out that extraordinarily high
fields would be required for mapping the entire phase dia-
gram. Nonetheless, the antiferromagnet–spin-flop transition
and the topological transition at 2.202 meV are experimentally
amenable.
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