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OF GRAPHS OF GROUPS

ELIA FIORAVANTI AND ANNETTE KARRER

Let a finitely generated group G split as a graph of groups. If the edge groups
are undistorted and do not contribute to the Morse boundary ∂M G, we show
that every connected component of ∂M G with at least two points originates
from the Morse boundary of a vertex group.

Under stronger assumptions on the edge groups (such as wideness in the
sense of Drut,u–Sapir), we show that the Morse boundaries of the vertex
groups are topologically embedded in ∂M G.

1. Introduction

Morse boundaries ∂M G of finitely generated groups G were introduced by Charney
and Sultan [2015] and Cordes [2017] in an attempt to extend to all groups some of
the fundamental properties of Gromov boundaries of hyperbolic groups [Gromov
1987]. Importantly, every quasi-isometry between finitely generated groups extends
to a homeomorphism of their Morse boundaries, which can provide a useful tool to
distinguish quasi-isometry classes of groups.

When G is not Gromov-hyperbolic, the topology of ∂M G is rather unwieldy (for
instance, it is not first countable or compact), which often makes an explicit compu-
tation difficult. Despite this, Charney, Cordes and Sisto [2019] recently showed that
essentially all known examples of infinite, totally disconnected Morse boundaries
fall into just two homeomorphism classes: the Cantor space and the ω-Cantor space.

While groups whose Morse boundary is a Cantor space are fully classified
(they are hyperbolic, hence virtually free), it appears that the class of groups with
ω-Cantor boundary is rather large. For instance, it includes all irreducible, nonfree
right-angled Artin groups, as well as all nongeometric graph manifold groups
[Charney et al. 2019].

Our first goal is to expand the class of finitely generated groups known to have
totally disconnected Morse boundary. A natural source of examples is provided
by graphs of groups. We restrict to the situation where no Morse ray in G stays
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at bounded distance from an edge group, and show that all nontrivial connected
components of ∂M G originate from vertex groups (Theorem A).

As motivation for our assumptions, recall that surface groups split as graphs of
groups with cyclic edge groups and nonabelian free vertex groups. Thus, when
edge groups are allowed to contain Morse rays in G, the Morse boundary ∂M G
can be connected (here, a circle) even if all Morse boundaries of vertex groups are
totally disconnected (here, Cantor sets).

More generally, we investigate necessary and sufficient conditions for Morse
boundaries of vertex groups to be topologically embedded in ∂M G, even when they
are not totally disconnected. Our main result in this direction is Theorem C, which
applies, for instance, to all graphs of groups with (undistorted, one-ended) solvable
edge groups. This is new already for JSJ decompositions of irreducible 3-manifold
groups.

As a set, ∂M G is defined as the collection of all Morse geodesic rays in a fixed
Cayley graph of G, identifying rays at finite Hausdorff distance. Our topology of
choice will always be the direct limit topology from [Charney and Sultan 2015;
Cordes 2017].

We mention that an alternative topology on ∂M G was introduced by Cashen
and Mackay [2019]. The latter has the advantage of being metrisable, while
retaining quasi-isometric invariance. However, it appears to be more complicated
to describe explicitly, and we are not aware of a single nonempty Morse boundary
of a nonhyperbolic group for which the Cashen–Mackay topology can be given
“intrinsic” characterisations in the spirit of [Charney et al. 2019].

The following relative version of Morse boundaries plays an important role in
our results.

Definition (relative Morse boundary). Let H ≤ G be finitely generated groups, with
H undistorted in G. The relative Morse boundary of H in G, denoted by (∂M H, G),
is the subset of ∂M H consisting of points represented by rays that remain Morse in
the Cayley graphs of G.

We always endow (∂M H, G) with the subspace topology coming from ∂M H.
This is the opposite of the convention adopted in [Karrer 2021].

Note that we always have a natural injection (∂M H, G) ↪→ ∂M G. Our first result
greatly extends the main theorem of [Karrer 2021], while providing a significantly
simpler proof.

Theorem A. Let a finitely generated group G split as a graph of groups. Suppose
that:

• All edge groups are finitely generated and undistorted in G.

• (∂M E, G) = ∅ for every edge group E.
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If a connected component C ⊆ ∂M G is not a singleton, then C is contained in
the image of the natural injection (∂M V, G) ↪→ ∂M G for a vertex group V ≤ G.
Furthermore, if V1, V2 are distinct vertex groups, then (∂M V1, G)∩ (∂M V2, G) =∅.

The following consequence of Theorem A has some overlap with [Charney et al.
2019, Theorem 1.2]. The advantage is that here we do not require acylindricity of
the splitting, nor that the vertex groups have trivial Morse boundary.

Corollary B. Under the assumptions of Theorem A, suppose additionally that
(∂M V, G) is totally disconnected for every vertex group V ≤ G. Then ∂M G is
totally disconnected.

We emphasise that the empty set is totally disconnected. Thus, in Corollary B,
the relative Morse boundaries (∂M V, G) are allowed to be empty and we make no
claim that ∂M G will be nonempty.

Corollary B follows from Theorem A because, for every undistorted subgroup
H ≤ G, the natural inclusion (∂M H, G) ↪→ ∂M G is an open map (see Lemma 2.3).
However, even in the setting of Theorem A, the inclusions (∂M V, G) ↪→ ∂M G need
not be continuous, as demonstrated by the following example.

Example. Consider the group G = Z2
∗ Z = ⟨x, y⟩ ∗ ⟨z⟩. It admits the splitting

G = ⟨x, y⟩∗⟨y⟩ ⟨y, z⟩. Since ⟨y⟩ lies in the flat ⟨x, y⟩, it is undistorted and has trivial
relative Morse boundary in G.

Consider the vertex group V := ⟨y, z⟩ ≃ F2, which is also undistorted. The
inclusion

(∂M V, G) ↪→ ∂M G

is not continuous. In order to see this, consider the rays labelled by zn ynz∞ and z∞,
which all lie in (∂M V, G). Since V is hyperbolic, we have zn ynz∞

→ z∞ in the
topology of ∂M V.

However, since the rays zn ynz∞ spend longer and longer in the flat ⟨x, y⟩, they
are not uniformly Morse in G. It follows that they form a closed subset of ∂M G
(every stratum of ∂M G contains only finitely many of them). Hence zn ynz∞

̸→ z∞

in the topology of ∂M G. This last argument is taken from [Murray 2019, Section 5].

Of course, it would be desirable to have conditions ensuring that the injections
(∂M V, G) ↪→ ∂M G in Theorem A are topological embeddings, as this would be an
important step towards fully characterising ∂M G in terms of boundaries of vertex
groups.

In relation to this, note that a key feature of the above example is that, although
(∂M⟨y⟩, G) = ∅, we have (∂M⟨y⟩, V ) ̸= ∅. This leads us to suspect that this kind
of issue should not present itself if all the edge groups have trivial relative Morse
boundary in the incident vertex groups.

We prove this guess under the following, potentially stronger assumption.
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Definition (relatively wide). Let H ≤ G be finitely generated groups, with H
undistorted in G.

• The group G is wide if none of its asymptotic cones Gω have cut points [Druţu
and Sapir 2005].

• We say that H is relatively wide in G if, for every asymptotic cone Gω, no
two points of the limit Hω ⊆ Gω are separated by a cut point of Gω.

Note that H is relatively wide in G as soon as either H or G is wide.

Examples of wide groups include one-ended groups satisfying a law (e.g., solv-
able, uniformly amenable, Burnside, etc.) [Druţu and Sapir 2005], one-ended
groups with infinite centre, and various higher-rank lattices [Druţu et al. 2010].

Wide groups have empty Morse boundary. It is a well-known open question
whether the converse holds. We record here the relative version of this question, as
it might be easier to find counterexamples in the relative case.

Question. Let H ≤ G be finitely generated groups, with H undistorted in G and
(∂M H, G) = ∅. Is H relatively wide in G?

Conversely, it is easy to see that (∂M H, G) = ∅ holds as soon as H is relatively
wide in G. We can now state our second main result.

Theorem C. Let a finitely generated group G split as a graph of groups. Consider
a vertex group V ≤ G. Suppose that all incident edge groups E ≤ V are finitely
generated, undistorted in G, and relatively wide in V. Then:

(1) V is undistorted in G and (∂M V, G) = ∂M V .

(2) The inclusion ∂M V ↪→ ∂M G is a topological embedding.

Remark. We emphasise that relative wideness of E in V can be rephrased purely
in terms of divergence: it is equivalent to the statement that geodesics in (a Cayley
graph of) E , viewed as uniform quasigeodesics in V, have uniform linear divergence
(see Lemma 2.11(3)).

Corollary D. If every vertex group satisfies the assumptions of Theorem C, then
every connected component of ∂M G is either a singleton or homeomorphic to a
connected component of the Morse boundary of a vertex group.

Corollary B gives many examples of groups with totally disconnected Morse
boundary, but it does not further describe the topological spaces that may arise as
boundaries. The remarkable [Charney et al. 2019, Theorem 1.4] shows instead that,
for any finitely generated group G, the boundary ∂M G is an ω-Cantor space as
soon as it is totally disconnected, noncompact, σ -compact, and contains a Cantor
subspace. The last property is generally not hard to obtain: for instance, using
acylindrical hyperbolicity of G (if given) to construct a stable free subgroup of G
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[Sisto 2016; Dahmani et al. 2017], or by applying Theorem C to any Cantor subspace
that the boundaries of the vertex groups may have.

This suggests studying the following problem.

Question. In the setting of Corollary D, suppose that all vertex groups have
σ -compact Morse boundary. Is ∂M G then σ -compact?

2. Preliminaries

To economise on constants, we will speak of C-quasigeodesics when referring to
(C, C)-quasigeodesics. In the whole section, X and Y are proper geodesic metric
spaces.

We denote closed metric balls by B(x, r) and closed metric neighbourhoods
of subsets by N (A, r). Where necessary, we may add a subscript BX (x, r) or
NY (A, r) to specify the relevant space.

2A. Morse boundaries. We refer the reader to [Cordes 2017] for further details.
A quasigeodesic γ ⊆ X is N-Morse for a function N : [1, +∞) → [0, +∞) if

every C-quasigeodesic with endpoints on γ is contained in the N (C)-neighbourhood
of γ . The function N is usually referred to as a Morse gauge for γ .

Fix a basepoint p ∈ X . We define ∂ N
M X p as the set of N -Morse geodesic rays

based at p, identifying rays at finite Hausdorff distance. Endowed with the compact-
open topology, this space is compact and metrisable. Let ∂M X p be the union of all
spaces ∂ N

M X p, as N varies among all possible Morse gauges. We define a topology
on ∂M X p as follows: a subset U ⊆ ∂M X p is open (resp. closed) if and only if all
intersections U ∩ ∂ N

M X p are open (resp. closed).
If q ∈ X is a different basepoint, we have a natural homeomorphism ∂M X p →

∂M Xq given by pairing rays at finite Hausdorff distance. Thus, the space ∂M X p is
independent of the choice of p and we simply denote it by ∂M X . We refer to ∂M X
as the Morse boundary of X .

We record here the following standard properties of Morse quasigeodesics for
later use.

Lemma 2.1. (1) Let α ⊆ X be an N-Morse geodesic. Let β ⊆ X be a C-quasi-
geodesic with endpoints at distance ≤ C from those of α. Then dHaus(α, β) ≤ D,
where D only depends on C and N.

(2) Let α ⊆ X be an N-Morse geodesic ray. Let β ⊆ X be C-quasigeodesic ray
with the same starting point and dHaus(α, β) < +∞. Then dHaus(α, β) ≤ D and β

is N ′-Morse, where D and N ′ only depend on C and N.

(3) Let α ⊆ X be an N-Morse C-quasigeodesic. Then there exists an N ′-Morse
geodesic β ⊆ X with the same starting point and dHaus(α, β) ≤ D, where D and N ′

only depend on C and N.
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(4) The restriction of an N-Morse C-quasigeodesic to a subinterval of its domain
is always N ′-Morse, where N ′ only depends on N and C.

Proof. Part (1) is easily deduced from [Cordes 2017, Lemma 2.1]. Part (2) is
[Cordes 2017, Corollary 2.5]. Part (3) can be proved using [Charney and Sultan
2015, Lemma 2.5] as in the proof of [Cordes 2017, Lemma 2.9]. Part (4) is [Liu
2021, Lemma 3.1]. □

Let f : Y → X be a quasi-isometric embedding. If γ is a Morse geodesic
in Y, the quasigeodesic f ◦ γ might still not be Morse in X . This motivates the
following notion of relative Morse boundary, which is equivalent to the one from
the Introduction.

Definition 2.2. Set (∂M Y, f ) := {[γ ] ∈ ∂M Y | f ◦ γ is Morse in X}. We endow
(∂M Y, f ) with the subspace topology coming from ∂M Y.

If [γ ] ∈ (∂M Y, f ), then the quasigeodesic ray f ◦γ is Morse in X ; hence at finite
Hausdorff distance from a Morse geodesic ray by Lemma 2.1(3). This defines an
injection

f∗ : (∂M Y, f ) ↪→ ∂M X.

The example in the Introduction shows that f∗ is not continuous in general. However,
it is always a closed map (equivalently, an open map, since f∗ is injective).

Lemma 2.3. If f : Y → X is a quasi-isometric embedding, f∗ : (∂M Y, f ) ↪→ ∂M X
is a closed map.

Proof. Fix a basepoint q ∈Y and set p := f (q). Let A ⊆ (∂M Y, f ) be a closed subset.
We need to show that the intersection f∗(A) ∩ ∂ N

M X p is closed for every Morse
gauge N. In fact, since ∂ N

M X p is metrisable, it suffices to show that f∗(A) ∩ ∂ N
M X p

is sequentially closed.
Let αn ⊆ Y be geodesic rays based at q, so that [αn] ∈ A and f∗[αn] ∈ ∂ N

M X p

for some Morse gauge N. Suppose that f∗[αn] → ξ in ∂M X . We need to show that
ξ ∈ f∗(A).

Let βn ⊆ X be N -Morse geodesic rays based at p representing f∗[αn]. By
Lemma 2.1(2), the quasigeodesic rays f ◦ αn are at uniformly finite Hausdorff
distance from βn , say ≤ D, and they are uniformly Morse in X . Since f is a
quasi-isometric embedding, it follows that the αn are uniformly Morse in Y, say
N ′-Morse.

Now by the Arzelà–Ascoli theorem, we can pass to a subsequence and assume that
the βn converge uniformly on compact sets to an N -Morse geodesic ray β ⊆ X based
at p. Similarly, the αn converge to an N ′-Morse ray α ⊆ Y based at q . In particular,
[αn] → [α] in the topology of ∂M Y ; hence [α] ∈ A. Since dHaus( f ◦ αn, βn) ≤ D
for every n, and f is a quasi-isometric embedding, we have dHaus( f ◦α, β) < +∞.
Hence ξ = [β] = f∗[α] ∈ f∗(A), as required. □
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2B. Divergence. It was shown in [Arzhantseva et al. 2017] that Morse quasi-
geodesics can equivalently be characterised as quasigeodesics with completely
superlinear divergence. The proof of Theorem C will require this equivalence to
be effective, in the sense that the Morse gauge and the divergence function of the
quasigeodesic should determine each other.

This kind of statement is proved in detail in Cashen’s habilitation thesis [2019,
Survey: Corollary 3.5], but we also explain here how to deduce it from the proofs
of various results in [Arzhantseva et al. 2017].

We begin with the definition of divergence.

Definition 2.4. Consider an L-quasigeodesic ray γ ⊆ X and a parameter 0 < ϵ <

1/(2L). The divergence function of γ is

δγ (r, ϵ) :=

inf
s≥r

inf{lengths of paths connecting γ (s ± r) in X \B(γ (s), ϵr)} ∈ [0, +∞].

The proof of [Arzhantseva et al. 2017, Proposition 5.10] shows the following.

Lemma 2.5. Let γ ⊆ X be an L-quasigeodesic ray. Suppose that δγ (r, ϵ) ≤ Cr for
some r, C and ϵ < 1/(4L). Then there exists s ≥ r such that γ (s ± r) are joined by
an L ′-quasigeodesic avoiding B(γ (s), ϵ′r), where the constants L ′ and ϵ′ depend
only on L , C, ϵ (and not on r ).

Corollary 2.6. Given constants L , ϵ < 1/(4L), and a Morse gauge N, there exists
a weakly increasing, diverging function f such that the following holds. For every
N-Morse L-quasigeodesic ray γ ⊆ X , we have δγ (r, ϵ) ≥ r f (r) for all r ≥ 0.

Proof. Fix r̄ ≥ 0. Define g(r̄) as the infimum of the ratio δγ (r̄ , ϵ)/r̄ as γ varies
among all N -Morse L-quasigeodesic rays in X . Let γ be one such quasigeodesic
satisfying δγ (r̄ , ϵ)/r̄ ≤ 2g(r̄).

Lemma 2.5 gives s ≥ r̄ and an L ′-quasigeodesic joining γ (s±r̄) avoiding the ball
B(γ (s), ϵ′r̄), where ϵ′ and L ′ depend only on L , ϵ and the value g(r̄). Since γ is
N -Morse, we must have ϵ′r̄ ≤ N (L ′). This implies that g(r) diverges as r → +∞.

Now, let f be the largest weakly increasing function with f ≤ g, namely

f (x) = inf
t≥x

g(t).

Since g diverges, so does f . Finally, if γ ⊆ X is an N -Morse L-quasigeodesic ray,
it is clear that we have δγ (r, ϵ) ≥ rg(r) ≥ r f (r) for all r ≥ 0. □

The above corollary shows that the divergence function of a Morse quasigeodesic
ray can be bounded uniformly (from below) in terms of the Morse gauge. In order
to reverse this kind of result, we need to speak of contracting geodesics.
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Definition 2.7. Let γ ⊆ X be a quasigeodesic with closed image.

(1) The nearest-point projection πγ : X → 2γ is defined by

πγ (x) = {p ∈ γ | d(x, p) = d(x, γ )}.

Since X is proper and γ is closed, the subset πγ (x) ⊆ γ is always nonempty.

(2) If ρ is a sublinear, weakly increasing, nonnegative function, we say that γ is
ρ-contracting if, for all x, y ∈ X with d(x, y) ≤ d(x, γ ), we have

diam(πγ (x) ∪ πγ (y)) ≤ ρ(d(x, γ )).

From the proof of [Arzhantseva et al. 2017, Proposition 5.5], we obtain:

Lemma 2.8. Let γ ⊆ X be an L-quasigeodesic ray with closed image. Consider
points x, y ∈ X with d(x, y) ≤ d(x, γ ) and projections x ′

∈ πγ (x), y′
∈ πγ (y).

Then, if d(x ′, y′) ≥ 5L3, we have

4d(x, γ ) ≥ δγ

(
r, 1

16L

)
,

for some r ∈ [1/(4L) · d(x ′, y′), L · d(x ′, y′)].

Finally, the following is [Arzhantseva et al. 2017, Proposition 4.1].

Proposition 2.9. Let γ ⊆ X be a quasigeodesic with closed image. If γ is ρ-
contracting, then it is N-Morse with N depending only on ρ.

We will use the combination of the previous results in the following form.

Lemma 2.10. Let α ⊆ X and β ⊆ Y be L-quasigeodesic rays. Suppose that there
exist constants K ≥ 0 and 0 < ϵ1, ϵ2 ≤ 1/(16L) such that, for all r > K , we have

δα(r, ϵ1) ≤ K · δβ(r, ϵ2).

If α is N-Morse in X , then β is N ′-Morse in Y, with N ′ depending only on
N , L , K , ϵ1.

Proof. We will show that β is ρ-contracting, with ρ depending only on N , L , K , ϵ1.
The fact that β is N ′-Morse then follows from Proposition 2.9.

By Corollary 2.6, there exists a weakly increasing, diverging function f such
that δα(r, ϵ1) ≥ r f (r) for all r ≥ 0. Recall that f depends only on L , ϵ1, N. Setting
η(r) := r f (r)/K , we have

δβ

(
r, 1

16L

)
≥ δβ(r, ϵ2) ≥

1
K

· δα(r, ϵ1) ≥ η(r),

for all r > K . Note that η is strictly increasing and η(r)/r → +∞. Define

ρ ′(x) := sup{r | η(r) ≤ x} and ρ(x) := sup
t≤x

ρ ′(t).
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Observe that ρ ′(x)/x → 0 for x → +∞. In addition, ρ is weakly increasing and
ρ ≥ ρ ′. Observing that ρ ′ is bounded on bounded sets, the fact that ρ ′ is sublinear
implies that ρ is sublinear as well.

Now, consider points x, y ∈ Y with d(x, y) ≤ d(x, β) and projections x ′
∈ πβ(x),

y′
∈πβ(y). Suppose that d(x ′, y′)> max{5L3, 4L K }. Recalling that η is monotone,

Lemma 2.8 shows that

4d(x, β) ≥ η
( 1

4L
· d(x ′, y′)

)
.

It follows that

d(x ′, y′) ≤ 4L · ρ ′(4d(x, β)) ≤ 4L · ρ(4d(x, β)).

This shows that β is ρ-contracting, where ρ depends only on η, and hence only on
L , ϵ1, N , K . □

2C. Relatively wide subgroups. Relatively wide subgroups were defined in the
Introduction. This property will be required in the proof of Theorem C in the form
of part (3) of the next lemma.

Lemma 2.11. Let H ≤ G be finitely generated groups, with H undistorted in G.
Let 3 and 0 be Cayley graphs for H and G, respectively. Let i : 3 → 0 be a quasi-
isometric embedding corresponding to the inclusion H ↪→ G. Then the following
properties are equivalent:

(1) The subgroup H is relatively wide in G.

(2) For all C ≥ 1, there exists K = K (C) ≥ 1 such that the following holds. Let
α : [−r, r ] → 0 be a C-quasigeodesic with α(±r) ∈ H ⊆ 0(0). If r > K , then α(±r)

are joined by an edge path γ ⊆ 0 that is disjoint from the ball B0(α(0), r/K ) and
has length |γ | ≤ K · r .

(3) There exists K0 ≥ 1 such that the following holds. Let β : [−r, r ] → 3 be a
geodesic. If r > K0, then i ◦β(±r) ∈ 0(0) are joined by an edge path γ ⊆ 0 that is
disjoint from the ball B0(i ◦ β(0), r/K0) and has length |γ | ≤ K0 · r .

Proof. Since H is undistorted, the implication (2) ⇒ (3) is clear. We show that
(3) ⇒ (1) and (1) ⇒ (2).

(1) ⇒ (2) Suppose for the sake of contradiction that (2) fails for some constant C .
Then there exists a sequence of C-quasigeodesics αn : [−rn, rn]→0, with rn →+∞,
such that every path joining αn(±rn) ∈ H in 0 \B0(αn(0), rn/n) has length > nrn .

Fix a nonprincipal ultrafilter ω. Let 0ω be the asymptotic cone of 0 given
by basepoints αn(0) and scaling factors 1/rn . Let x−, x0, x+ ∈ 0ω be the points
determined by the sequences αn(−rn), αn(0), αn(rn), respectively. The αn converge
to a C-bi-Lipschitz curve α : [−1, 1] → 0ω with α(−1) = x−, α(0) = x0 and
α(1) = x+.
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Since H is relatively wide in G and x± are limits of sequences in H ⊆ 0,
the points x± lie in the same connected component of 0ω \ {x0}. Since 0ω is a
geodesic space, it is locally path connected; hence there exists a continuous path
in 0ω \ {x0} joining x±. Being compact, this path misses the 4ϵ-ball around x0 for
some ϵ > 0. Thus, we can discretise it to a sequence x1, . . . , xk ∈ 0ω \B0ω

(x0, 4ϵ)

with d(xi , xi+1) ≤ ϵ and x1 = x−, xk = x+.
Choose approximations xi (n) ∈ 0 with

d(xi (n), xi+1(n)) ≤ 2ϵrn and d(xi (n), αn(0)) ≥ 3ϵrn,

so that x1(n) = αn(−rn) and xk(n) = αn(rn). Joining consecutive points by
geodesics, we obtain a path of length ≤ 2kϵrn avoiding B0(αn(0), ϵrn) and con-
necting αn(±rn). For large n, we have 1/n < ϵ and n > 2kϵ, which contradicts our
initial assumptions.
(3) ⇒ (1). Suppose towards a contradiction that H is not relatively wide in G.
Thus, there exist an asymptotic cone 0ω and two points x, y ∈ Hω ⊆ 0ω that are
separated by a third point z ∈ 0ω.

Write x = (xn) and y = (yn) with xn, yn ∈ H ⊆ 0(0) and choose geodesics
βn : In → 3 joining xn and yn for intervals In . The paths i ◦ βn are uniform
quasigeodesics in 0, so they converge to a bi-Lipschitz path α : I → Hω ⊆ 0ω from
x to y. Since z separates x and y, it must lie in α(I ).

Thus, possibly replacing x and y with other points of α(I ), reparametrising α

and βn , and modifying the scaling factors in the definition of 0ω (though not their
growth rate), we can assume that I = [−1, 1], α(0) = z and In = [−rn, rn] for some
sequence rn → +∞. In particular, the points i ◦ βn(0) converge to z.

Since (3) holds, there exist edge paths γn ⊆ 0 joining xn to yn , avoiding
B0(i ◦ βn(0), rn/K0) and having length |γn|≤ K0 ·rn . These paths can be discretised
to sequences of points w1(n), . . . , wk(n) ∈ 0, with k independent of n, such that
d(wi (n), i ◦βn(0))> rn/K0 and d(wi (n), wi+1(n))≤ rn/(2K0) for all i . We choose
these points so that w1(n) = xn and wk(n) = yn .

Let wi ∈ 0ω be the limit of the sequence wi (n). Note that d(wi , z) ≥ 1/K0

and d(wi , wi+1) ≤ 1/(2K0), so every geodesic joining wi and wi+1 in 0ω avoids
B0ω

(z, 1/(2K0)). Concatenating such geodesics, we obtain a path in 0ω from
w1 = x to wk = y avoiding B0ω

(z, 1/(2K0)), which contradicts the assumption that
x and y are separated by z. □

2D. Graphs of groups. Throughout the paper, we are interested in finitely generated
groups G that split as a graph of groups. This is equivalent to the fact that G admits
a nonelliptic action on a simplicial tree G ↷ T without inversions [Serre 1980]. In
this case, there is a unique smallest G-invariant subtree [Culler and Morgan 1987].
Restricting to it, we can further assume that the action G ↷ T is minimal, i.e., that
no proper subtree is G-invariant.
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In this subsection, we consider the following setting.

Assumption 2.12. Let G be a group generated by a finite subset SG ⊆ G with
1 ∈ SG and SG = S−1

G . Let 0 be the corresponding Cayley graph of G, endowed with
its graph metric d0. Suppose that we have a nonelliptic, minimal action without
inversions on a simplicial tree G ↷ T.

Vertex stabilisers for the action G ↷ T will be referred to as vertex groups, and
usually denoted by V. Similarly, edge groups are G-stabilisers of edges of T, and
will usually be denoted by E when the corresponding edge is not specified. To
avoid confusion between edges of 0 and T, we will denote the latter by Fraktur
letters e.

Remark 2.13. The action G ↷ T is cocompact. Indeed, fixing a basepoint p ∈ T,
let K be the convex hull of SG · p. This is a compact subtree of T. Since SG

generates G, the subset G · K is connected, and hence a G-invariant subtree. By
minimality, we obtain T = G · K .

The following results are certainly well known to experts, but we were not able to
locate proofs in the literature at the required level of generality. Our arguments are
inspired by the proof of [Bowditch 1998, Proposition 1.2] in the case of hyperbolic
groups with quasiconvex edge groups.

Lemma 2.14. Consider a vertex p ∈ T and let V be its stabiliser. There exist
a constant Dp and stabilisers E1, . . . , Ek of edges incident to p such that the
following holds. Every path γ ⊆ 0 joining points of V can be decomposed as a
concatenation γ1γ2 . . . γm with the following property. The endpoints of each γi lie
in the Dp-neighbourhood in 0 of a coset vi E ji with vi ∈ V and 1 ≤ ji ≤ k.

Proof. By Remark 2.13, there are finitely many V -orbits of edges of T incident
to p. Let e1, . . . , ek be a finite list of representatives and let E1, . . . , Ek be their
stabilisers. Let K ⊆ T be the convex hull of SG · p. If e ⊆ T is an edge, define
�(e) := {g ∈ G | e ⊆ gK }.

Claim. There exists a constant Dp such that, for every edge e ⊆ T incident to p,
the set �(e) is contained in the Dp-neighbourhood in 0 of some coset vEi with
v ∈ V and 1 ≤ i ≤ k.

Proof of claim. Observe that �(e) is a union of at most N right cosets of E , where
E is the stabiliser of e and N is the number of edges in the compact tree K . Thus,
there exists a constant Dp such that, for each 1 ≤ i ≤ k, the set �(ei ) is contained
in the Dp-neighbourhood of Ei in 0.

For an arbitrary edge e ∋ p, we can write e = vei for some v ∈ V and some i . In
this case, �(e) = �(vei ) = v�(ei ) is contained in the Dp-neighbourhood of the
left coset vEi . □
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Now, we define a continuous G-equivariant map f p : 0 → T as follows. For
every s ∈ SG , let πs ⊆ K be the geodesic from p to sp. If g ∈ G, we set f p(g) = gp.
Then, on each edge [g, gs] ⊆ 0 with g ∈ G and s ∈ SG , we define f p as the linear
parametrisation of the path gπs .

Up to decomposing γ , we can assume that γ meets V only at its endpoints. We
can also suppose that γ is not a single edge, or the statement is clear. Thus, f p ◦ γ

is a nontrivial path in the tree T beginning and ending at the basepoint p.
Let e1, . . . , em ⊆ 0 be all edges of γ for which f p(ei ) contains p, in the order in

which they appear along γ . Thus, e1 and em are necessarily the initial and terminal
edge of γ , respectively. Note that the geodesic f p(ei ) ⊆ T meets p exactly once
and not at its endpoints, except for e1 and em .

Define γi ⊆ γ as the subsegment between the initial vertex of ei and the initial
vertex of ei+1. The portion of the path f p(γi ∪ ei+1) between the two occurrences
of p is contained in a connected component of T \ {p}. Thus, it must begin and
end by crossing the same edge of T incident to p.

We name this edge fi . Say the endpoints of ei ⊆ 0 are gi ∈ G and gi si with
si ∈ SG . Since fi ⊆ f p(ei ) ∩ f p(ei+1), we have fi ⊆ giπsi ∩ gi+1πsi+1 ; hence
{gi , gi+1} ⊆ �(fi ). Since gi and gi+1 are the endpoints of γi , the claim concludes
the proof. □

If α ⊆ 0 is a path, we denote by |α| its length, i.e., the number of edges that
it contains. Recall that a finitely generated subgroup of G is undistorted if the
inclusion in G is a quasi-isometric embedding.

Lemma 2.15. Let p ∈ T be a vertex with stabiliser V. Suppose that the stabiliser of
every edge p ∈ e ⊆ T is finitely generated and undistorted in G. Then V is finitely
generated and undistorted.

Proof. We will prove the following.

Claim. There exists a constant L such that, for every v ∈ V, there exists a path
α ⊆ 0 from the identity to v such that α is contained in the L-neighbourhood of V
and |α| ≤ L · d0(1, v).

Assuming the claim, we define 6 as the intersection of V and the (2L + 1)-ball
in 0 centred at the identity. Since 0 is locally finite, the set 6 is finite. Denoting by
d6 the word metric on V induced by 6, the claim shows that d6(1, v)≤ L ·d0(1, v)

for every v ∈ V. Thus, 6 generates V and V is undistorted in G.

Proof of claim. Now, let us prove the claim. Let the constant Dp and the edge
groups E1, . . . , Ek ≤ V be those provided by Lemma 2.14. Let γ ⊆0 be a geodesic
from the identity to some element v ∈ V. Take the decomposition γ = γ1γ2 . . . γm as
in Lemma 2.14, with the endpoints of γi in the Dp-neighbourhood of a coset vi E ji .



CONNECTED COMPONENTS OF MORSE BOUNDARIES OF GRAPHS OF GROUPS 351

Since E1, . . . , Ek are finitely generated and undistorted, there exists a constant L
such that, for all i and all x, y ∈ Ei , the points x and y are joined by a path β ⊆ 0

contained in the L-neighbourhood of Ei and satisfying |β| ≤ L · d0(x, y). The
same holds if x and y lie in a left coset of some Ei .

It follows that we can replace each γi with a path γ ′

i with the same endpoints
so that γ ′

i is contained in the L-neighbourhood of vi E ji ⊆ V and |γ ′

i | ≤ L · |γi |.
Define α as the concatenation of the γ ′

i . Then, it is clear that α is contained in the
L-neighbourhood of V and |α| ≤ L · |γ | = L · d0(1, v). This proves the claim, and
hence the lemma. □

Corollary 2.16. If all edge groups are finitely generated and undistorted in G, then
all vertex groups are finitely generated and undistorted in G.

The fact that vertex groups are finitely generated as soon as edge groups are
finitely generated is also proved in detail e.g., in [Cohen 1989, Lemma 8.32, p. 218]
and [Dicks and Dunwoody 1989].

3. Proof of Theorem A

Assumption 3.1. Let G be a finitely generated group. Let G ↷ T be a minimal
action on a simplicial tree without inversions. Suppose that all edge-stabilisers
E ≤ G are finitely generated, undistorted, and satisfy (∂M E, G) = ∅.

Fix a finite generating set for G and let 0 be the corresponding Cayley graph.
Choose a basepoint p ∈ T (0) and let f p : G → T denote the orbit map f p(g) = gp.

The complement in T of an open edge has exactly two connected components,
which we refer to as halfspaces. Let E(T ) denote the set of (unoriented) edges of T,
and let H(T ) be the set of halfspaces. Note that H(T ) is naturally in bijection with
the set of oriented edges of T. In particular, every edge e ∈ E(T ) gives rise to two
halfspaces h, h∗. The complement of h is always denoted by h∗.

We denote by Gh ≤ G the stabiliser of the halfspace h. Since G acts without
inversions, Gh coincides with the stabiliser Ge of the edge e associated to h.

Note, every h∈H(T ) gives rise to a Gh-invariant partition G = f −1
p (h)⊔ f −1

p (h∗).

Lemma 3.2. We can choose a subgraph 0(e) ⊆ 0 for every e ∈ E(T ) so that the
following hold:

(1) 0(e) is connected, Ge-invariant and Ge-cocompact.

(2) 0(ge) = g0(e) for all g ∈ G and e ∈ E(T ).

(3) If h, h∗ are the two halfspaces determined by e, then 0(e) contains every edge
of 0 with an endpoint in f −1

p (h) and the other in f −1
p (h∗).

(4) For every r ≥ 0, we have N0( f −1
p (h), r) ∩N0( f −1

p (h∗), r) ⊆ N0(0(e), r).

(5) Each edge e ⊆0 lies in the subgraph 0(e) for only finitely many edges e∈E(T ).
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Proof. Recall that edge-stabilisers are finitely generated. If Se is a finite generating
set of Ge, we can construct a subgraph 0(e) ⊆ 0 satisfying (1) by choosing paths
joining the identity 1 ∈ G to the elements of Se, and taking the union of all their
Ge-translates. Defining 0(e) in this fashion for one edge e in every G-orbit of edges
of T, and then setting 0(ge) := g0(e), guarantees that condition (2) is also satisfied.

Now, let us ensure that (3) holds. For this, it suffices to show that there are only
finitely many Ge-orbits of edges of 0 with an endpoint in f −1

p (h) and the other
in f −1

p (h∗), as these can then be added to 0(e). If SG is the finite generating set of G
giving rise to 0, then every such edge is of the form [g, gs] with gp ∈h, gsp ∈h∗ and
s ∈ SG . Note that g−1e is then one of the finitely many edges separating p and sp for
some s ∈ SG . It follows that g lies in a finite union of right cosets of Ge, as required.

Note that (4) follows from (3): If a point x ∈ 0 lies in the r-neighbourhood of
both f −1

p (h) and f −1
p (h∗), then it lies on a path of length ≤ r joining f −1

p (h) to
f −1

p (h∗). Since G = f −1
p (h)⊔ f −1

p (h∗), condition (3) implies that such a path must
contain an edge of 0(e). Hence x lies in the r -neighbourhood of 0(e).

Finally, (5) follows from (1): Fix some e ∈ E(T ). Suppose that e ⊆ g0(e) for
some g ∈ G. Since g−1e ⊆ 0(e) and Ge acts cocompactly on 0(e), we deduce that
g must lie in a finite union of left cosets of Ge. In other words, e is contained in
0(e′) for only finitely many edges e′ in the G-orbit of e. Since there are only finitely
many G-orbits in E(T ), by Remark 2.13, this proves (5). □

Let us choose 0(e) ⊆ 0 for every e ∈ E(T ) as in Lemma 3.2. If h is one of
the two halfspaces determined by e, it is convenient to define 0(h) ⊆ 0 as the set
f −1

p (h) \ 0(e) ⊆ G along with all (half-open) edges of 0 \ 0(e) that it intersects.
Thus, we have a Ge-invariant partition:

0 = 0(h) ⊔ 0(e) ⊔ 0(h∗).

Lemma 3.3. For every Morse gauge N, there exists a constant D(N ) with the
following property. If β ⊆ 0 is an N-Morse geodesic with endpoints in 0(e) for
some e ∈ E(T ) (resp. in 0(h) for some h ∈ H(T )), then β is contained in the
D(N )-neighbourhood of 0(e) (resp. of 0(h)).

Proof. By Lemma 2.1(4) and Lemma 3.2(3), the statement about 0(h) follows from
that on 0(e).

Let e1, . . . , ek be representatives for the orbits of G ↷ E(T ) (recall Remark 2.13).
Since edge-stabilisers are undistorted, there exists a constant L such that any two
points of 0(ei ) can be connected by a path entirely contained in 0(ei ) that is an
L-quasigeodesic in 0.

Now, suppose then that β has endpoints x, y ∈ 0(e). There exist g ∈ G and
1 ≤ i ≤ k such that 0(e) = g0(ei ). Thus, there exists an L-quasigeodesic α ⊆ 0

connecting x and y within 0(e). By Lemma 2.1(1), the Hausdorff distance between
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β and α is at most D(N ), where D(N ) depends only on N and L . Since α ⊆ 0(e),
this proves the lemma. □

Corollary 3.4. Let γ ⊆ 0 be a Morse geodesic ray. Then:

(1) For every edge e ∈ E(T ), the intersection γ ∩ 0(e) is compact.

(2) For every halfspace h ∈ H(T ), a subray of γ is entirely contained in either
0(h) or 0(h∗).

(3) If a subray of γ is contained in 0(h), then γ must get arbitrarily far from 0(h∗).

Proof. If γ ∩ 0(e) were noncompact, it would be unbounded and Lemma 3.3
would show that γ stays at bounded distance from 0(e). This would contradict the
assumption that (∂M Ge, G) =∅. This proves part (1). Parts (2) and (3) then follow,
respectively, from properties (3) and (4) in Lemma 3.2. □

By Corollary 3.4(3), which of the sets 0(h) and 0(h∗) contains a subray of γ

does not change if we replace γ with a ray at finite Hausdorff distance. This leads
us to consider the following (well-defined) subset of ∂M G for each h ∈ H(T ):

M(h) = {[γ ] ∈ ∂M G | γ is eventually contained in 0(h)}.

Lemma 3.5. For every h ∈ H(T ), we have a partition ∂M G = M(h) ⊔ M(h∗) into
closed subsets.

Proof. From the above discussion, it is clear that M(h) and M(h∗) are disjoint and
cover ∂M G. We only need to prove that they are closed. Choosing some x ∈ 0(h)

as basepoint, it suffices to show that M(h) ∩ ∂ N
M0x is sequentially closed for every

Morse gauge N.
Let γn ⊆ 0 be a sequence of N -Morse geodesic rays based at x that converge

uniformly on compact sets to an N -Morse geodesic ray γ ⊆ 0. If [γn] ∈ M(h)

for every n, then Lemma 3.3 guarantees that the γn are all contained in the D(N )-
neighbourhood of 0(h). The same neighbourhood must then contain γ and, by
Corollary 3.4(3), we conclude that [γ ] ∈ M(h). □

If ξ ∈ ∂M G, we introduce the following subset of H(T ):

σ(ξ) := {h ∈ H(T ) | ξ ∈ M(h)}

= {h ∈ H(T ) | if ξ = [γ ], then γ is eventually contained in 0(h)}.

Note that σ(ξ) satisfies the following two properties:

(1) If e ∈ E(T ), then exactly one of the two halfspaces determined by e lies in
σ(ξ).

(2) If h1, h2 ∈ σ(ξ), then h1 ∩ h2 ̸= ∅.



354 ELIA FIORAVANTI AND ANNETTE KARRER

A subset of H(T ) with these properties is known as an ultrafilter [Sageev 2014,
Definition 2.1].

For every vertex x ∈ T (0), an important example of an ultrafilter is the set

σx := {h ∈ H(T ) | x ∈ h}.

Conversely, every ultrafilter σ ⊆ H(T ) that does not contain infinite descending
chains of halfspaces is of the form σx for a vertex x ∈ T (0); see for instance [Sageev
2014, Proposition 2.1].

Remark 3.6. If ξ, η∈∂M G are in the same connected component, then σ(ξ)=σ(η).
Indeed, Lemma 3.5 implies that, for every h ∈ H(T ), we have either {ξ, η} ⊆ M(h)

or {ξ, η} ⊆ M(h∗).

Lemma 3.7. Let α ⊆ 0 be an N-Morse geodesic line whose endpoints at infinity
α±

∈ ∂M G lie in the same connected component of ∂M G. Set σ := σ(α+), which
coincides with σ(α−) by Remark 3.6. Then the following hold:

(1) α is contained in the intersection of the D(N )-neighbourhoods of the subsets
0(h) ⊆ 0 with h ∈ σ (here D(N ) is the constant introduced in Lemma 3.3).

(2) There exists a vertex x ∈ T such that σ = σx .

(3) α stays at bounded distance from the stabiliser Gx ≤ G.

Proof. Part (1) is immediate from Lemma 3.3. We will prove part (2) by showing
that σ does not contain any infinite descending chains of halfspaces.

Fix a vertex g ∈ α ⊆ 0. Consider the ultrafilter σgp ⊆ H(T ) determined by the
vertex gp ∈ T. If h∈σ \σgp, then g ∈ f −1

p (h∗)∩α, while α is contained in the D(N )-
neighbourhood of 0(h) by part (1). If e is the edge corresponding to h, Lemma 3.2(4)
guarantees that 0(e) meets the D(N )-ball around g. By Lemma 3.2(5), the latter
can occur only for finitely many edges of T.

This shows that the set σ \ σgp is finite. Since σgp does not contain infinite
descending chains, neither does σ . This proves part (2).

Finally, let us prove part (3). Let x ∈ T be the vertex provided by part (2). Let
τx ⊆ σx be the subset of halfspaces whose corresponding edge of T is incident to x .
Let � ⊆ 0 be the intersection of the D(N )-neighbourhoods of the sets 0(h) with
h ∈ τx . Part (1) guarantees that α ⊆ �. Since Gx fixes x , it leaves invariant τx , and
thus it also leaves invariant � ⊆ 0. In order to prove part (3), it suffices to show that
the action Gx ↷ � is cocompact. This implies that the Hausdorff distance between
� and Gx is finite, so α then stays at bounded distance from Gx .

Observe that {x} =
⋂

h∈τx
h; hence f −1

p (x) =
⋂

h∈τx
f −1

p (h). The latter is either
empty (if x is not in the same G-orbit as our basepoint p ∈ T ), or a single Gx -orbit.
Thus, it suffices to show that Gx acts with finitely many orbits on the difference
�(0)

\ f −1
p (x).
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For every vertex y ∈ �(0)
\ f −1

p (x), there exists h ∈ τx such that y lies in the
intersection of f −1

p (h∗) and the D(N )-neighbourhood of 0(h). If e is the edge
corresponding to h, Lemma 3.2(4) shows that y lies in the D(N )-neighbourhood of
0(e). Recall that there are only finitely many Gx -orbits of edges e corresponding
to elements of τx , that these edges satisfy Ge ≤ Gx , and that Ge acts cocompactly
on 0(e). This shows that Gx acts with finitely many orbits on �(0)

\ f −1
p (x), as

required. □

Corollary 3.8. If a connected component C ⊆ ∂M G is not a singleton, then there
exists a vertex x ∈ T such that C is contained in the image of the natural inclusion
(∂M Gx , G) ↪→ ∂M G.

Proof. By Remark 3.6, there exists an ultrafilter σ ⊆ H(T ) such that σ = σ(ξ) for
all ξ ∈ C. Any two points of C are endpoints at infinity of a Morse geodesic line
in 0, by [Cordes 2017, Proposition 3.11]. Thus, Lemma 3.7(2) shows that σ = σx

for some x ∈ T (0), and Lemma 3.7(3) guarantees that every point of C is represented
by a ray at bounded distance from Gx . □

With the following observation, Corollary 3.8 immediately implies Theorem A.

Lemma 3.9. If x, y ∈ T are distinct vertices, then (∂M Gx , G) ∩ (∂M G y, G) = ∅.

Proof. Choose a halfspace h ∈ H(T ) with x ∈ h and y ∈ h∗. A point in

(∂M Gx , G) ∩ (∂M G y, G)

would be represented by asymptotic Morse rays rx , ry ⊆ 0 contained in neighbour-
hoods of 0(h) and 0(h∗), respectively. This would contradict Corollary 3.4(3), so
no such point can exist. □

Corollary 3.8, Lemma 2.3 and Corollary 2.16 imply the following, which is
Corollary B.

Corollary 3.10. If (∂M Gx , G) is totally disconnected for every x ∈ T (0), then ∂M G
is totally disconnected.

The following is not required in the proof of the main theorems, but it looks like
a useful observation (for instance, when studying whether ∂M G is σ -compact).

Remark 3.11. Recall that we have defined an ultrafilter σ(ξ) ⊆ H(T ) for every
point ξ ∈ ∂M G. This yields a map f : ∂M G → T := T (0)

⊔ ∂T, where ∂T is the set
of ends of T.

Every halfspace h ∈ H(T ) can be extended to a subset h⊆ T by adding the ends
of T that it contains. This yields a partition T = h⊔h∗. It is customary to endow T
with the topology having the collection of sets h with h ∈ H(T ) as a subbasis.

Lemma 3.5 implies that f : ∂M G → T is continuous. Moreover, for every vertex
x ∈ T, the proof of Lemma 3.7(3) shows that f −1(x) is exactly the set of points of
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∂M G that are represented by rays in 0 at bounded distance from the stabiliser Gx .
If ξ ∈ ∂T, it is possible to show that f −1(ξ) is either empty or a singleton, but this
requires a bit more work.

We emphasise that the sets T (0) and ∂T are neither open nor closed in T , since
T will normally be locally infinite in our setting.

Remark 3.12. The attentive reader might have noticed that the majority of the
proof of Theorem A works more generally when G acts cocompactly on a CAT(0)

cube complex and all hyperplane-stabilisers are finitely generated, undistorted and
with trivial relative Morse boundary in G. We have chosen to restrict to actions
on trees (the main case of interest) in order to avoid additional difficulties in the
following two spots:

(1) If G acts essentially and cocompactly on a CAT(0) cube complex with undis-
torted hyperplane-stabilisers, it is not clear if vertex-stabilisers will have to be
undistorted as well (cf. Corollary 2.16). It is possible that this can be shown along
the lines of [Groves and Manning 2018, Theorem A].

(2) The last paragraph of the proof of Lemma 3.7(3) would be a bit more delicate
in a CAT(0) cube complex. One would probably need to require stabilisers of all
intersections of pairwise-transverse hyperplanes to be finitely generated.

4. Proof of Theorem C

In order to prove that the Morse boundary of the vertex group V topologically
embeds in the Morse boundary of the ambient group G, we will show that uniformly
Morse rays α ⊆ V remain uniformly Morse in G (see Corollary 4.3 below).

One possible approach to this would consider a quasigeodesic γ ⊆ G with
endpoints on α and use this to construct a quasigeodesic γ ′

⊆ V with the same
endpoints and still getting roughly as far from α as γ . Lemma 2.14 allows us to
decompose γ as a concatenation γ1γ2 . . . γm , where the endpoints of each γi are
near a coset of an edge group vi E ji ⊆ V. We might thus hope to replace each γi with
a quasigeodesic γ ′

i ⊆ vi E ji with nearby endpoints, in order to form a quasigeodesic
γ ′

⊆ V. Since α is Morse in V, the quasigeodesic γ ′ would then stay close to α

and, if edge groups have trivial relative Morse boundary in V, the γ ′

i would all have
to be quite short. Hence the γi would also be short and γ would stay close to γ ′

and α, showing that α is Morse in G.
The problem with this strategy is that, even if γ and the γ ′

i are quasigeodesics,
there is no guarantee that the concatenation γ ′

= γ ′

1γ
′

2 . . . γ ′
m will be a quasigeodesic.

Instead, we will follow a different approach based on divergence, which is the
content of Proposition 4.2.

Assuming that α has a “slow” divergence function in G, we will show that it
also has a slow divergence function in V (which contradicts the assumption that
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α is Morse in V ). The proof proceeds along similar lines to the above sketch. If
γ ⊆ G were a short path with endpoints on α avoiding a large ball, then we could
decompose γ as γ1γ2 . . . γm , and replace each γi with a short path in V, using the
assumption that edge groups are relatively wide in V (in the form of Lemma 2.11).
The new path γ ′ still avoids a ball of roughly the same radius. Here, the advantage
is that it does not matter whether or not γ ′ is a quasigeodesic. Of course, asking
that edge groups be relatively wide in V might be stronger than simply asking that
edge groups have trivial relative Morse boundary in V.

We now give precise proofs, considering the following setting.

Assumption 4.1. Let G be a finitely generated group with a nonelliptic, minimal
action without inversions on a simplicial tree G ↷ T. Fix a base vertex p ∈ T with
stabiliser V. We assume that the stabiliser of every edge e ⊆ T incident to p is
finitely generated and undistorted in G.

Let Dp and E1, . . . , Ek ≤ V be as in Lemma 2.14. Choose finite generating sets
SEi ⊆ Ei , SV ⊆ V and SG ⊆ G, ensuring that:

SE1 ∪ · · · ∪ SEk ⊆ SV ⊆ SG .

Let 2i ⊆ 1 ⊆ 0 be the corresponding Cayley graphs of Ei , V and G, respectively.
We denote their intrinsic path metrics by d2i , d1 and d0.

The inclusions (2i , d2i ) ↪→ (1, d1) ↪→ (0, d0) are all 1-Lipschitz. In view of
Lemma 2.15, we can fix a constant C ≥ 1 such that they are all C-bi-Lipschitz.

We assume that E1, . . . , Ek are relatively wide in V. Let K ≥ 1 be the maximum
of the constants K0 provided by Lemma 2.11(3) in relation to the pairs Ei ≤ V
with 1 ≤ i ≤ k and the Cayley graphs 2i and 1.

We write δ1
α ( · , · ) and δ0

α ( · , · ) when we need to specify the graph used to
compute divergence.

Proposition 4.2. There exist η ∈ (0, 1) and K ′, both depending only on C, Dp, K ,
such that, for every geodesic ray α ⊆ (1, d1) and every r > K ′, we have

δ1
α

(
r, η ·

1
16C

)
≤ K ′

· δ0
α

(
r, 1

16C

)
.

Proof. Let α ⊆1 be a geodesic ray based at a vertex. Recall that α is C-bi-Lipschitz
as a path in (0, d0). Suppose that there exist integers s, r such that the vertices
α(s ± r) can be joined by a path γ ⊆ 0 that avoids the ball B0(α(s), r/(16C)).

Our goal is to construct a path γ ′ joining α(s ±r), so that γ ′ is entirely contained
in 1, avoids the ball B1(α(s), η · r/(16C)), and has length |γ ′

| ≤ K ′
· |γ |. The

constants K ′ and η will be determined at the end of the proof. Note that we are
only interested in the situation where r > K ′.

By Lemma 2.14, we can take the decomposition γ = γ1γ2 . . . γm with the end-
points γ ±

i in the neighbourhood N0(vi E ji , Dp) for some vi ∈ V and 1 ≤ ji ≤ k. Let
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βi ⊆ vi2 ji be a geodesic (for d2 ji
) whose endpoints β±

i satisfy d0(β±

i , γ ±

i ) ≤ Dp.
Note that βi is contained in 1 and is C-bi-Lipschitz for d1.

Suppose that r > 32C(Dp + K ). Choose ϵ > 0 small enough that

1 − ϵ

16C
− ϵK ≥

1
32C

.

Claim. There exists a path β ′

i ⊆ 1 with the same endpoints as βi , such that β ′

i
avoids the ball B := B1(α(s), ϵ · r/(16C)) and has length |β ′

i | ≤ K |βi |.

Proof of claim. If βi is disjoint from B, we can simply take β ′

i = βi .
Otherwise, choose a vertex y ∈βi ∩B and set B ′

:=B1(y, 2ϵ ·r/(16C)). Observe
that B ⊆ B ′. Thus, it suffices to construct the path β ′

i so that it avoids the ball B ′.
Parametrise βi by arc-length so that βi (0) = y. Suppose first that the domain of

βi contains an interval [−ρ, ρ] satisfying the three inequalities

ρ > K , ρ >
ϵKr
8C

, ρ >
ϵr
8

.

Since ρ > K and βi is contained in a left coset of E ji in V, we can apply
Lemma 2.11, which provides a path β ′

i ⊆ 1 connecting the points βi (±ρ), avoiding
B1(y, ρ/K ) and with length |β ′

i | ≤ Kρ. By the second inequality, this path avoids
the ball B ′, which is contained in B1(y, ρ/K ).

We can then prolong β ′

i along βi until it reaches β±

i . Since βi is C-bi-Lipschitz
with respect to d1, the third inequality ensures that βi can only meet the ball B ′ at
times in the interval (−ρ, ρ). Thus, β ′

i avoids B ′ even after prolonging. This is the
path required by the claim.

We are left to consider the case when the domain of βi does not contain a suffi-
ciently long interval [−ρ, ρ]. Suppose without loss of generality that d0(y, β−

i ) ≤

d0(y, β+

i ). Then, recalling that βi is 1-Lipschitz with respect to d0 , we must have

max
{

K ,
ϵKr
8C

,
ϵr
8

}
≥ d0(y, β−

i ) ≥ d0(y, γ −

i ) − Dp

≥ d0(γ −

i , α(s)) − d0(y, α(s)) − Dp

≥ (1 − ϵ)
r

16C
− Dp.

The last inequality is due to the fact that γ −

i lies on γ , and hence outside the
ball B0(α(s), r/(16C)), whereas y lies within B, and hence in the larger ball
B0(α(s), ϵ · r/(16C)).

Given our choice of ϵ, and recalling that r > 32C(Dp + K ), we obtain a contra-
diction:

(1−ϵ)
r

16C
− Dp ≥

[
1

32C
+ϵK

]
·r − Dp > K +ϵKr ≥ max

{
K ,

ϵKr
8C

,
ϵr
8

}
. □
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Now, we complete the proof of the proposition. Recall that β ′

i has the same
endpoints as βi , namely β±

i . Let ζi ⊆ 1 be a shortest path connecting the points
β+

i and β−

i+1. Joining the paths β ′

i provided by the claim by the paths ζi , we form a
path γ ′ entirely contained in 1 and with the same endpoints as γ .

Recalling that γ +

i = γ −

i+1 and d0(β±

i , γ ±

i ) ≤ Dp, we have

d1(β+

i , β−

i+1) ≤ C · d0(β+

i , β−

i+1) ≤ 2C Dp.

It follows that |ζi | ≤ 2C Dp for each i .
Now, suppose that r > 32C2 Dp/ϵ. Then, since each β ′

i avoids the ball B =

B1(α(s), ϵ · r/(16C)), while each ζi has length at most 2C Dp, the path γ ′ avoids
the ball

B1

(
α(s), ϵ ·

r
16C

− C Dp

)
⊇ B1

(
α(s),

ϵ

2
·

r
16C

)
.

Thus, setting η := ϵ/2, the path γ ′ avoids the ball B1(α(s), η · r/(16C)).
We are left to bound the length of γ ′:

|γ ′
| ≤

∑
|ζi | +

∑
|β ′

i | ≤ m · 2C Dp + K ·
∑

|βi |

= 2mC Dp + K ·
∑

d2 ji
(v−1

i β−

i , v−1
i β+

i )

≤ 2C Dp · |γ | + K C2
·
∑

d0(β−

i , β+

i )

≤ 2C Dp · |γ | + K C2
·
∑

(|γi | + 2Dp)

≤ (2C Dp + K C2
+ 2K C2 Dp)|γ |.

In conclusion, taking

K ′
:= max

{
32C(Dp + K ),

32C2 Dp

ϵ
, 2C Dp + K C2

+ 2K C2 Dp

}
and assuming that r > K ′, we have constructed a path γ ′ with the same endpoints
as γ , entirely contained in 1, avoiding the ball B1(α(s), η · r/(16C)), and with
length |γ ′

| ≤ K ′
· |γ |. This shows that

δ1
α

(
r, η ·

1
16C

)
≤ K ′

· δ0
α

(
r,

1
16C

)
,

as required. □

Along with Lemma 2.10, Proposition 4.2 has the following consequence.

Corollary 4.3. For every Morse gauge N, there exists a Morse gauge N ′ such that
every N-Morse geodesic ray α ⊆ 1 is an N ′-Morse quasigeodesic in 0.

We are now ready to prove Theorem C.



360 ELIA FIORAVANTI AND ANNETTE KARRER

Proof of Theorem C. By Corollary 2.16, V is undistorted in G. Recall that the
relative Morse boundary (∂M V, G) is by definition a subset of ∂M V. Since all
incident edge groups E ≤ V are relatively wide in V, we are in the setting of
Assumption 4.1, so Corollary 4.3 implies that (∂M V, G) = ∂M V.

In addition, Corollary 4.3 guarantees that the natural inclusion ∂M V ↪→ ∂M G
is a Morse preserving map in the sense of [Cordes 2017, Definition 4.1]. Thus,
the fact that ∂M V ↪→ ∂M G is a topological embedding follows from [Cordes 2017,
Proposition 4.2]. □
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