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Abstract: Flux balance analysis (FBA) is a key method for the constraint-based analysis of metabolic
networks. A technical problem may occur in FBA when known (e.g., measured) fluxes of certain
reactions are integrated into an FBA scenario rendering the underlying linear program (LP) infeasible,
for example, due to inconsistencies between some of the measured fluxes causing a violation of the
steady-state or other constraints. Here, we present and compare two methods, one based on an LP
and one on a quadratic program (QP), to find minimal corrections for the given flux values so that the
FBA problem becomes feasible. We provide a general guide on how to treat infeasible FBA systems
in practice and discuss relevant examples of potentially infeasible scenarios in core and genome-scale
metabolic models. Finally, we also highlight and clarify the relationships to classical metabolic flux
analysis, where solely algebraic approaches are used to compute unknown metabolic rates from
measured fluxes and to balance infeasible flux scenarios.

Keywords: constraint-based modeling; metabolic flux analysis; mass balances; weighted least-
squares; quadratic programming; Escherichia coli

1. Introduction

Various mathematical modeling techniques have been developed to facilitate the
computer-aided analysis and exploration of complex metabolic networks. Constraint-based
modeling is a particular class of those methods that is based on the network structure
(stoichiometry), mass balances of metabolite concentrations in a steady state and certain
physicochemical (thermodynamics, reversibility) and biological (e.g., maximal total amount
of enzymes) constraints [1]. Within this setting, constraint-based modeling techniques
analyze stationary flux distributions to uncover important properties of the metabolic
network or to predict metabolic phenotypes [2]. A key method in this field is flux balance
analysis (FBA), which searches for optimal metabolic flux distributions maximizing (or
minimizing) a certain objective function, such as maximization of growth [3,4].

One of the oldest applications of constraint-based modeling is metabolic flux analysis
(MFA), where measurements of certain reaction rates are used to derive unknown reaction
rates in a given metabolic network [5–8]. Measurements typically comprise the growth
rate and exchange rates of substrates and products, but some reaction rates may also be
known from biological knowledge (e.g., inactive reactions under certain conditions) or
might be fixed due to certain assumptions. Herein, we do not consider 13C-MFA, which
uses measurements of isotopic labeling patterns from 13C-tracer experiments to resolve
unknown metabolic rates [8].

The steady-state condition together with the known reaction rates lead to a system of
linear equations, which, in classical MFA, is analyzed and solved by methods from linear
algebra [7,9–11]. Depending on the network structure and the selection of reactions with
measured or fixed values, there may be redundancies in the known rates that can lead
to inconsistencies, i.e., there is no feasible flux distribution in the network satisfying the
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known fluxes and the steady-state conditions. Those inconsistencies have been resolved
and treated with the least-squares approaches [7]. However, in contrast to certain methods,
such as FBA, classical MFA does not consider any further constraints. In particular, it
cannot deal with inequalities specifying, for example, reaction reversibilities, lower or
upper bounds of reaction rates, or other more global constraints, such as limitations on
enzyme abundances. On the other hand, while FBA can easily integrate these constraints,
a systematic approach to properly handle and resolve inconsistencies in FBA scenarios,
especially in the context of measured reaction rates, has, to the best of our knowledge, not
been presented to date. In this work we introduce generic approaches to treat infeasibility
in metabolic network models with arbitrary linear constraints. These approaches are based
on linear or non-linear (quadratic) programs and seek to introduce minimal corrections
to make an infeasible system feasible. We also clarify the relationships of this generalized
(FBA-based) MFA with classical MFA, which relies solely on algebraic calculations. We
also discuss practical examples of how infeasible FBA scenarios can arise in core and
genome-scale models of Escherichia coli.

2. Preliminaries
2.1. Definitions

We consider a metabolic network with m metabolites and n reactions represented by
a stoichiometric matrix N ∈ Rm×n. A fundamental assumption for all constraint-based
modeling techniques is that the metabolism is in a steady state, i.e., the concentrations of
internal metabolites are constant. This implies that the vector of reaction rates, r ∈ Rn,
satisfies

Nr = 0, (1)

i.e., it lies in the nullspace of N. In FBA and many other applications, not only is the steady-
state condition taken into account, but also reaction reversibilities and general (lower and
upper) bounds on reaction rates of the type

lbi ≤ ri ≤ ubi. (2)

Setting a reaction with index i irreversible (lbi = 0) reflects assumptions about the
thermodynamic properties of this reaction under physiological conditions. Other common
flux bounds are substrate uptake limits or a lower bound on an ATP-hydrolyzing reaction
that reflects ATP requirements for non-growth-associated maintenance. Beyond (1) and (2),
general inequality constraints of the form

Ar ≤ b, (3)

with appropriate matrix A and vector b, can be easily embedded in an FBA problem, for
example, to incorporate an upper limit for the total amount of enzymes that are needed
to catalyze the fluxes contained in the rate vector [12,13]. The relations (1)–(3) give rise
to a system of linear inequalities and its solution space forms a (flux) polyhedron. FBA
problems contain, in addition, a linear objective function, such as the maximization of the
growth rate, which is represented by a vector c and optimized subject to constraints (1)–(3):

max cTr
s.t. (1)− (3).

(4)

FBA problems constitute linear programs (LPs) for which a variety of solvers are
available. We assume that the base LP (4) is feasible, i.e., there are no conflicting constraints
in Equations (1)–(3) and at least one rate vector r exists that satisfies all these constraints.
For metabolic models without fixed (known) rates, this is normally the case.

In the context of MFA, simple constraints are added to integrate values of known fluxes.
The latter typically include measurements of exchange rates of substrates and products,
but may also reflect environmental conditions or biological knowledge. For example, the
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pyruvate dehydrogenase (PDH) in E. coli is inactive under anaerobic conditions and the
PDH flux as well as oxygen uptake can thus be set to zero when simulating anaerobic
conditions. With F ⊂ {1 . . . n}, we denote the indices of all reactions that have a fixed
(known) flux and introduce equalities clamping these reaction rates to their known values:

ri = fi, ∀i ∈ F. (5)

We denote the number of known reaction rates with k = |F|. In principle, (5) could
also be expressed via (2), by setting lbi = ubi = fi. To keep things simple, we assume here
that lbi 6= ubi for all reactions i, i.e., the bounds of all reaction rates define a range of values
and the truly fixed reaction rates are separately expressed via (5). Adding constraints (5)
to the metabolic system (1)–(3) may now render the FBA problem (4) infeasible and, in
this work, we discuss how these inconsistencies can be detected and resolved to proceed
afterwards with a feasible system.

We first review the techniques used to analyze and resolve infeasibility in classical
MFA, which is solely based on constraints (1) and (5). This will later help us to relate the
terminology and methods of classical MFA to the more general case of balancing infeasible
FBA scenarios.

2.2. Classical MFA

In this section, we initially assume that the metabolic network has no conservation
relations, i.e., the stoichiometric matrix has full rank (rank(N) = m). A necessary minor
modification for the general case with conservation relations will be explained in Section 2.3.

Classical MFA only considers constraints (1) and (5) and integrates them by splitting up
the stoichiometric matrix and the vector of reaction rates into known and unknown parts:

NUrU + NFrF = 0 (6)

NUrU = −NFrF. (7)

U = {1, . . . , n}\F is the set of reactions with an unknown rate, rF and rU comprise the
known and unknown reaction rates, respectively, and NF and NU are the corresponding
stoichiometric submatrices for rF and rU , respectively. Since rF contains the known (fixed)
values, (7) can also be rewritten as:

NUrU = z (8)

with z = −NFrF. Equation (8) represents a classical system of linear equations with
x = |U| = n− k unknown variables and m equations (n: number of reactions; m: number
of metabolites; k: number of known reaction rates). Importantly, as discussed in the
context of MFA in [9,11], every system (8) can be characterized via its determinacy and
its redundancy, two key properties that both depend on the rank of NU . Regarding
determinacy, a system is either determined (rank(NU) = x), meaning that all reaction
rates are uniquely determined, or underdetermined (rank(NU) < x), implying that not all
reaction rates are uniquely calculable because there are linear dependencies in the columns
of NU . Accordingly, x − rank(NU) quantifies the degrees of freedom of a flux scenario
(which equals the dimension of the nullspace of NU). Genome-scale networks are usually
highly underdetermined, i.e., they have many more reactions than metabolites (m � n)
and, even with measurements of some exchange fluxes (or some assumptions), one still has
rank(NU) ≤ m � x. In metabolic core models, measurements (possibly in combination
with knowledge about inactive fluxes) may bring the number of unknowns x closer to m
(and thereby closer to the rank of NU). Generally, even if a genome-scale or core system
is underdetermined, some (but not all) reaction rates may still be uniquely calculable in a
given flux scenario. Reaction rates, whose value can be uniquely determined (with methods
shown below), can be identified by analyzing an (arbitrary) basis of the nullspace of NU .
Let KU denote the (kernel) matrix containing the vectors of a nullspace basis of NU . The



Metabolites 2022, 12, 585 4 of 15

rate of a reaction i is uniquely calculable if the i-th row of KU exclusively contains zeros,
which implies that the i-th entry of all vectors of the nullspace of NU is zero [11].

The second key property of system (8) is redundancy. A system is redundant if it
contains linear dependencies between some rows (metabolites) of NU , i.e., if rank(NU) < m,
otherwise rank(NU) = m and it is non-redundant. The number of degrees of redundancy,
degR, can be calculated as

degR = m− rank(NU). (9)

As a sub-categorization, if the system is redundant, it is either consistent (feasible) or
inconsistent (infeasible), whereas non-redundant systems are always consistent. Consis-
tency or feasibility means that there is at least one vector rU solving Equation (8). In terms
of linear algebra, system (8) is consistent if vector z in Equation (8) is in the image (column
space) of matrix NU . Before clarifying how we can detect the (known) rates that cause the
redundancies in a redundant system, we consider a general solution for the MFA scenario
(8), which is given by

rU = N#
Uz. (10)

N#
U is the x × m Moore–Penrose pseudoinverse of NU existing for every possible

matrix NU [14]. Importantly, (10) is the classical least-squares solution for (8) known from
linear regression, i.e., it minimizes the squared error

(NUrU − z)T(NUrU − z). (11)

Using (10) and z = −NF·rF and by defining the redundancy matrix R as

R = NF −NUN#
UNF (12)

We can rewrite (11) as
(RrF)

T(RrF) = rF
TRTRrF. (13)

If the MFA scenario is feasible, then (11) and (13) yield zero or, equivalently,

RrF = 0. (14)

In a non-redundant system, R = 0 always holds implying consistency for any instance
of rF. In a redundant system, one has R 6= 0 and it then depends on the values of the
measured rates in rF whether or not the system is feasible. The system is infeasible if
RrF 6= 0 and the solution rU obtained with the pseudoinverse (10) then ensures minimal
distance of NUrU from vector z (distance measured as Euclidean norm || ||2 as expressed
by Equation (11)). Note that the least-squares solution for (8) might not be unique, if the
system is underdetermined (rank(NU) < x). Solution (10), based on the Moore–Penrose
pseudoinverse, is then still unique in the sense that the delivered vector rU has a minimal
length (again in Euclidean norm, i.e., it minimizes rU

TrU) of all least-squares solutions. In
underdetermined systems, as already mentioned above, the uniquely determined rates
from rU correspond to zero rows in the kernel matrix (containing a basis of the nullspace of
NU) [11].

Since the absolute value of RrF quantifies the error of solution (10) with respect
to Equation (8), one additional important piece of information can be derived from the
redundancy matrix R: all reactions in rF that have any non-zero value in the corresponding
column in R are involved in the posed redundancies and are thus responsible for potential
inconsistencies (we call these known reaction rates the redundant rates).

We illustrate the introduced terms with the example network shown in Figure 1. Since
determinacy and redundancy are independent (binary) properties, 2 × 2 = 4 possible cases
can arise and at least one example flux scenario is shown in Figure 1 for each of these four
cases. The network has n = 10 reactions and m = 6 metabolites giving rise to a 6× 10
stoichiometric matrix N, which has a full rank of 6 (no conservation relations). From linear
algebra, it is clear that we need at least 10− 6 = 4 measured reaction rates to obtain a
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determined system. Hence, scenario S1, in which the rates of reactions R1 and R4 are
known, must be underdetermined and not all unknown rates can be determined. However,
it is easy to observe that the reactions R7 and R10 must have the same rate as reaction R4 to
fulfill the steady-state condition. Hence, despite being an underdetermined system, some
rates are uniquely determined.
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determined by FVA. Each scenario is characterized by determinacy (D: determined; UD: underdeter-
mined), redundancy (R: redundant; NR: non-redundant), and consistency/feasibility (C: consistent, I:
inconsistent).
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The second scenario, S2, is typical for realistic MFA applications: all (four) exchange
rates were measured. In well-posed systems, this results in a redundant system, since know-
ing all exchange fluxes but one always allows, due to mass balances, the calculation of the
unknown exchange flux (in the example network, it must hold that rR1 + rR2 = rR3 + rR4).
Accordingly, this scenario is redundant and an analysis of the redundancy matrix reveals
that all known reaction rates contribute to this redundancy, and that the system is infeasible.
The scenario is also underdetermined and the analysis of the nullspace of NU shows that
the rates of reactions R7, R9, and R10 are uniquely determined and can be taken from
the calculated least-squares solution (10). It can be observed that the solution, due to
infeasibility, does not fulfill the steady-state condition. For example, with the calculated
fluxes for R7 and R10, the metabolite D is not in steady state. However, the pseudoinverse
solution ensures minimal deviation from the steady state. Scenario S3 is identical to S2,
except that now a value of 4 is given for the rate of R3. This scenario is again redundant, but
this time feasible, as also indicated by the fluxes around the metabolite D which is now in
steady state. However, such a case practically never occurs in reality, since measurements
are overlaid with noise and it is extremely unlikely that a redundant system (with real
measurements) exactly fulfills the consistency condition (14).

Scenario S4 extends scenario S2 with the assumption that reaction R6 is inactive (rate is
zero). The system is still redundant, but now all rates are uniquely determined (the system
is determined). A system that is redundant and determined is often called overdetermined.
Scenario S4 is still infeasible, but the redundancies (and inconsistencies) are again only
posed by reactions R1–R4, whereas reaction R6 adds no redundancy to the system. The
steady-state condition is violated for all internal metabolites but, still, it is the best solution
that can be found for Equations (7) and (8) as it minimizes the (squared) error in (11).
Finally, scenario S5 is identical to S4, except that we assume that we had not measured the
rate of reaction R2. This system is not redundant, but determined and all rates (including
for R2) can be uniquely calculated. Only in such a non-redundant and determined system
does the Moore–Penrose pseudoinverse become a square matrix coinciding with the (then
existing) inverse of NU . The system is feasible, i.e., all steady-state conditions are satisfied
in the found solution. This example shows that leaving out some measurements can make
an infeasible (redundant) system feasible, but we would lose important information about
the possible inconsistencies in our measurements, which, if larger in size, could point to
systematic measurement errors or missing reactions in our network model.

2.3. Conservation Relations

In the considerations above, we assumed that there are no conservation relations (CRs)
in the metabolic network, which refer to linearly dependent rows (metabolites) in the stoi-
chiometric matrix N. Hence, a reaction network contains CRs, if the stoichiometric matrix
does not have full rank, rank (N) < m, and we denote the number c of linearly independent
CRs by c = m− rank (N) (equivalently, c is the dimension of the left nullspace of N). CRs
impose redundancies already in the initial system (1) but, since (1) is a homogeneous
system with a zero vector on the right-hand side, these redundancies are always consistent.
For MFA, one could remove dependent rows and thus the CRs from the stoichiometric
matrix before performing further calculations. If they are kept, we only need to take into
account that the rank deficiency will also be retained in any given MFA scenario, but that
these dependent rows will not induce inconsistencies. Therefore, for the classification of
redundancy of any MFA scenario (with or without CRs), we now state that the system is
redundant if rank(NU) < m− c, which is equivalent to rank(NU) < rank(N), hence, only
if new row dependencies occur in NU due to the given set of measurements. Likewise, the
number of degrees of redundancy for the general case is calculated as:

degR = m− rank(NU)− c = rank(N)− rank(NU). (15)

Everything else remains unaffected, in particular, the redundancy matrix and the
redundant rates can be determined as before.
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2.4. Correcting Measured Rates to Make Inconsistent Systems Feasible

Scenarios S2 and S4 in Figure 1 illustrated that the least-squares solution (9) based on
the pseudoinverse delivers in inconsistent systems solutions for rU that inevitably violate
the steady-state conditions for some metabolites. Here, it would be desirable to first correct
the measured rates to obtain a feasible system and to only then determine the (uniquely
calculable) rates that obey the steady-state conditions. There are many ways to correct
inconsistent measurements to obtain a feasible scenario, but it is reasonable to demand that
the introduced changes are minimal with respect to a certain measure. Here, it would be
desirable if we could include information on the noise of the respective measurements. A
suitable approach, based on a weighted least square optimization, can be constructed as
follows [7]. We aim to correct the values fi of the measured/known reaction rates ri by
introducing a correction variable δi ∈ R

ri = fi − δi , ∀i ∈ F, (16)

so that the system (7) becomes feasible. From all possible solutions for δi, we look for the
one that minimizes the weighted squares of all corrections:

min ∑
i∈F

wiδ
2
i

s.t. (1) and (16).
(17)

For the weights wi, we choose the reciprocal values of the measurement variance σ2
i of

the known rates: wi = 1/σ2
i . The solution for this minimization problem is given by

δ = WRT
r (RrWRT

r )
−1

RrrF , (18)

where W is a diagonal matrix containing the reciprocal values of the wi (i.e., the σ2
i of

the measurements) on its diagonal, whereas Rr is the reduced redundancy matrix, which
can be obtained from the redundancy matrix R in Equation (12) by removing dependent
rows from the latter. If the measurement variances are not known, one may either choose
an identical weight wi = 1 for all reactions (resulting in an identity matrix for W), or set
wi = 1/| fi| assuming that the measurement noise is correlated with the magnitude of the
measured value. With the calculated corrections δi, the reaction rates can be corrected via
(16) yielding a feasible system from which the unknown rates (as far as uniquely calculable)
can then be obtained as before from the pseudoinverse solution in Equation (10).

Although both Equation (18) as well as the solution based on the pseudoinverse in
Equation (10) are least-squares solutions, they are fundamentally different: The former min-
imizes the deviation from a steady state under the consideration of the given reaction rates,
whereas the second minimizes the (weighted) changes in the measured rates necessary to
obtain a feasible system fulfilling the steady-state condition. This is illustrated by scenario
S6 in Figure 1, which takes as input the same measured values as in S4, but this time it is
solved via Equation (18) using wi = 1 for all known rates. The four redundant rates of
R1–R4 (but not the non-redundant rate of R6) are adjusted to obtain a feasible system and,
from the corrected scenario, the solution for the unknown rates is computed now obeying
the steady-state condition for all internal metabolites.

3. Results
3.1. Infeasibility in FBA Scenarios with Known Fluxes

Classical MFA cannot consider any other constraints than the steady-state condition
(1) and the measured reaction rates (5). Even when considering only simple reversibility
constraints (by using lbi ≥ 0 for all irreversible reactions in (2)), classical MFA may de-
liver wrong results and infeasibility may even remain undetected. For example, in the
underdetermined scenario S7 in Figure 1, the algebraic solution via (10) would indicate
that the scenario is non-redundant (rank(NU) = m) and thus feasible, and that the rates
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of reactions R7 and R10 are 6 (which follows since the rate of R4 is 6). However, since all
reactions except R2 and R8 are irreversible in the example network in Figure 1, no feasible
solution can exist for this scenario, because the rate of R4 can then not be larger than the
flux through R1. Accordingly, applying FBA (with any objective function) would result in
an infeasibility message of the solver.

We therefore consider in the following an FBA scenario consisting of the FBA base con-
straints (1)–(3), the flux measurements (5), and the given FBA objective function from (4):

max cTr
s.t. (1)− (3), (5).

(19)

As previously stated, we assume that the base constraints (1)–(3) form a feasible
system, a property that is fulfilled in well-posed network models (the general case, where
inconsistencies in the base constraints could also be detected/corrected, will be discussed
in Section 3.4). Assume now that fixing the known/measured fluxes (5) and adding these
constraints to the base FBA constraints (1)–(3) leads to an infeasible system, which will be
reported by the LP solver when trying to solve (19). The goal is now to identify and resolve
the inconsistencies to obtain a feasible system. Because the FBA’s objective function bears
no relevance on the feasibility of the LP (19), we remove it for the following considerations.
This would also reflect the situation where we are interested to (only) identify the uniquely
determined rates that follow from the extended MFA scenario with constraints (1)–(3) and
(5), without having an objective function (as in scenario S7 in Figure 1).

3.2. Weighted Least-Squares Solution via Quadratic Optimization

We search for minimal corrections of the flux measurements (5) that make the system
feasible. We know that such a correction exists, as we assume that the base system (1)–(3)
is feasible. We can follow a similar strategy as we did for the (algebraic) least-squares
approach (Equations (16) and (17)) of classical MFA. We again add a correction term (or
slack variable) δi ∈ R to each of the fixed reaction rates

ri = fi − δi , ∀i ∈ F (20)

and formulate an optimization problem that minimizes the (weighted) sum of the squared
corrections

min ∑
i∈F

wiδ
2
i

s.t. (1)− (3) and (20).
(21)

This approach mimics the weighted least-squares approach of classical MFA (17), but
the difference here is that this optimization is subject to the full set of constraints (1)–(3) and
(20), for which no analytical solution as in Equation (18) exists in general. In this setting,
(21) becomes a quadratic program (QP), which is an LP extension that allows for quadratic
terms in the objective function, while the constraint must still be linear. In general, the
objective function (over variables x ∈ Rn) of a convex QP has the form

minimize xTQx + cTx + d, (22)

where Q ∈ Rn×n is a symmetric positive semidefinite matrix, c ∈ Rn, and d is a constant [15].
In our case, x is a vector containing the reaction rates as well as the correction terms δi.
Furthermore, we have c = 0, d = 0, and Q is a matrix containing zeros, except some
diagonal elements containing the weights wi associated with the δi. Since all weights can
here be assumed to be positive (see below), Q is positive semidefinite as demanded. The
computed corrections δi for the known ri in (20) are unique at the minimum of the objective
function (21). However, the values of the undefined reaction rates in r are, in general, not
unique if the system is underdetermined.

Regarding the weights wi in (21), we can use the same three weighting schemes as
proposed for the weighted least-squares approach in classical MFA:
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• W1: If the variances of measurements (σ2
i )are available, these could be used for the

weights: wi = 1/σ2
i .

• W2: If the measurements variances are unavailable, one could set wi = 1/| fi| so that a
deviation from a flux of larger magnitude weighs less than the same deviation from a
flux of lower magnitude. This assumes that the measurement noise is correlated with
the magnitude of the measured value.

• W3: As the simplest approach, one could choose equal weights for all corrections:
wi = 1.

For W1 and W2, one should use large positive weights if a rate was measured (or
assumed) to be zero to set high penalties for corrections in those reaction rates. In case
one is certain that a rate is zero, the corresponding reaction can also be removed from the
network prior to the calculation or a weight of infinity could be used.

We note that the corrections δi obtained with the QP (21) are identical to the least-
squares solution of classical MFA (18), as long as the constraints (2) and (3) do not matter for
the infeasibility (or if they would be dropped). For example, in scenario S8 in Figure 1, we
reconsider scenario S6, but this time apply the delineated QP procedure. This yields exactly
the same corrections for the known rates, even if the reversibility constraints are included
in the QP. Classical MFA uses, after computing and applying the minimal corrections,
the pseudoinverse solution (10) together with a nullspace analysis of NU to identify the
values of the uniquely determined (unknown) rates. In contrast, in FBA-based MFA a flux
variability analysis (FVA, [16]) can be performed to the corrected system to determine the
minimum and maximum flux for each reaction. In particular, this reveals the fluxes that
are uniquely determined from the (corrected) predefined rates and, in addition, deliver the
admissible flux ranges for the remaining fluxes. Scenario S9, which reconsiders scenario S7
with the QP approach (21) followed by FVA, now handles the inconsistencies between the
given values and the reaction reversibilities properly, and subsequently delivers the values
of uniquely determined rates (R5, R6, R7, R8, R10) as well as the valid ranges of the still
unknown rates. Note that even if we would start with the corrected system (R1 = R4 = 5)
in scenario S9, taking the pseudoinverse in combination with the nullspace analysis of
NU would deliver the result that only the rates of R7 and R10 are uniquely determined.
The fact that R5, R6, and R8 are also determined in this particular case, follows from the
irreversibility of R5 and R6 and can therefore only be deduced from FVA, not from the
classical MFA approach.

3.3. Using Linear Optimization to Correct Flux Measurements in Infeasible FBA Systems

The QP-based approach for resolving inconsistencies goes beyond classical LP prob-
lems considered in FBA and requires a suitable QP solver. Furthermore, although the
complexity of solving convex QP problems is polynomial [15], the computation time for a
QP is typically somewhat higher than for an LP, and the applications of a QP in genome-
scale models may become more elaborate (see Section 3.7). An alternative, solely LP-based
approach can be constructed as follows. Instead of a single correction term δi ∈ R used
in (20), we now introduce two non-negative slack variables δ+i ≥ 0, δ−i ≥ 0 for each
measured/known rate

ri = fi + δ+i − δ−i , ∀i ∈ F. (23)

As the objective function, we minimize the weighted sum of the slacks needed to make
the system feasible

min ∑
i∈F

wi
(
δ+i + δ−i

)
s.t. to (1)− (3) and (23).

(24)

Effectively, this optimization problem minimizes the weighted sum of absolute changes
and the use of two non-negative slack variables in (23) and (24) allows for the linear
representation. Furthermore, note that in any optimal solution obtained with (24), at least
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one of the two correction terms δ+i and δ−i is zero. Regarding the weights wi, we have the
same possible choices as for the QP-based approach.

It should be noted that, in contrast to the QP method, the LP-based correction approach
(24) may have non-unique solutions for the slack variables. Consider a simple inconsistent
scenario in the network in Figure 1 with the predefined rates R4 = 2 and R10 = 4. If we use
weighting scheme W3 (equal weights wi = 1) in (24), all corrections that lead to R4 ∈ [2,4]
and R4 = R10 are valid optimal solutions with a minimal objective value (sum of the slack
variables) of two. Hence, there are infinitely many solutions and the found values of
the slacks depend on the solver and its solution method. The only QP-based solution in
this case would result in R4 = R10 = 3. However, if measurement variances (wi = 1/σ2

i ;
weighting scheme W1) or absolute flux values (wi = 1/| fi|; weighting scheme W2) are used
for the weights, the results are much more likely to be unique, because then the weights
often have distinct values. For example, if we used wi = 1/| fi| in the example above,
the unique solution for (24) would be R4 = R10 = 2 (whereas the unique QP solution is
then R4 = R10 = 2.67). The choice of the weights, but also the used correction method,
thus influence the outcome of the correction and thereby also impact the results of the
subsequent analyses with the corrected scenario. There is no general rule for which method
is to be preferred. In the related field of linear regression, if measurement variances are
available (and used as weights), weighted least-squares approaches are often used as they
lead to a unique solution and provide some theoretical results about statistical properties if
the measurement errors are normally distributed [17]. However, one should also be aware
of the fact that the quadratic terms in the QP (21) penalize large deviations more strongly.
Although this ensures a unique solution for the corrections, it also implies that typically all
rates involved in the inconsistency will receive a correction. In realistic applications, we
found that the LP approach with wi = 1/| fi| also delivered reasonable results and may
thus provide an alternative to the QP approach, especially if no QP solver is available or if
the measurement variances are not known.

3.4. Allowing Minimal Corrections of Other Constraints to Make Infeasible FBA Systems Feasible

Thus far, we assumed that the fixed (measured/known) fluxes in (5) caused the
inconsistencies and searched for suitable (minimal) corrections of these fluxes to make
the system feasible. However, one may also consider the other constraints (1)–(3) as
possible sources of the inconsistencies, and thus as targets for corrections. The procedure
is analogous as for correcting the fixed fluxes. One first introduces slack variables on the
right hand-side of the respective constraints. For each of the m rows in the equality-based
steady-state constraint (1), we would again either use a single slack δi ∈ R (in combination
with the least-squares/QP approach (21)) or two non-negative slacks (for the LP-based
approach (24)), whereas introduction of a single non-negative slack as a correction term
suffices for each inequality constraint in (2) and (3). For example, the flux bound constraints
(2) would be rewritten as

ri ≤ ubi + δub
i

ri ≥ lbi − δlb
i

(25)

with δub
i ≥ 0, δlb

i ≥ 0. Subsequently, weights can be assigned to each introduced slack
variable and the QP (21) or the LP-based (24) correction procedure is applied to find the
optimal solution. Interestingly, if we consider the system with constraints (1)–(3) and (5),
and allow corrections (with equal weights) only for the steady-state condition (1), the QP-
based solution for the corrections would be identical to the pseudoinverse solution (10), as
long as the inconsistencies arise solely due to algebraic redundancies in the measurements
(and not in combination with flux bounds (2) or other constraints in (3)). Hence, using
this procedure with a QP-based optimization for scenario S4 in Figure 1 delivers the same
results as shown for the pseudoinverse.

Normally, the (exclusive) correction of fixed/measured fluxes is most relevant for
realistic MFA/FBA applications. Nevertheless, there might be cases in which the correction
of other constraints is of interest, for example, (a) to identify reactions that are constrained
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to be irreversible but are in reality reversible, or (b) to resolve inconsistencies related to
complex enzyme capacity constraints [12,13] that can be expressed via (3).

3.5. A Practical Guide for How to Proceed with Infeasible FBA Problems

As a summary, in the following, we provide a step-by-step procedure for how to
analyze and resolve infeasibility in FBA scenarios:

(1) Detect (in)feasibility: infeasibility of a metabolic flux (balance) scenario can or will
be detected by an associated error message of the LP solver when performing an
FBA optimization or an FVA. If this infeasibility is not a consequence of fixing some
reaction rates, i.e., if the base system (1)–(3) is already infeasible, use the methods
explained in the previous section for resolving inconsistencies in these constraints.

(2) If not yet performed, identify all reactions with a fixed rate (e.g., by searching for
reactions in the model where lower and upper bound are identical).

(3) It is recommended to check via Equation (15) whether there are algebraic redundancies
in the defined scenario (solely related to the steady-state constraint) and, if so, to find
out which of the fixed reaction rates induce this redundancy (via the redundancy
matrix (12)). This can be very helpful to find possible sources of mutually inconsistent
rates (but it does not provide a (complete) explanation if constraints (2) and (3) are
also involved in the inconsistency).

(4) Decide on which optimization approach (QP (21) or LP (24)) and which of the three
weighting schemes, W1–W3, are to be applied. Recommendation: if the measurements
variances σ2

i are known and if a suitable QP solver is available, then use a QP with
wi = 1/σ2

i ; otherwise, choose the LP approach with wi = 1/| fi|. In the latter case, the
wi may be manually (re)adjusted to increase knowledge about the (un)certainty of the
fixed rates. Generally, large weights (wi > 1000) should be used for rates fixed at zero
( fi = 0).

(5) Compute the corrections with the respective optimization approach and analyze them
to identify the given rates that were assigned the largest changes and have thus caused
the largest inconsistencies.

(6) Apply the corrections and compute with the balanced (now feasible) system the
solutions for the original FBA/FVA problem. In particular, FVA can be used to identify
unknown rates that are uniquely determined from the measured rates (FVA delivers
identical lower and upper bounds for those rates). Generally, when performing FBA
or FVA in the corrected system, one may face numerical problems: the precision of
the calculated (and applied) corrections might not be sufficient enough for the solver
used in the subsequent FBA/FVA optimizations, again resulting in an infeasibility
message of the solver. If this happens to be the case, it is advised to use a slightly lower
precision for the subsequent optimizations. In the example applications described in
Section 3.7, we did not encounter such a problem.

3.6. Implementation in CellNetAnalyzer and CNApy

Previous versions of the MATLAB toolbox CellNetAnalyzer (CNA) [18,19] already
provided methods for balancing infeasible MFA/FBA scenarios, which have been largely
revised in the latest version (2022.1) to embed the new methods presented herein. In
particular, the LP-based (supported solvers: CPLEX, glpk, and MATLAB’s linprog) as
well as the QP-based (supported solvers: MATLAB’s quadprog and CPLEX’s cplexqp)
approaches for balancing infeasible FBA systems have been implemented, and can both be
used with any of the three proposed weighting schemes. Classical MFA calculations based
on the pseudoinverse (Equations (10) and (18), respectively) can still be performed and
used for comparison. CNA can be downloaded via http://www2.mpi-magdeburg.mpg.
de/projects/cna/cna.html (accessed on 22 June 2020).

Likewise, these methods have been implemented in the latest release of CNApy, a
recently published Python toolbox [20]. CNApy has a similar scope as CNA, but provides
significantly enhanced GUI features. Supported solvers are CPLEX, glpk, and gurobi for the

http://www2.mpi-magdeburg.mpg.de/projects/cna/cna.html
http://www2.mpi-magdeburg.mpg.de/projects/cna/cna.html
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LP-based approach, and CPLEX and gurobi for the QP approach. CNApy can be obtained
from: https://github.com/cnapy-org/CNApy (accessed on 22 June 2020).

3.7. Relevant Examples from Core and Genome-Scale Models of Escherichia coli

The methods introduced herein are especially useful to treat infeasibility in FBA
systems arising from measured or known fluxes. How likely is it in practice that a network
model becomes infeasible if flux measurements are added to the network constraints?
Clearly, this depends on (i) network size and structure, (ii) the set of measured fluxes,
and (iii) the type of included constraints in (3). Fluxes that can often be determined for
microorganisms in dedicated experiments are the exchange rates of (carbon) substrates,
oxygen, carbon dioxide, hydrogen and of carbon (by)products, as well as the growth rate.
Fixing these fluxes in the (compressed) Escherichia coli core model 2 (ECC2comp), a model
of the central metabolism of E. coli comprising 82 reactions [21], already results in two
(algebraic) degrees of redundancy (degR = 2 in Equation (15)). These redundancies arise
from carbon and redox balances in combination with the steady-state condition (1). Hence,
with imprecise measurements, one obtains an infeasible scenario and further inconsistencies
may arise due to reversibility or other constraints. Analyzing the magnitudes of the
corrections required to make the system feasible provides important information about the
consistency of the model and the observed fluxes.

Then, one may apply FVA to investigate whether uniquely determined rates result
from the given scenario. However, even in core models and even if further constraints
are added (such as non-growth associated maintenance (NGAM) demand of ATP, enzyme
capacity constraints, etc.), typically only few of the unknown internal rates become uniquely
determined. Here, FBA can be used to focus on optimal flux distributions. If the growth
rate has been measured and added as a constraint, the classical FBA objective function
of growth maximization would not be meaningful anymore. A reasonable assumption
is then to assume that, under the given constraints, the cell has optimized the remaining
fluxes towards ATP production, i.e., the NGAM reaction (usually denoted by ATPM) is
maximized. This approach was also used in [22] after resolving the inconsistencies in the
measured fluxes with an LP-based approach.

Although less likely, infeasibilities can also arise in genome-scale models and, thus,
methods to analyze and treat them become relevant in these large models as well. In
particular, redundancies will appear in any well-posed stoichiometric metabolic model if
all exchange fluxes relevant for the balance of a certain element (carbon, nitrogen, phos-
phate, sulfur, hydrogen, etc.) or for charge balance have been measured or fixed. For
example, fixing the fluxes of all exchange reactions that transport carbon metabolites in the
genome-scale E. coli model iJO1366 [23] indeed leads to a redundancy, although more than
800 degrees of freedom remain in this scenario. There might be realistic applications where
some of the respective carbon exchange fluxes are known from measurements (growth rate,
substrate uptake, standard (fermentation) products, CO2), while the others can be assumed
to be zero. Again, the resulting redundancy and the magnitudes of the computed (minimal)
corrections needed to make the system feasible can then deliver important insights on the
overall carbon balance and point to possible modeling (or measurement) errors.

Redundancies related to carbon balance are the most valuable, as the latter integrates
a large number of fluxes in the metabolism; however, redundancies from other elemental or
charge balances can be relevant and useful as well. In contrast to simple algebraic models
of elemental balances [7,9], FBA models (with truly mass-balanced reaction stoichiometries)
contain elemental balances implicitly and together with flux bounds (Equation (2)) and
possibly further constraints (Equation (3)) they are less flexible, through which infeasibilities
are more likely to appear. In fact, inconsistencies may also arise without any algebraic
redundancy related to the steady-state constraint (1). For example, using a genome-scale
model of E. coli with enzyme constraints [13] and providing only three measured rates
for substrate (glucose) uptake, excretion of acetate (reflecting overflow metabolism), and
biomass synthesis (growth rate) can easily result in infeasibilities, which are difficult to

https://github.com/cnapy-org/CNApy
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resolve intuitively or manually because all three depend on each other via the global
enzyme capacity constraint.

We also tested the LP- and QP-based methods implemented in CellNetAnalyzer
to resolve typical examples of infeasible scenarios in the compressed core (ECC2comp)
and in the genome-scale (iJO1366) model of E. coli. In both networks, we considered
three different infeasibility problems (P1–P3) with increasing complexity: P1—two strictly
coupled reactions have inconsistent fluxes; P2—growth rate and all carbon exchange
fluxes fixed (with inconsistent values); P3—one reaction rate within a given complete flux
distribution (FBA solution for maximization of growth) is changed to an inconsistent value.
For each problem in each network, we considered two weighting schemes (W2 and W3)
and calculated the LP-based as well as the QP-based solution. We first used CPLEX’s
(cplexlp for the LP-based and cplexqp for the QP-based approach) and then MATLAB’s
solver (linprog for LP and quadprog for QP) with standard tolerances and parameters. The
calculation via the LP-based approach could be successfully finished within one second
(standard PC) for all tested problems in the core, as well as in the genome-scale model with
both tested LP solvers. Regarding the QP-based solutions, all problems in both networks
could again be solved within one second when using CPLEX’s QP solver with the “simplex”
method. In contrast, while MATLAB’s QP solver succeeded the calculation of all example
scenarios in the core network (again, in less than one second), only for one (out of six)
tested genome-scale problems a QP-based solution could be found. In the other cases, the
solver stopped with the message that it had reached the maximum number of iterations or
that it encountered numerical problems (using other tolerances was also not successful).
These results indicate that the LP-based solution may in some cases be more practical in
large-scale models.

4. Discussion

In this work, we presented and discussed methods useful to analyze and resolve
infeasible FBA scenarios. We focused on the most relevant situation in which inconsistencies
arise due to predefined fluxes, but also outlined the more general case where inconsistencies
are caused by other linear constraints of an FBA scenario. We are not aware of any previous
work that provides a systematic approach to treat and resolve inconsistent FBA scenarios
with fixed fluxes and how this links to classical MFA. Abbate et al. [24] used adaptive flux
variability analysis to find suitable interval representations of measured fluxes to turn an
infeasible FBA scenario into a feasible one. However, such an interval representation is
actually not required for resolving inconsistency and the method considers neither different
weights nor quadratic terms for the corrections in the objective function. In the context
of FBA, a popular method that uses quadratic programming is MOMA (minimization of
metabolic adjustment) [25]. Despite some similarities, the focus is different: MOMA starts
with an (entire) reference flux distribution obtained from an FBA optimization. Within this
reference solution, one (or several) fluxes are set to zero corresponding to knockouts. QP
optimization is then used to find minimal (quadratic) changes in the other fluxes to obtain a
feasible solution, with the particularity that zero fluxes associated with knockouts must not
be changed. In the (MFA-based) FBA scenario considered herein, we are usually given a
few (measured) fluxes, which, if inconsistent, will be corrected to obtain a feasible solution.
Additionally, different to MOMA, the changes can be weighted or a linear objective function
can be used. In principle, MOMA can be seen (and run) as a special case of the QP-based
correction approach where the fixed zero fluxes corresponding to knockouts obtain a very
large (infinite) weight in the quadratic objective function.

Another small methodological overlap exists with FBA methods that seek to iden-
tify stoichiometric inconsistencies (such as mass-imbalanced reaction stoichiometries or
blocked reactions) in metabolic models [26]. However, these inconsistencies are related to
the particular structure and properties of the stoichiometric matrix (not to flux measure-
ments or other flux constraints), and are relevant in the context of network reconstruction
to obtain physically and chemically valid models. In fact, a model with (undetected)
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mass-imbalanced reaction stoichiometries may be feasible in the context of a specific FBA
scenario.

We presented and discussed two major approaches for treating infeasibility: the
QP-based approach minimizing the (weighted) squares of changes, and the LP approach
minimizing the sum of (weighted) changes. In the field of linear programming, a variety of
further methods has been developed to deal with infeasibility in systems of linear equalities
and inequalities [27]. For example, as another option not discussed so far, one could
minimize the number of non-zero changes needed to make the system feasible (instead of
the sum of (squared) changes). This could be achieved with a mixed-integer linear program
(MILP). Such a scheme might be useful during network exploration with many rates fixed
to reveal the smallest number of modifications necessary to make the FBA feasible again.
However, the problem of finding a minimal number of required changes is NP-hard [27],
although state-of-the-art MILP solvers may be able to find optimal MILP solutions in
genome-scale networks. Generally, such cardinality-based optimizations are also relevant
for other constraint-based modeling techniques and a related algorithm is available at [28].

Another possible extension is to analyze in more detail the structural sources of the de-
tected infeasibility, for example, by identifying smallest (irreducibly) inconsistent subsets of
constraints (IIS [27]). To make an infeasible system feasible again, one constraint from each
IIS needs to be removed. However, the results from an IIS analysis are rather abstract and
may not directly point to the actual source of potential modeling or measurement errors.
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