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I. Quantum dot (QD) synthesis 
A. Chemicals 

We used the following chemicals as received without further purification: Se (99.99%, Aldrich), 1-
octadecene (ODE, 90%, Aldrich), CuCl (95+%, Wako), oleylamine (80‒90%, Acros), oleic acid (TCI), Cd 
acetate dihydrate (98+%, Wako), dibenzyl ether (97+%, Wako), tri-n-octylphosphine (TOP, 97%, Aldrich), 
CdO (99.99%, Aldrich), myristic acid (99%, TCI), Cd stearate (98%, Angene), stearic acid (95+%, Wako), 
and tri-n-octylphosphine oxide (TOPO, 90%, Aldrich).  
 
B. Large CdSe QDs (14 nm) 

The zincblende CdSe QDs with an average diameter of about 14 nm were synthesized by a cation 
exchange reaction using berzelianite Cu2−xSe QDs. 

 
Synthesis of Cu2−xSe QDs (Ref. [1]): 

First, Se (2 mmol) was dissolved in ODE (20 mL) at 250 °C under an N2 atmosphere. Then, CuCl (2 
mmol), oleylamine (12 mmol), and oleic acid (4 mmol) were added to the Se–ODE solution at room 
temperature, and the mixture was kept at 200 °C for 15 min under the N2 atmosphere. The synthesized 
Cu2−xSe QDs were collected by adding ethanol and subsequent centrifugation. Then, they were redispersed 
in hexane for the following cation exchange reaction. 

 
Cation exchange with Cd2+ ions (Ref. [2]): 

A Cd2+ solution was prepared by heating a mixture of Cd acetate (1.1 mmol), oleylamine (8 mL), ODE 
(2 mL), and dibenzyl ether (15 mL) at 110 °C under an N2 atmosphere. A solution of the Cu2−xSe QDs 
(containing 0.2 mmol Cu) dispersed in TOP (2 mL) was injected into the Cd2+ solution at 50 °C, and the 
mixture was kept at 110 °C for 20 min under the N2 atmosphere. The synthesized CdSe QDs were purified 
in a two-step process using 2-propanol, and then redispersed in hexane for further use. 
 
C. Small CdSe QDs (1.8–6.4 nm) 
Synthesis of the 6.4-nm-large CdSe QDs (Ref. [3]): 

First, a mixture of CdO (1 mmol), myristic acid (2.2 mmol), and ODE (4 mL) was heated to 290 °C 
under an N2 atmosphere until the solution turned colorless to form Cd-myristate complexes. A suspension 
consisting of Se (0.05 mmol) and ODE (1 mL) was injected into the Cd-myristate solution at 250 °C, and 
kept at that temperature for 10 min. Then, oleic acid (0.5 mL) was added dropwise, which was followed by 
injecting a suspension consisting of Se (0.05 mmol) and ODE (0.5 mL) dropwise and keeping the solution 
at 250 °C for further 10 min. The obtained turbid solution (6 mL) was mixed with acetone (6 mL) and 
centrifuged, and the supernatant was removed. The precipitate was mixed with a toluene solution (3.3 mL) 
containing 10 vol% oleic acid, and heated at 100 °C on a hotplate until it turned transparent. The QDs were 
collected by adding methanol (3 mL) and centrifugation. Then, this ligand exchange process with oleic acid 
was repeated, and the obtained QDs were redispersed in hexane for further use. 

 
Synthesis of the 4.5-nm-, 3.8-nm-, and 3.1-nm-large CdSe QDs (Ref. [3]): 

First, a mixture of Cd stearate (0.2 mmol), stearic acid (0.4 mmol), and ODE (6 mL) was heated to 250 °C 
under an N2 atmosphere. A suspension consisting of Se (0.04 mmol) and ODE (0.8 mL) was injected to the 
Cd-stearate solution at 250 °C, and the mixture was kept at that temperature for 5 or 10 min under the N2 
atmosphere to obtain 3.1-nm- or 3.8-nm-large CdSe QDs, respectively. For further growth, the additional 
suspension containing Se (0.15 mmol) and ODE (3.0 mL) was added dropwise at 1.0 mL/h to reach 4.5 nm. 
The product was purified using the same procedure as for the 6.4-nm-large CdSe QDs. The QDs were 
redispersed in hexane for further use. 

 
Syntheses of the 2.8-nm-, 2.4-nm-, and 2.1-nm-large CdSe QDs (Ref. [4]): 

First, a mixture of CdO (0.2 mmol), oleic acid (0.8 mmol), and ODE (6.3 mL) was heated to 250 °C 
under an N2 atmosphere until the solution turned colorless to form Cd-oleate complexes. After the solution 
cooled to room temperature, oleylamine (5.6 mmol) and TOPO (1.3 mmol) were added to the Cd-oleate 
solution, and the mixture was heated to 270 °C under the N2 atmosphere to synthesize CdSe QDs with an 
average diameter of about 2.8 nm. In the case of preparing the 2.4-nm- and 2.1-nm-large CdSe QDs, we 
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used lower temperatures in the last step (240 °C and 200 °C, respectively). Immediately after the injection 
of a Se (1.5 mmol)–TOP (1 mL) solution into the Cd-oleate solution, the heater was removed to quench the 
reaction. The synthesized CdSe QDs were purified with ethanol, and redispersed in hexane for further use. 

 
Synthesis of 1.8-nm-large CdSe QDs (Ref. [3]): 

First, a mixture of Cd stearate (0.2 mmol), stearic acid (0.4 mmol), and ODE (6 mL) was heated to 200 °C 
under an N2 atmosphere. A suspension consisting of Se (0.04 mmol) and ODE (0.8 mL) was injected to the 
Cd-stearate solution at 200 °C. The heater was removed immediately after the Se–ODE injection. The 
product was purified by the same procedure as used for the 6.4-nm-large CdSe QDs. The QDs were 
redispersed in hexane for further use. 
 
D. Small CdS QDs (1.6–3.5 nm) 
Syntheses of 3.5-nm-, 2.9-nm-, 2.4-nm-, 2.1-nm-, and 1.6-nm-large CdS QDs (Ref. [5]): 

First, a mixture of CdO (0.6 mmol), oleic acid (3.6 mL), and ODE (24 mL) was heated at 240 °C under 
an N2 atmosphere until the solution turned colorless to form Cd-oleate complexes. An S–ODE solution was 
prepared separately by dissolving S (0.625 mmol) in ODE (10 mL) at 200 °C under an N2 atmosphere. The 
S–ODE solution was rapidly injected into the Cd-oleate solution. The size of the CdS QDs was controlled 
by adjusting the solution temperature during the S–ODE injection and the subsequent holding time as 
follows: 3.5 nm (240 °C, 90 s), 2.9 nm (240 °C, 75 s), 2.4 nm (190 °C, 1 h), 2.1 nm (140 °C, 3 h), and 1.6 
nm (90 °C, 1 h). The synthesized CdS QDs were purified with acetone, and redispersed in hexane for further 
use. 

 

E. Characterization of QDs 
Transmission electron microscopy (TEM) images were obtained using an accelerating voltage of 120 kV 

(HT7820, HITACHI). The average sizes of the QDs were estimated by measuring the diameters of 200 
particles in the TEM images. X-ray diffraction (XRD) measurements were conducted using a diffractometer 
with CuK radiation operated at 45 kV and 40 mA (X’Pert Pro MPD, Panalytical). We confirmed that QDs 
used here have a zincblende crystal structure. 

 

F. Optical absorption spectra of CdSe and CdS QDs 

The optical absorption spectra of the synthesized samples in the visible region are shown in Fig. S1. We 
plot the optical density (OD) versus the photon energy.  
 

  

Fig. S1. Absorption spectra of (a) CdSe and (b) CdS QDs. The upper axis indicates the photon energy 
in terms of 0.35-eV photons, and thus the upper axis provides the number of photons required to excite 
a carrier to a given energy level in a multiphoton absorption process. The ODs are normalized by the 
lowest energy exciton peaks. 
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II. Excitation intensity dependence of HHG 
Figure S2 shows the excitation intensity dependence of I7 for six different CdSe QD films. The dashed 

lines are the fits of the data in the high-excitation regime (excitation intensity Iexc > 0.35 TW/cm2) to the 
scaling law Iexc

p. In the high-excitation regime, the slopes of the intensity dependence become smaller. 
Furthermore, the scaling coefficients p are smaller than those predicted by perturbation theory, i.e., p < 7. 
This indicates that the high-order hamonic generation (HHG) mechanism in CdSe QDs under these 
excitation conditions is non-perturbative. 

The general behaviour of the intensity-dependent slope p can be explained by the Keldysh parameter 
 =ω(2mEg)1/2/eE, where m is the effective electron mass,  is the light frequency, E is the electric 
field amplitude, and Eg is the bandgap energy [6]. As  decreases, the excitation process shifts from a 
multi-photon excitation process to a tunneling process, resulting in a non-perturbative behaviour. In 
our experiments, we observed that the value of p decreases as the QD size increases from 2.1 to 14 
nm. This means that, as the size increases, the process becomes more non-perturbative, in other words, 
 becomes smaller. Considering the factors included in the Keldysh parameter, this decrease in  is 
attributed to the fact that the bandgap energy decreases from 2.6 to 1.8 eV as the QD size increases 
from 2.1 to 14 nm. In addition, if electrons in the conduction band of a bulk crystal are accelerated by 
an optical electric field, they pass through a continuum of states in momentum space, which 
corresponds to an intraband transition. In a structure with discrete electronic states due to quantum 
confinement, intraband transitions are less likely to occur due to energy gaps between the states. This 
means that electron acceleration is limited in real space, and it can be inferred that the effective mass 
in smaller QDs becomes larger. This increase of the effective mass could also explain the above-
mentioned size dependence of the Keldysh parameter. 

 
 
  

Fig. S2. The solid circles show I7 as a function of Iexc for different QD diameters. The dashed lines are 
proportional to Iexc 

p, where the values of p are obtained by fitting the data above 0.35 TW/cm2 to Iexc 
p. 

The data are offset for clarity. 
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III. Mid-infrared (MIR) pulse excitation induces no sample damage 
Figure S3 shows the absorption spectra measured at the MIR excitation spot before and after the 

measurement of the HH spectra for CdSe and CdS QD films with small QD diameters (2.1 nm and 1.6 nm, 
respectively). The absorption was measured at the same position as that of the MIR-pulse excitation spot 
in order to verify whether sample damage occurred due to the MIR pulse or not. It can be verified that the 
linear absorption at the excitation spot did not change due to the MIR irradiation. Therefore, we infer that 
the observed small high-order harmonic (HH) intensities of QDs with average diameters below 3 nm was 
not due to sample damage. 

IV. QD size dependence of HHG obtained using a different excitation wavelength 
In order to avoid the additional small thermal-decay contribution in the TA signal that can appear if the 

ligands of the QDs absorb MIR light, it is necessary to use an excitation wavelength that is shorter than that 
used in the HH spectrum measurements shown in Fig. 1 in the main text. Therefore, we also verified that 
the different MIR excitation wavelength does not cause a significant change in the size dependence of the 
HHs as shown in Fig. S4.  

 

 

 

  

Fig. S3. Absorption spectra measured before (solid curve) and after (broken curve) the measurement 
of the HH spectra of CdSe and CdS QD films with average QD diameters of 2.1 nm and 1.6 nm, 
respectively. 

Fig. S4. Size dependence of I7, I9, and I11 1for different excitation wavelengths. The green and the 
orange data were obtained using excitation wavelengths of 3 m and 3.5 m, respectively. 
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V. Estimation of the carrier density 
Transient absorption (TA) measurements using visible and MIR pump pulses were performed to 

accurately determine the average number of excited carriers per QD. We measured four CdSe QD thin films 
prepared by drop-casting QDs with different sizes. We used QDs with d = 2.4, 2.8, 3.1, 3.8, 4.5, and 6.4 
nm, and the band-edge exciton energies were 2.40, 2.31, 2.24, 2.19, and 1.91 eV, respectively.  

An ytterbium-doped potassium gadolinium tungstate (Yb:KGW) based femtosecond laser system 
(Pharos, Light Conversion) was used as the light source. This system provided pulses with a center 
wavelength of 1033 nm and a pulse duration of 180 fs at a repetition rate of 1 kHz. The MIR pump pulses 
with a wavelength of 3 µm were generated by a homemade optical parametric amplifier, which was pumped 
by the fundamental 1033-nm pulses [7]. For the probe pulses, white light was generated by focusing the 
fundamental pulses into a 10-mm-thick quartz cell containing distilled water. The probe light transmitted 
through the sample was spectrally resolved by a spectrometer (SpectraPro 500i, Roper Scientific) and 
detected using a charge coupled device (CCD) camera (PIXIS-100F, Roper Scientific). To obtain a high 
signal-to-noise ratio, we synchronously chopped the pump beam at 500 Hz, measured the probe-pulse 
transmission spectra at 1 kHz, and evaluated the difference between the spectra with and without the pump 
beam. 

Figure 3 in the main text shows the TA dynamics of CdSe QD thin films with different particle sizes in 
the case of MIR-pump TA measurements. Here, the excitation intensity was set to 0.36 TW/cm2 and the 
probe wavelength was set to the energy of the band-edge excitons. We confirmed a decrease in 
photoabsorption after excitation with the pump pulse. This so-called photobleaching was caused by the 
excited electrons that occupy the band edge. In order to obtain the average number of excited carriers per 
QD from the differential transmission ΔT/T, it is necessary to clarify the dependence of ΔT/T on the average 
number of excited excitons <N> per QD. Since visible pump–probe TA measurements are a standard 
method for determining the number of excited carriers, we also performed such measurements as explained 
below. 

For the visible pump light, the second harmonic of the fundamental 1033-nm pulse was generated by 
using a beta barium borate (β-BBO) crystal. The probe pulses were generated and detected in the same way 
as explained above. The TA signals for different pump intensities were measured as shown in Fig. S5a. The 
increase in the photobleach signal with the excitation intensity indicates an increase in the number of excited 
carriers per QD. Under strong excitation conditions, a fast decay due to multiexcitons is observed within 
the first 100 ps, and this is followed by a relatively slow decay attributed to single excitons. To calculate 

Fig. S5. a, The TA signals ΔT/T of 
CdSe QDs obtained in the TA 
measurements with the visible 
pump pulse. The black dashed 
curves are fits to an exponential 
function. b, The pump power 
dependence of the amplitude of 
single-exciton component. The 
dashed curves are the result of 
fitting the data points to the 
equation based on the Poisson 
distribution. 
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the carrier density, we use the single-exciton component observed after 150 ps. The amplitudes of the single-
exciton component were obtained by fits of the TA signals in the range from 150 to 550 ps to an exponential 
decay function as shown by the dashed black curves in Fig. S5a, and are shown in Fig. S5b as a function of 
the excitation power (see the coloured circles).  

This excitation power dependence can be explained by the absorption probability of photons. For this, 
we assume the Poisson distribution Pi (<N>), which is defined by 〈𝑁〉௜𝑒ି〈ே〉/ 𝑖!  and describes the 
probability that i photons are absorbed by a QD when the average number of absorbed photons is <N>. The 
absorption of one or more photons is required to generate one or more excitons, and the generation of 
multiexcitons is followed by relaxation processes toward a single-exciton state. Thus, the probability of 
generating a single exciton after the relaxation is expressed by ∑ 𝑃௜(〈𝑁〉)௜ஹଵ , and we relate the TA signal 
and <N> as follows [8,9]: 𝛥𝑇/𝑇(〈𝑁〉) ∝ ∑ 𝑃௜(〈𝑁〉)௜ஹଵ = 1 − 𝑒ି〈ே〉. Here, the average number of excited 
excitons <N> can also be expressed by the product of the absorption cross section σ and the excitation 
photon density J, <N> = σJ. The dashed curves in Fig. S5b are the result of fitting the excitation power 
dependence of the extracted amplitudes to the equation derived using the Poisson distribution. Since the 
relation between ΔT/T and <N> is independent of the pump wavelength, we can evaluate <N> from the 
MIR-pump TA data by using this relation (see the data points in Fig. 3c). The average number of excited 
carriers <N> per QD was determined to be 0.0061, 0.013, 0.22, and 1.4 for QDs with d = 2.4, 2.8, 3.8, and 
6.4 nm, respectively. The corresponding values of the carrier density nd = <N>/V are 0.43×1018, 0.62×1018, 
4.1×1018, and 5.3×1018 cm−3, which is consistent with the size dependence of the HH intensity shown in 
Fig. 2 in the main text. 
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VI. Theoretical description of HHG 
A. The one-dimensional dimer chain model 

To discuss the effect of quantum confinement on HHG, we use a simple one-dimensional dimer chain 
model and calculate the light-induced electron dynamics. The system is described by the following 
Hamiltonian: 

 

𝐻෡଴ = ෍ ቈ−𝑡ு൫𝑐௝̂ାଵ
ற 𝑐௝̂ + 𝑐̂௝ିଵ

ற 𝑐௝̂൯ −
(−1)௝

2
Δ𝑐௝̂

ற𝑐௝̂቉

ଶேାଵ

௝ୀଵ

. (𝑆2.1) 

 
Here, we use the index j to label the sites of the chain where 1 ≤ 𝑗 ≤ 2𝑁 + 1, and 𝑐௝̂

ற and 𝑐௝̂ are the 
creation and annihilation operators for the jth site, respectively. For 𝑗 = 0 and 𝑗 = 2𝑁 + 2, we assume 
𝑐௝̂

ற = 𝑐௝̂ = 0 (isolated boundary condition). The nearest neighbor hopping parameter is given by 𝑡ு, and 
the onsite energy gap (potential difference between the even site and the odd site) is given by Δ > 0. The 
Hamiltonian can be diagonalized as shown below: 
 

𝐻෡଴ = ෍ 𝜖௡𝑎ො௡
ற𝑎ො௡

ଶேାଵ

௡ୀଵ

, (𝑆2.2) 

 
where 𝜖௡  is the nth eigenenergy, and 𝑎ො௡

ற  and 𝑎ො௡  are creation and annihilation operators for the nth 
eigenstate. Here, we assume that the eigenenergies are arranged in increasing order, 𝜖௡ାଵ ≥ 𝜖௡. Note that 
the eigenenergies of the system can be classified into two energy bands: One band consists of 𝑁 lower 
energy states, while the other band consists of 𝑁 + 1 higher energy states (Fig. S6). In the bulk limit (𝑁 →
∞), the lower energy band corresponds to the valence band while the higher energy band corresponds to 
the conduction band. In the bulk limit with periodic boundary conditions, a direct-gap structure is obtained. 
Figure S6 shows an example of the band dispersion of the model with periodic boundary conditions by 
setting Δ equal to 𝑡ு. The valence and conduction bands can be clearly identified. In the bulk limit, the 
bandgap energy is given by Eg = Δ, and the reduced electron–hole mass is given by 𝑚∗ = Δ/(4𝑡ு

ଶ 𝑎௅
ଶ), 

where 𝑎௅  denotes the lattice constant. In terms of the eigenenergies, the bandgap energy can also be 
defined by Eg= 𝜖ேାଵ − 𝜖ே, and the subband gap between the lowest and second lowest energy states in the 
conduction band is hereafter referred to as sub= 𝜖ேାଶ − 𝜖ேାଵ. 

  To describe the light-induced electron dynamics, we add a time-dependent external potential 𝑉෠௘௫௧(𝑡) to 
the unperturbed Hamiltonian 𝐻෡଴, 
 

𝐻෡(𝑡) = 𝐻෡଴ + 𝑉෠௘௫௧(𝑡). (𝑆2.3) 

 
We describe the external field using the dipole approximation, and the external potential is given by 
 

Fig. S6. Example of the band structure 
of a dimer chain model. 
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𝑉෠௘௫௧(𝑡) = −𝐸(𝑡) ⋅ 𝐷෡ (𝑆2.4) 

 
where 𝐸(𝑡) is the applied electric field, and 𝐷෡ is the dipole operator defined as 
 

𝐷෡ = −𝑒
𝑎௅

2
෍ 𝑗

ଶேାଵ

௝ୀଵ

𝑐̂௝
ற𝑐̂௝ . (𝑆2.5) 

 
Since we consider pulsed laser excitation, we employ the following form for the electric field in the range 
–Tpulse/2<t<Tpulse/2: 
 

𝐸(𝑡) = 𝐸଴ sin(𝜔଴𝑡) cosସ ቆ
𝜋

𝑇௣௨௟௦௘

𝑡ቇ , (𝑆2.6) 

 
and we assume that the field is zero outside this range. Here, 𝐸଴ is the peak field strength, and 𝜔଴ is the 
mean frequency. 
  The laser-induced electron dynamics are described by the time-dependent Schrödinger equation, 
 

𝑖ℏ
𝑑

𝑑𝑡
|Ψ(𝑡)⟩ = 𝐻෡(𝑡)|Ψ(𝑡)⟩. (𝑆2.7) 

 
Note that we use the 𝑁-electron ground state as the initial condition, |Ψ(𝑡 = −∞)⟩ = |Ψீௌ⟩, where 𝑁 
spin-less electrons occupy the lowest 𝑁 eigenstates of the Hamiltonian 𝐻෡଴ in Eq. (S2.1). 
  By employing the time-dependent wavefunction |Ψ(𝑡)⟩ , we can compute the field-induced dipole 
moment per cell: 
 

𝐷(𝑡) =
1

𝑁
⟨Ψ(𝑡)|𝐷෡|Ψ(𝑡)⟩. (𝑆2.8) 

 
Furthermore, the power spectrum of the emitted harmonics can be evaluated using the dipole moment 
according to 
 

𝐼ுுீ(𝜔) = อ𝜔ଶ න 𝑑𝑡 𝑒௜ఠ௧𝐷(𝑡) cosସ ቆ
𝜋

𝑇௣௨௟௦௘

𝑡ቇ
்೛ೠ೗ೞ೐/ଶ

ି்೛ೠ೗ೞ೐/ଶ

อ

ଶ

. (𝑆2.9) 

 
Here, we use the envelope function of the applied laser field as a window function for the Fourier transform. 
 
B. QD diameter dependence of HHG 
  Here, we compute the power spectra of HHG of one-dimensional QDs with different diameters using the 
dimer chain model introduced in the previous section. The QD diameter is defined by 𝑑௡ = (2𝑁 + 1)𝑎௅/2. 
We set 𝑡ு to 0.94 eV and Δ to 1.75 eV to obtain  Eg=1.75 eV and 𝑚∗ = 0.101𝑚଴ in the bulk limit 
(𝑁 → ∞). These values correspond to the bandgap energy and the reduced electron–hole mass of CdSe 
reported in the literature. Figure S8a shows the computed power spectra 𝐼ுுீ(𝜔) for a field strength of 
𝐸଴ = 11  MV/cm. The emission intensity increases with the QD size, and harmonic peaks are clearly 
observed in each spectrum.  
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  Both the bandgap energy Eg and the subband gap sub increase due to confinement as the QD diameter 
becomes smaller. However, as shown below, the suppression of HHG that is observed as the QD diameter 
decreases, is not a result of the increase of Eg. To assess the effect of confinement, we first discuss the 
diameter dependence of Eg and that of sub. Extended Data Fig. 1a shows that Eg converges to the bulk 
value, 1.75 eV, in the limit of large diameters.sub converges to zero in the limit of large diameters, i.e. 
continuous bands are formed. In other words, once the diameter decreases, the states become discrete due 
to confinement. To clarify that the bandgap renormalization does not have a significant impact on HHG, 
we also computed the HHG power spectra in the case of a constant bandgap energy equal to 1.75 eV. The 
bandgap energy is artificially tuned to this value for each 𝑑௡ by changing the energy difference Δ. Figure 
S7b shows the results. By comparing Figs. S7a and b, we find that the bandgap renormalization does not 
have a significant effect on the diameter dependence of the HHG power spectra. 

 
C. Role of intraband transitions in photocarrier injection and HHG 
  Previous investigations have suggested that intraband transitions play an important role in HHG in solids 
[10]. Here, electron–hole pairs can be accelerated by external fields such as those of a laser, and the relative 
acceleration motion of electron–hole pairs in real-space corresponds to an intraband transition in the 
Brillouin zone. However, in small QDs, the real-space acceleration of electron–hole pairs is expected to be 
suppressed due to quantum confinement, and thus intraband transitions are also expected to be suppressed. 
Therefore, in this section, we discuss the suppression of HHG from the viewpoint of the intraband 

Fig. S7. HHG power spectra calculated using the dimer chain model for different QD diameters. 
a, The results for 𝑡ு  = 0.94 eV and Δ = 1.75 eV. b, The results obtained by fixing the 
bandgap energy to 1.75 eV.  

Fig. S8. The HHG power spectra calculated using a dimer chain model that employs the same 
parameters as those for Fig. S7 except for the intraband transition term, 𝑉෠௘௫௧

ூ௡௧௥௔(𝑡), which is set 
to zero. a, The results for a variable bandgap energy and b, those for a fixed bandgap energy. 
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transitions.  
  First, we define the intraband and interband transitions in the one-dimensional dimer chain model. As 
discussed above, the eigenstates of the Hamiltonian 𝐻෡଴ can be categorized as either the 𝑁 (lower energy) 
valence states or the 𝑁 + 1 (higher energy) conduction states. On the basis of this classification, we define 
intraband transitions as transitions between the same class of states, and interband transitions are transitions 
between the valence and conduction states. Therefore, we decompose the external potential into the 
intraband and interband transition terms as shown below:  
 

𝑉෠௘௫௧(𝑡) = −𝐸(𝑡) ⋅ 𝐷෡ = −𝐸(𝑡) ෍ ෍ 𝐷௡௠

ଶேାଵ

௠ୀଵ

ଶேାଵ

௡ୀଵ

𝑎ො௡
ற𝑎ො௠ = 𝑉෠௘௫௧

ூ௡௧௥௔(𝑡) + 𝑉෠௘௫௧
ூ௡௧௘௥(𝑡), (𝑆2.10) 

 
where the intraband and interband transition terms are defined as 
 

𝑉෠௘௫௧
ூ௡௧௥௔(𝑡) = −𝐸(𝑡) ൥෍ ෍ 𝐷௡௠

ே

௠ୀଵ

ே

௡ୀଵ

𝑎ො௡
ற𝑎ො௠ + ෍ ෍ 𝐷௡௠

ଶேାଵ

௠ୀேାଵ

ଶேାଵ

௡ୀேାଵ

𝑎ො௡
ற𝑎ො௠൩ , (𝑆2.11) 

𝑉෠௘௫௧
ூ௡௧௘௥(𝑡) = −𝐸(𝑡) ൥෍ ෍ 𝐷௡௠

ଶேାଵ

௠ୀேାଵ

ே

௡ୀଵ

𝑎ො௡
ற𝑎ො௠ + ෍ ෍ 𝐷௡௠

ଶேାଵ

௠ୀேାଵ

ே

௡ୀଵ

𝑎ො௡
ற𝑎ො௠൩ . (𝑆2.12) 

 
Here, the intraband transition term 𝑉෠௘௫௧

ூ௡௧௥௔(𝑡) describes the transitions among the states with 1 ≤ 𝑛 ≤ 𝑁 
and those among the states with 𝑁 + 1 ≤ 𝑛 ≤ 2𝑁 + 1. On the other hand, the interband transition term 
𝑉෠௘௫௧

ூ௡௧௘௥(𝑡) describes only the transitions between valence and conduction states. 
  To investigate the role of the intraband transitions, we computed the HHG power spectra by setting 
𝑉෠௘௫௧

ூ௡௧௥௔(𝑡) = 0 . Figure S8a shows the computed HHG power spectra in the case of 𝑉෠௘௫௧
ூ௡௧௥௔(𝑡) = 0  for 

different QD diameters. Except for the intraband transition term 𝑉෠௘௫௧
ூ௡௧௥௔(𝑡), all calculation conditions are 

the same as those in the calculation for Fig. S8a. In addition, Figure S8b shows the spectra in the case of 
no intraband transition but with a fixed bandgap energy, which can be compared with the results shown in 
Fig. S7b.  
  Compared to Fig. S7a, the HHG power spectra in Fig. S8a show lower intensities. This confirms that the 
intraband transitions significantly enhance HHG [10]. Furthermore, the HHG power spectra in Fig. S8a 
also depend on the QD diameter; the HH peak intensities are suppressed when the QD diameter is reduced. 
On the other hand, as evidenced by Fig. S8b, the HH peak intensities are not significantly affected by the 
QD diameter when the bandgap energy is fixed. Hence, the reduction of HHG in Fig. S8a originates from 
the bandgap increase due to quantum confinement. 
  By comparing Figs. S7b and S8b, it can be confirmed that the significant reduction of the HHG in small 
QDs originates from the suppression of intraband transitions, because the HHG spectra are hardly reduced 
further once the intraband transitions are completely turned off. Furthermore, the HHG power spectra of 
small QDs in Fig. S7b are similar to the spectra in Fig. S8b. Therefore, the suppression of HHG by the 
reduction of the QD diameter can be explained by the suppression of intraband transitions due to the 
confinement effect. 
  In order to compare the calculation results with Fig. 2 in the main text, we evaluated the HH peak 
intensity of each harmonic order h according to the definition 
 

𝐼௛ = න 𝑑𝜔
ቀ௛ା

ଵ
ଶ

ቁఠబ

ቀ௛ି
ଵ
ଶ

ቁఠబ

𝐼ுுீ(𝜔) , (𝑆2.13) 

 
and provide the detailed diameter dependence in Figs. S9a–c. We consider four calculation conditions: the 
full calculation close to the actual conditions where we assume 𝑡ு = 0.94 eV and Δ = 1.75 eV (red circles), 
the calculation with the artificially fixed bandgap energy (green squares), the calculation where we assume 
𝑡ு = 0.94 eV and Δ = 1.75 eV but turn off the intraband transitions by assuming 𝑉෠௘௫௧

ூ௡௧௥௔(𝑡) = 0 (purple 
triangles), and the calculation with an artificially fixed bandgap energy without intraband transitions (blue 
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upside-down triangles). As seen in these figures, the intensities of the 3rd, 5th, and 7th harmonics are 
significantly suppressed when we turn off the intraband transitions. 
  To elucidate the effect of the photocarrier injection, we also evaluate the number of conduction electrons 
nex after the laser irradiation using 
 

𝑛௘௫ = ෍ ⟨Ψ(𝑡)|

ଶேାଵ

௡ୀேାଵ

𝑎ො௡
ற𝑎ො௡|Ψ(𝑡)⟩. (𝑆2.14) 

 
Figure S9d shows the conduction-state population after the laser irradiation as a function of the QD diameter. 
The results clearly depend on the calculation conditions: By comparing Fig. S9d and the other panels (a-c), 
we can confirm that the photocarrier injection and HHG show a similar behavior. This result indicates the 
quantum confinement in small QDs suppresses the intraband transitions, and then also the photocarrier 
injection process, which is the initial process in HHG processes, is suppressed. 
  To obtain further insights, we investigated how a change in the reduced electron–hole mass 𝑚∗ affects 
the HH spectra. In this analysis, the reduced mass is tuned by manipulating the hopping parameter 𝑡ு. 
Figures S10a,b and Fig. 4c in the main text show the diameter dependence of I3, I5, and I7, respectively, for 
three different masses. In these simulations, the bandgap energy was fixed to the bulk value, 1.75 eV. As 
can be seen in these figures, the HH intensity of smaller QDs deviates stronger from the bulk limit when 
the reduced masses 𝑚∗ becomes smaller. This fact indicates that the confinement effect becomes stronger 
when the reduced mass becomes smaller. To assess the confinement effect, we investigated the relation 
between HHG and the subband gap energy Δsub. Figure 11a,b and Extended Data Fig. 1c show I3, I5, and I7 
as a function of Δsub for different reduced masses. The figures clarify that the HH intensities for different 
reduced masses start to deviate from the bulk response at similar Δsub values. Hence, the subband gap energy 
is expected to play an important role in the effect of quantum confinement on HHG. 

Fig. S9. The impact of the calculation conditions on the diameter dependence of HHG and the 
photocarrier injection. a, Diameter dependence of the 3rd harmonic, b, that of the 5th harmonic, 
and c, that of the 7th harmonic. The four calculation conditions are: the full calculation where 
we assume 𝑡ு = 0.94 eV and Δ = 1.75 eV, the fixed-gap calculation, the calculation without 
intraband transitions, and the fixed-gap calculation without intraband transitions. d, The 
number of excited electrons per cell as a function of the QD diameter. 
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D. Intraband and interband transitions from the viewpoint of perturbation analysis 
  To study the roles of intraband and interband transitions in the field-induced dynamics we use the time-
dependent Schrödinger equation in the interaction picture, 
 

𝑖ℏ
𝑑

𝑑𝑡
|𝛹ூ(𝑡)⟩ = 𝑉෠ ூ

௘௫௧(𝑡)|𝛹ூ(𝑡)⟩, (𝑆2.15) 

 
where the wavefunction |𝛹ூ(𝑡)⟩  and the potential 𝑉෠ ூ

௘௫௧(𝑡)  in the interaction picture are defined as 
follows: 
 

|Ψூ(𝑡)⟩ = 𝑒௜ு෡బ௧/ℏ|Ψ(𝑡)⟩, (𝑆2.16) 

𝑉෠௘௫௧
ூ (𝑡) = 𝑒௜ு෡బ௧/ℏ𝑉෠௘௫௧(𝑡)𝑒ି௜ு෡బ௧/ℏ. (𝑆2.17) 

 
Then, we consider the perturbative expansion of the wavefunction |𝛹ூ(𝑡)⟩ in powers of the interaction, 
 

Fig. S10. Diameter dependence of a, the 3rd harmonic and b, 5th harmonic for different reduced 
electron–hole masses. 

Fig. S11. Subband-gap energy dependence of a, the 3rd harmonic and b, the 5th harmonic for 
different reduced electron–hole masses. 
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|Ψூ(𝑡)⟩ = หΨூ
(଴)

඀ + หΨூ
(ଵ)(𝑡)඀ + หΨூ

(ଶ)(𝑡)඀ ⋯ . (𝑆2.18) 

 
By substituting Eq. (𝑆2.18 ) into Eq. (𝑆2.15 ), we obtain the following expression for the nth order 
wavefunction: 
 

หΨூ
(௡)(𝑡)඀ =

1

(𝑖ℏ)௡
න 𝑑𝑡ଵ

௧

଴

න 𝑑𝑡ଶ

௧భ

଴

⋯ න 𝑑𝑡௡

௧೙షభ

଴

𝑉෠௘௫௧
ூ (𝑡ଵ)𝑉෠௘௫௧

ூ (𝑡ଶ) ⋯ 𝑉෠௘௫௧
ூ (𝑡௡)หΨூ

(଴)
඀. (𝑆2.19) 

 
By decomposing the potential 𝑉෠௘௫௧

ூ (𝑡)  into the components of the intraband and interband transitions, 
𝑉෠௘௫௧

ூ,ூ௡௧௥௔(𝑡) and 𝑉෠௘௫௧
ூ,ூ௡௧௘௥(𝑡), respectively, the wavefunction in Eq. (𝑆2.19) can be rewritten as 

 

 หΨூ
(௡)(𝑡)඀ =

ଵ

(௜ℏ)೙ ∫ 𝑑𝑡ଵ
௧

଴
∫ 𝑑𝑡ଶ

௧భ

଴
⋯ ∫ 𝑑𝑡௡

௧೙షభ

଴
𝑉෠௘௫௧

ூ,ூ௡௧௘௥(𝑡ଵ)𝑉෠௘௫௧
ூ,ூ௡௧௘௥(𝑡ଶ) ⋯ 𝑉෠௘௫௧

ூ,ூ௡௧௘௥(𝑡௡)หΨூ
(଴)
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 +
ଵ

(௜ℏ)೙ ∫ 𝑑𝑡ଵ
௧

଴
∫ 𝑑𝑡ଶ

௧భ

଴
⋯ ∫ 𝑑𝑡௡

௧೙షభ

଴
𝑉෠௘௫௧

ூ,ூ௡௧௥௔(𝑡ଵ)𝑉෠௘௫௧
ூ,ூ௡௧௘௥(𝑡ଶ) ⋯ 𝑉෠௘௫௧

ூ,ூ௡௧௘௥(𝑡௡)หΨூ
(଴)

඀ + ⋯ 

+
1

(𝑖ℏ)௡
න 𝑑𝑡ଵ

௧

଴

න 𝑑𝑡ଶ

௧భ

଴

⋯ න 𝑑𝑡௡

௧೙షభ

଴

𝑉෠௘௫௧
ூ,ூ௡௧௥௔(𝑡ଵ)𝑉෠௘௫௧

ூ,ூ௡௧௥௔(𝑡ଶ) ⋯ 𝑉෠௘௫௧
ூ,ூ௡௧௥௔(𝑡௡)หΨூ

(଴)
඀. (𝑆2.20) 

 

Here, only the first term on the right-hand side contains no intraband-transition component. Hence, all other 
terms vanish if 𝑉෠௘௫௧

ூ,ூ௡௧௥௔(𝑡) is set to zero. In other words, the contributions of these other terms increase 
when the intraband transitions are enhanced as schematically described in Fig. 4d and Extended Data Fig. 
2 in the main text, where these additional VB–CB excitation channels dominate HHG in larger QDs. 
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