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We explore unconventional superconductivity of repulsive spinless fermions on square and honey-
comb lattices with staggered sublattice potentials. The two lattices can exhibit staggered d-wave and
f -wave pairing respectively at low doping stemming from an effective two-valley band structure. At
higher doping, in particular the square lattice displays a much richer phase diagram including topo-
logical p + ip superconductivity which is induced by a qualitatively different mechanism compared
to the d-wave pairing. We illuminate this from several complementary perspectives: we analytically
perform sublattice projection to analyze the effective continuum low-energy description and we nu-
merically calculate the binding energies for pair and larger bound states for few-body doping near
half filling. Furthermore, for finite doping, we present phase diagrams based on extensive FRG and
and DMRG calculations.

There have been substantial efforts [1–4] to understand
superconductivity mechanisms beyond the conventional
phonon-mediated [5] electron-electron attraction. In one
category of mechanisms, bare repulsive electron-electron
interaction becomes effectively attractive due to virtual
processes after projections to the sublattice or bands [6–
8]. Recently, exact results for an effective attraction have
been obtained for fermionic honeycomb lattice models
with a large staggered sublattice potential [9–11]. This
mechanism can be essentially captured by a minimal
model of spinless fermions [9], of which the low-energy
physics projected to one sublattice shows effective attrac-
tion. Such a mechanism has been argued to be relevant
for triplet pairing in materials [10, 12–14].

In this Letter, we study the pairing of spinless fermions
on the square lattice in addition to the honeycomb lat-
tice model studied in Ref. [9]. Studying a different lat-
tice can shed light on the relevance of the proposed
pairing mechanism to layered materials, in which differ-
ent lattice structures can be realized [15]. Considering
a different lattice contributes to further understanding
the ingredients of the sublattice projection mechanism
for superconductivity—and, as we show, reveals quali-
tatively new possibilities. The effective theory from a
sublattice projection depends on the coordination num-
ber of the lattices; lattice symmetry is crucial for the
realization of different types of unconventional supercon-
ductivity [16–20].

The overall result is summarized in Fig. 1. The quan-
tum phases are inferred through infinite density matrix
renormalization group (DMRG) [21, 22] data for strong
coupling combined with functional renormalization group
(FRG) data at weak coupling [23]. Superconducting
phases are found in a wide range of interaction parame-
ters in the honeycomb model while its regime is limited
to smaller interaction for the square model. Compared to
a previous study [9], a significant difference is that there
are two superconducting phases on the square lattice, the

staggered d-wave and the p+ip topological phases, in con-
trast to the sole f -wave pairing on the honeycomb lattice.
The d-wave pairing on the square lattice shares the same
origin as the f -wave pairing on the honeycomb lattice in
the sense of inter-valley pairing. The Cooper pair arises
from an inter-valley attraction revealed by sublattice pro-
jection. This requires a next-nearest-neighbor hopping t′

to realize two-valley band structure for the square lat-
tice. Upon increasing doping, we observe a transition
from staggered d to a topological p + ip [24] supercon-
ductor. With zero momentum, p + ip no longer results
from the inter-valley attraction. It does not require the
next-nearest-neighbor hopping. Moreover, at stronger in-
teractions we find evidence for a transition from super-
conductivity to inhomogeneous states.

Model and low-energy description.— We use the
square lattice as an example while the honeycomb model
can be found in Ref. [9]. The Hamiltonian on the square
lattice (Fig. 1(a1)) is taken as

H =
∑
〈i,j〉

[
−
(
tc†i cj + h.c.

)
+ V ninj

]
−
∑
〈〈i,j〉〉

(
t′c†i cj + h.c.

)
+
∑
i∈B

Dni, (1)

where ci, (c†i ) is the fermionic annihilation (creation) op-

erator on site i, and ni = c†i ci. The symbols 〈i, j〉, 〈〈i, j〉〉
denote nearest neighbors and next-nearest neighbors ac-
cordingly. We limit our attention to repulsive interaction
V > 0 and sublattice potential D � |t| > 0 on the sub-
lattice B. At half filling and large D, the ground state
is expected to have the A sublattice fully filled and the
B sublattice unfilled. When t′ = 0, the Hamiltonian
exhibits an explicit symmetry of particle-hole transfor-

mation c†A → cA and c†B → −cB combined with spa-
tial inversion that interchanges the sublattices. When
t′ 6= 0, the combined particle-hole symmetry equivalently
changes the sign of t′.
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FIG. 1. Lattice structure and schematic phase dia-
grams. (a) Lattice structure for square (a1) and honeycomb
(a2) lattice; sublattices are marked in orange and cyan. (b)
Phase diagram for square lattice with t′ = λ0 (b1) and hon-
eycomb lattice (b2) with t′ = 0, inferred from FRG (weak
coupling) and DMRG (strong coupling). For superconduct-
ing (SC) phases, we plot the momentum dependence of the
susceptibility from FRG. For the p+ ip SC, a degenerate pair
of dominant eigenvectors is found in FRG, and a mean field
analysis indicates the linear combination p + ip is favoured.
DW denotes the density wave phase. CL denotes a phase
separation via collapse of electrons on the B sublattice. FL
denotes Fermi liquids. For the uncertainty in the DMRG data
interpretation, see the discussion in the main text.

We focus on electron doping the system above half fill-
ing, where the low-energy physics is controlled by those
extra electrons on the B lattice. The effective model
is derived by a Schrieffer–Wolff transformation [25, 26]
(details see the supplement [27]). Up to the second-
order of t, this effective Hamiltonian contains terms of
hopping, correlated hopping, and interactions: Heff =
Hhopping +Hch +HU .

Different parts of the Hamiltonian are introduced as
follows, while the details of the coefficients see the sup-
plement [27]. Hhopping contains nearest neighbors 〈ij〉
and next-nearest neighbors 〈〈ij〉〉 terms for the sublat-

tice B:

Hhopping =

∑
〈ij〉

tBc
†
i,Bcj,B +

∑
〈〈ij〉〉

t′Bc
†
i,Bcj,B

+ h.c.,

(2)

where tB = 2λ0 − t′, t′B = λ0 with λ0 = t2/(D + 2V ).
For most of our calculations, we will either fix t′ = 0 or
t′ = λ0.

The correlated hopping also includes two terms

Hch =
∑
ijk∈�

λ1c
†
i,Bcj,Bnk,B +

∑
ijkl∈�

λ2

2
c†i,Bcj,Bnk,Bnl,B

(3)

The combinations ijk and ijkl are summed over all pos-
sible ordered vertices of plaquettes in the B sublattice,
e.g., 1,2,3,4 in Fig. 1(a1). Finally, there are two-, three-,
and four-body density interactions,

HU =
∑
〈ij〉

2U2ni,Bnj,B +
∑
〈〈ij〉〉

U2ni,Bnj,B+

∑
[ijk]∈�

U3ni,Bnj,Bnk,B +
∑

[ijkl]∈�

U4ni,Bnj,Bnk,Bnl,B ,

(4)

The combinations [ijk] and [ijkl] are summed over all
possible unordered vertices of plaquettes in the B sub-
lattice. The four-body interaction U4 remains repulsive
in the full parameter region, while other interaction terms
turn from repulsion to attraction when increasing across
V/D = 1.

The dispersion of the kinetic part Hhopping depends on
the next-to nearest hopping t′. At t′ = 0 (shown in the
left panel of Fig. 2), the band minimum is located along
the boundary of the Brillouin zone. The Fermi surface
is connected and has an approximate rotation symmetry.
By tuning t′ such that |t′B/tB | > 0.5, two band minima
appear at (0,±π) and (±π, 0) respectively, where the unit
of the wave vectors is 1/a. The low-energy physics is then
controlled by these two valleys which are interchanged
under a π/2 rotation. When tuning to higher dopings,
the Fermi surface includes the Van Hove singularities.
They are located at (q,±q), with q depending on tB/t

′
B .

The two-valley low-energy physics is replaced by the one
exhibiting new instabilities driven by the larger density
of states.

Two-valley continuum theory of the square lattice
model. — To construct the continuum theory in the
case with two valleys, the degrees of freedom for doped
electrons can be decomposed into two valleys: cj =∑
σ a exp[iKσ · rj ]ψσ(rj) with K+ = (0, π),K− = (π, 0),

where the fields ψσ(r) vary slowly at the scale of a, the
minimal distance between two B-sublattice sites.

At low dopings, we ignore the three- and four-
body interactions in HU . The continuum Hamilto-
nian includes a kinetic part with anistropic masses
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FIG. 2. Band structures of the square lattice’s effective
model’s kinetic part. Left: t′ = 0; Right: t′ = λ0. The
right band structure has two valleys at (0,±π) and (±π, 0)
respectively. The two-valley structure is absent for t′ = 0
(left).

∑
σ ψ
†
σ∂

2
xψσ/(2m

xx
σ )+ψ†σ∂

2
yψσ/(2m

yy
σ ) at two valleys and

a two-body interaction term. There are two contributions
to the two-body interaction in the continuum limit, the
correlated hopping terms in Eq. (3) and the two-body re-
pulsion terms Eq. (4). In the long wavelength limit, the
interaction can be written as∫

d2rgψ†+(r)ψ+(r)ψ†−(r)ψ−(r), (5)

where g = (16U2 − 32λ1)a2 = 16a2[−4t2/(D + 3V ) +
8t2(D+2V )−4t2/(D+3V )] < 0; indicating two-particle
ground states are always inter-valley bound states. A
possible low-doping superconducting (SC) state arises
from a condensate of inter-valley pairing 〈ψ+(r)ψ−(r)〉 6=
0. In terms of microscopic fields, we find a total mo-
mentum (π, π) dx2−y2 pairing with an order parameter
〈cicj〉 = [(−1)ix+jy − (−1)iy+jx ]∆(i− j), where ∆ is odd
under a π/2 rotation. For finite doping, realizing pair-
ing with (π, π) center-of-mass momentum is frustrated
by the shape of the Fermi surfaces. This could lead to
a transition to incommensurate (not observed) or other
SC phases. The intra-valley interaction is momentum de-
pendent. It turns out that the correlated hopping in the
projected model can induce bare attractive interaction
between pairs of fermion modes on Fermi surface with
zero net momentum (details see the supplement [27]). It
is also possible that getting close to the Van Hove sin-
gularity can promote attraction. Thus, a possibility of
intra-valley pairing, likely p-wave, is suggested.

Binding energies for few-particle doping. — Next,
we show our numerical results of pair and larger bound
states formation in the dilute doping limit. Binding ener-
gies can be deduced from the difference of 1-particle dop-
ing energy and energy per particle of n-particle doping;
the data for the effective model (D/t = ∞) are plotted
in Fig. 3. (Our data for D/t = 5, 10 can be found in
Ref. [27].) From the data, we can infer that at D/t =∞,
there can be a stable dilute pairing phase for the hon-

eycomb lattice with V/D / 1. The pairing phase is not
favored for the square lattice with t′ = 0; but it can exist
with t′ > 0. For t′ = λ0, the condition for pairing phase
is V/D / 0.6.

We also determine the momenta of the few-particle
ground states. The momentum of a pair for the square
lattice with t′ = λ0 and the honeycomb lattice, are re-
spectively (π, π) and (0, 0). Recall that two valleys of
the honeycomb lattice are located at ±K (standard no-
tation [28]), and those of the square lattice model are lo-
cated at (π, 0) or (0, π). This along with finite pair bind-
ing energy results indicates a inter-valley pairing mecha-
nism and explains the absence of it in the case of t′ = 0
with the absence of valleys. The two-valley structure pro-
vides a mechanism for the formation of the bound state
possible for pair and also prohibitive for larger bound
states, with the condition that the attraction is sufficient
for binding exists only between fermions in different val-
leys. The later condition can be usually met with weak
coupling as the intra-valley coupling is less relevant in
the dilute doping limit.

Numerical study of the quantum phases at finite
doping.— The above few-body and continuum theory
results provide an indication of superconductivity at low
doping and its instability with respect to large interac-
tion. In the following, we apply DMRG and FRG to infer
the quantum phases of the full models with D = 10 at
finite fermion doping from weak to strong coupling (de-
tails see the supplement [27]); the results are summarized
in Fig. 1. The dx2−y2-and f -wave superconductivity of
square and honeycomb lattice expected at dilute doping
are observed by both methods. Upon increasing doping
the square lattice by∼ 0.1, our FRG calculation indicates
a p+ip superconducting phase. In the honeycomb lattice
model, the f -wave superconductivity persists for larger
doping, corroborating the main claim of Ref. [9, 11]; but
our DMRG data suggest the absence of superconductiv-
ity at the Van Hove singularity ν = 1/4, in contrast to
Ref. [9, 11]. Recall that near the Van Hove singularity
the two-valley picture breaks down.

In the weak coupling regime (V/D / 0.3), we per-
form FRG calculations [23, 29] at the one-loop level. We
only include the static self-energy and the static effective
interaction. The inclusion of the static self-energy has
been shown to cover already the relevant physics in dis-
ordered systems [30], here taking care of possible further
increase of the band-gap. For our simulations we use the
TU2FRG [31] which has been demonstrated to fulfill in
the FRG equivalence class [32]. We distinguish different
phases in our FRG simulations by inspection of the eigen-
vectors corresponding to the largest eigenvalue of each di-
agrammatic channel. Each of these channels corresponds
to a different type of instability and the symmetry of
the eigenvector gives the symmetry of the ordering. The
Fourier transformation of these eigenvectors at the B-
sublattice are visualized as insets in Fig. 1. In the strong
coupling regime (V/D ' 0.5), we use DMRG [21, 22] to
obtain ground states on infinite cylinder geometry [33].
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FIG. 3. Results from exact diagonalization (ED) in the
effective model for few-particle doping and FRG in
the full model for finite doping. (a) Energy per particle
of the n-particle ground states; the unit is t2/D. Calculations
are performed for the effective models using ED with finite-
size extrapolation. From left to right are the square lattice
model with t′ = λ0 and t′ = 0 and the honeycomb lattice.
Finite E1−E2/2 indicates the existence of two-particle bound
states. Paired phases near the dilute limit is indicated by
that the energy per particle E1 − Em/(m) is a constant for
every positive even m and larger than the values for odd m.
On the other hand, if there is some n, E1 − En/n greater
than E1 − E2/2, larger bound states are favoured. (b) FRG
predicted phases and energy scales λc in units of t2/D. On
the left side, the square lattice model with t′ = λ0 and on the
right the honeycomb lattice is shown. We choose V = 2t as
interaction.

We consider cylinders with up to 8 sites along the circum-
ference. The counterpart of 2D superconductivity on the
cylinder cannot retain long-range order because of the
Mermin-Wagner theorem. But the pair correlation is ex-
pected to be dominant over single-particle correlation.
In most common cases, the single-particle excitation of
a quasi-1D system is fully gapped, see e.g. Ref. [34]; the
single particle correlation length ξ1 is finite while the pair
correlation length ξ2 can diverge. Thus, an observation
of estimated ξ2 � ξ1 serves as evidence for such pairing.
The DMRG estimation usually sets lower bounds for cor-
relation lengths, which become tighter for increasing the
number of variational parameters characterized by bond
dimension χ [35].

For the square lattice, we find the predicted dx2−y2-
wave superconductor at small doping within our FRG
simulations with t′ = λ0. However, the critical energy

scale drops rapidly upon increasing doping and at larger
doping (ν ≈ 0.1) we observe a transition to a px + ipy
topological superconductor with Chern number [36] C =
2. The transition between the phases seems to be driven
by a change of weight within the particle-particle loop,
where upon doping the dx2−y2 eigenvector will be in-
creasingly suppressed while the px/py pair will increase
in strength. At stronger interactions (V/D ≈ 0.25) our
FRG breaks down, manifested as a linear ramp up of
the density-density interaction. This ramp up marks the
breakdown of the perturbative regime and hence FRG
cannot be used to examine the phases. We addition-
ally study the case t′ = 0 for which the two valleys
are absent, the ramp-up problem exists at low dopings
even for weak interaction and a C = 1 p + ip is ob-
served for some larger dopings [27]. From the DMRG
data (V/D ' 0.5, t′ = λ0), a finite single-particle corre-
lation length ξ1 is only consistently found in small dop-
ing ∼ 1/64 and intermediate interaction; in this case,
the pair correlation shows a dominant oscillatory part,
supporting the staggered dx2−y2 pairing. For larger dop-
ing, no evidence of convergent ξ1 is found and no evi-
dence for time-reversal symmetry breaking is found for
the implemented larger bond dimensions. While these
can be features of a quasi-1-D analogue of a Fermi liq-
uid (FL), topological p+ ip pairing cannot be excluded.
The particle-number-conserved 1D analogue of topolog-
ical p-wave state has been suggested to be adiabatically
connected to an FL [37]; a deeper understanding to quasi-
1-D analogue of p + ip is needed to better interpret the
data for the p + ip SC or FL region of Fig. 1(b1). The
region for large V/D denoted as DW in Fig. 1, is char-
acterized by inhomogeneous densities within the imple-
mented bond dimensions. The 2D phases are speculated
to be charge density waves at sufficient commensurate
dopings; other dopings could be Fermi liquids or phases
separated by Maxwell construction. The density wave
patterns are difficult to determine as they may only fit
on larger cylinders than studied.

For the honeycomb lattice, we observe f -wave super-
conductivity in FRG for a broad range of doping, which
exceeds Van Hove doping 1/4. The range is slightly
smaller than an RPA result Ref. [11]. Similar to the
square lattice, there is also a ramp-up refraining FRG
prediction at stronger coupling. Our DMRG for stronger
coupling shows a broad range for pairing with a single-
particle gap. However, right at the Van Hove doping
ν = 1/4, most cylinder setups including the largest, point
to insulating states [27]. The CL indicates the collapse of
fermions leaving part of the system with vanishing occu-
pancy on the B sublattice; collapses are usually observed
for models with strong attractive interactions [19, 38, 39].

Discussion.— We examined fermion pairing driven by
repulsive interaction and a strong sublattice potential for
square lattices and honeycomb lattices. The honeycomb
lattice is confirmed to show f -wave pairing, which can
be interpreted as inter-valley pairing. The square lat-
tice’s counterpart of inter-valley pairing is found to give
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a low-doping d-wave superconductivity with (π, π) total
momentum. Upon increasing doping, a p+ ip topological
superconductivity is found. Because of the role and exis-
tence condition of valleys, the square lattice model with
next-nearest-neighbor hopping can exhibit an asymme-
try for electron and hole doping. As an outlook, one may
also include spin degrees of freedom [10, 40] and more
types of interactions and hoppings, which serves as ex-
tensions of ionic Hubbard models [41–43]. This may have
implications for real materials and provide possibility of
the sought-after p+ip superconductivity with topological
order.
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[iS, [iS,H]] + . . . . (S1)
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decompose the kinetic Hamiltonian into the terms preserving the interaction H
(0)
00 and those creating higher energy

excitations H̃k. The aim of S(1) is to eliminate those components H̃k

[iS(1), HU ] = −H̃k, Hk = H
(0)
00 + H̃k and [H̃k, HU ] 6= 0, [H

(0)
00 , HU ] = 0 . (S2)
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[iS(1), H̃k]/2+[iS(1), H
(0)
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In order to obtain S(1), it is more convenient to decompose Hk into different ladder operators of the onsite potential
and the nearest-neighbor repulsion. We do this first for the hopping process from A to B site. It increases the onsite
potential by D. The nearest-neighbor repulsion brought by this process depending on the number of neighbors of A
and B, δE = (nB − nA)V . With these observations, the kinetic Hamiltonian is decomposed as

Hk =
(
H

(0)
00 +HA

)
+

(∑
m,n

H+
m,n +H−m,n

)

=

t′∑
ij

c†i,Bcj,B + t′
∑
ij

c†i,Acj,A

+

t ∑
j,r,m,n

PBm,j+rc
†
j+r,Bcj,AP

A
n,j + t

∑
j,r,m,n

PAm,j−rc
†
j−r,Acj,BP

B
n,j

 , (S3)

where the next-nearest-neighbor hopping include terms preserving HU and those connecting states with different

distribution of A particles. The operators P
A/B
m,j are projection into the state where the particle A/B at unit cell j

has m neighbors occupied. They can be written in terms of of the sum over the product operators
∏
r nr

∏
r′(1−nr′),

where r, r′ are the occupied/unoccupied neighbors. Notice that m,n cannot be larger than N − 1, where N is the
number of nearest neighbors in this lattice, as the hopping operators in the middle of Eq. (S3) always eliminate one
neighbor. One can verify the following commutation relations

[HU , H
±
m,n] = [±D + (m− n)V ]H±m,n. (S4)

With these relation, we can define the leading order transformation for the AB hopping to be

iS
(1)
AB =

∑
m,n

H+
m,n

D + (m− n)V
−

H−m,n
D − (m− n)V

. (S5)

Such similar expressions S
(1)
AA, S

(1)
BB can also be obtained for the AA,BB hopping with different numbers of neighbors

occupied. So S(1) is comprised of operators that create excitations of HU . The observation is that those S
(1)
AA, S

(1)
BB

terms annihilate the state with all A sites occupied. So their contribution to the second order expansion [iS(1), H̃k]/2

vanishes after the projection. What are left are terms diagonal in HU . The resulting expression [iS(1), H
(0)
00 ] ' t′t/U

is off-diagonal in the ground state of HU . It will be further eliminated to the order 1/U2 by the second-order SW
transformation. So we can neglect it at the order of 1/U . The Hamiltonian is simplified to a quadratic form of H±m,n.
As the low energy physics is obtained by projecting H ′ to the state with all A sites occupied, this requires the total
excitation should have equal number of + and − and the sum of m − n should vanish. As H−m,n annihilates the
low-energy manifold, it ends up with the following equation

H ′eff = −
∑
m′,n

H−m′,m′+N−nH
+
N,n

D + (N − n)V
. (S6)

As the occupation on site A must be conserved, there are two situations in the above summation. When the bond
operators in H−m′,m′+N−n and H+

N,n are taking the same one, we obtain density interaction terms. When they differs,
we have hopping terms for B fermions. It is more convenient to write out the Hamiltonian for the four neighbors
around one A site. Choosing (i, j, k, l) to be the four neighbors of a particle A, we have the following terms for the
density interaction part

HU
4 =− 4t2

D + 3V
(1− ni)(1− nj)(1− nk)(1− nl), (S7)

HU
3 =− 3t2

D + 2V
(1− ni)(1− nj)(1− nk)nl + PM, (S8)

HU
2 =− 2t2

D + V
(1− ni)(1− nj)nknl + PM, (S9)

HU
1 =− t2

D
(1− ni)njnknl + PM, (S10)

where PM means distinct combinations obtained by permuting i, j, k, l. For the hopping processes from i → j, we
need that the A particle has neighbor i occupied before the hopping and j occupied after the hopping. These terms
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are given by

Hk
3 =

t2

D + 2V
c†i,Bcj,B(1− nk)(1− nl) + PM, (S11)

Hk
2 =

t2

D + V
c†i,Bcj,Bnk(1− nl) + PM, (S12)

Hk
1 =

t2

D
c†i,Bcj,Bnknl + PM. (S13)

Similarly, PM means distinct combinations obtained by permuting i, j, k, l
Now we collect the contributions together. We have two-body, three-body and four-body interactions:

H ′U,eff =
∑
ij

U2ninj +
∑
ijk

U3ninjnk +
∑
ijkl

U4ninjnknl. (S14)

The summation of i, j, k, l is defined by counting the different two-, three- and four-combinations of the neighbors
around every A site. So the two-body interaction along the diagonal of the square lattice should be counted twice.
Their coefficients are given by

U2 = − 2t2

D + V
+

6t2

D + 2V
− 4t2

D + 3V
, (S15)

U3 = − t
2

D
+

6t2

D + V
− 9t2

D + 2V
+

4t2

D + 3V
, (S16)

U4 =
4t2

D
− 12t2

D + V
+

12t2

D + 2V
− 4t2

D + 3V
. (S17)

The effective hopping Hamiltonian can be assisted by the other two neighbors around each A site

H ′k,eff =
∑
ij

λ0c
†
i,Bcj,B +

∑
ijk

λ1c
†
i,Bcj,Bnk +

∑
ijkl

λ2c
†
i,Bcj,Bnknl, (S18)

where the hopping parameters are

λ0 =
t2

D + 2V
(S19)

λ1 =
t2

D + V
− t2

D + 2V
(S20)

λ2 =
t2

D
− 2t2

D + V
+

t2

D + 2V
. (S21)

All the parameters as a function of V/D are plotted in Fig. S1.

B. Continuum theory for low dopings

The effective inverse mass tensor at the two valleys are

m−1
± = a2

(
4t′B ∓ 2tB 0

0 4t′B ± 2tB ,

)
(S22)

where the subscript + (−) denotes the valley located at
(0, π) ((π, 0)). Recall that the two valleys being minimum
is given by the condition |t′B/tB | > 0.5. We see that the
mass tensor is diagonal in the coordinate we choose, and
there is mass anisotropy for each valley.

We introduce the center-of-mass coordinates: δr =
r+−r−,R = m̄+r+ + m̄−r−, where m̄± = m±/Tr(m±).
The (first-quantized) kinetic Hamiltonian of the two par-

ticles can be written as (∇Tδrµ−1∇δr + ∇TRM−1∇R)/2.
We find that the relative inverse mass tensor µ−1 is
isotropic: µ−1 = µ−1

0 I, where µ−1
0 = (8a2t′B) and I is

the 2×2 identity matrix. The continuum approximation
of two-particle problem is similar to that of the honey-
comb model [9]. The two-particle binding energies can
be calculated in the center-of-mass reference frame [9]:

Ebp = ebp[e2π/(µ0|g|) − 1]/µ0, (S23)

where µ0 = (8a2t′B)−1 is the relative mass. The result
is independent of the specific value of tB (t′ in the full
model) as long as the ground states of single fermion
[two fermions] are in the (0, π) or (π, 0) [(π, π)] momen-
tum sector, consistent with the microscopic Hamiltonian
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FIG. S1. Parameters of the large-D effective theory of the
square lattice model.

being independent of tB in the two-particle (π, π) sector.
We fit ebp using exact data in the small V/D region and
plot the continuum effective result together with the ex-
act result in Fig. 3. Different from the honeycomb model,
the binding energies will drop for large V , because |g| will
decay to zero for large V instead of converging to a con-
stant.

To extract coefficients of interaction in the continuum
theory, we write the correlated hopping as

λ1

∑
i,j,k

c†i c
†
jcjck =λ1

∑
i,j,k,

k,k′,q,σi

ψ†σ1,k−qψ
†
σ2,k′+qψσ3,k′ψσ4,k

× e−i(Kσ1
+k−q)·ai−i(Kσ2

−Kσ3
+q)·aj

× ei(Kσ4
+k)·ak , (S24)

where ai is taken from the four vectors connecting A
to its nearest B neighbours. The variables k,q,k′ are
taken to be much smaller than |K+ − K−|. Similarly,
the repulsion term is rewritten as

U2

∑
ij

c†i c
†
jcjci =U2

∑
i,j,q,
k,k′,σi

ψ†σ1,k−qψ
†
σ2,k′+qψσ3,k′ψσ4,k

× e−i(Kσ1−Kσ4−q)·ai−i(Kσ2−Kσ3+q)·aj .
(S25)

The continuum interactions between different valleys and
inside the same valley are given by taking appropriate
combinations of σi and their anti-symmetrized partners.

The result of inter-valley interaction has been given
in the main text. Now we consider intra-valley interac-
tion with finite doping. We consider the weak interacting
limit and discuss the interaction between modes on Fermi
surface of a valley, for example the + valley. Here the mo-
menta are defined as the deviation to (0, π). In general
we have.∑

k,k′,q

g(k,k′,q)ψ†+,k−qψ
†
+,k′+qψ+,k′ψ+,k (S26)

0.5 1 2
V/D

0.00

0.05

0.10

0.15

E b
,1

,1
[t2 /D

]

0

10

20

30

40

r2

Eb, 1, 1 exact
Eb, 1, 1 continuum

r2 exact

FIG. S2. Binding energies and bound states sizes of two
fermions for the effective square lattice model with two val-
leys. The dashed line denotes the continuum effective theory
with one fitting parameter given by matching small V/D data.

We focus on two-particle scattering with net zero devia-
tion to K+ and small doping (momenta is small enough
to perform Taylor expansion).∑

q1,q2

g̃(q1,q2)ψ†+,q1
ψ†+,−q1

ψ+,−q2
ψ+,q2

(S27)

Set q1 = q2 and q1 = −q2 respectively, we can ob-
tain the density-density interaction, ∝ [2λ1(q2

1,x− q2
1,y) +

U2(q2
1,x + q2

1,y)]n+(q1)n+(−q1). With the Fermi surface
shape close to an eclipse with the long axis along y direc-
tion, and λ1 ≈ U2 for V/D < 1 (Fig. S1), such interaction
in most momenta is attractive.

C. Few-particle-doping binding energy with finite
D/t

Here, we discuss few-particle-doping binding energies
of the full model with finite D/t = 10, 5. The binding
energies, in the unit of t2/D are in general smaller for
smaller D/t . However, even for D/t = 5, we find no
substantial difference for inferred stable pairing region,
comparing to the effective model with D/t =∞.

As an alternate of binding energy per particle, we rep-
resent the results as binding energies for forming bond
states with composites. For two-particle and three-
particle bond sates, the existence of bond states can
be seen from a positive Eb,1,1 = 2E1 − E0 − E2 and
Eb,1,2 = E1 +E2−E0−E3 respectively. These quantities
are plotted in Fig. S3. Binding energy per particle can
be deduced from them. The existence of three-particle
is a necessary but not sufficient condition for the crite-
ria we used to infer three-particle bound states are more
favoured than pairs. For example. For V/D = 1.

Some details of the numerical implementation are as
follows. For the full (effective) lattice models, we ob-
tain the ground-state energies En of finite systems us-
ing DMRG (exact) diagonalization. To accurately com-
pute binding energies, we need system sizes larger than
the bound states sizes. We estimate the finite-size er-
rors by doing 1/N extrapolation for data of largest two
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FIG. S3. Binding energies. The binding energies of two
fermions are shown in the first row from left to right for the
honeycomb lattice model and the square lattice model with-
out t′ term and for t′ = λ0. Correspondingly, the binding
energies for an fermion pair and a fermion to form a three-
fermion bound state are shown in the second row. The plot
scale of the Eb,1,1 of square lattice models are smaller than
others’.

systems we obtain. The extrapolated data in Fig. S3
have errors much smaller than the size of marker. The
periodic boundary condition is implemented in the ex-
act diagonalization, which enables reading the momen-
tum quantum numbers. DMRG is less efficient to deal
with periodic condition along two directions and we thus
only implement periodic boundary on one direction while
implement open boundary condition on another. In
this case, to correctly calculate the bulk binding en-
ergy, we find it essential to eliminate the low-energy edge
modes. Such modes can be understood by considering
the potential and interaction part of the Hamiltonian
Eq. 1:

∑
〈i,j〉 V ninj +

∑
i∈B Dni. As A sublattice is al-

most fully-filled, if a fermion on B sublattice is located
at the open boundary rather than in the bulk, it feels
less repulsion from the fermions on B sublattice. Conse-
quently, these configurations have lower energy. We find
that introducing additional potential terms V ni on the
boundary of B sublattice can eliminate low-energy edge
modes.

FIG. S4. (a) Cylinder geometry [(6,0) honeycomb nanotube]
and a density plot of an inhomogeneous density profile, in-
dicating phase separation. The densities on B sublattice are
represented by colors with green for small density and red for
larger density. The parameters for the density plot: 1/8 dop-
ing, D = 10, V = 15 and unit cell size 32; only part of the
unit cell is plotted. (b) Correlation length evidence for pair-
ing on infinite cylinder geometry of honeycomb lattice. The
indices for nanotubes are standard notations for their sizes
and shapes. The ξ1 (ξ2) is single-particle (pair) correlation
length. For a larger bond dimension χ used in the iDMRG
algorithm, a tighter lower bound of ξ is obtained. Here, a
smaller ξ2(χ) for a larger nanotube is an artifact that the
underestimation becomes severer for larger systems if not in-
creasing χ. The other parameters are 1/8 doping, D = V = 5.
(c) Pair correlation functions for square lattice at 1/64 dop-
ing, V = 6, D = 10 and tangential direction size 8 unit cell.
Definitions of pair operators see the text; the subscripts m,n
can be x, y.

D. Weak-coupling results

In the weak coupling regime we apply a truncated unity
functional renormalization group approach. We a sharp
energy cutoff [23], thus the critical energy scale can be
interpreted as a critical temperature modulo an unknown
scaling factor. We calculate the vertex on a 24× 24 mo-
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(a) (b)

(c) (d)

FIG. S5. Results of the FRG simulations for the three differ-
ent setups and visualisation of the f -wave superconductivity.
We abbreviate a flow to strong coupling without divergent
susceptibility as SCT, and a divergence of the f -wave compo-
nent of the pairing susceptibility as f -SC. The y-axis displays
the critical energy scale, which is linearly dependent to the
critical temperature. The x-axis displays the doping. (a)
shows the results for a square lattice with t′ = λ0 and (b)
the square lattice with t′ = 0 results. (c) shows the results
for the honeycomb lattice. In all simulations we kept D = 10
and varied V in the given range. (d) visualizes the different
superconducting order parameter symmetries encountered, as
visualized by the eigenvector of the effective interaction at the
orbital at the Fermi level. The upper left shows an f -wave on
the honeycomb lattice, the upper right shows a dx2−y2 -wave
on the square lattice. The lower two plots correspond to the
degenerate pair px and py with weak admixture of other de-
pendencies.

mentum mesh for both lattices, with a refinement for the
bubble integration mesh of 45 × 45. On the square lat-
tice we include the 25/29 nearest neighbors in the trun-
cated unity per site within the unit cell for the honey-
comb/square lattice. We use a Bogacki–Shampine adap-
tive integrator for the integration of the flow equations,
allowing for a maximal absolute error of 10−2 per inte-
gration step. The results of the FRG simulations are
visualized in Fig. S5. To distinguish different phases,
we inspect the behavior of the maximal eigenvalues of
each channel during the flow in combination with an in-
spection of the dominant eigenvectors at the end of the
flow. These eigenvectors encode the symmetry and spe-
cific type of the instability. In the case of py/px we find
the two eigenvectors to be exactly degenerate. In the real

space representation we define px/y = sign(~vx/y · ~d)δ~vx/y,~d

with ~vx = (1, 0), ~vy = (0, 1) and ~d is the vectorial dis-
tance between two sites. To distinguish all possible linear
combinations cos(θ)px + eiφ sin(θ)py we perform a single
step mean-field calculation and compare the free energy
of each starting configuration, as can be seen in Fig. S6.

0 π/2
θ

0

π

ϕ

FIG. S6. Free energy minimization in the square lattice with
t′ = λ0, using cos(θ)px + eiφ sin(θ)py as starting values. The
combination with the smallest free energy is 1

2
(px + ipy)

To calculate the Chern number in the gapped phase, we
employ the method described in Ref. [36].

E. Details of infinite DMRG calculations

We obtain approximate ground states of the Hamilto-
nian 1 defined on infinite cylinder. We do this by opti-
mizing infinite matrix product states via two-site iDMRG
algorithm [22]. We implement the conservation of par-
ticle numbers, thus the phase diagram 1 is constructed
in terms of doping densities ν. The accuracy of infi-
nite matrix product states can be improved by increas-
ing its bond dimensions (χ, size of the matrices); With
efficient optimization, to reach a given accuracy, the re-
quired computational resource (e.g. χ) is exponentially
large in cylinder circumference. Infinite matrix product
states are constructed to be exactly translationally in-
variant by M lattice unit vector along the axial direc-
tion. To implement exact particle number conservation
for doping density ν = p/q (irreducible fraction), M must
be integer multiples of q/Ly. (Ly is the number of lattice
unit vectors around the cylinder.) To be compatible with
possible spontaneous breaking of translational symmetry
(e.g., charge density wave state), M has to be compat-
ible with enlarged unit cell. As mentioned in the main
text, we estimate of correlation lengths of single-particle
and pair to infer superconductivity. We denote them esti-
mated using bond dimension χ as ξ1(χ) and ξ2(χ) respec-
tively;the larger the bond dimension, the more accurate
the estimation.

For the honeycomb lattice model, we study the zigzag
and armchair nanotube geometry, denoted as (n, 0) and
(n, n) [standard notation [33]] respectively where n char-
acterizes circumference. The (6, 0) nanotube is illus-
trated in Fig. S4(a). To determine possible pairing gaps
as well as competition between states, we limit the cylin-
der size to (4, 0), (6, 0), (8, 0), and (4, 4) as the data accu-
racy of interested quantities cannot be reached for larger
cylinders. An example of data consistent with fermion
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pairing is plotted in Fig. S4(b). As mentioned in the main
text, the CL (collapse) region the collapse of fermions
leaves part of the system with vanishing occupancy on
B sublattice. This is inferred that when increasing iMPS
unit cell size, the fermions on B lattice always concentrate
on part of the unit cell (see Fig. . S4(a)); the energy also
overall decreases for increasing unit cell size. Limited by
numbers of unit cell we can implement, this approach
cannot exclude charge density waves such as stripes with
large unit cell.

For the square lattice, we study the geometry with
the axial direction along the shortest lattice unit vector
(e.g., that connecting the nodes 1 and 2 in Fig. 1(a1)
right). We consider cylinder sizes with 4, 6 and 8 unit

vectors along the tangential direction. For 1/64 dop-
ing of all cylinders, we find similar behaviors of cor-
relation lengths as the 1/8 doping of honeycomb lat-
tice discussed before (Fig. S4). This already indicates
pairing and gapped single-particle excitation. We find
evidence for the staggered dx2−y2 by considering two-
point correlations between ∆y(ix, iy) = cix,iycix,iy+1,
∆y(ix, iy) = cix,iycix,iy+1 and their Hermitian conjuga-
tion. Only the sites on B sublattice are considered. We
observe (Fig. S4 (c)) that the sign of 〈∆x(0, 0)∆†x(l, 0)〉
and ∆y(0, 0)∆†y(l, 0)〉 oscillates in l; we also observe that

the sign of 〈∆x(0, 0)∆†x(l, 0)〉 is opposite to the previous
two for a given l.
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