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Abstract: In recent years, the Ribosome profiling technique (Ribo–seq) has emerged as a powerful
method for globally monitoring the translation process in vivo at single nucleotide resolution. Based
on deep sequencing of mRNA fragments, Ribo–seq allows to obtain profiles that reflect the time spent
by ribosomes in translating each part of an open reading frame. Unfortunately, the profiles produced
by this method can vary significantly in different experimental setups, being characterized by a poor
reproducibility. To address this problem, we have employed a statistical method for the identification
of highly reproducible Ribo–seq profiles, which was tested on a set of E. coli genes. State-of-the-art
artificial neural network models have been used to validate the quality of the produced sequences.
Moreover, new insights into the dynamics of ribosome translation have been provided through a
statistical analysis on the obtained sequences.

Keywords: Ribo–seq profiling; neural networks; prediction of translation speed; ribosome dynamics;
CNN

1. Introduction

Ribosomes perform protein synthesis from mRNA templates by a highly regulated
process called translation. Translation control plays a key role in the regulation of gene
expression, both in physiological and pathological conditions [1].

The advent of high–throughput methods to measure the levels of gene expression
has revealed the implications of multiple factors that might impact the rate at which an
mRNA is translated. In recent years, the Ribosome profiling technique (Ribo–seq) has
emerged as a powerful method for globally monitoring the translation process in vivo at
single nucleotide resolution [2]. The application of this method to a different number of
organisms subjected to different conditions, from the deprivation of nutrients in bacterial
cells to the development of cancer in human cells, has allowed to investigate fundamental
aspect of cell biology [3].

Interestingly, the nucleotide–level resolution of Ribo–seq experiments reveals the
density of the ribosomes at each position along the mRNA template. Local differences in
the density of Ribosome Protected Fragments (RPFs) along the Open Reading Frame (ORF)
reflect differences in the speed of translation and elongation, determining regions where
the translation is slower or faster.
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Figure 1 illustrates how the translation speed is not uniform, highlighting the differ-
ences in ribosome occupancy. This piece of information is well visible in Ribo–seq profiling
data and can be used to infer how the codon usage, the protein sequences, and other
features can regulate the speed of translation [4].

Unfortunately, the reproducibility of Ribo–seq experiments can be affected by multiple
variables due to the complexity of the experimental protocol and the lack of standardization
in computational data analysis [5].

Figure 1. Ribosome footprint density along the mRNA. The schematic distribution of translating
ribosomes along the mRNA (a) and their ribosome profiles (b). Ribo–seq data show differences in
the density of ribosomes: regions of fast elongation accumulate fewer ribosomes (low density) with
respect to regions of slow elongation (high density).

Thereofore, our work aims to overcome the aforementioned limitations by introducing
a new statistical approach, designed to extract a set of highly reproducible profiles.

In particular, inspired by the seminal work proposed in [6], we perform a novel
analysis procedure for Ribo–seq data that allows to identify the reproducible Ribo–seq
profiles emerging from the comparison of independent Ribo–seq experiments performed in
different laboratories under the same conditions. These significantly reproducible profiles
are then collected into a library of consensus sequences, in which sub-regions characterized
by different translation speeds can be isolated. The aforementioned procedure has been
applied to E. coli sequences (Escherichia Coli (E. coli) is a bacterium that lives in the
lower intestine of warm-blooded animals and has a genome composed by approximately
4,600,000 base pairs. E. coli contains a total of 4288 genes, with coding sequences which are
long, on average, 950 base pairs and separated, on average, from 118 bases. Considering
the protein counterpart, in E. coli, the average length of a coding region is 316.8 codons,
whereas less than 1.8% of the genes are shorter than 60 codons.), resulting in 40 highly
reproducible profiles.

Differently from [6], based on the collected data, a statistical analysis has been car-
ried out that gave new insights on the dynamics of the ribosome translation, showing a
statistically significant difference in the nucleotide composition between sub-sequences
characterized by different translation speeds. Moreover, to validate the procedure, the se-
lected highly reproducible profiles have been analyzed through state-of-the-art Machine
Learning (ML) models, accurately classifying subsequences according to their speed of
translation (slow or fast).We have made our source code public available (https://github.
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com/pandrein/Ribo-Seq-analysis, accessed on 29 June 2022). Furthermore, these experi-
ments allowed to discover that the translation speed is modulated both by the nucleotide
composition of the sequences and by the order in which they appear within each sequence.

The rest of the paper is organized as follows: Section 2 collects works from the
literature dealing with related topics; Section 3 describes the ribosome profiling data
extraction and preprocessing, together with their analyses based on both statistical and ML
methods; Section 4 summarizes the results, discussing their meaning and their biological
interpretation. Finally, Section 5 draws some conclusions and derives future perspectives.

2. Related works

The Ribosome profiling approach offers a promising method for developing unbiased
translation models from data, but the quantitative analysis of ribosome profiling data is
challenging, because of high measurement variance and the inability to distinguish the
ribosome rate of translation. The Ribosome profiling strategy based on deep sequencing of
ribosome–protected mRNA fragments enables genome–wide investigation of translation at
the codon and sub–codon resolution [7].

In recent years, techniques based on machine learning have been employed with
increasing frequency and intensity in many different fields, ranging from computer vi-
sion [8–11] to natural language processing [12–14] and bioinformatics [15,16]. The popu-
larity of these approaches stems from their success in the automatic inference of complex
functions directly from the data. In particular, both statistical and ML approaches have been
successfully applied to non–biological sequential data classification tasks [17–19], in which
each sequence is associated with a class label and the classification is performed on the
whole sequence. Within bioinformatics, examples of ML applications include the prediction
of splicing patterns and protein secondary structures, protein–protein interface predic-
tion, protein subcellular localization, drug side-effect prediction, and DNA/RNA motif
mining, to name just a few [20–23]. Moreover, ML and deep learning approaches have
been used to process Ribo–seq data for gene annotation in prokaryotes [24], to predict
ribosome stalling [25] and for micropeptide identification [26]. In particular, in [27], a deep
learning based approach, called RiboMIMO, was proposed, based on a multi-input and
multi–output framework, for modeling the ribosome density distributions of full-length
mRNA Coding Sequence (CDS) regions. Through considering the underlying correlations
in translation efficiency among neighboring and remote codons, and extracting hidden
features from the input full-length coding sequence, RiboMIMO can accurately predict
the ribosome density distributions along with the whole mRNA CDS regions, a problem
strictly correlated with the one we intend to face in this paper. Indeed, we propose a ma-
chine learning-based approach to validate the extraction procedure of highly reproducible
profiles, by classifying the translation speed of the extracted regions, which deeply depends
on the ribosome density along mRNA.

3. Materials and Methods

In this work, a new software, written in Python, has been developed, which repro-
duces the procedure described in [6]. In this section, the method used to obtain a set of
reproducible Ribo–seq profiles and their analysis through statistical and ML methods are
presented. In particular, in Section 3.1, the procedure employed to extract the profiles is de-
scribed, while in Section 3.3, a statistic analysis of the nucleotide composition is presented.
Finally, in Section 3.4, two different ML approaches are proposed to analyze the data and
asses their quality.

3.1. Ribosome Profiling Data Extraction

The Ribosomal profiling technique (Ribo–seq) is currently the most effective tool to
study the protein synthesis process in vivo. The advantage of this method, over other
approaches, lies in its ability to monitor translation by precisely mapping the position and
number of ribosomes on an mRNA transcript. Ribo–seq involves the extraction of mRNA
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molecules associated with ribosomes undergoing active translation and a digestion phase,
during which the RNase enzyme processes all the RNA molecules, with the exception of
the “protected” parts, to which ribosomes are attached. This step is followed by rRNA
depletion and preparation of the sequencing library as in an RNA–seq approach. However,
since reads are obtained relating only to actively transcribed mRNA molecules, Ribo–
seq better reflects the translation rate than mRNA abundance alone, although it requires
particularly laborious preparation and is only applicable to species that have a reference
genome available. The strategy employed in our work consists in the identification of
high resolution Ribo–seq profiles through the systematic comparison of Ribo–seq datasets
referring to experiments performed independently in different laboratories and in different
time periods.

In particular, the approach is composed by the following phases:

• Preprocessing—the ORF–specific ribosome profiling data from multiple datasets are
collected and then processed by a bioinformatic pipeline;

• Signal digitalization—Ribo–seq profiles are digitalized by associating to each nu-
cleotide a slow or fast label;

• Comparison of digital profiles—Digital profiles are used to quantify similarities and
differences between Ribo–seq profiles of different datasets referring to the same ORF.

• Identification of significantly reproducible Ribo–seq profiles—A set of highly re-
producible profiles is obtained and, among them, reproducible sub-sequences are
identified.

3.1.1. Preprocessing of Ribosome Profiling Data

To illustrate the statistical procedure employed in this work, we analyse a set of E. coli
Ribo–seq profiles. For this purpose, the data stored in the Gene Expression Omnibus [28]
repository were used. Specifically, our analysis concerns a systematic comparison of Ribo–
seq profiles, each belonging to a different GEO series (A series is a collection of datasets
that include at least one group of data—sample—from Ribo–seq experiments performed on
E. coli in various conditions according to the most used experimental protocol.), referring
to experiments performed culturing wild–type E. coli strains under control conditions.
In particular, our analysis regarded a subset of eight samples (labelled from Dataset 1 to
Dataset 8) obtained through experiments characterised by K–12 MG1655 genotype and
cultured in a MOPS–based medium. Table 1 reports the GEO Series ID and GEO sample ID
of raw Ribo–seq dataset used in this experiment.

Table 1. The samples chosen for our analysis belong to different GEO series. Column 1: Dataset
ID chosen to refer to the eight samples in this work; Column 2: GEO Series ID; Column 3: GEO
Sample ID; Column 4: references. The listed ID can be used as access keys to the GEO Database
(https://www.ncbi.nlm.nih.gov/geo/, accessed on 29 June 2022) to find a detailed description of
both specific series and samples.

Dataset ID GEO Series ID GEO Sample ID Ref

Dataset 1 GSE64488 GSM1572266 [29]
Dataset 2 GSE90056 GSM2396722 [30]
Dataset 3 GSE72899 GSM1874188 [31]
Dataset 4 GSE53767 GSM1300279 [32]
Dataset 5 GSE51052 GSM1399615 [33]
Dataset 6 GSE77617 GSM2055244 [34]
Dataset 7 GSE35641 GSM872393 [35]
Dataset 8 GSE88725 GSM2344796 [36]

To reconstruct the Ribo–seq profiles starting from raw Ribo–seq data, represented by
the FASTA format (The FASTA format is a text–based format for representing nucleotide
sequences in which base pairs are indicated using single-letter codes [A,C,G,T] where A
= Adenosine, C = Cytosine, G = Guanine, T = Thymidine), the reads are mapped against

https://www.ncbi.nlm.nih.gov/geo/
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the whole set of coding sequences in E. coli, taken from the EnsemblBacteria database [37].
Then, we extracted and counted the number of reads mapping to each gene from the SAM
alignment file (The Sequence Alignment Map (SAM) is a text–based format originally used
for storing biological sequences aligned to a reference sequence.) using BEDTools [38].
The genomic coordinates are stored in a BED file (The BED file is a tab-delimited text
file used to store genomic regions where each feature is described by chromosome, start,
end, name, score, and strand.) to build the Ribo–seq profiles representing the input of the
subsequent analysis. Each ORF can be associated to a specific Ribo–seq profile, a histogram
that counts the number of reads that cover each nucleotide position. To realize the pairwise
comparison of ORF–specific Ribo–seq profiles coming from independent datasets, we
decided to proceed as described in the following.

3.1.2. Signal Digitalization Strategy

Firstly, we selected the ORFs in common between all the eight datasets highlighted
in Table 1. For each ORF of each dataset, we generated a Ribo–seq profile. The Ribo–
seq profiles (Figure 2, left side) are digitalized by comparing the profile heights at each
nucleotide position (coverage) with its median value, computed along the entire ORF. We
assign +1 to the positions having a coverage value higher than the median, −1 otherwise.
The result is a digital Ribo–seq profile (Figure 2, right side) for each Ribo–seq profile, i.e., a
vector having the length of the associated ORF and containing a sequence of −1 and +1.

3.1.3. Comparison of Digital Profiles

The digitalized profiles can be compared to detect matches, i.e., nucleotides charac-
terized by an identical label ( Figure 2). Calculating the relative number of matches (the
ratio between the number of matches and the length of the ORF) yields the matching score
(si,k). Intuitively, a matching score close to one could indicate a high degree of similarity
between a pair of digitalized profiles, whereas a score around one-half could mean a very
poor overlap because the observed matches are likely to have occurred by chance. Given
each score has a certain probability of being obtained by chance, we decided to implement
a statistical test able to assess the significance of the matching score [6].
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Figure 2. Pairwise comparison of two Ribo–seq profiles of the ispB gene. Two independent Ribo–seq
profiles (left) are obtained by computing the coverage at each nucleotide position within the ORF.
x-axis: position within the ORF (nucleotides); y-axis (top): relative coverage (number of mapping
reads/total number of reads) mapping on the ORF. The Ribo–seq profiles are compared to the median
coverage to produce the digitalized±1 profiles (right). The digitalized profiles can be easily compared
to detect matches (e.g., green rectangle) and mismatches (e.g., red rectangle). The ratio between the
number of matches and the total number of nucleotides in the ORF gives the matching score. A score
equal to one means a perfect match between the two profiles, whereas a score equal to one-half means
a poor matching [6].
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For any Ribo–seq profile involved in a pairwise comparison, a large number of ran-
domized profiles is generated by re-distributing the reads in random positions on the
reference ORF. The randomized profiles are, in turn, compared pairwise yielding a large
number of random matching scores that build each null distribution. Reiterating this
process, we generated 104 pairs of random Ribo–seq profiles and an equal number of
digitalized random profiles that, compared pairwise, yielded 104 random matching scores.
These scores are used to build an ORF–specific null distribution which allows us to estimate
the probability of obtaining each similarity score just by chance.

Given a pair of Ribo–seq profiles, the similarity score resulting from their comparison is
tested for significance by comparing it to the corresponding ORF–specific null distribution.
For each si,k and the corresponding null distribution, we computed a z-score zi,k, mapping
each similarity score on a standard normal distribution.
Subsequently, we computed the p-values pi,k, as the integral:

pi,k =
∫ +∞

zi,k

NS(z)dz

where NS(z) is the standard normal distribution. Mapping the matching score on the null
distribution will yield the p-value. The results of this process can be summarised into a
matrix (called p-value matrix) containing all the computed p-values and composed by one
column for each pairwise comparison and one row for each considered ORF (for a total of
3588 rows and 28 columns). For the sake of simplicity, Table 2 collects a small extract of such
matrix. Each pi,k quantifies the probability of obtaining a similarity score at least as extreme
as the corresponding si,k, given that the null hypothesis is true. In our context, the lower
the p-value, the lower the probability that the similarity between the compared pairs of
(digitalized) Ribo–seq profiles occurs by chance. If the p-value will result below a given
threshold, the compared Ribo–seq profiles will exhibit a significant degree of similarity.

Table 2. Excerpt of the p-value matrix. Each column corresponds to a pairwise comparison between
two datasets while each row contains the gene ID. For the sake of readability, only three columns and
five rows are reported here.

Dataset 1 vs. Dataset 2 Dataset 1 vs. Dataset 3 Dataset 1 vs. Dataset 4

alr 0.769298564 0.122368427 0.632263895

modB 0.165522551 0.056591384 0.601754757

cysZ 0.005770742 0.00011569 0.2021111

dfp 0.002343099 0.000384015 0.093624025

fruB 0.566785395 0.85548442 0.381131384

3.1.4. Identification of Significantly Reproducible Ribo-seq Profiles

Our strategy consists in inspecting each row of the p-value matrix. We define repro-
ducible the Ribo–seq profiles referring to those rows featuring all the p-values below a
chosen significance threshold. To cast our strategy into a more rigorous statistical frame-
work, we exploit the False Discovery Rate (FDR) concept and the Benjamini-Hockberg (BH)
correction method for multiple tests. In this experiment, for any given row of the p-value
matrix, we set an FDR threshold of 0.01. This means that we accept that 1% of profiles are
reproducible by chance. Then, we counted how many p-values in each row resulted signif-
icant according to the BH method, and we defined reproducible those Ribo–seq profiles
associated with the rows where 80% of the p-values are significant. Following this strategy,
we found that, out of 3588 genes that are common to the eight datasets, 40 genes, listed in
Table 3, have a significantly reproducible Ribo–seq profile.
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Table 3. Genes with significantly reproducible Ribo–seq profiles across the eight datasets. Column 1:
Gene ID. Column 2: Annotation.

Genes ID Annotation

rodZ Cytoskeleton protein RodZ
arcB Aerobic respiration control sensor protein ArcB
dld Quinone-dependent D-lactate dehydrogenase

dnaX DNA polymerase III subunit tau
fhuA Ferrichrome outer membrane transporter/phage receptor
glnA Glutamine synthetase
gltB Glutamate synthase NADPH large chain
hisS Histidine-tRNA ligase
infB Translation initiation factor IF-2
katG Catalase-peroxidase
malF Maltose transport system permease protein MalF
metG Methionine-tRNA ligase
mukB Chromosome partition protein MukB
ompC Outer membrane protein C
parC DNA topoisomerase 4 subunit A
secY Protein translocase subunit SecY
purL Phosphoribosylformylglycinamidine synthase
rne Ribonuclease E

sucA 2-oxoglutarate dehydrogenase E1 component
tufA Elongation factor Tu 1
tufB Elongation factor Tu 2
leuA 2-isopropylmalate synthase
hokB Toxin HokB; Toxic component of a type I toxin-antitoxin (TA) system.
acnA Aconitate hydratase A
ubiJ Ubiquinone biosynthesis protein UbiJ
lptD LPS-assembly protein LptD
rpnC Recombination-promoting nuclease RpnC
rpnA Recombination-promoting nuclease RpnA
fdoG Formate dehydrogenase-O major subunit

wbbH O-antigen polymerase
wbbI Beta-1,6-galactofuranosyltransferase WbbI
wbbK Putative glycosyltransferase WbbK
rpnE Inactive recombination-promoting nuclease-like protein RpnE
lpoA Penicillin-binding protein activator LpoA
gspD Putative type II secretion system protein D
yfjI Uncharacterized protein YfjI; Phage or Prophage Related

rlmL Ribosomal RNA large subunit methyltransferase K/L
rsxC Electron transport complex subunit RsxC
yfcI Recombination-promoting nuclease RpnB
gtrS Uncharacterized protein YfdI; Putative ligase

As an example, Figure 3 shows the profile across all datasets of the gene ompC
(EG10670). OmpC, also known as outer membrane (OM) protein C, is a porin of gram-
negative bacteria tightly associated with the peptidoglycan layer. It has been recognized to
have a crucial role in the non-specific diffusion of small solutes such as sugars, ions and
amino acids across the outer membrane of the cell [39].

To highlight which specific regions within the Ribo–seq profiles are similar to each
other, we built a consensus sequence. The consensus sequence is a character string represent-
ing the nucleotides of the reference ORF and, in Figure 4, it is colored red in those positions
where a peak is present in at least 80% of profiles (i.e., the digitalized profiles values are +1
and the ribosome proceeds slower), and green where a valley is located. The black color,
instead, will be used in all other cases and the label assigned to these regions will be 0.
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Figure 3. Example of a significantly reproducible Ribo–seq profile across the eight datasets (gene
ompC, EG10670).

Figure 4. Part of a consensus sequence (computed for rsxC) indicating the nucleotides situated within fast
(labelled with−1) and slow (labelled with +1) translation regions. On nucleotides labelled with 0, no reproducible
results have been obtained [6].

3.2. Dataset

The presented analysis has been applied to the prokaryotic organism E. coli on 3588
Ribo–seq profiles across eight independent datasets, revealing that only 40 profiles are
significantly reproducible. The digitalization process described above produces a target
belonging to {−1,+1, 0} for each nucleotide of the sequence. Based on the obtained profiles,
a dataset (“SubsequencesDataset”) has been constructed, consisting in mRNA reproducible
sub-sequences with a uniform target (since they are reproducible, the target is not 0).
In particular, 459 sub-sequences of variable length have been obtained, of which 264 are
characterized by a slow translation (+1) and 195 by a fast translation (−1). In order to obtain
a fixed-length vector of 36 elements, padding have been applied to the extracted regions,
consisting of nucleotides of the original consensus sequence. Each nucleotide has been
encoded with a 1-hot vector of 4 elements, representing one of the four possible nucleotides.
The “SubsequencesDataset” is further splitted in a training set of 413 sub-sequences and a
test set of 46 sub-sequences. Moreover, a validation set was built, randomly selecting 15%
of the training set sub-sequences, to give an unbiased evaluation of the model performance
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during training, and for keeping overfitting under control. The splitting was done ensuring
that sub-sequences in the test set and in the training set are taken from different genes.
Each sub-sequence is associated with a target which corresponds to its translation speed.

3.3. Statististical Analysis on the Nucleotide Composition of the Subsequences

Inferential statistics can provide insights on the specific patterns and characteristics
of the data and highlight relationships between variables. The “SubsequencesDataset”,
obtained with the procedure described in Section 3.2, is analyzed to explore the nucleotide
composition of the mRNA sub-sequences, relating to the assigned labels (+1 and −1) .

First, the relative frequency of each nucleotide (A, T, G, C) has been computed. To
assess the significance of our results and to find out whether the obtained frequencies
are typical of a certain speed or the correspondence is just obtained by chance, we built a
statistical test. The aim of the test is to assign a probability value (p-value) to the following
null hypothesis: the slow and fast sub-sequences are characterized by a random nucleotide
composition. In order to test this hypothesis, 104 new profiles are generated by randomizing
the nucleotide sequence, keeping fixed the +1 and −1 labels and therefore the length of
the original sub-sequences. In each of the obtained sequence, the relative frequencies
of the four nucleotides within the fast and slow sub-sequences can be calculated. This
procedure leads to eight null distributions of relative frequencies, one for each nucleotide
both for slow and fast translation. Comparing the null distributions against the original
relative frequencies allows to calculate the p-values. In particular, if the original frequency
is lower than the mean of the null distribution, we define the p-value as the probability
of a random sub-sequence to show a relative frequency smaller than that observed in the
original sub-sequence. On the contrary, if the original frequency is higher than the mean
of the null distribution, the p-value is calculated as the probability of finding by chance a
higher relative frequency value. If the p-value lies under the significance threshold of 0.05,
the null hypothesis of completely random nucleotide frequencies is rejected. This indicates
a statistically significant difference in the nucleotide composition between slow/fast and
randomly generated sub-sequences.

3.4. Data Validation with Neural Network Models

In this section, the informative content of the obtained data has been validated using
a machine learning approach. This is achieved by employing common neural network
architectures on the “SubsequencesDataset” (see Section 3.2) to predict the translation
speed class: “slow” or “fast”. In our specific problem, exploiting a network architecture can
reveal whether there is enough information in the data to classify the sub-sequences into
slow and fast with high accuracy. To perform this task, we used two different types of data:
vectors and sequences. In fact, we initially considered four-dimensional vectors that collect
the relative frequencies of occurrence of the four nucleotides and then we considered the
entire sequence, to evaluate whether the order in which the nucleotides are arranged helps
to capture the translation rate signal. Consistently, the experiments were carried out by
applying two different neural network architectures: Multilayer Perceptrons (MLPs) [40] and
Convolutional Neural Networks (CNNs) [41]. While MLPs are good at processing vectors,
indeed, CNNs are powerful machine learning models that can be used to directly process
complex data, sequences in our case. Hence, we have first predicted the translation speed
based only on the nucleotide composition of the sub-sequence while, in a second set of
experiments, we employed a CNN to process each sub-sequence.

3.4.1. MLP Analysis Based on the Nucleotide Frequencies

The MLP input is a four-dimensional vector whose elements correspond to the relative
frequency value of each nucleotide in the sequence (in the order (A, T, G, C), see Figure 5).
The goal is to determine how much information is carried by this simple statistic, regardless
of the order in which the nucleotides appear in the sequence. The MLP has a single hidden
layer with four neurons and an output layer with two neurons. A Softmax function is
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applied on the output layer, which produces the probability estimated by the network
for each class (slow or fast) [42]. The network has been trained with the Adam optimizer,
with an initial learning rate of 0.05.

A

T

G

C

0.1

0.9

slow

fast

softmax

nuocreotide
percentage input

layer

hidden
layer


A T G C

Figure 5. The MLP architecture having the nucleotide frequencies as input, and predicting the
sequence class probability distribution (slow or fast).

3.4.2. Convolutional Neural Network Analysis Based on Sub-Sequences

While the MLP architecture can only process vectorial data, CNNs can take full advan-
tage of sequential information. The CNN multilayer design allows to extract a hierarchy of
representations from the data while the implemented weight sharing guarantees to limit the
number of parameters with respect to a fully connected architecture. In our experiments,
the model input are the nucleotide sub-sequences collected in “SubsequencesDataset”. The
CNN elaborates the input to produce a prediction about the translation speed associated
with the sequence. Specifically, our CNN architecture comprises two successive 1-D convo-
lutional layers, with average pooling employed between the layers, followed by two fully
connected layers. The two-class probability distribution output of the network is produced
by using a Softmax activation function on the output of the second fully-connected layer.
The 1-D convolutional layers are based on 16 kernels with dimension three and a ReLU
activation function, applied to each layer [43]. The optimization of the network parame-
ters is performed by the Adam optimizer using early stopping [44]. The overall network
architecture is described in Figure 6.

Figure 6. The 1-D CNN exploited for sequence classification.

3.4.3. Ensemble Convolutional Neural Networks

In the last experiment, an ensemble [45] of seven CNNs has been employed to produce
a more stable and accurate prediction. Each CNN receives as input the nucleotide sub-
sequences contained in the “SubsequencesDataset”. The seven CNNs have been trained
independently. In the test phase, their output has been averaged to produce the final result.
More specifically, the Softmax CNN output for each class (slow and fast) is averaged among
the seven networks that compose the ensemble.
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4. Results and Discussion

In the following, we report the results of the experimental analysis described above.
In particular, in Section 4.1, the outcome of the statistical analysis on the frequency of
nucleotides is presented while, in Section 4.2, the results of the machine learning analysis
is outlined.

4.1. Statistical Analysis on the Nucleotide Frequencies

The first step of the statistical analysis consists in computing the relative frequencies
of each nucleotide in the fast and slow sub-sequences, respectively. As it can be observed
in Table 4, showing the nucleotide frequencies in the fast sub-sequences, adenine has a
concentration which is significantly larger than those of the other nucleotides. In particular,
adenine shows a relative frequency of approximately 0.32, while cytosine has the lowest
frequency (0.2). Instead, Table 5 reports the frequency values in slow sub-sequences. In the
latter case, both guanine and cytosine have the highest relative nucleotide frequencies (0.27
and 0.26, respectively).

Table 4. Relative nucleotide frequency across fast sub-sequences.

Nucleotide Frequency

A 0.328
T 0.257
G 0.216
C 0.209

Table 5. Relative nucleotide frequency across slow sub-sequences.

Nucleotide Frequency

A 0.240
T 0.228
G 0.274
C 0.258

To assess the significance of the results, the statistical test described in Section 3.3 has
been performed. The purpose of the test is to determine whether the frequencies obtained
are specific characteristics of fast and slow sub-sequences or they are simply a product of
chance. Actually, the results show a p-value equal to zero for every nucleotide, for both fast
and slow sub-sequences. In our context, the lower the p-value, the lower the probability
that the nucleotide frequencies for the two classes occur by chance. The obtained results
suggest that the relative frequencies of the four nucleotides are significantly different from
those occurring randomly. In particular, we can observe that nucleotides A and T have
a higher frequency in fast sequences than G and C. Instead, the frequency of nucleotides
G and C is significantly higher in slow sequences than those of A and T. Based on this
evidence, the proposed method for the identification of reproducible Ribo–Seq profiles was
able to correctly detect sub-sequences characterized by a higher information content with
respect to random sub-sequences, confirming the validity of our new approach.

Moreover, some insights are provided by Figure 7, which reports the distribution
of the sub-sequences across the whole dataset, based on their nucleotide composition.
In particular, each dot on the plane represents a sequence, characterized by the relative
frequencies of pairs of nucleotides. The color represents the translation speed: orange
and blue dots correspond to slow and fast sub-sequences, respectively. Interestingly, it
can be observed that selecting the pairs of nucleotides A–T and G–C, the fast and slow
sub-sequences identify two clusters located in distinct regions of the plane.
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Figure 7. Representation of the sub-sequences on the plane based on the relative frequencies of two
nucleotides. Each sub-sequence is represented by a dot on the plane. More specifically, the relative
frequency of thymine and cytosine (a), adenine and thymine (b), cytosine and guanine (c), adenine
and cytosine (d), thymine and guanine (e), and adenine and guanine (f), respectively, is shown. The
colors represent the speed of translation: orange and blue dots indicate slow and fast sub-sequences,
respectively.

4.2. Performance of the Neural Network Models
4.2.1. MLP Classification Based on Nucleotide Frequencies

In this experiment, a Multi-Layer Perceptron is used to predict the translation speed of
sequences based only on their nucleotide composition. The model performance is summa-
rized across five runs and reported in Table 6. It can be noted that the network reaches on
average 82.24% accuracy over the test set, while the standard deviation between different
runs is 2.20%. In fact, these results are surprising, given that the only information used by
the model is the nucleotide composition of the sub-sequences. Moreover, the results are
compared with those obtained by training the MLP on random sub-sequences, in order
to demonstrate that the reproducible sub-sequences are significantly more informative.
Indeed, as reported in Table 6, the performance obtained on reproducible sub-sequences is
significantly higher than that obtained on random sub-sequences, validating the signifi-
cance of our approach.

Table 6. Summary of the results obtained with the MLP model. We collect the obtained test set
metrics computed over five different runs. The last two rows report the average over the runs and
the corresponding standard deviation.

MLP

Run Precision Recall F1-Score Accuracy

1 70.83 89.47 79.07 81.63

2 70.80 89.51 79.06 80.62

3 72.00 94.74 81.82 83.67

4 66.67 94.74 78.26 79.59

5 75.00 94.74 83.72 85.71

Average 71.06 92.64 80.39 82.24

Standard Dev. 2.68 2.57 2.06 2.20
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4.2.2. CNN Classification Based on the Entire Sequence

The model performance is summarized across five runs in Table 7.

Table 7. Summary of the results obtained with the 1-D CNN model. We collect the test set metrics
computed over five different runs. The last two rows report the average over the runs and the
corresponding standard deviation.

CNN

Run Precision Recall F1-Score Accuracy

1 96.00 90.00 93.00 91.84

2 96.00 87.00 91.00 89.80

3 93.00 90.00 92.00 89.80

4 100.00 77.00 87.00 85.71

5 93.00 90.00 92.00 89.80

Average 95.60 90.00 91.00 89.39

Standard Dev. 2.88 5.20 2.35 2.24

The achieved classification accuracy is 89.39%. It is worth noting that, by training a
significantly more complex network than the MLP, and by providing a sequential data
input, the accuracy increases by approximately eight percentage points. The obtained
results clearly show that this model can extract useful information from a limited amount of
data in a better way than MLPs, achieving a very high accuracy. Nonetheless, the standard
deviation between the runs is 2.24%, which proves that the results are rather steady but still
influenced by the parameter initialization. Therefore, to further improve performance, we
have set up a more complex architecture consisting of seven CNNs: each of them provides
a different prediction, i.e., a pair of probabilities describing the class membership of a
sequence (slow or fast). The results of the experiments performed by the CNN ensemble
are summarised in Table 8.

Table 8. Summary of the results obtained with the CNN-ensemble model. We collect the obtained
test set metrics computed over five different runs. The last two rows report the average over the runs
and the corresponding standard deviation.

ENSEMBLE: 7 CNN

Run Precision Recall F1-Score Accuracy

1 96.00 90.00 93.00 91.84

2 96.00 87.00 91.00 89.80

3 96.00 90.00 93.00 91.84

4 96.00 90.00 93.00 91.84

5 93.00 90.00 92.00 89.80

Average 95.40 90.00 92.40 91.02

Standard Dev. 1.34 1.22 0.89 1.12

Our model reaches an accuracy of 91.02%, with a standard deviation of 1.12%. As
expected, the accuracy of the ensemble CNN is improved while the variance is significantly
decreased. Indeed, the ensemble model is very effective in the sub-sequence classification
and also provides very stable results across different training runs.
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5. Conclusions

In this paper, we have proposed an innovative method to characterize highly repro-
ducibile Ribo–seq profiles. Ribo–seq data have been analysed through statistical analyses
and state-of-the-art machine learning models, extremely effective in predicting the ribo-
some translation speed. In fact, using neural network architectures capable of processing
both plain and sequential data, we have been able to obtain high accuracy, also proving that
fundamental information is contained both in the nucleotide composition of the sequences
and in the order in which nucleotides appear within each sequence. In this way, our
work opens new exciting frontiers in the analysis of the ribosome translation dynamics in
different organisms. Indeed, we have conducted a preliminary analysis of Ribo–seq profiles
referring to liver tumours and their adjacent noncancerous normal liver tissues from ten
patients with hepatocellular carcinoma (HCC) [46], achieving promising results. For what
concerns the machine learning analysis, once we have obtained the consensus sequences,
we carried on a preliminary study exploiting the same neural architectures employed on the
E. coli datasets. Nonetheless, given the increased complexity of the human data, we believe
that a further analysis is necessary, in particular defining ad-hoc neural architectures and
with a specialized hyperparameter search, to improve performance. Finally, it is worth
mentioning that our method represents an effective approach for any kind of Ribo–seq
data, to investigate an extremely relevant open questions in biology, i.e., which features can
influence the speed of the ribosome during translation.
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