
Random matrix theory for quantum and classical metastability in local Liouvillians

Jimin L. Li,1 Dominic C. Rose,2, 3, 4 Juan P. Garrahan,2, 3 and David J. Luitz5

1Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
2School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
3Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems,

University of Nottingham, Nottingham, NG7 2RD, UK
4Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
5Max Planck Institute for the Physics of Complex Systems, Noethnitzer Str. 38, 01187 Dresden, Germany

(Dated: October 27, 2021)

We consider the effects of strong dissipation in quantum systems with a notion of locality, which
induces a hierarchy of many-body relaxation timescales as shown in [Phys. Rev. Lett. 124, 100604
(2020)]. If the strength of the dissipation varies strongly in the system, additional separations of
timescales can emerge, inducing a manifold of metastable states, to which observables relax first,
before relaxing to the steady state. Our simple model, involving one or two “good” qubits with
dissipation reduced by a factor α < 1 compared to the other “bad” qubits, confirms this picture
and admits a perturbative treatment.

Introduction — Quantum many-body systems are
generically complex, and obtaining an analytic under-
standing of the position of all spectral resonances is often
hopeless. It was realized early on [1–6] that this complex-
ity is in fact so great that many statistical properties of
the spectrum are identical with those of random matrices
sampled from an ensemble determined by the symmetry
of the system. These pioneering observations have been
subsequently refined, resulting in cornerstones of our un-
derstanding of thermalization in unitary quantum many-
body systems by virtue of the eigenstate thermalization
hypothesis [7–14], only with exceptions in integrable [15–
18], many-body localized [19–29], time-crystalline [30–32]
or scarred and constrained systems [33–35].

This thinking was recently pushed to the realm of
open quantum systems, with random matrix models of
Markovian dissipation defined via random Liouvillians
[36–39], revealing fascinating spectral features of generic
purely dissipative systems, in particular a spectral sup-
port which has the shape of a “lemon” [36, 37], much dif-
ferent from the circular spectrum of non-Hermitian Gini-
bre random matrices [40]. This feature is also present in
classical master equations, where typical transition rate
matrices have a similar spectral support [41, 42].

Such random matrix models of open quantum many-
body systems represent the behavior of typical systems,
rather than of a specific model. While they reproduce
global properties of more realistic, microscopic models,
they miss a crucial ingredient: the locality of (dissipative)
interactions. It was recently shown that random matrix
models for local Liouvillians can be devised exhibiting
a hierarchy of relaxation timescales [43]. These models
limit the jump operators in the Lindblad equation to low
complexity Pauli strings, thus encoding few-body interac-
tions. In the absence of detailed microscopic knowledge,
this accurately models dissipation in current quantum
computer prototypes, and the predicted timescales were
in fact observed experimentally on the IBM platform [44].

Here we apply such a local random matrix model ap-
proach to systems with strongly varying dissipation. We
are specifically interested in the appearance of metastable
states due to a separation of timescales caused by fast and
slow dissipation modes in the system, which we model by
the existence of good qubits with low dissipation rates in
a system of otherwise bad qubits where dissipation is fast.
In this setup a metastable manifold (MM) emerges [45],
to which the dynamics starting from an arbitrary initial
state relaxes quickly. At intermediate times, the dynam-
ics is effectively restricted to the MM, before eventual
relaxation to the global steady state at long times. We
argue that this model contains the essence of the physics
to be expected in a quantum computer with good and
bad qubits and is furthermore the simplest generic model
to study metastability. Our model generalizes findings of
MMs in the presence of local loss terms [46, 47].
Model — We construct a simple model for a purely

dissipative, Markovian quantum many-body system con-
sisting of ` qubits. The Hilbert space dimension is
N = 2`, and the operator space is spanned by all N2 = 4`

normalized Pauli strings

Sµ = N−1/2σµ1⊗σµ2⊗· · ·⊗σµ`
, µi ∈ {0, x, y, z}, (1)

where σ0 = 1, and σx,y,z are the Pauli matrices. Dis-
sipation is generated by a set of k-local jump operators
given by k-local Pauli strings such that the number of
non-identity Pauli matrices in the string is at most k.
That is, for k-local Sµ we have

∑l
i=1(1− δµi,0) ≤ k. We

will focus on the physically relevant case of two-body dis-
sipative interactions, including one qubit and two qubit
(k = 2) dissipation channels, yielding NL = 3` + 9

(
`
2

)
jump operators.

The dynamics of the density matrix ρ is governed by
the purely dissipative Liouvillian [48] defined in terms of
a Kossakowski matrix Kµν which encodes the nontrivial
couplings between the dissipation channels and is ran-
domly sampled from the ensemble of positive semidefinite
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matrices. The sums µ, ν run over the NL jump operators
Lµ = Sµ, given by k-local Pauli strings in Eq. (1),

L[ρ] =

NL∑
µ,ν=1

Kµν

[
LµρL

†
ν −

1

2
{L†νLµ, ρ}

]
. (2)

Using the same procedure as in Refs. [36, 43, 44], we
generate the i.i.d. non-negative eigenvalues of K from
a uniform distribution, and normalize them such that
TrK = N . Then, we rotate the basis by a Haar random
unitary U ∈ CUE(NL) to yield K = U†DU , where D is
the diagonal eigenvalue matrix of K.

In contrast to Ref. [43], we are interested in un-
derstanding the effect of a strongly varying dissipation
strength across the system. The simplest way to consider
this is by splitting the set of jump operators {Lµ} into
strongly dissipative ones, {Ls

µ}, and weakly dissipative
ones, {Lw

µ}. This is achieved by defining a set of “good”
qubits in a system of otherwise “bad” qubits: weak jump
operators are those that contain a non-identity Pauli ma-
trix on a good qubit, so that dissipation happens at a
rate scaled by

√
α < 1, Lw

µ =
√
αSµ, while strong jump

operators are still of the form Ls
µ = Sµ [49].

Spectrum of the Liouvillian — In Fig. 1, we show
the complex eigenvalues of a realization of the Liouvil-
lian for ` = 6, for one (left) and two (right) good qubits,
with two qubit interactions and one qubit dissipation
(k = 2-local in our definition). The Liouvillian (2) is
bi-stochastic (as all Lµ are Hermitian), thus it generi-
cally has a single eigenvalue zero with the identity as the
unique stationary state, and all other eigenvalues with
negative real parts.

Due to the locality of our model, the spectrum sepa-
rates into multiple eigenvalue clusters, organized by the
locality of their eigenmodes. If good and bad qubits have
the same rate of dissipation (α = 1), we recover the
spectrum of Ref. [43]. As we make good qubits better
(α < 1), additional eigenvalue clusters appear. These
clusters have a real part proportional to α, and are indi-
cated by the blue bars in Fig. 1. For decreasing α, these
clusters move progressively closer to zero. For small α
they combine to form the MM (see below) of long lived
states with the slowest relaxation. The other clusters also
move slightly with α, but reach a limiting position well
separated from the MM.

Note that in the case of one good qubit, there is a
single cluster of three eigenvalues close to zero, while for
two good qubits there are two such clusters, one with six
and the other with nine eigenvalues. To elucidate these
spectral properties further, we study these clusters using
perturbation theory.

Perturbation Theory — Due to the physical re-
quirement that the Liouvillian is trace preserving and
completely positive, the random K matrix is diagonally
dominant [43]. It hence has the following properties: the
mean of the matrix elements Kµν is δµ,νN/NL and the
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FIG. 1. Spectra of random local Liouvillians for ` = 6 with
one (left column) or two (right column) good qubits as a func-
tion of the weak dissipation rate α. The spectral gap, given by
the magnitude of the real part of the first excited eigenvalue,
decreases proportionally with α. Bars indicate the eigenval-
ues of the unperturbed Liouvillian L0, the starting point of
our perturbation theory. Blue bars indicate the position of
eigenvalues giving rise to the MM at small α. For small α
there is a separation between metastable eigenmodes and the
rest of the spectrum, since all other eigenvalues are have real
parts smaller than λ(ns = 1, nw = 0) given in Eq. (4), and
indicated by the vertical dashed line in each panel.

standard deviation is N/
(√

6N
3/2
L

)
, which can be shown

by the central limit theorem and using random matrix
theory for U . Hence, we can devise a perturbative treat-
ment by splitting the K matrix as K = K0 +K1, where
K0 = (N/NL)1 is the unperturbed matrix, and K1 a
small perturbation which we neglect for now.

We can express the Liouvillian L (or it adjoint) as a
matrix in the Pauli string basis [50] with matrix elements
L0µν = Tr (SµL [Sν ]). To leading order off-diagonal ma-
trix elements vanish, and by separating the expressions
for weak and strong channels we get for the diagonal el-
ements and thus eigenvalues to leading order,

L0µµ = − 2

NL

(
αNw

µ +N s
µ

)
, (3)

where Nw
µ and N s

µ are the numbers of weak and strong
jump operators, respectively, that anticommute with Sµ.
The number nw and ns of non-identity Pauli matrices
on good and bad qubits determine the above. For the
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2-local case with `w good qubits, we obtain from Eq. (3)

λ(ns, nw) =− 2

NL

[
6ns`+ 6ns`w(α− 1)

− 4n2s + α(6nw`− 8nwns − 4n2w)
]
.

(4)

Since there are many Pauli strings with the same num-
bers of nw and ns, each eigenvalue is highly degenerate.
There is a unique steady state, nw = ns = 0, correspond-
ing to the identity.

Including the small perturbation K1 lifts the degener-
acy of the eigenvalues, and gives them small imaginary
parts. To see this, we diagonalize the Liouvillian with
K = K1 inside each degenerate subspace. Lowly de-
generate eigenvalues, which are well separated from the
rest of the spectrum, develop into the clusters observed in
Fig. 1, while for eigenvalues close to others and with high
degeneracy the separation does not survive, and the per-
turbation theory breaks down in these cases (see [51] for
a detailed discussion of this for large systems). For small
α, the perturbation theory is excellent and yields well
separated eigenvalue clusters close to the steady state, as
can be seen in Fig. 1. Each eigenvalue cluster in this case
is centered around the unperturbed eigenvalue λ(ns, nw),
indicated by black (ns > 0) and blue (ns = 0) bars, as
predicted from our perturbation theory.

Further inspection of Eq. (4) reveals that eigenval-
ues corresponding to observables with only identities on
bad qubits (i.e. ns = 0) are proportional to −α, while
any observable with a non-identity on a bad qubit picks
up a constant offset and thus generically has a much
faster decay rate. This is what makes up the MM: eigen-
values with real parts proportional to −α are close to
zero for small α, and well separated from the rest of the
spectrum. They are centered around λ(ns = 0, nw) =
− 4α
NL

(
3nw`− 2n2w

)
, which means that for one good qubit

we get one eigenvalue cluster (since nw can only be ei-
ther zero or one), and for `w good qubits, we get `w sepa-
rate eigenvalue clusters with eigenvalues proportional to
−α. The remaining eigenvalues are always smaller than
λ(ns = 1, nw = 0) = − 4

NL
(3(`− `w)− 2 + 3`wα) , indi-

cated by the vertical dashed line in Fig. 1. This sets the
separation between the MM and the rest of the spectrum,
and thus the relaxation timescale of an arbitrary initial
state towards the MM before relaxation to the steady
state happens on a timescale ∝ 1/α.

Metastable manifold — The existence of eigenval-
ues with small real parts, which are well separated from
the rest of the spectrum for small α gives rise to metasta-
bility [45, 52–54]. The evolution ρ(t) = etLρ0 of any ini-
tial state ρ0 can be written in terms of the eigenvalues
λm and right eigenmatrices Rm of the Liouvillian,

ρ(t) = R0 +

M∑
m=1

eλmtcmRm +

4`∑
m=M+1

eλmtcmRm, (5)

where we have split the contribution of the M eigenvalues
with largest real parts from the rest of the spectrum, and
were the coefficients cm are given by cm = Tr(Lmρ0), Lm
being the left eigenmatrices. For a large spectral separa-
tion, there is a wide range of times for which the modes
m > M have already decayed and can be neglected above
giving

ρ(t) ≈ R0 +

M∑
m=1

eλmtcmRm. (6)

This is the metastable regime where dynamics is approxi-
mately restricted to the lower dimensional MM. The valid
combinations of ci classify a MM as either classical or
quantum [45, 54]. A MM is called classical if there exists
a basis of density matrices ρ̃i so that any state in the
MM is a positive linear combination ρ(t) ≈

∑m
i=1 piρ̃i

with 0 ≤ pi ≤ 1. In this case the MM is a simplex, anal-
ogous to the manifold of probability distributions, with
the pi the probabilities of being in each metastable phase
ρ̃i, and the long time dynamics can be cast as a classical
Markov jump process between these phases. When such
basis does not exist the MM is said to be quantum.

At the level of the perturbative calculation above, we
can read off the eigenmatrices Rm and Lm (m ≤ M)
forming the MM. For one good qubit (`w = 1), we have
three eigenvalues with nw = 1, ns = 0, and the matri-
ces are the three Pauli strings with a non-identity on the
good qubit and the identity. For two good qubits, we
obtain two eigenvalue clusters in the MM, which remain
well separated even for large ` (cf. discussion in [43] and
[51]): one is formed by the six one qubit Pauli strings
with one identity on one of the good qubits (nw = 1),
and the other by the nine two qubit Pauli strings with
nonidentities on both good qubits (nw = 2). Perturba-
tion theory thus suggests that the MM is quantum, since
it is invariant under the action of SU(2) operators on
the slow sites. However, this assumption might fail when
we take into account the full random K matrix, the ad-
ditional corrections allowing for a classical manifold to
form. We now test this numerically.

To test for classicality of the MM we apply the algo-
rithmic approach of Refs. [53, 54] which tries to system-
atically find the best possible simplex from spectral data
of the Liouvillian. Accuracy is measured by a bound on
the average distance of metastable states outside this op-
timal simplex. This bound follows by noting that given
some basis ρ̃m (m = 0, . . . ,M) of the MM [55]. They
correspond to the ”metastable phases” that coexist dur-
ing the long transient regime of metastability, in , there
exists a unique dual basis P̃m with normalization chosen
as Tr(P̃mρ̃m′) = δmm′ . Therefore, the coefficients for a
state ρ projected to the MM are given by pm = Tr(P̃mρ),
bounded by the maximum and minimum eigenvalues of
P̃m. These eigenvalues reside between 0 and 1 if the
MM is exactly a simplex, and thus classical. How far
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any eigenvalues λ
(Pm)
j of the P̃m are outside of this range

defines a classicality measure [54]

C =
1

2N

M∑
m=0

2N∑
j=1

max
[
−λ(Pm)

j , 0
]
. (7)

Since an exactly classical MM has vanishing C, the more
C departs from zero the further away from classical the
MM is.

With this procedure we construct the simplex approx-
imation to the MM for a set of 1000 realizations of the
disorder matrix K, showing a histogram of C in Fig. 2(a)
(green). We see that the manifold is never classical,
C & 1, in the disorder realizations we consider. To illus-
trate this visually, for one sample realization we plot the
projections of random pure states on to the metastable
manifold against the expectation values of Pauli opera-
tors on the slow site in Fig. 2(c): we see that many of
these projections fall outside the optimal simplex, and
indication that the MM is not classical. In Fig. 2(e), we
evolve a few metastable states as they converge towards
the stationary state, seeing that some spend time outside
the simplex (but still within the quantum MM).

The quantum nature is apparently robust in this ran-
dom matrix model as suggested by perturbation theory.
To obtain a classical MM, we slow only certain Pauli
operators on the good qubits. For example, we multi-
ply by

√
α only those jump operators that have X or

Y Pauli matrices on the `w = 2 good qubits, but not
those with Z. In the perturbation theory, this results
in only the Z operators on good qubits commuting with
all rapidly relaxing operators in Eq. (3). In this case,
the MM is thus made up of 4 operators: the identity,
the Z operator on each good qubit, and the product of
Z operators on both good qubits. The algorithms of
[53, 54] yield an extremely accurate simplex approxima-
tion to the MM, confirming that it is effectively classical
as shown in Fig. 2(a). This is visualized by projecting
a set of random states onto the slow-mode eigenspace in
Fig. 2(b), locating them well within the simplex. Fur-
ther, as shown in Fig. 2(d), the long-time evolution of a
set of these metastable states (black), or the metastable
phases (blue) remain within the simplex at all times.

Metastable dynamics — Using Eq. (5), we can
calculate the evolution of observables at any time. To
consider generic initial states we choose ρ0 as a random
linear superposition of the full Hilbert space. Figure 3
(full lines) shows the time evolution of observables with
different locality properties (non-trivial Pauli strings of
different lengths k). Note the appearance of plateaus in
the relaxation curves, specifically for the shorter Pauli
strings which have a larger overlap with the matrices Rm
that define the MM.

After a fast transient, dynamics is confined to the MM.
The approximate dynamics is then obtained by project-
ing both the initial state and the observables onto it, and

FIG. 2. (a) Histograms of the classicality C for an en-
semble of 1000 disorder realizations of K, for the quantum
MM case (green, right) and the classical MM case (purple,
left), for l = 6. (b) Simplex that best approximates the
MM in the classical MM case for one disorder realization
(blue dots indicate the extreme metastable phases [55], lines
the edges of the simplex, dashed lines are behind the vol-
ume of the simplex) in which approximately all metastable
states are contained if the MM is classical, in the basis of
Pauli strings with Z Pauli matrices on the slow sites 1 and
6 [Sz1 = Sz00000, S

z
6 = S0000z, S

z
1S

z
6 = Sz0000z in the no-

tation of Eq. (1)]. Dots (purple) are projections of a set
of random initial states onto the MM, plotted according to
the expectation value of the three observables. All states
sampled fall within the simplex, as expected for a classical
MM. (c) Same for the quantum MM case, now in terms of
Pauli strings with a non-trivial Pauli matrix on the slow site
[Sx2 = S0x0000, S

y
2 = S0y0000, S

z
2 = S0z0000]. Projections of

random initial states (green) escape the simplex, as the MM is
quantum (the shaded Bloch sphere). (d,e) Projections of the
time-evolution for long times of the metastable phases (blue
curves) and of a set of random initial states (black curves)
within the MM towards stationarity (red dot), for the classi-
cal MM case (left panel) and quantum MM case (right panel).

solving Eq. (6). The dashed curves in Fig. 3 show the cor-
responding results: the effective dynamics captures the
long-time behavior accurately, showing that metastabil-
ity implies dimensional reduction from the whole Hilbert
space to the MM.

Conclusion — Starting from a random local and
purely dissipative Liouvillian, we have defined a random
matrix model for generic metastability in open quan-
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FIG. 3. Comparison of the exact dynamics (solid lines) with
the dynamics projected onto the MM (dashed lines) for ` = 7,
for qubits with one (left column) and two good (right column)
qubits at two different dissipation rates α = 10−2, 10−5. We
show expectation values of three observables with different lo-
calities, each prepared by a random linear superposition of all
the Pauli matrices of the corresponding locality. Observables
supported by the bad qubits vanish rapidly, and the long-time
dynamics on the good qubits coincide with the effective dy-
namics. Note that for a MM to display, the locality of the
observable has to be smaller or equal to the number of the
good qubits.

tum systems relevant for strongly varying dissipation
timescales in quantum computers. We find that a sepa-
ration of dissipation timescales induces the presence of a
metastable manifold to which initial states relax, before
the evolution to the steady state occurs at much longer
times. If the dissipation on good qubits does not fur-
ther single out certain Pauli operators, we show that the
metastable manifold is generically quantum, while fur-
ther structure can lead to classical manifolds instead.
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SUPPLEMENTAL MATERIAL: Scaling of
eigenvalue cluster width and distance

The perturbation theory employed in the main text
predicts the positions λ(ns, nw) of the eigenvalue clusters
for a size ` of the system and any number of good qubits
`w. The perturbation theory is valid if the eigenvalue
clusters are well separated, in which case the degener-
acy of the eigenvalues λ(ns, nw) is lifted such that the
resulting eigenvalue clusters do not overlap. Since the
number of different eigenvalues grows with system size `
(we consider the case of fixed `w here), and the number
of eigenvalues contained in each cluster grows as well, we
expect that for large sizes the perturbation theory only
works for the best separated clusters, in particular the
MM.
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FIG. 4. Scaling of the position (solid color lines) and width
(errorbars) of eigenvalue clusters for one (`w = 1, left) and
two (`w = 2, right) good qubits and α = 0.01. The width
of the two eigenvalue clusters with largest real parts was ob-
tained by degenerate perturbation theory, diagonalizing the
adjoint Liouvillian in the corresponding degenerate subspace
of the unperturbed problem. Errorbars stem from disorder
averaging over several dozen realizations of K.

To test this, we show results from our degenerate per-
turbation theory in Fig. 4, for one (`w = 1, left panel)
and two (`w = 2, right panel) good qubits as a function
of total system size `. Solid lines show the eigenvalues
λ(ns, nw) of the unperturbed problem, i.e. the centers of
the expected eigenvalue clusters. These generically scale
as 1/` (red dashed lines). The color of the lines encodes
the number of non-identity operators on bad qubits ns,
which is the dominant ingredient for the cluster position,
while the number of nonidentities on good qubits nw only
contributes a finestructure for small α.

The positions of the predicted eigenvalue clusters
are compared to the width of the eigenvalue clusters
[|maxRe(λi)−minRe(λi)|, with eigenvalues λi] after ap-
plying degenerate perturbation theory to lift the degen-
eracy. The width of the first (i.e. with largest real
parts of their eigenvalues) two clusters is shown by red
(ns = 0, nw = 1) and green (ns = 1, nw = 0) errorbars in
Fig. 4, revealing a scaling of the width of the eigenvalue
clusters ∝ 1/`2.

Therefore, we conclude that the eigenvalue clusters
forming the MM remain well separated from the rest of
the spectrum even in the limit of ` → ∞, if the number
of good qubits `w is fixed. This separation persists, be-
cause the width of the eigenvalue clusters decreases faster
with system size compared to the distance to neighboring
clusters.
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