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S1 Datasets and additional Figures

The observational and reanalysis datasets used in this study are shown in Table S1. The single model initial-condition large
ensembles (SMILEs) used in the study are found in Table S2. Figure S1 shows the same Hovmöller from Figure 2 of the
main paper for SST anomalies, rather than relative SST. Figure S2 shows the relationship between the projected change of the
mean-state SST gradient and the projected change in EP and CP event amplitude.5

S2 Supplementary Methods

S2.1 Choice of features

In this study we tested five sets of input features (Table S3). First we use only the three niño indices 1.2, 3 and 4 averaged
over austral summer (DJF), which is the peak ENSO season. We find that the classifier can already perform reasonably well
using just this limited amount of information. However, the precision and recall scores are still only 0.44/0.54 and 0.68/0.6510
for CP and EP events respectively. Next we add temporal information (monthly information from October to March), which
we hypothesise should help to better classify events as CP and EP events evolve differently in the temporal domain. We find
that this improves the overall classifier performance, especially when considering the CP and EP events, which are now more
precisely classified, with higher recall scores as well. We next add additional spatial information by splitting the niño 3 and
4 regions into halves (east and west). We perform this split at the niño3.4 boundary. When considering the Test2 scores this15
slightly improves the classifier performance. Given more features may be useful when later applying the algorithm to climate
models where the anomalies may not occur in exactly the same place in these models we decide to keep these additional
features. We next add more temporal information as Yu and Fang (2018) suggest that including the boreal summer prior to
the event may improve classification as well as another feature in the north Subtropical region as in Tseng et al. (2022). We
find that the inclusion of more temporal information improves the classification, however the north Subtropical region slightly20
degrades it when considering the Test2 scores. Hence we choose to include the addition of extra temporal information in the
final classifier, but not the north Subtropical region. We also tested a classifier that had all grid points between 160oE, 90oW,
15oS and 15oN, where all data was regridded to a 1x1 spatial grid first (full region). In this case the scores are low. We note
that this result is dependent on the classifier used. We find that the nearest neighbour classifier performs poorly, which is likely
due to its difficulty to perform when the data has too many dimensions. The neural network also performs poorly, likely due25
to too much redundant information, and over-fitting. This is an example of how ’fat data’, where there are too many features,
with quite a low number of events can cause an algorithm to fail. We note that a random forest algorithm, which is built to
avoid over-fitting, performs well, but still not as well as our final classifier.

S2.2 Choice of algorithm

First we identified all standard algorithms used for supervised learning in python (Table S4) and tested their performance. In30
this case we train the classifier on all datasets bar HadISST, which we hold aside for testing. We additionally tested ensemble
classifiers that used a combination of the standard algorithms (Table S4). We exclude algorithms 3, 6, and 7 due to their poor
precision or recall scores for either CP or EP events. We exclude (8) QDA is it is not well suited for classification when the
classes are unbalanced. We choose to keep (9) random forest over (4) decision tress as a random forest can better generalise
over data than a decision tree. The final classifier used in this study is an ensemble of algorithms 1,5 & 9 with soft voting. This35
algorithm performs best when considering all scores, although we note that many of the other classifiers also perform well for
our dataset.

Within the final classifier we optimised the three input algorithms to find the best possible parameters for performance. As
a last step we test whether a two-step classifier would perform better than a one-step classifier. The two steps for the two-step
classifier are as follows:40

1. Train the algorithm to classify into three categories LN, NE and EN (all El Niño events)

2. Then re classify EN into EL and CP
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Theoretically this could help the classifier perform due to the low numbers of EL and CP events. However, we find that this
does not improve our classifier (Table S4) and as such choose to use the simpler one-step classifier for the rest of this study.

S3 Shifted niño regions45

Given climate models have known ENSO biases, particularly in the location of SST anomalies along the equator, we addi-
tionally classify by shifting the longitudes of the niño regions. This shift is defined as the difference in location between the
maximum variability between 5N and 5S in the Pacific Ocean in the observations and the maximum variability in each individ-
ual SMILE (Table S5). We find that this does not significantly change the results in the main text except for CSIRO frequency
where EP El Niños and La Niñas are now more realistically represented. The spatial patterns for each model (Figure S3) and50
evolution of SST anomalies (Figure S4) are very similar when applying this shift. This method additionally does not change
the results for ENSO frequency (Figure S5) or amplitude (Figure S6).

S4 Extreme El Niños

S4.1 Method

We additionally investigate Extreme El Niño events, by including the strongest events in the observational period as their own55
class strong El Niños (ST). The years defined as ST El Niños are 1957,1965, 1972, 1982, 1987,1997 and 2015. We choose
only to include strong EP events in this category. We use the same ensemble classifier algorithm to classify these events. The
algorithm performs well when the original training and evaluation are used (Table S6). However, this algorithm performs less
well when we test the sensitivity to this construction. In this case the precision and recall of is significantly reduced as compared
to the original classifier used in the main text (Table 3 & S6), likely due to the reduction of the number of events in the EP class60
This means that the classifier is less well constrained when including ST events. Because of this we used the better constrained
algorithm that does not include ST events to present the main finding of this study and discuss this additional algorithm for ST
here in the Supplementary.

We then apply the classifier that includes extreme El Niños (ST) to the same set of SMILEs and compare the results for the
EP and ST classes from this new classification. We find that the evolution of SST anomalies on the equator is similar for EP65
and ST events, however the ST events have much larger SST anomalies demonstrating that this classifier is now splitting the
original set of EP events into weaker and stronger subsets (Figure S7).

S4.2 Results

When considering projections of amplitude and frequency (Figure S8) we find that the CESM-LE and CanESM5 amplitude
increases occur for only the EP events, but that the CanESM2 and GFDL-ESM2M decreases occur for both types of El Niño.70
For frequency we find that the projected changes are confined to the ST events for CESM-LE and GFDL-ESM2M, but occur
only for the EP events for CanESM5. Last, the SST and precipitation projected changes are similar for EP and ST events (Figure
S9), with the changes consistently stronger for the extreme El Niños. These results are in conflict with previous work that finds
an increase extreme EP events in future (Cai et al., 2014, 2018, 2021). However, based on limitations of our classification due
to the small number of ST events available to train the classifier as well as clear model differences found, this warrants further75
investigation in future work.
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Table S1. Input observational datasets used in this study.

dataset years reference
AMSREv07 2002-2010 Systems (2014)

COBEv1 1896-2019 Ishii et al. (2005)
COBESST2 1896-2018 Hirahara et al. (2014)

HadISST 1896-2018 Rayner et al. (2003)
ERSSTv3b 1896-2018 Smith et al. (2010)
ERSSTv4 1896-2018 Huang et al. (2015)
ERSSTv5 1896-2019 Huang et al. (2017)
GECCO2 1948-2016 Köhl (2015)
GODAS 1980-2019 Behringer and Xue (2004)
kaplan 1896-2019 Kaplan et al. (1998)
OISST 1982-2018 Reynolds et al. (2007)
ORAS4 1958-2016 Balmaseda et al. (2012)

ORAs5 (5 ensemble members) 1979-2017 Zuo et al. (2019, 2017)
soda3.11.2 1980-2015 Carton et al. (2018)
soda3.12.2 1980-2017 Carton et al. (2018)
soda3.4.2 1980-2018 Carton et al. (2018)
soda3.6.1 1980-2008 Carton et al. (2018)
soda3.7.2 1980-2016 Carton et al. (2018)

Table S2. SMILEs used in this study, the length of their historical period, the forcing scenario used, and the reference for the dataset. We
note that the CMIP5 SMILEs are included in the Multi Model Large Ensemble Archive (MMLEA Deser et al., 2020)

SMILE historical period scenario ensemble size reference
MPI-GE 1850-2005 RCP8.5 100 Maher et al. (2019)

CESM-LE 1920-2005 RCP8.5 40 Kay et al. (2015)
CanESM2 1950-2020 RCP8.5 50 Kirchmeier-Young et al. (2017); Kushner et al. (2018)

GFDL-ESM2M 1950-2005 RCP8.5 30 Rodgers et al. (2015)
CSIRO 1850-2005 RCP8.5 30 Jeffrey et al. (2012)

CanESM5 1850-2014 SSP370 23 Swart et al. (2019)
IPSL-CM6A 1850-2014 n/a 26 Boucher et al. (2020)
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Figure S1. Hovmöller of SST along the equator in the Pacific Ocean for composites of EP and CP El Niños, and EP minus CP El Niños (top,
middle and bottom row respectively). Shown for HadISST observations (left column) and each individual SMILE (in order of appearance;
MPI-GE, CESM-LE, CanESM2, GFDL-ESM2M, CSIRO, CanESM5 and IPSL-CM6A). SST is averaged between 5N and 5S and shown for
August to April. SMILE data has the forced response (ensemble mean) removed prior to calculation, HadISST is detrended using a second
order polynomial then each months average is removed. The time period used is all of the historical, which is shown for the observations in
Table S1 and SMILEs in Table S2.
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Table S4. Scores for different algorithms tested. Scores are defined in section 2.2 of the main text.

Algorithm Accuracy CVS P-CP P-EP P-LN P-NE R-CP R-EP R-LN R-NE
(1) NearestNeighbours 0.92 0.93 0.92 1 0.95 0.89 0.92 0.95 0.73 0.98

(2) LinearSVM 0.85 0.86 0.8 0.95 1 0.8 0.62 0.9 0.58 0.98
(3) RBFSVM 0.54 0.53 1 0 0 0.53 0.15 0 0 1

(4) DecisionTree 0.83 0.8 0.8 0.94 1 0.78 0.62 0.8 0.62 0.97
(5) NeuralNet 0.94 0.92 0.92 1 1 0.91 0.92 1 0.81 0.98
(6) AdaBoost 0.52 0.55 0.25 0 0.78 0.67 0.77 0 0.27 0.73

(7) NaiveBayes 0.77 0.74 0.5 0.75 0.83 0.86 0.85 0.75 0.77 0.77
(8) QDA 0.84 0.82 1 1 1 0.76 0.85 0.55 0.65 1

(9) RandomForest 0.79 0.8 0.78 0.73 1 0.77 0.53 0.8 0.57 0.92
Hard Vote (1,5,9) 0.95 0.96 1 1 1 0.91 0.92 1 0.81 1

Hard Vote (1,2,5,9) 0.95 0.94 1 1 1 0.91 0.92 1 0.81 1
Hard Vote (1,2,3,5,7,8,9) 0.91 0.94 1 1 1 0.85 0.85 0.95 0.69 1
2-step soft vote (1,5,9) 0.95 n/a 1 0.91 1 0.94 0.92 1 0.85 0.98

FINAL Soft vote (1,5,9) 0.96 0.95 1 1 1 0.93 0.92 1 0.85 1

Table S5. Frequency of events (as a percentage) in the historical period for observations (HadISST) and the SMILEs as well as the correlation
between EP and CP patterns shown for the shifted center of variability. The mean frequency and correlation across each ensemble is shown
with the minimum and maximum in brackets. The time period used is all of the historical, which is shown for the observations in Table S1
and SMILEs in Table S2.

Model EP no ev shift CP no ev shift LN no ev shift EP/CP shift-corr shift longitude
HadISST 16.1 11.2 21.0 0.85 na
MPI-GE 15.7 (7.1/20) 5.8 (0.6/12.9) 17.5 (7.1/23.9) 0.75 (0.29/0.89) -11

CESM-LE 22.4 (15.3/31.8) 6.1 (2.4/12.9) 23.4 (17.6/35.3) 0.75 (0.45/0.89) -8
CanESM2 19.1 (12.9/27.1) 7.3 (0/15.7) 21.9 (14.3/28.6) 0.75(0.35/0.88) -11

GFDL-ESM2M 20.3 (12.7/27.3) 14.2 (7.3/21.8) 26.5 (14.5/36.4) 0.68 (0.53/0.84) -12
CSIRO 14.9 (10.3/21.3) 6.6 (1.9/11.6) 17.0 (10.3/21.9) 0.78 (0.54/0.90) -26

CanESM5 9.0 (4.3/12.8) 4.7 (1.8/7.9) 15.8 (11.0/22.0) 0.78 (0.63/0.89) -10
IPSL-CM6A 18.7 (14.6/22.6) 3.4 (0.6/7.3) 20 (15.2/25) 0.67 (0.16/0.86) -11

Table S6. Minimum, mean and maximum scores for the ensemble classifier. Test 1 uses all available data, with HadISST kept aside for
testing. Test 2 uses the longer datasets, ERSST, COBE, Kaplan and HadISST for training and testing. The data is split so that the augmented
events must all occur in the same section of the data. To complete this we use the python function train test split. 10 splits are manually
chosen to ensure that they sample events from across the time-dimension and have a reasonable amount of each type of event.

Test Min/Max score Accuracy clf P-CP P-EP P-LN P-NE P-ST R-CP R-EP R-LN R-NE R-ST
Test 1 0.96 0.95 1 1 1 0.93 1 0.92 1 0.85 1 1

Test 2 w/check Min 0.65 0.96 0.5 0.26 0.46 0.67 0.5 0.43 0.29 0.43 0.74 0.21
Mean 0.72 0.97 0.79 0.4 0.79 0.76 0.77 0.66 0.56 0.69 0.82 0.46
Max 0.82 0.98 0.95 0.61 0.97 0.85 1 0.95 0.89 0.96 0.96 0.62
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Figure S3. SST pattern for composites of EP, CP, and LN events (left, middle and right columns respectively) for the shifted centers of
varaiblity. Shown for HadISST observations (top row) and each individual SMILE (in order of appearance; MPI-GE, CESM-LE, CanESM2,
GFDL-ESM2M, CSIRO, CanESM5 and IPSL-CM6A). SST pattern is shown for the November, December, January average. SMILE data
has the forced response (ensemble mean) removed prior to calculation, HadISST is detrended using a second order polynomial then each
months average is removed. The time period used is all of the historical, which is shown for the observations in Table S1 and SMILEs in
Table S4.
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Figure S4. Hovmöller of relative SST along the equator in the Pacific Ocean for composites of EP, CP El Niños, and EP minus CP El Niños
(top, middle and bottom row respectively) for the shifted centers of variability. Shown for HadISST observations (left column) and each
individual SMILE (in order of appearance; MPI-GE, CESM-LE, CanESM2, GFDL-ESM2M, CSIRO, CanESM5 and IPSL-CM6A). SST
is averaged between 5N and 5S and shown for August to April. SMILE data has the forced response (ensemble mean) removed prior to
calculation, HadISST is detrended using a second order polynomial then each months average is removed. The time period used is all of the
historical, which is shown for the observations in Table S1 and SMILEs in Table S4. Relative SST is calculated by removing the average
SST between 120E and 280E individually for each month.
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Figure S5. ENSO frequency in each SMILE for EP, CP, and LN events (left, middle and right columns respectively) for the shifted centers
of variability. lack line shows the ensemble mean for each year, red line shows the ensemble maximum, the blue line the ensemble minimum,
the purple line is HadISST observations, and the green line is the first ensemble member. Frequency is calculated as the number of events
in a single ensemble member per 30 years, taken as a running calculation along the time-series. PDFs show the distribution of ensemble
members for the entire time-series. Black dots on the x-axis demonstrate when the signal (current ensemble mean minus the ensemble mean
at the beginning of the time-series) is greater than the noise (standard deviation taken across the ensemble). Red dots show when the signal
is 1.645 times the noise, while magenta dots show the same when the signal is greater than 2 times the noise. These thresholds correspond to
the likely, very likely and extremely likely ranges. Maximum (red), mean (black) and minimum (blue) trends across the individual ensemble
members are shown in text at the top right of each panel. We note that the trends are calculated over the entirety of the simulation length for
each SMILE. This means that due to the different time periods covered, trends are not directly comparable between different SMILEs.
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Figure S6. ENSO amplitude in each SMILE for EP, CP and LN events (left, middle and right columns respectively) for the shifted centers of
variability. Black line shows the ensemble mean for each year, red line shows the ensemble maximum, the blue line the ensemble minimum,
the purple line is HadISST observations, and the green line is the first ensemble member. Amplitude is calculated as the November, December,
January mean for the region 160E to 80W between 5N and 5S after the ensemble mean has been removed for each event in a single ensemble
member taken as a running calculation along the time-series for 30-year periods. PDFs show the distribution of ensemble members for the
entire time-series. Black dots on the x-axis demonstrate when the signal (current ensemble mean minus the ensemble mean at the beginning
of the time-series) is greater than the noise (standard deviation taken across the ensemble). Red dots show when the signal is 1.645 times the
noise, while magenta dots show the same when the signal is greater than 2 times the noise. These thresholds correspond to the likely, very
likely and extremely likely ranges. Maximum (red), mean (black) and minimum (blue) trends across the individual ensemble members are
shown in text at the top right of each panel. We note that the trends are calculated over the entirety of the simulation length for each SMILE.
This means that due to the different time periods covered, trends are not directly comparable between different SMILEs.
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Figure S7. Hovmöller of average SST along the equator in the Pacific Ocean for composites of EP, and ST events (top and bottom row
respectively). Shown for HadISST observations (left column) and each individual SMILE (in order of appearance; MPI-GE, CESM-LE,
CanESM2, GFDL-ESM2M, CSIRO, CanESM5 and IPSL-CM6A). SST is averaged between 5N and 5S and shown for August to April.
SMILE data has the forced response (ensemble mean) removed prior to calculation, HadISST is detrended using a second order polynomial
then each months average is removed. The time period used is all of the historical, which is shown for the observations in Table S1 and
SMILEs in Table S2.
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Figure S8. ENSO amplitude and frequency in each SMILE for EP and ST events. Black line shows the ensemble mean for each year, red line
shows the ensemble maximum, the blue line the ensemble minimum, the purple line is HadISST observations, and the green line is the first
ensemble member. Amplitude is calculated as the November, December, January mean for the region 160E to 80W between 5N and 5S after
the ensemble mean has been removed for each event in a single ensemble member taken as a running calculation along the time-series for
30-year periods. Frequency is calculated as the number of events in a single ensemble member per 30 years, taken as a running calculation
along the time-series. PDFs show the distribution of ensemble members for the entire time-series. Black dots on the x-axis demonstrate when
the signal (current ensemble mean minus the ensemble mean at the beginning of the time-series) is greater than the noise (standard deviation
taken across the ensemble). Red dots show when the signal is 1.645 times the noise, while magenta dots show the same when the signal
is greater than 2 times the noise. These thresholds correspond to the likely, very likely and extremely likely ranges. Maximum (red), mean
(black) and minimum (blue) trends across the individual ensemble members are shown in text at the top right of each panel. We note that the
trends are calculated over the entirety of the simulation length for each SMILE. This means that due to the different time periods covered,
trends are not directly comparable between different SMILEs.
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Figure S9. Change in SST and precipitation patterns (left and right columns respectively) in each SMILE in the period 2050-2099 as
compared to 1950-1999 for EP and ST events. Shown for each individual SMILE (in order of appearance; MPI-GE, CESM-LE, CanESM2,
GFDL-ESM2M, CanESM5 and IPSL-CM5). SST and precipitation patterns are calculated as the November, December, January average and
composited for each event type over each time-period. SMILE data has the forced response (ensemble mean) removed prior to calculation.
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