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ABSTRACT
We consider the equity and fairness of curricula derived from
Knowledge Tracing models. We begin by defining a unify-
ing notion of an equitable tutoring system as a system that
achieves maximum possible knowledge in minimal time for
each student interacting with it. Realizing perfect equity re-
quires tutoring systems that can provide individualized cur-
ricula per student. In particular, we investigate the design of
equitable tutoring systems that derive their curricula from
Knowledge Tracing models. We first show that many ex-
isting models, including classical Bayesian Knowledge Trac-
ing (BKT) and Deep Knowledge Tracing (DKT), and their
derived curricula can fall short of achieving equitable tu-
toring. To overcome this issue, we then propose a novel
model, Bayesian-Bayesian Knowledge Tracing (B2KT), that
naturally enables online individualization and, thereby, more
equitable tutoring. We demonstrate that curricula derived
from our model are more effective and equitable than those
derived from classical BKT models. Furthermore, we high-
light that improving models with a focus on the fairness of
next-step predictions might be insufficient to develop equi-
table tutoring systems.

Keywords
equity & fairness, Bayesian Knowledge Tracing, intelligent
tutoring systems

1. INTRODUCTION
In recent years Massive Open Online Courses (MOOCs) and
online educational platforms have gained significant impor-
tance. They hold the opportunity of providing education at
scale and making education accessible to a larger part of the
world’s population. To facilitate learning in online educa-
tion and enable customized learning paths for all students,
intelligent tutoring systems can be employed while limiting
the amount of manual work necessary for each student [11].

In that context, moving education from an offline setting

to an online setting has the potential to promote Inclusion,
Diversity, Equity, and Accessibility (IDEA). In particular,
by reducing personnel efforts for tutoring, there is the op-
portunity to include students with diverse backgrounds and
skills, and, importantly, to support their learning equitably.
To achieve this, an intelligent tutoring system must be able
to adapt to the specific characteristics of each student.

While individualized tutoring has been studied in the com-
munity for many years, we consider individualization with a
focus on equitable and fair tutoring in this paper. We start
by providing a unifying definition of an equitable tutoring
system. Our definition is based on the ethical principles
of beneficence (“do the best”) and non-maleficence (“do not
harm”) which are commonly adopted in bioethics and medi-
cal applications [1] and strongly related to recent work in the
educational data mining field [3]. Concretely, the principle of
beneficence dictates that we should provide tutoring which
maximizes the achieved knowledge. The principle of non-
maleficence dictates that this maximal knowledge should be
achieved while minimizing a student’s efforts.

In this paper, we particularly focus on how Bayesian Knowl-
edge Tracing (BKT) [2] can be modified to better realize
these ethical principles. To this end, we propose the Bayesian-
Bayesian Knowledge Tracing (B2KT) model and demon-
strate its advantages for equitable tutoring in several ex-
periments. Furthermore, we investigate the relation of the
commonly considered AUC score concerning the derived tu-
toring policies, finding that even if a BKT model appears
fair in terms of the AUC score, the derived tutoring policies
can be inequitable. This observation suggests that evaluat-
ing models concerning their AUC score can be insufficient to
ensure equitable tutoring and that improving models with
the sole focus on AUC might not result in more equitable
tutoring.

In summary, we make the following contributions:

• We propose a unifying definition of equitable tutoring
motivated by the ethical principles of beneficence and
non-maleficence.

• We propose the (B2KT) which allows for effective indi-
vidualization and demonstrate its benefits concerning
equitable tutoring.

• We highlight that focusing on equity in terms of AUC
can be insufficient to ensure equitable tutoring in terms
of our definition.
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2. RELATED WORK

Fairness in online education and BKT. Several works
have considered fairness in data-driven educational systems
and intelligent tutoring, e.g., [7, 3, 17, 8]. In [7], the au-
thors discussed implications of using data-driven predictive
models for supporting education on fairness. They identified
sources of bias and discrimination in “the process of devel-
oping and deploying these systems”. Relevant to promoting
IDEA, they discussed several high-level possibilities to im-
prove fairness of systems in the “action step”, e.g., through
modifying predictions of models for groups of students with
different characteristics. It remains open how to opera-
tionalize such an approach in cases in which the required
knowledge of the group membership is not available in the
first place. In [17], it was investigated whether different
data sources can provide helpful information to predict stu-
dents’ success in education. They found that different data
sources (institutional data and learning management system
data) can help to make better predictions but have different
characteristics in whether they over- or underestimate stu-
dents’ success for historically disadvantaged subpopulations
of students. The authors of [8] investigated fairness trade-
offs when students’ successes are predicted from university
administrative records and identified gender and racial bias
in some of the considered fairness measures. Through post-
hoc adjustments they investigated how this problem can be
alleviated and which trade-offs arise. [3] studied fairness in
the context of BKT. In particular, they showed that tutor-
ing policies basing on BKT models can be inequitable when
these models are inaccurate and that such inaccurate models
can stem from fitting BKT models to populations of students
or using models based on incorrect assumptions. They con-
sider the equity-gap as a measure of unfairness, which is the
difference between the percentage of fast and slow students
mastering a skill.

Individualization in BKT. Several papers have studied in-
dividualization of BKT models per student, e.g., [9, 10, 18].
In [10] the prior per student model was introduced in which
a student-specific parameter characterizing the students’ in-
dividual knowledge is used. The parameters are fitted using
an EM procedure. Importantly, the parameters for each
student are fixed during inference by providing the student’
identities while in our B2KT model they are “re-weighted”
according to the evidence from interaction. Another exam-
ple is [18], which considered individualization through defin-
ing student and skill specific parameters which are fitted
through gradient descent. The models show tangible im-
provements in prediction performance of unseen students.

Instructional policies. A key necessity for achieving eq-
uity according to our definition is using instructional policies
which stop practicing a skill at the right time. This problem
has for instance been considered in different contexts in [6,
12]. In [6], a stopping condition based on predictive stabil-
ity, i.e., whether predictions about a student solving some
task correctly are stable, was proposed. The resulting poli-
cies are particularly useful for student models which allow
forgetting and could be combined with our proposed B2KT
model. Further related work has investigated approaches
for leveraging deep generative models for creating policies
to quickly assess students’ knowledge [16] and using rein-
forcement learning for optimizing tutoring policies [15, 5].

3. BACKGROUND & NOTATION
In this section, we introduce the necessary background and
notation for the remainder of this paper.

3.1 Bayesian Knowledge Tracing
Bayesian knowledge tracing (BKT) [2] is a model character-
izing the skill acquisition process of students. For a single
skill, it can be understood as a standard hidden Markov
model (HMM) in which the binary latent state encodes the
mastery of the skill, and the observations correspond to bi-
nary random variables indicating whether a practicing op-
portunity of the skill at a specific time was solved correctly
or not. Upon practicing the skill, the student acquires the
skill with probability p(T ) if they have not already mastered
the skill. Once a skill is mastered, it remains mastered, i.e.,
there is no forgetting. If a student has mastered the skill
practiced by an exercise, they solve this exercise correctly
with probability 1 − p(S), where p(S) is the probability of
making a mistake. If a student has not mastered the skill, it
guesses the correct answer with probability p(G). Before any
interaction with the tutoring system, a student has already
mastered the skill with probability p(L0).

In settings with multiple skills, these skills are often assumed
to be acquired independently. That is, if there are K skills,
the skill acquisition process is modeled by K independent
HMMs.

3.2 Deep Knowledge Tracing
In deep knowledge tracing [14] the skill acquisition process
is not modeled by an HMM as above but rather implic-
itly modeled through a recurrent neural network (RNN).
In particular, an RNN is trained to predict whether a stu-
dent will answer the next exercise correctly based on input
consisting of which exercises were practiced in the past and
whether these practicing opportunities were solved success-
fully. There is typically no explicit representation of the
knowledge state of students in DKT. In the context of DKT
previous work has mainly looked into so-called Expectimax
policies which select exercises to practice in order to maxi-
mize the average probability that the next exercise will be
solved correctly. These policies can be computed for differ-
ent lookaheads, e.g., for a one-step look-ahead in a greedy
and myopic way or for longer-lookaheads using techniques
for approximate planning or using exhaustive search.

3.3 Notation
We consider the interaction of students s ∈ S with an intel-
ligent tutoring system. The interaction history up to time t
is collected in a data set Dst = {(z1, c1), (z2, c2), . . . , (zt, ct)},
where zt′ ∈ Z is the skill practiced through an exercise at
time t′, ct′ ∈ {0, 1} is an indicator of whether the exer-
cise was solved correctly, and Z is the set of skills. In the
context of BKT, we refer to the random variables (RVs) in-
dicating whether skill i ∈ Z is mastered at time t as Zit and
to the RVs indicating whether an exercise practicing that
skill would be solved correctly as Cit . Sometimes we use an
additional superscript s to indicate the student the random
variables correspond to. We use upper-case terms like Zit
to denote RVs and their lower-case counterparts like zit to
denote particular instantiations of these RVs.



4. OPERATIONALIZING EQUITY
In this section, we provide a definition of equity in intelli-
gent tutoring and discuss its operationalization for promot-
ing IDEA.

4.1 Setting
We consider a tutoring setting in which a total of K sills
ought to be taught. These skills are taught by an intelli-
gent tutoring system that employs a tutoring policy π : H →
I ∪ {>}. This policy maps histories h ∈ H consisting of
(previous) observations of a student’s learning process to an
exercise e ∈ I to be practiced next or to a stop-action >,
which ends the teaching process. We collect all tutoring
policies π of the above form into the set Π.

We assume interaction with a set of students S. The stu-
dents can have different characteristics in terms of their
learning behavior. That is, if the learning behavior of the
students can be characterized by BKT models, the corre-
sponding parameters p(L0), p(S), p(G) and P (T ) can differ
for different students. Every tutoring policy π results in an
expected stopping time T s(π), i.e., the expected time of ex-
ecuting the stop action, and an expected knowledge Ls(π)
acquired by the end of the teaching process, i.e., Ls(π) is the
expected number of mastered skills when the stop action is
executed.

For defining a notion of equity in this setting, we turn to the
ethical principles of beneficence and non-maleficence. We
understand them to translate into the objective of maxi-
mizing a student’s knowledge (“do the best”) using as little
of the student’s resources as possible (“do not harm”), i.e.,
performing a minimal number of exercises:

Definition 1. Consider a tutoring system employing a tutor-
ing policy π ∈ Π. The tutoring policy π is equitable for
student s if and only if

T s(π) = min
π′∈Π,Ls(π′)=K

T s(π′) and Ls(π) = K,

where K is the total number of skills. A tutoring system
is equitable if its tutoring policy is equitable for all students
s ∈ S.

Thus, informally, a tutoring system is equitable if it can
teach all K skills in the minimal possible amount of time to
any student. Please note that our notion of equity is strongly
related to that introduced in [3] (cf. discussion below).

In the above definition, we assume that all students can
master all K skills.1 Importantly, a tutoring system can
only be equitable if it is adaptive to the students which are
interacting with it. In particular, it has to individualize
the assignment of exercises and needs to carefully select the
”stop action”, in order to achieve equity. The above defini-
tion describes an idealized notion of equity which in general
cannot be achieved as the tutoring policy would have to be

1Otherwise, if a student existed that was not able to ac-
quire all skills, no tutoring system would be equitable ac-
cording to Definition 1. Our definition can be generalized
in a straightforward manner to account for an individual
student’s maximal achievable knowledge.

informed by a kind of “oracle” in order to teach using the
optimal policy within Π right from the beginning.

Nevertheless, we can compare tutoring policies π in the spirit
of the above definition. In particular, given two tutoring
policies π and π′ which both teach the same number of skills,
we consider the policy π to be more equitable as compared
to π′ if for all students s ∈ S it holds that T s(π) ≤ T s(π′).

We note that our notion of equity is strongly related to that
introduced in [3]. In [3], the authors “assume that an equi-
table outcome is when students from different demographics
reach the same level of knowledge after receiving instruc-
tion”. As such, there is no need to reach this level of knowl-
edge fast; hence this basic notion of equity is in principle
trivial to achieve by providing vast amounts of exercises (as
also noted by the authors of [3]). The desideratum of achiev-
ing knowledge fast is later added on top of their notion of
equity whereas in our case it is a fundamental constituent in
the first place. Furthermore, our interest extends to down-
stream implications of such a definition of equity, namely
the individualization of knowledge tracing.

4.2 Theoretical Implications
Our definition of equity immediately leads to the (probably
obvious) but important observation, that equity of a tutor-
ing system can in general only be achieved by individualiza-
tion:

Observation 1. A tutoring system for a population of stu-
dents with different learning characteristics can only be eq-
uitable if its tutoring policy is adaptive to the students.

Thus, we note that if the tutoring policy is derived deter-
ministically from a non-adpative model of the students, the
tutoring system will in general not be equitable.

Furthermore, as already mentioned, our definition of equity
is in general impossible to achieve. In particular, achieving
equity would require basing a policy on rich side informa-
tion in order to employ an optimal tutoring policy for any
particular student right from the beginning. Such side in-
formation might not be available or insufficient to determine
the optimal policy.

4.3 Operationalization
In practice, tutoring policies are often either simple fixed
strategies, e.g., repeating exercising a skill until a certain
number of consecutive exercises related to that skill were
solved successfully, or derived from a model, e.g., a BKT
model, such that each knowledge component is repeatedly
exercised until it is mastered with a certain probability.

Tutoring policies based on incorrect or non-adaptive models
can result in a student not acquiring all skills or suggest
to perform too many practicing opportunities. Thus the
following two general directions are important for building
equitable tutoring systems:

1. Using side information. To start the interaction with
a student as effectively as possible, any available side
information about a student should be used to indi-
vidualize the underlying models. For instance, in the



Zi
0

Ci
0

Zi
1

Ci
1

Zi
2

Ci
2

Zi
3

Ci
3

· · ·

L0 T

S G

∀1 ≤ i ≤ K

Figure 1: Representation of Bayesian-Bayesian Knowledge
Tracing as a probabilistic graphical model. The acquisition
and application of K skills is controlled by global parameters
p(L0), p(S), p(G), and p(T ), i.e., they apply to all K skills.

context of RNN based DKT models, the side informa-
tion could be used to predict the initial hidden states
of the RNNs before the interaction with the student
starts. In the context of classical BKT models, the
side information could be used to make an initial guess
about the key parameters of the model (initial knowl-
edge, transition, slip and guess probabilities). Unfortu-
nately, we are not aware of publicly available datasets
which come with such side information and therefore
it is difficult to develop such approaches.

2. Online adaptation. Even when using side information,
a model is likely not perfectly individualized to all stu-
dents it encounters. To further adjust the models in
such cases, online adaption of the models during in-
teraction seems promising. This can for instance be
operationalized by training models for different sub-
populations of students and during usage decide on
which model is best fitted for a particular student.
An alternative approach, which we propose in this pa-
per, is a Bayesian BKT model, which performs pos-
terior parameter inference about students’ properties
and leverages the results for further predictions.

5. BAYESIAN-BAYESIAN KNOWLEDGE
TRACING

As outlined in the previous section, an equitable tutoring
system must employ policies that are adaptive to students’
properties. As these properties might not be known before
actually interacting with a student, online adaption during
interaction is important. To this end, we propose a Bayesian
variant of the classical BKT model from which individual-
ized policies can be derived, cf. Figure 1.

In particular, we assume that each student s has its own
learning dynamics, described by student-specific parame-
ters θs. If the learning dynamics can be described using
a BKT model, which we assume in the following, θs =
(p(Ls0), p(T s), p(Ss), p(Gs)). We assume these learning dy-
namics to apply for the acquisition of all skills, i.e., they are
global parameters of a student. If we knew these parameters
for a student, we could use them in a classical BKT model
and would likely observe good tutoring performance. How-

ever, in practice, we don’t know these parameters and need
to infer them. To this end, we take a Bayesian approach.
Therefore, we assume a set of possible parameters Θ such
that θs ∈ Θ and a prior distribution p0(θs). Based on t ob-
servations of a student practicing exercises collected in data
set Dt, we can compute the probability that a student has
mastered a specific skill and base tutoring policies thereon.
Note that as we don’t know θs, this requires marginalizing
out the (unknown) parameters θs. In this way the different
possible parameters and their influence for predicting the
knowledge state get re-weighted according to the available
data. In particular, we need to compute

p(Zs,it | Dt) =

∫
θ∈Θ

p(Zs,it | θ,Dt)︸ ︷︷ ︸
=:(#1)

p(θ | Dt)︸ ︷︷ ︸
=:(#2)

dθ, (1)

where Zs,it is a random variable indicating whether skill i
is mastered at time t by student s. For only a few possible
parameters θ, the above equation can be solved exactly by
enumeration and by observing that both terms (#1) and
(#2) can be computed efficiently by leveraging the forward
algorithm through the following recursion:

αθ0(1) = p(Zs,i0 = 1 | θ) = p(L0)

αθ0(0) = p(Zs,i0 = 0 | θ) = 1− p(L0)

αθt+1(l) = p(Zs,it+1 = l, cit+1) =
∑
z
s,i
t

p(Zs,it+1 = l, Zs,it = zs,it , cit+1)

=
∑
z
s,i
t

p(cit+1 | Zs,it+1 = l)p(Zs,it+1 = l | Zs,it = zs,it )αt(z
s,i
t )

where cit collects all observations with respect to practicing
the ith skill up to time t, and cit′ is the t′th entry of cit. Then

(#1) = p(Zs,it = 1 | θ,Dt) =
αθt (1)

αθt (0) + αθt (1)
, and

(#2) = p(Θ = θ | Dt) =
p0(θ) · (αθt (0) + αθt (1))∑

θ′∈Θ p0(θ′) · (αθ′t (0) + αθ
′
t (1))

.

If Θ is large/continuous MCMC-techniques can be used to
approximate Equation (1).

In our experiments, we mainly consider a concrete instanti-
ation of our proposed model in which we consider the learn-
ing rate to be unknown. This is motivated by previous work
which has identified the learning rate as a key parameter for
improving BKT based models in terms of AUC [18].

Advantages of B2KT . Through posterior parameter infer-
ence based on observed evidence, the proposed model can
often yield (approximately) equitable tutoring policies. In
contrast, classical BKT models cannot adjust to the stu-
dents’ properties, possibly resulting in inequitable policies.

Furthermore, Bayesian treatment of the parameters can en-
able us to leverage ideas from active learning to actively seek
information about students with the goal of teaching more
effectively later. This could be a clear advantage over other
approaches for individualization, e.g., those using EM algo-
rithms — in such a case it is not obvious how to actively seek
information about a students’ parameters. We did not ex-
plore this idea in this paper but consider this as a promising
direction for future work.



6. EXPERIMENTS
In this section, we compare tutoring policies derived from
B2KT, BKT, and DKT models in terms of equity.

6.1 Experimental Setups
In all presented results we denote the average stopping time
of a policy for a population of students by Tstop and the
average number of acquired skills by % skills.

Curricula. We consider the following curricula:

• Threshold(τ): These curricula are based on knowl-
edge tracing algorithms which allow computing the
posterior probability of skill mastery. In particular,
these curricula repeatedly exercise a skill until it is
mastered with a probability of at least τ .

• Expectimax(1): These curricula are derived from DKT
models which do not enable us to compute a posterior
probability of skill mastery. Skills that maximize the
average probability that a practicing opportunity for
a randomly selected skill at the next step would be
solved correctly are practiced. The stop action is in-
voked when the predicted probabilities change by less
than a threshold from one step to the next.

Models. We consider the following models:

• BKT: the classical BKT models with fixed parameters.

• B2KT: the proposed Bayesian BKT model.

• DKT: deep knowledge tracing models [14] based on
the implementation provided by [4].

6.2 Experimental Results
Students with different learning behaviors. We study
the equity of tutoring policies when the students are sam-
pled uniformly from two groups, each containing students
with learning dynamics described by a ground truth BKT
model. In particular, we build on the experimental setup
from [3] where there is a group of slow learners (BKT slow)
and fast learners (BKT fast). In [3], the authors also fitted
a BKT model to interaction data from students from both
groups; we refer to the corresponding BKT model as BKT
mixed. The parameters of these models are as follows:

p(Ls0) p(Ss) p(Gs) p(T s)
BKT slow 0.0 0.2 0.2 0.05
BKT fast 0.0 0.2 0.2 0.3

BKT mixed 0.071 0.203 0.209 0.096

We considered the interaction with 400 students, 200 from
each group, and we compared the performance of Thresh-
old(0.95) tutoring policies based on the different BKT mod-
els for different numbers of skills that ought to be taught in
Table 1. We observe that in the case of mismatch of the
student properties and the BKT models used for the thresh-
old policy, either only a small fraction of the skills (clearly
below 95 %) is acquired or that more than necessary time
is spent exercising. Furthermore, in order to teach the de-
sired 95 % of the skills to slow students when basing the
policy on the BKT model for fast students, the threshold τ
would have to be increased significantly, thereby providing
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Figure 2: Equity gap versus number of excess learning op-
portunities for different policies. We use a Threshold(0.95)
tutoring policy derived from the knowledge tracing models.
B2KT becomes more equitable as more skills are taught.

unnecessary extra exercises to fast students. For example,
by setting the threshold τ to 0.998, the fraction of skills
learned by the slow learners increased to 0.95 and the stop-
ping time to Tstop = 464.08 (much worse as compared to
the Threshold(0.95) policy for the correct model). At the
same time, the stopping time for the fast learners increased
to Tstop = 174.72. The mismatch issue is alleviated in the
case of the B2KT model (assuming a uniform prior over both
types of students), in particular for a larger number of skills.
Intuitively this is because, in the case of multiple skills, the
model has more opportunities to learn about the students’
properties and use these insights in later tutoring. This is an
important characteristic of a model with respect to equity as
the model becomes “more equitable” as it learns about the
students. This fact is also illustrated in Figure 2 in which we
reproduce and extend an experiment from [3] in which they
compare the “equity gap” (the difference in the percentage
of skills mastered by fast students to the percentage of skills
mastered by slow students) to the number of excess learning
opportunities. In particular, we extended the figure to the
case of teaching multiple skills and show the performance
of B2KT. Importantly, B2KT becomes more equitable (the
corresponding point moves to lower left) as more skills are
taught.

Out-of-distribution generalization. We evaluate whether
B2KT can help with aspects relevant to inclusion and di-
versity, the first two principles of IDEA. In particular, we
consider a stylized mismatch setting in which a tutoring sys-
tem interacts with students who have a learning behavior
that was not encountered in the data that was used for
constructing the BKT models. In particular, in addition
to the previous two types of students, we assume a third
type of learner (BKT med) with the following parameters:
p(Ls0) = 0.0, p(Ss) = 0.2, p(Gs) = 0.2, p(T s) = 0.18. We
considered Threshold(0.95) policies based on BKT mod-
els of slow and fast learners and the B2KT model with a
uniform prior over slow and fast learners. Our results are
presented in Table 2. We observe that the performance of
the policies derived from the B2KT model have comparable
performance to those derived from the true model whereas
other models yield policies clearly worse in terms of stop-
ping at the right time or teaching the right amount of skills.
Although the correct model has 0 prior probability (and
thus also zero posterior probability) in the B2KT model,



Table 1: Equity trade-offs of curricula derived from different models/parameterizations.

1 skill 5 skills 20 skills

slow learners fast learners slow learners fast learners slow learners fast learners

Threshold(0.95) % skills Tstop % skills Tstop % skills Tstop % skills Tstop % skills Tstop % skills Tstop

BKT slow 97.00 24.14 99.50 9.49 97.20 122.80 99.90 66.00 97.55 492.64 99.90 183.84

BKT fast 61.00 13.85 97.50 5.96 62.60 71.98 96.10 29.81 64.20 288.76 97.23 120.59

BKT mixed 95.00 23.51 100.00 8.33 95.40 113.67 99.90 40.93 94.53 466.55 99.68 169.86

B2KT 94.50 24.04 100.00 7.88 97.70 120.87 98.40 32.61 96.68 493.00 96.66 120.05

the model performs well. Such a characteristic can be of
key importance for promoting inclusion, e.g., when interact-
ing with students who were not represented in a data set
that was used for building an intelligent tutoring system or
students who were underrepresented in that data.

Fair next step predictions do not necessarily imply eq-
uitable tutoring. We show empirically that models which
might appear fair when looking at their AUCs for different
groups of students do not necessarily yield equitable tutoring
policies. In particular, we again focus on a student popula-
tion consisting of two groups of learners:

p(Ls0) p(Ss) p(Gs) p(T s)
Group 1 0.0 0.1 0.4 0.1
Group 2 0.0 0.1 0.2 0.3

We generated data for 400 students in a setting with 20 skills
and 1000 random exercises from BKT models, where 50% of
the students are from group 1 and group 2, respectively. The
true model of group 1’s students achieved an AUC of 0.7393
for group 1’s students, while the true model of group 2’s
students achieved an AUC of 0.6710 for group 2’s students.

Looking only at the AUC, the two models appear rather in-
equitable (there is no group parity). Thus it might appear
sensible to aim to use a BKT model for tutoring which has
comparable AUCs for both groups in order to promote eq-
uity. For instance, a BKT model using parameters p(L0) =
0, p(S) = 0.4, p(G) = 0.1, p(T ) = 0.65 achieves an AUC
of 0.6719 on group 1’s students and of 0.6733 on group 2’s
students, respectively. That is, the AUCs on the two groups
are approximately equal.

However, when looking at the different models with respect
to the tutoring performance when using a Threshold(0.95)-
policy, we observe a very different picture. We summarize
our findings in Table 3. In particular, the fraction of skills
taught differs significantly between the two groups: In group
1 only 28.68% of the skills are acquired by the students on
average while in group 2 74.70% of the skills are acquired
on average. This finding is closely related to the observation
that models with greatly different characteristics can have
similar AUCs [13].

In this context, we also evaluate Expectimax(1) policies
based on DKT models (trained using the implementation
provided by [4]; using default settings for hidden sizes, etc.).
The AUCs of the DKT model are 0.6757 and 0.6551 for slow
and fast students respectively and so roughly comparable to
that of the BKT models appearing to be equitable in terms
of their AUC. However, the performance of Expectimax(1)
policies we observed was very low (although the average

predicted probability for answering questions correctly in-
creased monotonically in most cases). In particular, for a
threshold τ = 0.001 it achieved a surprisingly low perfor-
mance of 8.3 % skills / Tstop = 41.01 (slow learners) and
10 % skills / Tstop = 29.80 (fast learners). Interestingly, a
difference in stopping time for slow and fast learners could
be observed despite the model making overall bad recom-
mendations. When looking into this issue in more detail we
observed that the policies repeatedly taught the same skill,
i.e., DKT did not correctly model the learning process—
it appeared to only have picked up that the probability of
answering exercises correctly increases over time.

Table 2: Out-of-distribution generalization.
1 skill 5 skills 20 skills

BKT med BKT med BKT med

Threshold(0.95) % skills Tstop % skills Tstop % skills Tstop

BKT slow 99.50 11.28 99.55 56.45 99.59 225.25

BKT fast 90.75 7.61 91.55 37.59 91.70 151.36

BKT mixed 99.50 10.46 99.00 51.71 99.21 211.29

BKT med 98.25 8.82 97.35 45.59 97.84 184.20

B2KT 98.75 10.33 97.50 48.80 94.19 168.36

Table 3: Fairness in terms of similar AUCs on different groups
does not imply fairness in terms of the derived teaching cur-
ricula. See the main text for details.

group fair wrt AUC true model wrt group

group AUC % skills Tstop AUC % skills Tstop

group 1 0.6719 28.68 61 0.7393 96.13 308
group 2 0.6733 74.70 64 0.6710 96.35 105

7. CONCLUSIONS & FUTURE WORK
We considered the equity and fairness of curricula derived
from knowledge tracing models. We provided a unifying
definition of an equitable tutoring system motivated by the
ethical principles of beneficence and non-maleficence. Our
definition is, in many practical settings, not realizable but
suggests that the individualization of tutoring policies to
students is key for realizing equity. We proposed the B2KT
model, a Bayesian variant of the classical BKT model, and
demonstrated in various experiments that it can be bene-
ficial for realizing equitable tutoring systems and promot-
ing IDEA more generally. Furthermore, we highlighted that
developing models with the sole focus on (fair) next-step
predictions might be insufficient to develop equitable tutor-
ing systems. In future work we aim to build novel models
and policies which allow individualization through leverag-
ing side information and improve scalability of B2KT by
approximate inference techniques.



8. REFERENCES
[1] T. L. Beauchamp, J. F. Childress, et al. Principles of

biomedical ethics. Oxford University Press, USA, 2001.

[2] A. T. Corbett and J. R. Anderson. Knowledge tracing:
Modeling the acquisition of procedural knowledge.
User modeling and user-adapted interaction,
4(4):253–278, 1994.

[3] S. Doroudi and E. Brunskill. Fairer but not fair
enough on the equitability of knowledge tracing. In
Proceedings of the 9th International Conference on
Learning Analytics & Knowledge, pages 335–339, 2019.

[4] T. Gervet, K. Koedinger, J. Schneider, T. Mitchell,
et al. When is deep learning the best approach to
knowledge tracing? Journal of Educational Data
Mining, 12(3):31–54, 2020.

[5] J. He-Yueya and A. Singla. Quizzing policy using
reinforcement learning for inferring the student
knowledge state. International Educational Data
Mining Society, 2021.
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