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Abstract

To form a percept of the multisensory world, the brain needs to integrate signals from com-

mon sources weighted by their reliabilities and segregate those from independent sources.

Previously, we have shown that anterior parietal cortices combine sensory signals into rep-

resentations that take into account the signals’ causal structure (i.e., common versus inde-

pendent sources) and their sensory reliabilities as predicted by Bayesian causal inference.

The current study asks to what extent and how attentional mechanisms can actively control

how sensory signals are combined for perceptual inference. In a pre- and postcueing para-

digm, we presented observers with audiovisual signals at variable spatial disparities.

Observers were precued to attend to auditory or visual modalities prior to stimulus presenta-

tion and postcued to report their perceived auditory or visual location. Combining psycho-

physics, functional magnetic resonance imaging (fMRI), and Bayesian modelling, we

demonstrate that the brain moulds multisensory inference via two distinct mechanisms.

Prestimulus attention to vision enhances the reliability and influence of visual inputs on spa-

tial representations in visual and posterior parietal cortices. Poststimulus report determines

how parietal cortices flexibly combine sensory estimates into spatial representations consis-

tent with Bayesian causal inference. Our results show that distinct neural mechanisms con-

trol how signals are combined for perceptual inference at different levels of the cortical

hierarchy.

Introduction

In a busy restaurant, our senses are inundated with numerous diverse signals: talking voices,

clinking glasses, and the sight and smell of food. To form a reliable percept, the brain needs to

integrate sensory signals that come from common sources weighted by their relative reliabili-

ties, giving a stronger weight to the more reliable signal [1–6]. Ample evidence has shown that

multisensory integration is not only determined by the signals’ sensory reliabilities, but also by

their task relevance [7–10]. For instance, when observers were presented with audiovisual
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signals with a small spatial disparity, they reported different spatial estimates depending on

whether the visual or the auditory signal were task relevant [7]. Moreover, observers’ auditory

spatial estimates were more variable than their visual estimates for collocated auditory and

visual signals [7]. Recent Magnetoencephalography (MEG)/Electroencephalography (EEG)

and functional magnetic resonance imaging (fMRI) studies have suggested that while posterior

parietal cortices integrate signals weighted by their sensory reliabilities irrespective of task con-

text, anterior parietal cortices encode spatial estimates depending on their reliability and task

relevance [11–13]. In anterior parietal cortices, spatial estimates rely more on the location of

the signals of the sensory modality that needs to be reported. While these behavioural and neu-

roimaging findings demonstrate that observers’ perceptual goals influence how the brain com-

bines sensory signals to support perceptual inference, the underlying computational and

neural mechanisms remain controversial [14,15].

Two mechanisms have been proposed. In the first “forced fusion account,” attention to one

sensory modality, for instance, vision, enhances the precision (i.e., inverse of variance) of the

visual representations [16–18] prior to fusion and thereby their weights in the sensory fusion

process [8] (but see [19]). These task-dependent sensory weights naturally result in different

perceptual estimates for auditory and visual report. In the second “causal inference account,”

task-dependent perceptual estimates arise from observers’ causal uncertainty, i.e., their uncer-

tainty about whether signals come from common or independent sources. Hierarchical Bayes-

ian causal inference [20–26] accounts for this causal inference problem by explicitly modelling

the possible underlying causal structures (Fig 1A and 1B). In the case of common sources,

inputs are fused into one unified percept, weighted by their relative sensory reliabilities [1–6].

In the case of independent sources, signals are segregated. Critically, observers do not know

the underlying causal structure and infer it from noisy spatial, temporal, and other higher-

order statistical correspondences. To account for observers’ causal uncertainty, a final estimate

of an environmental property (e.g., spatial location) is computed by combining the estimates

under the assumptions of “common” and “independent” sources. According to a decisional

strategy referred to as “model averaging” (for other decisional functions, see [27]), observers

combine the forced fusion audiovisual estimate either with the auditory segregation estimate

for auditory report or with the visual estimate for visual report weighted by the posterior prob-

abilities of each respective causal structure. This late readout thus results in different percep-

tual estimates for auditory and visual report.

In short, two distinct mechanisms can lead to differences in neural representations and per-

ceptual estimates for auditory and visual report conditions (Fig 1C). The first mechanism

impacts sensory processing prior to and during sensory fusion, while the second mechanism

relies on a late readout that flexibly combines the forced fusion and task-relevant segregation

estimates. Crucially, all neuroimaging studies to date [7,11–13,28,29] have conflated these two

distinct computational and neural mechanisms by instructing observers to report their percept

in the same sensory modality throughout an entire run. As a result, differences between repre-

sentations for auditory and visual report may have come from attentional modulation of sen-

sory weights during stimulus processing and/or a late readout of the task-relevant estimate

according to Bayesian causal inference.

The current study was designed to dissociate these two distinct mechanisms using a pre-

and postcueing paradigm with a spatial localisation task. Participants were presented with syn-

chronous audiovisual spatial signals at variable spatial disparities. A precue indicated the sen-

sory modality that needed to be attended and a postcue whether the auditory or visual location

needed to be reported. Combining psychophysics, fMRI and Bayesian modelling, we charac-

terised the neural mechanisms by which the brain controls the combination of sensory signals

depending on spatial disparity, prestimulus attention and poststimulus report along the
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auditory and visual dorsal spatial processing hierarchies. We expected prestimulus attention to

alter the reliability of sensory representations in early sensory cortices and hence their weights

in the initial sensory fusion process. By contrast, consistent with Bayesian causal inference,

poststimulus report should mould how anterior parietal cortices flexibly combine sensory sig-

nals according to observers’ perceptual goals.

Results

In both a psychophysics experiment (outside the scanner) and a subsequent fMRI experi-

ment, we presented observers with synchronous auditory and visual stimuli that were inde-

pendently sampled from 3 locations along the azimuth, resulting in 3 levels of audiovisual

spatial disparity (congruent: 0˚; low disparity: 9˚; and high disparity: 18˚ visual angle).

Observers were precued to attend to either auditory or visual modalities prior to stimulus

presentation and postcued to report either their perceived auditory or visual location (Fig

2A and 2B). In 50% of the trials, the precue was valid, i.e., observers attended to the sensory

modality in which they had to report the spatial location poststimulus. In the other 50% of

the trials, the precue was invalid, and observers had to switch attention between sensory

modalities to report the spatial location of the postcued modality. This pre- and postcueing

paradigm enabled us to dissociate how the brain controls multisensory perceptual inference

via attention to one particular sensory modality prior or during stimulus processing (i.e.,

precue effect) and via flexible readout of the perceptual estimate in the task-relevant sensory

modality poststimulus (i.e., postcue effect). In an additional unisensory localisation experi-

ment inside the scanner, we confirmed that observers successfully located sounds despite

the scanner noise and, as expected [30–33], showed greater activations for contralateral rel-

ative to ipsilateral sounds in superior temporal gyri, in particular plana temporalia (for

details, see S1 Text, S1 Fig and S11 Table).

Fig 1. Bayesian Causal Inference and the possible roles of attentional control. (a) Generative models of Forced

Fusion and Bayesian Causal Inference. For Forced Fusion, a single source generates auditory and visual signals.

Bayesian Causal Inference explicitly models the two causal structures, i.e., whether auditory and visual signals come

from one common cause (C = 1) or from separate causes (C = 2). (b) During perceptual inference, the observer is

thought to invert the generative models; it infers the number of sources by combining prior knowledge and

audiovisual evidence. A Forced Fusion estimate is computed by averaging auditory and visual estimates alone with

prior spatial estimates weighted by their relative reliabilities (inverse sensory variance σ2). The full segregation

estimates, visual or auditory, are computed separately. To account for causal uncertainty, the final Bayesian Causal

Inference estimate, auditory (ŜA) or visual (ŜV ), is computed by combining the audiovisual Forced Fusion estimate

(ŜAV;C¼1) with the task-relevant full segregation estimate, auditory (ŜA;C¼2) or visual (ŜV;C¼2), each weighted by the

posterior probabilities of a common (C = 1) or independent (C = 2) causes. (c) Attentional control can mould

multisensory perceptual inference via two distinct mechanisms and thereby induce differences in observers’ auditory

and visual estimates. First, attending to a particular sensory modality may enhance the reliability of the signals in the

attended sensory modality and thereby their weights during Forced Fusion. Second, modality-specific report (i.e., task

relevance) determines the late readout consistent with the principles of Bayesian Causal Inference, i.e., whether the

Forced Fusion estimate is combined with the auditory or visual full segregation estimate.

https://doi.org/10.1371/journal.pbio.3001465.g001

PLOS BIOLOGY Attentional control of multisensory perception

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001465 November 18, 2021 3 / 31

https://doi.org/10.1371/journal.pbio.3001465.g001
https://doi.org/10.1371/journal.pbio.3001465


Fig 2. Experimental design and procedure, neuroimaging univariate results, and response times in the fMRI experiment. (a)

The experiment conformed to a 3 (auditory location) × 3 (visual location) × 2 (prestimulus attention: attA, attV) × 2 (poststimulus

report: repA, repV) factorial design (A for auditory and V for visual). Auditory and visual signals were independently sampled from 3

locations along the azimuth (−9˚, 0˚, and 9˚ visual angle), resulting in 9 audiovisual spatial combinations with 3 levels of spatial

disparity: none (0˚; dark grey); low (9˚; mid grey); and high (18˚; light grey). The orthogonal pre- and postcue attention cueing

paradigm resulted in two valid (attArepA; attVrepV) and two invalid (attVrepA; attArepV) conditions. (b) Prior to block start,

participants were cued to attend to either the auditory or visual signal (via colour of fixation cross); 350 ms after each audiovisual

stimulus, they were cued to report their perceived auditory or visual location (via coloured letter: A for auditory and V for visual).

Participants responded via a button press using different keypads for each sensory modality. (c) Increased activations for invalid

relative to valid trials [Invalid (attVrepA & attArepV)> Valid (attArepA & attVrepV)] in blue, for AV spatially incongruent relative

congruent stimuli [AVincongruent (AV disparity 6¼ 0˚)> AVcongruent (AV disparity = 0˚)] in red and their overlap in pink,

rendered on an inflated canonical brain (p< 0.001 uncorrected at peak level for visualisation purposes, extent threshold k> 0
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Response times and voxel-wise BOLD responses in attentional control of

multisensory processing

Using behavioural response times and voxel-wise BOLD responses, we first investigated how

the brain controls audiovisual processing when the auditory and visual signals were spatially

incongruent, i.e., presented at different locations. On these audiovisual conflict trials, observers

need to suppress the influence of the interfering signal in the task-irrelevant sensory modality,

typically leading to longer response times [34]. Consistent with this conjecture, observers were

slower when responding to spatially conflicting than congruent signals (i.e., main effect of spa-

tial disparity, psychophysics: p< 0.001, ηp2 = 0.72; fMRI: p< 0.001, ηp2 = 0.84). Further, this

spatial incongruency effect was stronger for auditory than visual report, when the more reli-

able (i.e., visual) signal needed to be ignored [35]. In other words, we observed a significant

interaction between spatial disparity and poststimulus report in response times for both the

psychophysics (p< 0.001, ηp2 = 0.27) and fMRI (p< 0.001, ηp2 = 0.74) experiments (S1 and

S2 Tables). At the neural level, locating a visual (or auditory) stimulus in the context of a spa-

tially incongruent signal in another sensory modality increased activations in a frontoparietal

insular system, previously implicated in conflict detection and attentional control [35,36].

Activation increases for spatially disparate relative to congruent stimuli were observed in the

superior frontal gyri, the superior parietal lobules, the intraparietal sulci, the inferior frontal

gyri, and the anterior insula (for comprehensive results, see S3 Table).

Next, we investigated how the brain responds when observers need to switch their atten-

tional focus after the postcue, because the precue was invalid. Consistent with well-established

attentional switching costs [37–41], observers were slower to respond when precues were

invalid relative to valid (i.e., interaction between prestimulus attention and poststimulus

report, psychophysics: p< 0.001, ηp2 = 0.90; fMRI: p< 0.001, ηp2 = 0.92; S1 and S2 Tables).

This profile of response times suggests that observers allocated their attentional resources

effectively between sensory modalities as instructed by the precues, even though the precues

were valid only on 50% of the trials. Because observers used different response hands for the

two different sensory modalities, interference at the response selection and motor processing

level may also contribute to these switching costs.

At the neural level, invalid relative to valid trials increased activations in a bilateral fronto-

parietal system encompassing the superior frontal gyri, the intraparietal sulci, the precuneus,

and the middle (and inferior) frontal gyri (S4 Table). This bilateral frontoparietal system was

recruited irrespective of whether observers shifted their attention from the auditory to the

visual sense or vice versa (S5 Table), which is consistent with the idea that intersensory reori-

enting relies on neural systems largely shared across the senses [42–45]. Our fMRI results thus

further corroborate that observers shifted their attention from vision to audition and vice

versa as indicated by the pre- and poststimulus cues.

Collectively, our results suggest that spatial conflicts between audiovisual signals and con-

flicts between pre- and postcues are associated with longer response times and activations in a

widespread frontoparietal insular system previously implicated in cognitive control and selec-

tive attention [46] (Fig 2C–2E). Indeed, a formal so-called “conjunction null” conjunction

voxels). (d) Across participants’ mean (±SEM) parameter estimates in arbitrary units from L SFG (x = −4, y = 8, and z = 52) and L

ACC (x = −10, y = 18, and z = 32). (e) Across participants’ mean (±SEM) response times. Data in d and e plotted as a function of (i)

prestimulus attention: auditory attA versus visual attV; (ii) poststimulus report: auditory repA versus visual repV; and (iii)

audiovisual spatial (in)congruency: AVincongruent (AV disparity 6¼ 0˚) versus AVcongruent (AV disparity = 0˚). The data used to

make this figure are available in S1 and S2 Datas. ACC, anterior cingulate cortex; AIns, anterior insula; IFG, inferior frontal gyrus;

IPS, intraparietal sulcus; L ACC, left anterior cingulate gyrus; L SFG, left superior temporal gyrus; SFG, superior temporal gyrus; SPL,

superior parietal lobule.

https://doi.org/10.1371/journal.pbio.3001465.g002
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analysis (i.e., a logical “AND”) revealed activation increases for invalid relative to valid trials

and for audiovisual spatially incongruent relative to congruent trials in a partly overlapping

bilateral frontoparietal insular system (Table 1).

Computational mechanisms: Behavioural audiovisual weight index wAV
and Bayesian modelling

To investigate how the brain controls the weighting and combination of signals into spatial

representations, we computed a behavioural audiovisual weight index wAV separately for the 8

conditions in our 2 (prestimulus attention: auditory versus visual) × 2 (poststimulus report:

auditory versus visual) × 2 (disparity: low versus high) design (S7A and S8A Tables). The beha-

vioural audiovisual weight index wAV quantifies the relative influence of the true auditory and

visual signal locations on participants’ behavioural spatial reports for audiovisual spatial con-

flict trials. An audiovisual weight index wAV of 1 indicates that the observer’s spatial report

relies completely on the visual signal location. An audiovisual weight index wAV of 0 indicates

that the observer’s spatial report relies completely on the auditory signal location.

As shown in Fig 3A, the behavioural audiovisual weight index wAV depended on both pres-

timulus attention and poststimulus report. First, we observed a significant main effect of pres-

timulus attention (psychophysics: p = 0.007, es = 0.05 [0.02, 0.07]; fMRI: p = 0.002, es = 0.05

[0.01, 0.08], one-tailed permutation test, es = effect size [95% CI]). The wAV index shifted

towards 1 (i.e., into the direction of pure visual influence) for attention to vision and towards 0

for attention to audition, suggesting that the focus of prestimulus attention influenced how the

brain weights audiovisual signals for perceptual inference. Second, we observed a significant

main effect of poststimulus report (psychophysics: p< 0.001, es = 0.54 [0.48, 0.61]; fMRI:

p< 0.001, es = 0.63 [0.54, 0.73], one-tailed permutation test, es = effect size [95% CI]). Con-

trary to the predictions of forced fusion models [1–6], observers did not integrate sensory sig-

nals weighted by their sensory reliabilities into one unified percept, hence reporting the same

location for the auditory and visual stimulus. Instead, the influence of the auditory and visual

signals on observers’ percept depended on their task relevance. Observers relied more on the

auditory signal when reporting the auditory location and more on the visual signal when

reporting the visual location. Critically, the difference in wAV between auditory and visual

Table 1. fMRI univariate results: Conjunction of cue invalidity and audiovisual spatial incongruency.

Brain regions MNI coordinates (mm) Cluster size (voxels) z-score (peak) p FWE corrected (peak)

x y z

Invalid > Valid \ AVincongruent > AVcongruent

R superior frontal gyrus 22 0 52 492 >8 0.000

L superior frontal gyrus −24 −4 54 512 7.23 0.000

L anterior cingulate gyrus −2 14 48 615 >8 0.000

R anterior cingulate gyrus 8 18 40 7.07 0.000

L anterior insula −30 26 2 75 6.45 0.000

R superior parietal lobule 14 −68 54 96 6.14 0.000

L superior parietal lobule −16 −70 52 70 5.73 0.000

R intraparietal sulcus 34 −44 46 25 5.14 0.006

L intraparietal sulcus −34 −46 46 65 4.91 0.017

Conjunction null conjunction analysis to show common activations for [Invalid > Valid] \ [AVincongruent (AV disparity 6¼ 0˚) > AVcongruent (AV disparity = 0˚)].

p-Values are FWE corrected at the peak level for multiple comparisons within the entire brain.

FWE, family-wise error; L, left; MNI, Montreal Neurological Institute; R, right.

https://doi.org/10.1371/journal.pbio.3001465.t001
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report also depended on spatial disparity: This difference was smaller for low than high AV

spatial disparity trials, when signals are less likely to originate from a common source [20]

(psychophysics: p< 0.001, es = 0.09 [0.07, 0.11]; fMRI: p< 0.001, es = 0.09 [0.07, 0.11],

es = effect size [95% CI]). This profile was observed in particular for the auditory report condi-

tions (i.e., significant poststimulus report × AV disparity interaction, psychophysics:

p< 0.001, es = 0.19 [0.16, 0.23]; fMRI: p< 0.001, es = 0.19 [0.16, 0.22], es = effect size [95%

CI]), where the influence of the visual location on wAV declined with higher AV spatial dispari-

ties (psychophysics: p< 0.001, es = 0.19 [0.15, 0.22]; fMRI: p< 0.001, es = 0.18 [0.15, 0.22],

es = effect size [95% CI]).

Collectively, our results show that both prestimulus attention and poststimulus report influ-

ence how observers weight and combine signals to support perceptual inference. Both visual

prestimulus attention and poststimulus report shifted the behavioural wAV index towards 1,

i.e., towards stronger visual influence. Yet, only the effects of poststimulus report but not of

prestimulus attention depended on spatial disparity raising the question whether the two

effects rely on different computational mechanisms [11,12,47]. Prestimulus attention may

affect the audiovisual weight index by reducing the sensory noise or variance of the attended

sensory signals and thereby their weights in the fusion process. By contrast, poststimulus

report may affect the audiovisual weight index by later determining a perceptual readout that

flexibly combines that audiovisual fusion with the full segregation estimate of the to-be-

reported sensory modality.

To formally investigate whether the effects of prestimulus attention and poststimulus report

are mediated by different computational mechanisms, we compared 6 Bayesian models

Fig 3. Audiovisual weight index (wAV) and Bayesian modelling results for the fMRI experiment. (a) Across

participants’ mean wAV (±SEM) shown as a function of (i) prestimulus attention: auditory attA versus visual attV; (ii)

poststimulus report: auditory repA versus visual repV; and (iii) AV spatial disparity: low dispL (9˚) versus high dispH

(18˚). wAV = 1 for purely visual and wAV = 0 for purely auditory influence. (b) Along the first factor of a 2 × 3 factorial

model space, we assessed the influence of prestimulus attention by comparing whether the sensory variances were (i)

constant (fixed: s2
A attA = s2

A attV , s2
V attA = s2

V attV ); or (ii) different (free: s2
A attA, s2

A attV , s2
V attA, s2

V attV ) across prestimulus

attention. Along the second factor, we assessed the influence of poststimulus report by comparing (i) a forced fusion

model in which the sensory variances were fixed (FF fixed: s2
A repA = s2

A repV , s2
V repA = s2

V repV ); (ii) a forced fusion model

in which the sensory variances were allowed to differ between auditory and visual report (FF free: s2
A repA, s2

A repV , s2
V repA,

s2
V repV ); and (iii) a BCI model in which the influence of poststimulus report arises via a late flexible readout. The matrix

represents our 2 × 3 model space. For each model, we show the pEP (larger pEP represents better model) via greyscale.

BOR represents the probability that results are due to chance. (c) Across participants’ mean (±SEM) of auditory and

visual noise parameter estimates (i.e., s2
A attA, s2

A attV , s2
V attA, s2

V attV) of the best model, i.e., BCI model with free

prestimulus attention parameters (attA, auditory; attV, visual). p-Values based on one-tailed sign permutation test. The

data used to make this figure are available in S2 Data. BCI, Bayesian causal inference; BOR, Bayesian omnibus risk; FF,

Forced Fusion; pEP, protected exceedance probability.

https://doi.org/10.1371/journal.pbio.3001465.g003
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organised in a 2 (prestimulus) × 3 (poststimulus) factorial model space (Fig 3B). Along factor

1, we assessed the influence of prestimulus attention: we manipulated whether the auditory

and visual variances were (i) fixed or (ii) allowed to differ between auditory and visual presti-

mulus attention (i.e., auditory variance: s2
A attA, s2

A attV ; visual variance: s2
V attA, s2

V attV). Along

factor 2, we assessed the impact of poststimulus report on observers’ percept. We compared (i)

a forced fusion model in which the sensory variances were fixed across poststimulus report;

(ii) a forced fusion model in which the sensory variances were allowed to differ between audi-

tory and visual poststimulus report (i.e., auditory variance: s2
A repA, s2

A repV ; visual variance:

s2
V repA, s2

V repV); and (iii) a Bayesian causal inference model in which the influence of poststimu-

lus report arose via a late readout that flexibly combines the forced fusion with the full segrega-

tion estimates. Bayesian model comparison of the 6 models in our 2 × 3 model space provided

overwhelming evidence for the Bayesian causal inference model that includes a modulatory

effect of prestimulus attention on the sensory variances (protected exceedance probability� 1;

Bayesian Omnibus Risk = 2.85 × 10−12). This result suggests that observers control multisen-

sory inference via two distinct mechanisms (for comprehensive results, see S10 Table). First,

modality-specific prestimulus attention increases the reliability of the attended sensory inputs

prior to and during sensory fusion. Second, modality-specific poststimulus report determines

a late readout that flexibly combines a forced fusion estimate with the unisensory estimate in

the task-relevant modality consistent with Bayesian causal inference. Our results from formal

Bayesian model comparison dovetail nicely with our analysis of the audiovisual weight index

wAV showing that the effect of poststimulus report (but not prestimulus attention) depend on

spatial disparity [11–13]. This interaction between poststimulus report and spatial disparity

can be explained by Bayesian causal inference [20,21]. When signals are far apart in space and

hence likely to come from separate sources, the influence of the task-relevant full segregation

estimate is stronger on observers’ final estimate, resulting in a greater difference in wAV
between auditory and visual poststimulus report.

Focusing on the winning model, we compared the auditory and visual variances across the

two prestimulus attention conditions (Fig 3C). This analysis confirmed that the auditory vari-

ance s2
A significantly decreased for auditory relative to visual attention (psychophysics:

p = 0.009, es = 2.33 [1.29, 3.38]; fMRI: p = 0.004, es = 1.34 [0.34, 2.35], one-tailed permutation

test, es = effect size [95% CI]), while the visual variance s2
V significantly decreased for visual

relative to auditory attention (psychophysics: p = 0.014, es = 0.34 [0.06, 0.62]; fMRI: p< 0.001,

es = 0.46 [0.04, 0.88], one-tailed permutation test, es = effect size [95% CI]).

Neural mechanisms: Multivariate decoding and neural audiovisual weight

index nwAV

Combining fMRI and multivariate pattern decoding, we next investigated how the brain com-

bines auditory and visual signals depending on prestimulus and poststimulus cues into spatial

representations along the dorsal visual and auditory processing hierarchies (Fig 4A). We

trained a linear support vector regression (SVR) model to learn the mapping from BOLD

response patterns to external physical stimulus location based on audiovisual spatially congru-

ent trials (for details, see [11,12]). We first confirmed that all regions of interest (ROIs) reliably

encoded the spatial locations of audiovisually congruent stimuli. Indeed, the Pearson correla-

tion coefficients between the decoded locations and the true physical locations of audiovisual

congruent trials were significantly greater than 0 [95% CI] in low-level visual cortex (V1-3:

0.88 [0.83, 0.91], p< 0.001, es = 1.36 [1.19, 1.52]), posterior intraparietal sulcus (pIPS: 0.56

[0.40, 0.69], p< 0.001, es = 0.63 [0.42, 0.84]), anterior intraparietal sulcus (aIPS: 0.39 [0.32,

0.46], p< 0.001, es = 0.41 [0.33, 0.49]), higher-order auditory cortex (hA: 0.16 [0.07, 0.25],
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p = 0.003, es = 0.16 [0.07, 0.25]), and low-level auditory cortex (A: 0.08 [0.04, 0.13], p = 0.003,

es = 0.08 [0.03, 0.13]).

We next used this mapping (i.e., learnt from audiovisual congruent trials) to decode the spa-

tial locations from BOLD response patterns elicited by audiovisual incongruent stimuli (Fig 4B;

for details, see [11,12]). Consistent with the analysis of behavioural localisation responses, we

computed a neural audiovisual weight index nwAV that quantifies the relative influence of the

true visual and auditory locations on the decoded locations of audiovisual incongruent stimuli.

As shown in Fig 4C, the neural audiovisual weight index nwAV was not statistically different

from 1 in early visual cortices (V1-3: mean nwAV = 0.99, p = 0.478, es = −0.01 [−0.07, 0.05],

one-tailed permutation test on nwAV< 1), indicating almost purely visual influence on spatial

representations. In posterior and anterior parietal cortices, the nwAV shifted overall towards

lower values (pIPS: mean nwAV = 0.86, p = 0.292, es = 0.14 [0.03, 0.25]; aIPS: mean nwAV = 0.69,

p = 0.061, es = 0.31 [0.23, 0.40], one-tailed permutation test on nwAV< 1), consistent with the

notion that multisensory interactions increase progressively along the cortical hierarchy [36,48–

58]. In auditory cortices, the nwAV index was closer to 0, but still significantly different from 0

(A: mean nwAV = 0.25, p = 0.024, es = 0.25 [0.03, 0.47]; hA: mean nwAV = 0.24, p = 0.004,

es = 0.24 [0.10, 0.37], one-tailed permutation test on nwAV> 0), indicating considerable visual

influence on spatial representations. These substantial visual influences on spatial representa-

tions in auditory cortices reflect the greater spatial reliability of the visual inputs in our study, in

line with our current and past behavioural results [11–13,47]. Moreover, while visual location is

encoded retinotopically in visual cortices, in posterior auditory cortices sound location is

encoded in the relative activity of two neuronal populations, broadly tuned to ipsi- or contralat-

eral hemifields (i.e., “hemifield code”) [59,60] making the fMRI decoding of the sound location

potentially less reliable and thereby more susceptible to visual influences. More specifically, two

main components contribute to sound location encoding in auditory cortices. First, auditory

Fig 4. Neural audiovisual weight index (nwAV) across the audiovisual processing hierarchy. (a) fMRI voxel

response patterns were obtained from anatomical ROIs along the visual and auditory dorsal cortical hierarchies: V1-3

(blue), pIPS (cyan), aIPS (green), and hA (orange). ROIs are displayed on a canonical brain. (b) An SVR model was

trained to learn the mapping from the fMRI voxel response patterns to the external spatial locations based on the

audiovisual spatially congruent trials (green cells = congruent). The learnt mapping was then used to decode the spatial

location from the fMRI voxel response patterns of the audiovisual spatially incongruent trials (orange

cells = incongruent) to compute nwAV. (c) Across participants’ mean nwAV (±SEM) shown as a function of (i)

prestimulus attention (Att): auditory/attA versus visual/attV; and (ii) poststimulus report (Rep): auditory/repA versus

visual/repV, with statistical results of sign permutation tests. nwAV = 1 for purely visual and nwAV = 0 for purely

auditory influence. The data used to make this figure are available in S2 Data. �� p< 0.01, � p< 0.05. aIPS, anterior

intraparietal sulcus; hA, higher-order auditory cortex; pIPS, posterior intraparietal sulcus; ROI, region of interest; SVR,

support vector regression; V1-3, low-level visual cortex.

https://doi.org/10.1371/journal.pbio.3001465.g004
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cortices show a response bias to the contralateral hemifield, such that the relative activations

across the left and right auditory cortices are informative about the sound location along the azi-

muth. Second, even though auditory cortices lack a topographic organisation for space, previous

neuroimaging research [59] has shown that voxels differ in their azimuthal “tuning functions.”

In particular, voxels in anterior and posterior regions of auditory cortices exhibited a more pro-

nounced negative BOLD response to ipsilateral stimuli. Hence, the fine-grained activation pat-

tern even within either left or right auditory cortices may be informative about sound location.

To further dissociate these two contributions to sound location encoding, we also assessed

decoding accuracy for SVMs that were trained separately on BOLD response patterns of left

and right higher-order auditory cortices. The Pearson correlation coefficients between the

decoded locations and the true physical locations of audiovisual congruent trials were signifi-

cantly greater than 0 [95% CI] in left hA (0.08 [0.01, 0.16], p = 0.016, es = 0.08 [0.01, 0.16]) but

not in right higher-order auditory cortex (right hA: −0.08 [−0.14, −0.01], p = 0.972, es = 0.08

[0.01, 0.15]). Consistent with [59,60], these supplementary results suggest that fMRI decoding

of sound location from auditory cortices relies on two mechanisms, the relative BOLD

responses between left and right auditory cortices as well as a more patchy functional organisa-

tion within the auditory cortex of each hemisphere.

Next, we used the audiovisual weight index nwAV to investigate how the audiovisual signals

are weighted and combined into spatial representations along the visual and auditory process-

ing hierarchies depending on prestimulus attention and poststimulus report. Our results (S7B

and S8B Tables) show a double dissociation of the effects of prestimulus attention and post-

stimulus report on the neural audiovisual weight indices. Prestimulus attention influenced the

sensory weights in early visual cortices (i.e., main effect in V1-3: p = 0.011, es = 0.03 [0.01,

0.06], one-tailed permutation test). As expected, the visual influence on sensory weights was

enhanced under visual prestimulus attention. By contrast, poststimulus report influenced the

sensory weights in anterior parietal cortices (aIPS: p = 0.002, es = 0.15 [0.07, 0.23], one-tailed

permutation test) and in planum temporale (hA, p = 0.030, es = 0.17 [0.01, 0.34], one-tailed

permutation test). Again as expected, the nwAV index was greater for visual than auditory post-

stimulus report. Finally, we observed a significant prestimulus attention × poststimulus report

interaction in posterior parietal cortices (pIPS: p = 0.006, es = 0.17 [0.07, 0.28]). Post hoc

one-tailed permutation testing revealed that the nwAV index was greater (i.e., shifted towards

visual influence) for visual than auditory prestimulus attention under auditory poststimulus

report (p = 0.007, es = 0.14 [0.04, 0.23]). Thus, in line with our predictions, influences of presti-

mulus attention were revealed when the spatially less reliable auditory signal needs to be

reported. Collectively, our decoding results show that prestimulus attention and poststimulus

report influence the weighting and combination of audiovisual signals into spatial representa-

tions at distinct levels of the cortical hierarchy.

Discussion

Combining psychophysics, fMRI multivariate decoding and Bayesian modelling, we investi-

gated how observers control the combination of sensory signals into spatial representations

guided by goals and task demands. In an attentional pre- and postcueing paradigm, we pre-

cued participants to attend to audition (or vision) and postcued them to report their perceived

auditory (or visual) location. Our results show that the brain controls multisensory inference

via two distinct neural mechanisms at different levels of the cortical hierarchy.

In our behavioural analysis, observers were slower when they had to switch attention across

the senses on trials with invalid precues. These attentional switching costs suggested that

observers shifted their attention effectively as instructed by the pre- and postcues [37–41]. At

PLOS BIOLOGY Attentional control of multisensory perception

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001465 November 18, 2021 10 / 31

https://doi.org/10.1371/journal.pbio.3001465


the neural level, intersensory reorienting relied on a widespread frontoparietal insular system

previously implicated in mechanisms of conflict detection, selective attention, and cognitive

control [42–46]—further corroborating the effectiveness of our attentional manipulation. Lon-

ger response times and activations in this frontoparietal insular system also arose for spatially

disparate audiovisual trials that required observers to eliminate incongruent information from

the unreported modality. Collectively, these behavioural and neural results show that observers

control multisensory processing via a widespread frontoparietal insular system particularly on

trials that involve reorienting between the senses or processing of incongruent sensory infor-

mation. Our results converge with previous research showing a pivotal role for prefrontal cor-

tices in arbitrating between sensory integration and segregation [61]. More specifically,

prefrontal cortices were shown to control multisensory processing by combining prior infor-

mation with cross-sensory correspondences such as temporal, spatial, or higher-order statisti-

cal congruency cues (e.g., phonetics) [35,62].

Next, we investigated how the brain controls the combination of conflicting audiovisual sig-

nals into spatial representations depending on prestimulus attention and poststimulus report.

We characterised the influence of auditory and visual signals on observers’ percept with an

audiovisual weight index wAV at the behavioural and neural level. Our behavioural results

show that both prestimulus attention to vision and visual poststimulus report increase the

influence of the visual location on observers’ reported percept. Critically, only the effect of

poststimulus report—but not of prestimulus attention—was greater for high relative to low

audiovisual spatial disparity, raising the possibility that the two effects rely on different mecha-

nisms [11,12,47]. Consistent with this conjecture, Bayesian modelling and model comparison

showed that the behavioural data were best explained by a model in which prestimulus atten-

tion and poststimulus report influenced audiovisual processing via different computational

mechanisms. In the winning model, the effect of prestimulus attention was mediated by

changes in auditory and visual reliabilities. This converges with previous research showing

greater sensory variances when observers divided their attention across sensory modalities

than when they focused their attention on one particular sensory modality prior to stimulus

presentation [10]. By contrast, the effects of poststimulus report were accommodated by the

structure of the Bayesian causal inference model, which forms a final percept by flexibly com-

bining the spatial estimates formed under the assumptions of common and independent

sources according to various decision functions (e.g., model averaging [27]). For instance,

when the visual location needs to be reported, the forced fusion audiovisual estimate is aver-

aged with the full segregation visual estimate, each weighted by the posterior probabilities of

the respective causal structure. Because the weight of the full segregation estimate is stronger

when it is unlikely that the two signals come from a common source, Bayesian causal inference

also provides a principled explanation for the fact that the difference between auditory and

visual reports is greater at large spatial disparities. In summary, both the audiovisual weight

index wAV and formal Bayesian model comparison show that prestimulus attention and post-

stimulus report mould multisensory processing via different computational mechanisms. Pres-

timulus attention to vision increases the precision of the visual inputs and thereby their

weights in sensory fusion. Poststimulus report relies on a late flexible readout of the task-rele-

vant estimate consistent with Bayesian causal inference. These profound effects of modality-

specific attention on integration of signals into spatial representations converge with previous

research comparing modality-specific and divided attention [10]. Yet, they may challenge con-

clusions from early seminal behavioural studies in which spatial ventriloquism proved

immune to modulatory effects of endogenous [63] and exogenous [64] spatial attention. It

may be more difficult to reveal an effect of spatial attention, because it can exert counteracting

effects on the emergence of the ventriloquist illusion by increasing the spatial precision of the
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attended sensory input as well as observers’ causal prior (i.e., their tendency to bind audiovi-

sual signals within the spatial attentional spotlight; for further discussion, see [15]).

Combining fMRI and multivariate pattern decoding, we next investigated how the brain

combines audiovisual signals into spatial representations. We first confirmed that ROIs along

the auditory and visual dorsal processing hierarchies reliably encode spatial information as

indicated by the significant correlation between the fMRI decoded locations and the true loca-

tions of audiovisual congruent stimuli. Next, we computed the neural audiovisual weight

index nwAV from the audiovisual incongruent trials to assess how the brain weights auditory

and visual signals along the auditory and visual processing streams. As expected, the spatial

representations in early visual and posterior parietal cortices were dominated by the location

of the visual stimulus, while those in low-level auditory cortices and planum temporale

reflected more the location of the auditory stimulus. Moreover, while we observed significant

influences of visual signal location on spatial representations in low-level auditory cortices

(i.e., significant: nwAV> 0), these crossmodal influences were modest compared to those

observed in posterior and parietal cortices. These findings converge with accumulating evi-

dence showing multisensory interactions ubiquitously in human neocortex. Yet, even though

multisensory interactions start already at the primary cortical level, they increase progressively

across the cortical hierarchy [36,48–58].

Most importantly, we used the neural audiovisual weight index nwAV to assess the influence

of prestimulus attention and poststimulus report on how the brain combines auditory and

visual signals into spatial representations at the neural level. We observed a double dissociation

for the effects of prestimulus attention and poststimulus report along the cortical hierarchy. In

early visual cortices, only prestimulus attention to vision increased the neural audiovisual

weight index nwAV. In posterior parietal cortices, we observed a significant interaction

between prestimulus attention and poststimulus report. Here, prestimulus attention to vision

increased the visual influence on spatial representations mainly during auditory report, while

no significant effects of prestimulus attention were observed for visual report. Finally, in ante-

rior parietal cortices and planum temporale, we selectively observed a main effect of poststim-

ulus report: when the visual location was task relevant and needed to be reported, the

audiovisual weight index increased, indicating a stronger visual influence on spatial coding in

anterior parietal cortices.

Collectively, our computational and neural results demonstrate that observers control

audiovisual processing via two distinct mechanisms that act on different levels of the cortical

hierarchy. Attention prior to and during stimulus processing increases the reliability of the

attended (here: visual) signals and thereby their weight in the sensory fusion process in early

visual and posterior parietal cortices, which is in line with the wealth of research showing early

attentional effects at the primary cortical and even thalamic level [16–18].

Conversely, the influence of poststimulus report on spatial representations in parietal corti-

ces converges with recent fMRI/EEG research, suggesting that Bayesian causal inference is per-

formed by the brain via the dynamic computation of multiple spatial estimates across the

cortical hierarchy [7,11–13]. Only at the top of the hierarchy, at about 350 to 450 ms, did ante-

rior parietal areas combine auditory and visual signals into spatial estimates depending on

their task relevance, i.e., whether the auditory or the visual location needed to be reported.

Crucially, however, even though this past research attributed the differences in spatial repre-

sentations (and neural weight indices) in anterior parietal cortices to mechanisms of Bayesian

causal inference, these studies were not able to control for concurrent attentional effects on

sensory reliability and weights [1–6], which the current study has shown to occur during stim-

ulus processing. This is because past paradigms made observers report either their auditory or

their visual percept throughout the entire run and thereby conflated effects of prestimulus
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attention and poststimulus report. The effect of task relevance could therefore have arisen

either by increasing the reliability of the attended signal during stimulus processing or via a

late selective readout of the task-relevant estimate according to Bayesian causal inference. The

current study is therefore critical to corroborate the role of anterior parietal cortices in Bayes-

ian causal inference. Intriguingly, because the poststimulus cue appeared 350 ms after stimulus

offset, our current results suggest that the brain computes fusion and segregation estimates

automatically during stimulus processing, it encodes and maintains these component esti-

mates in working memory, and only 350 ms after stimulus offset it combines them flexibly

into final perceptual estimates according to postcue instructions consistent with Bayesian

causal inference. This late flexible readout may rely on heterogeneous populations of neurons

that combine sensory signals with different weights as recently shown for the lateral intraparie-

tal area [65] in neurophysiology of nonhuman primates. Future research exploiting the high

temporal resolution of M/EEG or neurophysiology is needed to temporally resolve the influ-

ences of prestimulus attention and poststimulus report on multisensory integration and segre-

gation across the cortical hierarchy. For instance, previous research has shown differences in

early multisensory interactions at about 50 ms poststimulus for divided relative to modality-

specific prestimulus attention [66], which, at a computational level, may reflect changes in sen-

sory variances or the influence of an altered binding prior [10].

To conclude, the present study demonstrates that the brain controls how the brain weights

and combines sensory signals for perceptual inference via two distinct computational and neu-

ral mechanisms that arise at distinct levels of the cortical hierarchy. Prestimulus attention

enhances the precision of the attended inputs and thereby their weights during audiovisual

fusion. Thus, attended visual inputs gain a stronger impact on spatial representations in early

visual and posterior parietal cortices. Poststimulus report moulds how anterior parietal corti-

ces read out representations that flexibly combine component estimates under the assump-

tions of common and independent sources, consistent with Bayesian causal inference.

Methods

Participants

The study included an initial psychophysics experiment outside the scanner followed by an

fMRI experiment. A total of 35 volunteers participated in the initial psychophysics experiment.

Moreover, 8 of those volunteers were excluded based on a priori exclusion criteria (see section

“Exclusion and inclusion criteria”). As a result, 27 participants (10 males; mean age 20.5, range

18 to 30 years) were included in the analysis and results of the psychophysics experiment out-

side the scanner. This final number of included participants was based on a priori power analy-

sis (G�Power 3.1[67]), with power (1-β) = 0.8, α = 0.05 and effect size Cohen’s dAV = 0.5.

Estimation of effect size for the psychophysics study was derived from the main effect of presti-

mulus attention on wAV in a preliminary pilot study.

A total of 12 participants of the psychophysics experiment took part in the subsequent

fMRI study. The fMRI sample size was determined based on previous neuroimaging experi-

ments that used similar experimental designs, highly reliable estimation within each partici-

pant (i.e., 4 days of fMRI data acquisition per participant), and similar analysis approaches

[11–13]. Participants included in the fMRI study (5 males; mean age 21.67 years, range 18 to

30 years) were right-handed according to the Edinburgh Handedness Inventory [68] (mean

laterality index: 88.64; range: 60 to 100). We selected the first 12 participants from the initial

psychophysics experiment that fulfilled the inclusion criteria for the fMRI experiment and

stopped fMRI data acquisition after 12 participants were included. We did not post hoc

exclude participants of the fMRI experiment (i.e., all fMRI datasets together with the associated
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behavioural responses inside the scanner were included in the final analysis). All volunteers

reported normal or corrected to normal vision, normal hearing, and no history of neurological

or psychiatric conditions.

Ethics statement

All volunteers provided written informed consent and received financial reimbursement or

course credits for their participation in the experiment. The study was approved by the ethical

review committee of the University of Birmingham (approval number: ERN_11_0470AP4)

and was conducted in accordance with the principles outlined in the Declaration of Helsinki.

Exclusion and inclusion criteria—Psychophysics experiment

Volunteers were excluded post hoc from the psychophysics experiment based on two criteria.

First, in a unisensory auditory or visual localisation screening observers located either auditory

or visual signals that were randomly presented at −9˚, 0˚, or 9˚ visual angle along the azimuth.

Their auditory and visual localisation accuracy was quantified by the root mean square error

(RMSE) between participants’ reported location and signal’s true location. Observers were

excluded as outliers if their RMSE was greater than 5.5˚ for auditory localisation or 3.5˚ for

visual localisation (thresholds defined as two standards deviations above the group mean in a

preliminary pilot study). A total of 4 volunteers were excluded based on RMSE greater than

5.5˚ for auditory localisation. Second, we expected observers to be significantly slower on trials

when the prestimulus cue was invalid rather than valid (i.e., so-called switching costs [37–41]).

By assessing these attentional switching costs, the second criterion ensures that we excluded

observers that did not shift their attention as instructed by the precue. Specifically, observers

were excluded if they did not show a significant cue validity effect (i.e., interaction between

prestimulus attention and poststimulus report at p< 0.05) for response times in the pre- and

post-cuing paradigm (see section “Experimental design”). Based on this criterion, 4 volunteers

were excluded. This second criterion is very important, because the precue for shifting atten-

tion to the auditory or visual modality was valid only in 50% of the trials (in order to avoid

additional effects of expectation and maximise design efficiency). In other words, we had to

rely on observers that conscientiously followed task instructions even though shifting attention

was not beneficial for task performance in our study, because the precue was uninformative.

Exclusion and inclusion criteria—fMRI experiment

Participants of the psychophysics study were eligible for the subsequent fMRI experiment if

they maintained central fixation throughout each run. We defined saccades as eye movements

outside 1.3˚ circular area centred on participant’s median of fixation based on calibration trials

[69]. Only participants who produced less than 20 saccades per run (i.e., 216 trials; threshold

defined as two standards deviations above the group mean in a preliminary pilot study) were

considered eligible to the fMRI experiment, until we reached a predefined sample size (see sec-

tion “Participants”).

Stimuli

The auditory stimulus was a burst of white noise (96,000 Hz sampling frequency; 65-dB sound

pressure level; 50-ms duration, 5-ms on/off ramp) convolved with spatially selective head-

related transfer functions (HRTFs) based on the KEMAR dummy head of the MIT Media Lab-

oratory [70]. HRTFs from the locations in the database were interpolated to obtain the loca-

tions required for the study. The visual stimulus was a cloud of 20 white dots (luminance: 169
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cd/m2; dot diameter: 0.3˚ visual angle, 50-ms duration) sampled from a bivariate Gaussian dis-

tribution with a vertical standard deviation of 1˚ visual angle and a horizontal standard devia-

tion of 5˚ visual angle presented on a grey background (17 cd/m2). Guided by [47], we opted

for relatively high visual reliability to ensure that observers can perform causal inference and

arbitrate successfully between sensory integration versus segregation. Yet, high reliability of

the physical visual inputs may reduce our ability to reveal subtle attentional effects on observ-

ers’ internal visual uncertainty. In short, our experiment was optimised to assess observers’

causal inference and attentional effects on observers’ reported sound percept.

The white noise bursts and cloud of white dots were generated independently for each exper-

imental trial to prevent observers from using stimulus-specific cues for spatial localisation.

Experimental design

The psychophysics experiment outside the scanner was followed by the fMRI experiment on

separate days. Both experiments used identical designs that combined spatial ventriloquism

with an attentional pre- and postcuing paradigm (Fig 2A). Observers were precued to attend

to the auditory (or visual) modality (i.e., modality-specific prestimulus attention: attA or attV)

at the beginning of each block. Next, they were presented with synchronous auditory and

visual signals that were sampled independently from 3 positions along the azimuth (−9˚, 0˚, or

9˚ visual angle), leading to 3 levels of audiovisual spatial disparity (0˚, 9˚, and 18˚ visual angle).

After stimulus presentation, they were postcued to report their perceived location of either the

auditory or visual signal (i.e., modality-specific poststimulus report: repA or repV) using dif-

ferent keypads for each sensory modality. On 50% of the trials, the precue was valid: observers

were precued to attend to the sensory modality (e.g., visual), and they were postcued to report

(e.g., visual) after stimulus presentation. On the other 50% of the trials, the precue was invalid:

observers were precued to attend to one sensory modality and postcued to report the location

of the stimulus of the other sensory modality. In summary, the experiment conformed to a 2

(prestimulus attention: auditory versus visual via precue) × 2 (poststimulus report: auditory

versus visual via postcue) × 3 (visual location) × 3 (auditory location) factorial design.

We deliberately made the precue noninformative for two reasons. First, such a balanced

design is most efficient (i.e., we obtain the most reliable parameter estimates across all condi-

tions). Second, we ensured that modality-specific prestimulus attention was not confounded

by modality-specific expectation. This is important because accumulating research has shown

that expectation and attention may rely on partly distinct neural mechanisms [71–74]. Impor-

tantly, an uninformative attentional precue (i.e., only valid in 50% of the trials) relies selectively

on humans’ ability to shift their attention voluntarily, even if it does not incur any benefits for

task performance. We post hoc ensured that the data included in the analysis (see section “Par-

ticipants”) were from observers that shifted their attention as instructed by the precue, as indi-

cated by switching costs on trials where the precue was invalid (see section “Exclusion and

inclusion criteria—Psychophysics experiment”). Yet, it is well established that attention and

expectation are intimately related. It is rational to direct attention to spatial locations or

modalities when one expects potentially relevant events to happen. We would therefore expect

that the effects of prestimulus attention may be stronger for informative cues (e.g., 75%

validity).

Modality-specific prestimulus attention was manipulated over blocks of 12 trials, while

prestimulus cue validity varied pseudo-randomly across trials to avoid effects of response

expectations. At the beginning of each prestimulus attention block (Fig 2B), participants were

instructed by a 2-second precue (i.e., colour of the fixation cross) to attend to either the audi-

tory or the visual modality. Each trial within a prestimulus attention block started with 700-ms
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presentation of a coloured fixation cross indicating the attended sensory modality. Next,

audiovisual spatial signals of variable locations and spatial disparity were presented in syn-

chrony for 50 ms. After a 350-ms fixation interval, a postcue (i.e., coloured letter) indicated

whether observers needed to report the location of the visual or auditory signal (i.e., “A” to

locate the auditory signal; “V” to locate the visual signal) within a 2-second time interval. Both

pre- and poststimulus cues were visual only to minimise the cue duration and hold the cue

constant across all conditions. We acknowledge that this experimental choice may have given

visual signals a processing benefit. However, because this potential processing benefit was con-

stant across all conditions, it does not confound our effects of prestimulus attention and post-

stimulus report.

Importantly, observers indicated their perceived visual or auditory location via a three-but-

ton key press using different hands and keypads for the auditory and visual modality. We

excluded all trials on which observers first responded with the wrong keypads. This ensures

that cross-modal biases cannot be attributed to observers being confused about which sensory

modality is task relevant and should be reported.

Prior to the main experiment, observers were trained in brief unisensory practice runs (10

trials per location and sensory modality) to learn the mapping from spatial locations to button

responses. After each response, the participants received visual feedback on their response

accuracy: the fixation cross turned green (respectively red) after a correct (respectively incor-

rect) response.

Every two prestimulus attention blocks, we presented a 6-second fixation block, which were

indicated by a change in the colour of the fixation cross. Each run comprised 18 prestimulus

attention blocks and 9 fixation blocks. To increase design efficiency, auditory and visual spatial

locations and response modality were pseudo-randomised across trials. Throughout the task,

participants fixated a cross (1˚ diameter) in the centre of the screen. On each keypad, a specific

key corresponded to one of the three signal locations along the azimuth. Participants reported

their perceived signal location in the sensory modality indicated by the postcue as accurately

as possible using the corresponding keypad. The mapping of hands (left/right), report modali-

ties (auditory/visual), and colours of the letter and fixation crosses (blue/yellow) was counter-

balanced within participants across days. At the beginning of each day (both for psychophysics

and fMRI), participants were familiarised with the stimuli and procedure via one preliminary

practice run. For the psychophysics experiment outside the scanner, every participant com-

pleted 3 runs in 1 day (6 trials / condition / run × 36 conditions × 3 runs = 648 trails in total).

For the fMRI experiment, every participant completed 14 scanning runs over the course of 4

days (6 trials / condition / run × 36 conditions × 14 runs = 3,024 trails in total).

Experimental setup—Psychophysics experiment

The experiment was presented via Psychtoolbox version 3.0.11 [75] running under MATLAB

R2014a (MathWorks, USA) on a Windows machine (Microsoft 7 2009, USA). Auditory sti-

muli were presented with headphones (HD 280 PRO, Sennheiser, Germany). Visual stimuli

were presented on a Gamma-calibrated LCD monitor (30” Dell UltraSharp U3014, USA;

2,560 × 1,600 pixels resolution; 60-Hz frame rate). We adjusted audiovisual latencies in the

presentation software and confirmed their synchrony by recording and measuring their rela-

tive latencies using a microphone and a photodiode. To mimic the sensory environment in the

MRI experiment, scanner noise was played at 80dB SPL through external loudspeakers posi-

tioned at each side of the monitor. Participants sat in a dimly lit cubicle in front of the com-

puter monitor at a viewing distance of 50 cm with their head positioned on a chin rest. They
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gave responses via two keypads (Targus, USA), one per hand, and report modality. Gaze posi-

tion was monitored via Tobii EyeX eyetracking system (Tobii, Sweden).

Experimental setup—fMRI experiment

The experiment was presented via Psychtoolbox version 3.0.11 [75] running under MATLAB

R2011b (MathWorks) on a MacBook Pro (Mac OSX 10.6.8). Auditory stimuli were played

using MR-compatible headphones (MR Confon HP-VS03). Visual stimuli were back-pro-

jected onto a Plexiglas screen using a Barco Present-C F-Series projector (F35 WUXGA,

1,280 × 1,024 pixels resolution; 60-Hz frame rate), and they were visible to the participants via

a mirror mounted on the MR head coil (horizontal visual field of approximately 40˚ visual

angle at a viewing distance of approximately 68 cm). Participants gave responses via two MR-

compatible keypads (NATA LXPAD 1×5-10M, NATAtech.com), one per hand, and report

modality.

MRI data acquisition

A 3T Philips Achieva MR scanner was used to acquire both a T1-weighted anatomical image

(TR = 8.4 ms, TE = 3.8 ms, flip angle = 8˚, FOV = 288 mm × 232 mm, 175 sagittal slices

acquired in sequential ascending direction, voxel size = 1 × 1 × 1 mm3) and T2�-weighted axial

echoplanar images (EPI) with blood oxygen level–dependent contrast (gradient echo, SENSE

factor of 2, TR = 2800 ms, TE = 40 ms, flip angle = 90˚, FOV = 192 × 192 × 114 mm2, 38 axial

slices acquired in sequential ascending direction, voxel size = 2.5 × 2.5 × 2.5 mm3 + 0.5 mm

interslice gap). For each participant, a total of 276 volumes × 14 runs were acquired, after dis-

carding the first 4 volumes of each run to allow for T1 equilibration effects. Data acquisition

was performed over the course of 4 days, and the anatomical image was acquired at the end of

the last day.

Behavioural data analysis—Psychophysics and fMRI experiments

For both the psychophysics experiment outside the scanner and the fMRI experiment, we lim-

ited the analyses of behavioural responses to trials without missed responses (i.e., no answer

within 2-second response time window) or premature responses (i.e., response times <100

ms). Further, we did not include any trials where observers used the wrong keypad indicating

that they were confused about the sensory modality of the signal location they had to report.

Only few trials were discarded for the psychophysics experiment (3.4% ± 0.7% [across partici-

pants mean ± SEM]) and the fMRI experiment (3.0% ± 1.0% [across participants

mean ± SEM]). For psychophysics outside the scanner, we also excluded trials without central

fixation during stimuli presentation. Saccades were defined as eye movements outside a 1.3˚

circular area centred on participant’s median of fixation determined in calibration trials [69].

Participants successfully maintained fixation with only a small number of rejected trials (0.4%

± 0.1% [across participants mean ± SEM]).

In the following, we describe the analysis of (i) behavioural response times; (ii) the audiovi-

sual weight index; and (iii) the Bayesian modelling analysis that were applied to both the psy-

chophysics and the fMRI experiments.

General linear model–based analysis of response times

For each experimental trial, we computed response times from the onset of the report cue (Fig

2B). For each participant, median response times of each experimental condition were aver-

aged across all combinations of AV locations at a particular level of absolute AV spatial
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disparity and entered into a 2 (prestimulus attention: auditory/visual) × 2 (poststimulus report:

auditory/visual) × 3 (AV spatial disparity: 0˚, 9˚, or 18˚ visual angle, i.e., none, low, or high dis-

parity) repeated measures ANOVA. We present two-tailed p-values for the statistical compari-

sons of interest in the main text (i.e., cue validity effect, spatial congruency effect, interaction

between spatial congruency, and poststimulus report). All statistical results are comprehen-

sively summarised in S2 Table.

Analysis of audiovisual weight index wAV

To assess the influence of the auditory and visual signal locations on observers’ reported audi-

tory (or visual) locations, we computed an audiovisual weight index wAV for the spatially

incongruent trials (i.e., AV spatial disparity greater than 0). The wAV index is defined as the

difference between the reported location and the auditory location, scaled by the difference

between the reported visual and auditory locations on audiovisual congruent trials. The

denominator acts as a scaling operator for all conditions at a particular level of spatial disparity;

to increase its estimation precision, we computed the denominator pooled over all prestimulus

attention and poststimulus report conditions across all participants. Hence, we obtained 3

denominators (8.40 for −9˚ versus 0˚; 8.65 for 0 versus 9˚; and 17.05 for −9˚ versus 9˚ visual

angle) using the across participants’ and across (prestimulus × poststimulus attention) condi-

tions’ mean reported locations of the congruent conditions.

wAV;XY ¼
Reported locationIncongruent; A¼X; V¼Y � Reported locationCongruent; AV¼X
Reported locationCongruent; AV¼Y � Reported locationCongruent; AV¼X

ð1Þ

Under the assumption of comparable central biases across all conditions, an audiovisual

weight index wAV of one indicates that observer’s spatial report relies completely on the visual

signal location. An audiovisual weight index wAV of 0 indicates that observer’s spatial report

relies completely on the auditory signal location. We averaged the wAV index across all combi-

nations of AV locations at a particular level of absolute AV spatial disparity. We thus analysed

the audiovisual weight index in a 2 (prestimulus attention: auditory versus visual) × 2 (post-

stimulus report: auditory versus visual) × 2 (AV spatial disparity: 9˚ or 18˚ visual angle, i.e.,

low or high disparity) factorial design. Please note that Bayesian models were fitted directly to

observers’ responses across the 36 conditions in our original 2 (prestimulus attention: auditory

versus visual) × 2 (poststimulus report: auditory versus visual) × 3 (A location: −9˚, 0˚, and 9˚

visual angle) × 3 (V location: −9˚, 0˚, and 9˚ visual angle) design.

To refrain from making any parametric assumptions, we evaluated the main effects of pres-

timulus attention, poststimulus report, AV spatial disparity, and their interactions in this fac-

torial design using two-tailed (unless otherwise stated) permutation testing at the between-

subject level (4,096 cases with n = 12). For effect sizes, we report the difference of the across

participants’ mean empirical effect and the mean of the nonparametric null distribution and

95% CIs.

Bayesian modelling

Combining Bayesian modelling and psychophysics, we assessed whether prestimulus attention

and poststimulus report influence multisensory estimates via different computational mecha-

nisms. In the following, we will first describe the Bayesian causal inference model from which

we will then derive the forced fusion model as a special case (details can be found in [20,27]).

In a second step, we will then describe how prestimulus attention and poststimulus report may

affect multisensory processing in these models.
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The Bayesian causal inference model (Fig 1A and 1B) describes how observers should com-

bine information from different senses when there is uncertainty about whether signals are

caused by common or separate sources. Briefly, the generative model of Bayesian causal infer-

ence explicitly models the two potential causal structures, i.e., common source or separate

sources, which could have generated the sensory signals. It assumes that common (C = 1) or

independent (C = 2) causes are sampled from a binomial distribution defined by the common

cause prior Pcommon. For a common source, the “true” location SAV is drawn from the spatial

prior distribution N(μAV,σP). For two independent causes, the “true” auditory (SA) and visual

(SV) locations are drawn independently from this spatial prior distribution. For the spatial

prior distribution, we assume a central bias (i.e., μ = 0). We introduce sensory noise by draw-

ing xA and xV independently from normal distributions centred on the true auditory (resp.

visual) locations with parameters s2
A (resp. s2

V). Thus, the generative model (i.e., without atten-

tional effects) includes the following four free parameters: the causal prior Pcommon, the spatial

prior variance s2
P, the auditory variance s2

A, and the visual variance s2
V .

The posterior probability of the underlying causal structure is inferred by combining the

common source prior with the sensory evidence according to Bayes’ rule:

pðC ¼ 1jxA; xVÞ ¼
pðxA; xV jC ¼ 1ÞPcommon

pðxA; xVÞ
ð2Þ

In the case of a common source (C = 1), the estimate of the audiovisual location is obtained by

averaging the auditory and visual estimates along with the spatial prior weighted by their rela-

tive reliabilities (i.e., “forced fusion estimate”):

ŜAV;C¼1 ¼
xA=s2

A þ xV=s2
V þ mP=s

2
P

1=s2
A þ 1=s2

V þ 1=s2
P

ð3Þ

In the case of independent sources (C = 2), the auditory and visual stimulus locations are esti-

mated independently (i.e., “unisensory auditory or visual full segregation estimates”):

ŜA;C¼2 ¼
xA=s2

A þ mP=s
2
P

1=s2
A þ 1=s2

P

; ŜV;C¼2 ¼
xV=s2

V þ mP=s
2
P

1=s2
V þ 1=s2

P

ð4Þ

To provide a final estimate of the auditory and visual locations, the brain can combine the esti-

mates from the two causal structures using various decision functions [27]. According to the

“model averaging” strategy, a final “Bayesian causal inference estimate” is obtained by combin-

ing the integrated forced fusion estimate with the task-relevant unisensory (i.e., either auditory

or visual) full segregation estimate weighted in proportion to the posterior probability of the

respective causal structures:

ŜA ¼ pðC ¼ 1jxA; xVÞŜAV;C¼1 þ ð1 � pðC ¼ 1jxA; xVÞÞŜA;C¼2 ð5Þ

ŜV ¼ pðC ¼ 1jxA; xVÞŜAV;C¼1 þ ð1 � pðC ¼ 1jxA; xVÞÞŜV;C¼2 ð6Þ

The forced fusion model can be considered a special case of Bayesian causal inference, in

which it is known without uncertainty that the two signals come from one common source

(i.e., causal prior Pcommon = 1). In this “forced fusion scenario”, auditory and visual signals are

integrated weighted by their relative reliabilities as described by Eq (3). The forced fusion

model includes only three free parameters: the variances of the auditory signal, the visual sig-

nal, and the spatial prior.
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How can prestimulus attention and poststimulus report affect multisensory inference in the

forced fusion and Bayesian causal inference model (Fig 1C)? Prestimulus attention may affect

the reliabilities of the sensory signals prior to integration both in the forced fusion and the

Bayesian causal inference model. For example, we would expect prestimulus attention to vision

to increase the reliability (i.e., decrease the variance) of the visual information and thereby

increase its weight in the fusion process (and vice versa for prestimulus attention to audition).

Likewise, poststimulus report may affect the reliabilities of the sensory signals prior to integra-

tion in the forced fusion model (or the fusion component in the causal inference model). In

this case, prestimulus attention and poststimulus report would alter audiovisual integration via

the same computational mechanisms. While the effect of prestimulus attention on sensory var-

iance seems intuitive, a corresponding effect of poststimulus report may be less plausible. For

poststimulus report to affect sensory variances, observers would need to keep unisensory rep-

resentations separate until the presentation of the poststimulus cue. Further, one would need

to assume that poststimulus report can modify the reliability of sensory representations even

after stimulus offset. For instance, poststimulus report may influence how higher-order areas

internally sample or accumulate sensory information prior to integration. Nevertheless, it

seems less likely that poststimulus report alters the reliability of sensory representations per se.

Alternatively, the effect of poststimulus report may arise naturally from Bayesian causal

inference. Here, the brain reads out a final estimate that flexibly combines the forced fusion

estimate with the auditory or visual segregation estimates weighted by the posterior probability

of the respective causal structures. In this latter case, poststimulus report would not influence

the sensory reliabilities prior to fusion, but only the flexible readout of the final perceptual esti-

mate according to current task demands.

Please note that both mechanisms would induce a difference in the audiovisual weight

index wAV for auditory and visual poststimulus report that is directly computed from observ-

ers’ localisation responses. However, only for the latter mechanism, i.e., the flexible readout of

the task-relevant estimate, would this difference between auditory and visual poststimulus

report increase with audiovisual spatial disparity [11,12,47]. This is because greater audiovisual

disparity increases the posterior probability of separate causes, which, in turn, increases the

weight for the segregated estimates that are selectively read out.

To arbitrate between these different hypotheses, we used Bayesian model comparison in a

2 × 3 factorial model space. Along factor 1, we assessed the influence of pre-stimulus attention

comparing models in which the auditory and visual variances were i. fixed or ii. allowed to dif-

fer between auditory and visual attention (i.e. auditory variance: s2
A attA, s2

A attV ; visual variance:

s2
V attA, s2

V attV). Along factor 2, we assessed the impact of post-stimulus report by comparing i.

a forced fusion model in which the sensory variances were fixed, ii. a forced fusion model in

which the sensory variances were allowed to differ between auditory and visual post-stimulus

report (i.e. auditory variance: s2
A repA, s2

A repV ; visual variance: s2
V repA, s2

V repV) and iii. a Bayesian

causal inference model in which the influence of post-stimulus report arises via a late flexible

read-out.

In total, we thus compared 6 models: (i) Forced Fusion, Attention + Report fixed, with 3

parameters (A and V variances, spatial prior); (ii) Forced Fusion, Attention flexible + Report

fixed, with 5 parameters (2 A and 2 V variances, spatial prior); (iii) Forced Fusion, Attention

fixed + Report flexible, with 5 parameters (2 A and 2 V variances, spatial prior); (iv) Forced

Fusion, Attention flexible + Report flexible, with 9 parameters (4 A and 4 V variances, spatial

prior); (v) Bayesian causal inference with 4 parameters (A and V variances, spatial prior, causal

prior); and (vi) Bayesian causal inference, Attention flexible, with 6 parameters (2 A and 2 V

variances, spatial prior, causal prior).
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We fitted each model individually (i.e., separately for each participant) to participants’

behavioural localisation responses based on the predicted distributions of the spatial estimates

(i.e., pðŜjSA; SVÞ; we use Ŝ as a variable to refer generically to any (i.e., auditory or visual or

audiovisual) spatial estimate for each combination of auditory (SA) and visual (SA) source loca-

tions. To marginalise over the internal variables xA and xV that are not accessible to the experi-

menter, the predicted distributions were generated by simulating xA and xV 10,000 times for

each of the 3 (auditory location) × 3 (visual location) × 2 (prestimulus attention to vision ver-

sus audition) × 2 (poststimulus report of vision versus audition) conditions and inferring a

spatial estimate Ŝ from Eqs (2–6) [20] for each simulated xA and xV. To link any of those

pðŜjSA; SVÞ to participants’ auditory and visual discrete localisation responses at the beha-

vioural level, we assumed that participants selected the button that is closest to Ŝ and binned

the Ŝ accordingly into histograms for each condition (with three bins corresponding to the

three buttons). Thus, we obtained a histogram of predicted localisation responses for each

model separately for each condition and individually for each participant. Based on these his-

tograms, we computed the probability of a participant’s counts of localisation responses using

the multinomial distribution [20]. This provides the likelihood of the model given participants’

response data. Assuming independence of conditions, we summed the log likelihoods across

conditions. To obtain maximum likelihood estimates for the parameters of the models, we

used a nonlinear simplex optimisation algorithm as implemented in MATLAB’s fminsearch
function (MATLAB R2016a). This optimisation algorithm was initialised with a parameter set-

ting that obtained the highest log likelihood in a prior grid search. The model fit for beha-

vioural data was assessed by the coefficient of determination R2 [76] defined as

R2 ¼ 1 � exp �
2

n
ðlð�̂Þ � lð0ÞÞ ð7Þ

where l(�̂) and l(0) denote respectively the log likelihoods of the fitted and the null model, and

n is the number of data points. For the null model, we assumed that an observer randomly

chooses one of the three response options, i.e. we assumed a discrete uniform distribution with

a probability of 0.33. As in our case the Bayesian causal inference model’s responses were dis-

cretized to relate them to the three discrete response options, the coefficient of determination

was scaled (i.e., divided) by the maximum coefficient (cf.[76]) defined as:

maxðR2Þ ¼ 1 � exp
2

n
lð0Þ

� �

ð8Þ

To identify the optimal model for explaining participants’ data (i.e., localisation responses at

the behavioural level), we compared the candidate models using the Bayesian information cri-

terion (BIC) as an approximation to the log model evidence[77]:

BIC ¼ � ln L̂ þ k � ln n; ð9Þ

where L̂ denotes the likelihood, n the number of data points and k the number of parameters.

Importantly, the BIC depends on both model complexity and model fit. We performed Bayes-

ian model selection[78] at the group (i.e. random effects) level as implemented in SPM12[79]

to obtain the protected exceedance probability that one model is better than any of the other

candidate models above and beyond chance. Further, for the winning model (i.e. the Bayesian

causal inference model with s2
A and s2

V differing between auditory and visual pre-stimulus

attention) we evaluated pair-wise changes in variance as a function of pre-stimulus attention

via one-tailed permutation testing, based on our a-priori hypotheses (i.e. auditory variance s2
A
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decreases for auditory relative to visual pre-stimulus attention; vice versa, visual variance s2
V

decreases for visual relative to auditory pre-stimulus attention). For effect sizes, we report the

difference of the across-participants mean empirical effect and the mean of the non-parametric

null-distribution, and 95% confidence intervals.

Neuroimaging data analysis

Univariate analysis. The functional MRI data were analysed with statistical parametric

mapping (SPM12; Wellcome Department of Imaging Neuroscience, London; www.fil.ion.

ucl.ac.uk/spm [79]). Scans from each participant were realigned using the first as a refer-

ence, unwarped, slice-time corrected, and spatially normalised into MNI standard space

using parameters from segmentation of the T1 structural image, resampled to a spatial reso-

lution of 2 × 2 × 2 mm3 and spatially smoothed with a Gaussian kernel of 8-mm full width

at half maximum. The time series of all voxels were high-pass filtered to 1/128 Hz. The

fMRI experiment was modelled in an event-related fashion with regressors entered into the

design matrix after convolving each event-related unit impulse with a canonical hemody-

namic response function and its first temporal derivative. In addition to modelling the 36

experimental conditions in our 2 (prestimulus attention: auditory versus visual) × 2 (post-

stimulus report: auditory versus visual) × 3 (visual location) × 3 (auditory location) factorial

design, the statistical model included the onsets of the “attention” precue (i.e., at the begin-

ning of each block) as a separate regressor. Nuisance covariates included the realignment

parameters to account for residual motion artefacts. In a control analysis, we replicated the

current findings by also modelling as one single extra regressor all missed or premature

responses or responses with the wrong keypad (hence, we do not report this in details).

Condition-specific effects (i.e., parameter estimates for the canonical hemodynamic

response function regressors) for each participant were estimated according to the general

linear model and passed to a second-level analysis as contrasts. This involved creating 36

contrast images (i.e., each of the 36 conditions relative to fixation, summed over the 14

runs) for each participant and entering them into a second-level ANOVA. Inferences were

made at the second level to allow a random-effects analysis and inferences at the population

level [79].

In the main manuscript, we present the cue invalidity effects (i.e., prestimulus

attention × poststimulus report interaction: [attVrepA & attArepV] > [attArepA & attV-

repV]), identifying stronger activations for trials with invalid than valid precues. Further, we

tested for audiovisual spatial incongruency effects (i.e., [AVincongruent (AV disparity 6¼ 0˚) >

AVcongruent (AV disparity = 0˚)]), i.e., identifying stronger activations for AV incongruent

than congruent stimuli. Together, these contrasts allowed us to test the hypothesis that the

same widespread frontoparietal insular system (previously implicated in cognitive control and

selective attention [46]) is activated when the brain detects spatial conflicts between audiovi-

sual signals and conflicts between pre- and postcues. For comprehensive characterisation of

the data, S3 and S4 Tables also report the opposite contrasts, i.e., the cue validity effect (i.e.,

[attVrepA & attArepV] < [attArepA & attVrepV]) and the audiovisual congruency effect (i.e.,

[AVincongruent (AV disparity 6¼ 0˚) < AVcongruent (AV disparity = 0˚)]). Finally, we report

the cue invalidity effects separately for auditory (i.e., attVrepA > attArepA) and visual (i.e.,

attArepV > attVrepV) reports in S5 Table, the main effect of prestimulus attention (i.e.,

[attA> attV] and vice versa), and the main effect of poststimulus report (i.e., [repA > repV]

and vice versa) in S6 Table. Unless otherwise stated, we report activations at p< 0.05 at the

peak level family-wise error (FWE)-corrected for multiple comparisons within the entire

brain.
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Multivariate decoding and neural audiovisual weight index nwAV. For the multivariate

pattern analysis, scans from each participant were realigned using the first as a reference,

unwarped, and slice-time corrected. The time series of all voxels were high-pass filtered to 1/

128 Hz. All data were analysed in native participant space and without any smoothing using

the same design matrix as in the univariate analysis, except that we concatenated pairs of suc-

cessive runs to double the number of trials for each condition and hence increase the signal-

to-noise ratio. The voxel-wise magnitude of the BOLD signal in response to the audiovisual

onsets was defined by the parameter estimates pertaining to the canonical hemodynamic

response function. Each parameter estimate image was based on 12 trials, and there were 7

parameter estimate images per condition (i.e., 1 parameter estimate per condition and run, 7

runs). BOLD response patterns were extracted from five a priori ROIs along the visual and

auditory dorsal hierarchies (Fig 4A; see section “Regions of interest definition”). The resulting

voxel response patterns were scaled to the range 0 to 1 for each ROI (i.e., “image scaling”).

Multivariate decoding was performed using The Decoding Toolbox 3.96 (TDT) [80]. For each

participant and ROI, we employed a linear SVR model as implemented in LIBSVM 3.17[81]

(C = 1 and nu = 0.5). The SVR model was trained to learn the mapping from the fMRI activa-

tion vectors to the external spatial locations based on the audiovisually congruent conditions

(including conditions of auditory and visual prestimulus attention and poststimulus report)

from all but one run (7 runs in total). This learnt mapping was then used to decode the spatial

location from the fMRI activation vectors of the spatially congruent and incongruent audiovi-

sual conditions of the remaining run (Fig 4B). In a leave-one-run-out cross-validation scheme,

the training test procedure was repeated for all 7 runs.

We then asked two questions. First, we investigated whether the true signal location of the

audiovisual congruent signals can be decoded successfully from the fMRI activation patterns

in our ROIs. We evaluated decoding accuracy in terms of the Pearson correlation between the

true and the decoded spatial locations in audiovisual congruent conditions alone (n.b. we can

compute audiovisual accuracy in a meaningful way only for the congruent audiovisual trials).

Individual correlation coefficients were Fisher-z transformed and then tested against 0 (i.e.,

r> 0) via 1-tailed permutation testing at the between-subject level. Alongside significance

results, we report the inverse-transformed across participants’ mean and 95% CIs. For effect

sizes, we report the difference of the across participants’ mean empirical effect and the mean of

the nonparametric null distribution, and 95% CIs. It is important to emphasise that compari-

son of decoding accuracy across regions should be made with great caution. This is because

the ability to decode information from fMRI responses depends on several factors including

whether information is neural encoding, its representational format, and a region’s vascular

organisation. Most notably, spatial information is represented topographically in visual corti-

ces [82], but via rate-based code in auditory cortices [59,60].

Second, we investigated how the five ROIs in the visual and auditory processing hierarchies

integrate auditory and visual signals into spatial representations. For this, we focused on the

decoded spatial locations for the spatially incongruent conditions, which provide information

about how a brain region combines visual and auditory spatial signals into spatial representa-

tions. We quantified the influence of the auditory and visual signal location on the decoded

spatial estimates for each ROI using the neural audiovisual weight index nwAV, which is

defined similarly as in the behavioural analysis:

nwAV;XY ¼
Decoded locationIncongruent; A¼X; V¼Y � Decoded locationCongruent; AV¼X
Decoded locationCongruent; AV¼Y � Decoded locationCongruent; AV¼X

ð10Þ

Please note that the denominator controls at least partly for differences in decodability
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between areas. Similar to our behavioural analysis, we increased the estimation precision of

the denominator by pooling over all prestimulus attention × poststimulus report

conditions × runs across all participants. First, we averaged the locations decoded from the 28

parameter estimates (i.e., 2 prestimulus attention × 2 poststimulus report × 7 runs) for each

congruent location within each participant and then formed the across participants’ mean.

Second, we formed three across participants’ mean denominators by forming the appropriate

differences in locations decoded from the congruent conditions for the three levels of spatial

disparity (i.e., for −9˚ versus 0˚; for 0 versus 9˚; and for −9˚ versus 9˚ visual angle). Under the

assumption of comparable central biases across all conditions, the nwAV should be equal to 1

in regions that encode the location of the visual signal irrespective of the auditory signal, i.e.,

formally,

Decoded locationIncongruent; A¼X; V¼Y ¼ Decoded locationCongruent; AV¼Y ð11Þ

Conversely, the nwAV should be equal to 0 in regions that encode the location of the auditory

signal irrespective of the visual signal, i.e., formally,

Decoded locationIncongruent; A¼X; V¼Y ¼ Decoded locationCongruent; AV¼X ð12Þ

We divided the decoded biases (Eqs 11 and 12) by the corresponding spatial disparities to

obtain nwAV index. We averaged the nwAV indices across all combinations of AV locations at a

particular level of absolute AV spatial disparity.

First, we assessed in low-level visual (resp. auditory) cortices whether the audiovisual weight

index is significantly different from 1 (resp. 0) indicating significant crossmodal influences at

the early cortical level. Second, we evaluated the main effects of prestimulus attention, post-

stimulus report, AV spatial disparity, and their interactions in the factorial design. To refrain

from making any parametric assumptions, we assessed all these effects using permutation test-

ing as described under the behavioural analysis.

Regions of interest definition

Our ROI analysis was performed in accordance with our previous publications [7,11,12]. All

ROIs were defined bilaterally, i.e., via combination of corresponding areas from left and right

hemispheres. In line with these previous studies [7,11,12], we focused our analysis on a specific

set of visual and auditory ROIs along the auditory and visual spatial processing hierarchies

[83]: V1-3 (2385 voxels), pIPS (1012 voxels), aIPS (580 voxels), low-level auditory cortices (A;

226 voxels), and hA (359 voxels). Visual ROIs were defined using volume-based probability

maps from a probabilistic atlas for visual topography [82]. V1-3 comprised ventral and dorsal

areas V1-3; pIPS comprised areas IPS0, IPS1, and IPS2; and aIPS comprised areas IPS3, IPS4,

and SPL1 [82]. Low-level auditory cortex (A) comprised areas TE1.0 and 1.1 from the Anat-

omy Toolbox [84]. hA comprised planum temporale and transverse temporal sulcus from the

Destrieux atlas (2009) of Freesurfer 5.3.0 [85].

Supporting information

S1 Data. ZIP file containing dataset underlying Fig 2C and 2D and S3–S6 Tables. The data

are stored in MATLAB structures.

(ZIP)

S2 Data. ZIP file containing datasets underlying Figs 3 and 4 and S2 and S1, S7, S9 and S10

Tables. The data are stored in MATLAB structures.

(ZIP)
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S3 Data. ZIP file containing dataset underlying S1B Fig and S11 Table. The data are stored

in MATLAB structures.

(ZIP)

S1 Text. Unisensory auditory localisation inside the scanner.

(DOCX)

S1 Table. Response times in the psychophysics and fMRI experiments. Across participants’

mean (±SEM) as a function of prestimulus attention (attA, auditory; attV, visual), poststimulus

report (repA: auditory; repV: visual), and audiovisual spatial disparity (dispN: no disparity;

dispL: low; dispH: high).

(DOCX)

S2 Table. Statistical results of response times in the psychophysics and fMRI experiments.

Main effects and interactions of the 2 (prestimulus attention, Att: attA, attV) × 2 (poststimulus

report, Rep: repA, repV) × 3 (audiovisual spatial disparity, Disp: low, high) repeated measures

ANOVA. Greenhouse–Geisser correction is applied to degrees of freedom (df1 and df2) in

case of violation of sphericity (Mauchly test).

(DOCX)

S3 Table. fMRI univariate results: Audiovisual spatial (in)congruency. Effect of audiovisual

spatial incongruency [AVincongruent (AV disparity 6¼ 0˚) > AVcongruent (AV dispar-

ity = 0˚)] and congruency [AVcongruent (AV disparity = 0˚) > AVincongruent (AV disparity

6¼ 0˚)]. p-Values are FWE corrected at the peak level for multiple comparisons within the

entire brain. FWE, family-wise error; L, left; R, right.

(DOCX)

S4 Table. fMRI univariate results: Cue (in)validity. Effect of cue invalidity [Invalid (attV-

repA & attArepV) > Valid (attArepA & attVrepV)] and validity [Valid (attArepA & attVrepV)

> Invalid (attVrepA & attArepV)], where attA: auditory prestimulus attention; attV: visual

prestimulus attention; repA: auditory poststimulus report; repV: visual poststimulus report. p-

Values are FWE corrected at the peak level for multiple comparisons within the entire brain.

FWE, family-wise error; L, left; R, right.

(DOCX)

S5 Table. fMRI univariate results: Cue invalidity separately for auditory and visual report.

Effect of cue invalidity separately for auditory (attVrepA > attArepA) and visual report

(attArepV > attVrepV), where attA: auditory attention; attV: visual attention; repA: auditory

report; repV: visual report. p-Values are FWE corrected at the peak level for multiple compari-

sons within the entire brain. FWE, family-wise error; L, left; R, right.

(DOCX)

S6 Table. fMRI univariate results: Poststimulus report and prestimulus attention. Effect of

auditory relative to visual report (repA > repV) and vice versa (repV > repA); effect of audi-

tory relative to visual attention (attA> attV) and vice versa (attV > attA). p-Values are FWE

corrected at the peak level for multiple comparisons within the entire brain. FWE, family-wise

error; L, left; R, right.

(DOCX)

S7 Table. Audiovisual weight index (wAV) in the psychophysics and fMRI experiments and

neural audiovisual weight index (nwAV) for each ROI. (a) Across participants’ mean (±SEM)

wAV as a function of prestimulus attention (attA, auditory; attV, visual), poststimulus report

(repA: auditory; repV: visual) and audiovisual spatial disparity (dispL: low; dispH: high).
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(b) Across participants’ mean (±SEM) nwAV as a function of prestimulus attention (attA, audi-

tory; attV, visual) and poststimulus report (repA: auditory; repV: visual) for each ROI. A, low-

level auditory cortex; aIPS, anterior intraparietal sulcus; hA, higher-order auditory cortex;

pIPS, posterior intraparietal sulcus; ROI, region of interest; V1-3, low-level visual cortex.

(DOCX)

S8 Table. Statistical significance (p-value and effect size with 95% CI) of behavioural

audiovisual weight index (wAV) and of neural audiovisual weight index (nwAV) for each

ROI. Main effects and interactions for (a) behavioural audiovisual weight index (wAV) in the

psychophysics and fMRI experiments and (b) neural audiovisual weight index (nwAV) in the 2

(prestimulus attention, Att: attA, attV) × 2 (poststimulus report, Rep: repA, repV) × 2 (audio-

visual spatial disparity, Disp: low, high) factorial design. p-Values are based on two-tailed per-

mutation tests apart from those for main effect of prestimulus attention (Att: attV> attA) and

poststimulus report (Rep: repV > repA), which are one-tailed because of a priori hypotheses.

Effect sizes [95% CI] correspond to the difference of the across participants’ mean empirical

effect and the mean of the nonparametric null distribution. A, low-level auditory cortex; aIPS,

anterior intraparietal sulcus; hA, higher-order auditory cortex; pIPS, posterior intraparietal

sulcus; ROI, region of interest; V1-3, low-level visual cortex.

(DOCX)

S9 Table. Proportion of correct responses in the psychophysics and fMRI experiments.

Across participants’ mean (±SEM) as a function of prestimulus attention (attA, auditory; attV,

visual), poststimulus report (repA: auditory; repV: visual) and audiovisual spatial disparity

(dispN: no disparity; dispL: low; dispH: high).

(DOCX)

S10 Table. Bayesian modelling results in the psychophysics and fMRI experiments. Using

Bayesian model comparison, we assessed the influence of prestimulus attention and poststimu-

lus report in a 2 × 3 factorial model space. Along the first factor, we assessed the influence of

prestimulus attention comparing models in which the auditory and visual variances were (i)

constant (Att fixed: s2
A attA = s2

A attV , s2
V attA = s2

V attV); or (ii) different (Att free: s2
A attA, s2

A attV ,

s2
V attA, s2

V attV) across prestimulus attention. Along the second factor, we assessed the influence

of poststimulus report by comparing (i) an FF model in which the sensory variances were

fixed (Rep fixed: s2
A repA = s2

A repV , s2
V repA = s2

V repV); (ii) an FF model in which the sensory vari-

ances were allowed to differ between auditory and visual report (Rep free: s2
A repA, s2

A repV ,

s2
V repA, s2

V repV); and (iii) a BCI model in which the influence of poststimulus report arises via a

late flexible readout. We report across participants’ mean (±SEM) of the models parameters:

Pcommon, prior common source probability; σP, spatial prior standard deviation (˚ visual angle);

σA, auditory likelihood standard deviation (˚ visual angle); σV, visual likelihood standard devia-

tion (˚ visual angle). In addition, R2, coefficient of determination; relBIC, BIC of a model

summed over participants (BIC = LL − 0.5 × P × ln(N), LL = log-likelihood, P = number of

parameters, N = number of data points) relative to the “BCI Att free” model (a model with

smaller relBIC provides better data explanation); pEP, protected exceedance probability (prob-

ability that a model is more likely than the other models, beyond differences due to chance).

BCI, Bayesian causal inference; FF, forced fusion.

(DOCX)

S11 Table. fMRI results of unisensory auditory localisation inside the scanner. Effect of

auditory localisation collapsing across spatial locations (Task > Baseline) and separately for

left versus right lateralised sounds (SoundL > SoundR; SoundR > SoundL). p-Values are FWE

PLOS BIOLOGY Attentional control of multisensory perception

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001465 November 18, 2021 26 / 31

http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3001465.s012
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3001465.s013
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3001465.s014
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3001465.s015
https://doi.org/10.1371/journal.pbio.3001465


corrected at the peak level for multiple comparisons within the entire brain. FWE, family-wise

error; L, left; R, right.

(DOCX)

S1 Fig. fMRI results of unisensory auditory localisation inside the scanner. (a) Experimen-

tal procedure: after each sound presentation, participants reported their perceived auditory

location via button press with the correspondent key. (b) Increases of BOLD response for

lateralised right versus left sounds (blue) and vice versa (orange) are rendered on an inflated

canonical brain (p< 0.001 uncorrected at peak level for visualisation purposes, extent thresh-

old k> 0 voxels). Bar plots represent across participants’ mean (±SEM) parameter estimates

in nondimensional units (corresponding to percentage whole-brain mean) from left (x = −50,

y = −32, z = 8) and right (x = 52, y = −22, z = 4) plana temporalia. The data used to make this

figure are available in S3 Data. C, centre; L, left; R, right.

(TIF)

S2 Fig. Distributions of spatial estimates in the fMRI experiment. The distribution of spatial

estimates (across participants’ mean) given by observers’ behavioural localisation responses

(solid lines) or predicted by the BCI model with attentional effects (i.e., “BCI model, Att free”)

fitted to observers’ behavioural responses (dashed lines) are shown across all conditions in our

a 3 (auditory location) × 3 (visual location) × 2 (prestimulus attention: auditory, visual) × 2

(poststimulus report: auditory, visual) factorial design. The data used to make this figure are

available in S2 Data. BCI, Bayesian causal inference.

(TIF)
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