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ABSTRACT
We study the problem of testing discrete distributions with a focus

on the high probability regime. Specifically, given samples from

one or more discrete distributions, a property P, and parameters

0 < ϵ, δ < 1, we want to distinguish with probability at least 1 − δ
whether these distributions satisfy P or are ϵ-far from P in total

variation distance. Most prior work in distribution testing studied

the constant confidence case (corresponding to δ = Ω(1)), and
provided sample-optimal testers for a range of properties. While

one can always boost the confidence probability of any such tester

by black-box amplification, this generic boosting method typically

leads to sub-optimal sample bounds.

Here we study the following broad question: For a given property

P, can we characterize the sample complexity of testing P as a

function of all relevant problem parameters, including the error

probability δ? Prior to this work, uniformity testing was the only

statistical task whose sample complexity had been characterized

in this setting. As our main results, we provide the first algorithms

for closeness and independence testing that are sample-optimal,

within constant factors, as a function of all relevant parameters.

We also show matching information-theoretic lower bounds on

the sample complexity of these problems in the full version of this

paper. Our techniques naturally extend to give optimal testers for

related problems. To illustrate the generality of our methods, we

give optimal algorithms for testing collections of distributions and

testing closeness with unequal sized samples.
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1 INTRODUCTION
1.1 Background and Motivation
This paper studies problems in distribution property testing [2,

3, 24], a field at the intersection of property testing [23, 34] and

statistical hypothesis testing [28, 31]. The prototypical problem of

this field is the following: Given sample access to a collection of

unknown probability distributions and a pre-specified global prop-

erty P of these distributions, determine whether the distributions

satisfy P or are “far” from satisfying the property. (See Section 1.2

for a formal definition.) The main goal is to characterize the sample

and computational complexity of this general question, for any

given property P of interest, as a function of the relevant param-

eters. During the past two decades, distribution property testing

has received significant attention within the computer science and

statistics communities. The reader is referred to [5, 33] for two

surveys on the topic. It should be noted that the TCS definition of

distribution testing is equivalent to the minimax view of statistical

hypothesis testing, pioneered in the statistics community by Ingster

and coauthors (see, e.g., [26].)

The vast majority of prior research in distribution testing focused

on characterizing the complexity of testing various properties of

arbitrary discrete distributions in the “constant confidence regime.”

That is, the testing algorithm is allowed to fail with probability

(say) at most 1/3. This regime is by now fairly well understood: For

a range of natural and important properties (see, e.g., [1, 7, 8, 15–

18, 30, 32, 36]), prior work has developed testers with provably

optimal sample complexity (up to universal constant factors). More

recently, a body of work has focused on leveraging a priori structure

542

https://doi.org/10.1145/3406325.3450997
https://doi.org/10.1145/3406325.3450997


STOC ’21, June 21–25, 2021, Virtual, Italy Ilias Diakonikolas, Themis Gouleakis, Daniel M. Kane, John Peebles, and Eric Price

of the underlying distributions to obtain significantly improved

sample complexities [4, 6, 9–11, 17–20]. Similarly, all these results

on testing structured distributions study the constant confidence

regime.

Since distribution property testing is a (promise) decision prob-

lem, one can use standard amplification to boost the confidence

probability of any tester to any desired value in a black-box manner.

Suppose we have a testing algorithm for propertyP that guarantees

confidence probability 2/3 (failure probability 1/3) with N samples.

Using amplification, we can increase the confidence probability

to 1 − δ , for any δ > 0, by increasing the sample complexity of

the algorithm by a factor of Θ(log(1/δ )). In part due to this sim-

ple fact, the initial definition of property testing [23] had set the

confidence parameter δ to be constant by default. As Goldreich

notes [21], “eliminating the error probability as a parameter does

not allow to ask whether or not one may improve over the straight-

forward error reduction”. Indeed, as we will see below, for a range

of tasks this Θ(log(1/δ )) multiplicative increase in the sample size

is sub-optimal.

The previous paragraph leads us to the following general ques-

tion:

Question 1.1. For a given property P, can we characterize the

sample complexity of testing P as a function of all relevant problem

parameters, including the error probability δ?

We believe that Question 1.1 is of fundamental theoretical and

practical interest that merits investigation in its own right. The

analogous question in the context of distribution learning has been

intensely studied in statistical learning theory (see, e.g., [12, 37])

and tight bounds are known in a range of settings.

Question 1.1 is of substantial interest in statistical hypothesis

testing, where the family of distribution testing algorithms with fail-

ure probability δ for a given property P is equivalent to the family

of minimax statistical tests whose probability of Type I error (p-
value) and probability of Type II error are both at most δ . Standard
techniques for addressing the problem of multiple comparisons,

such as Bonferroni correction, require vanishingly small p-values.
In such settings, obtaining optimal testers in the high-confidence

regime might have practical implications in application areas of

hypothesis testing (e.g., in biology).

It should be noted that Question 1.1 has received renewed re-

search attention in the information theory and statistics commu-

nities. Specifically, [25, 27] focused on developing testers with

improved dependence on δ for uniformity testing [25], equiva-

lence and independence testing [27]. Prior to this work, uniformity

testing—and, via Goldreich’s reduction [22], identity testing—was

the only statistical task whose sample complexity had been char-

acterized in the high-confidence regime [14]. As shown in [14],

all previously studied uniformity testers are in fact sub-optimal in

the high-confidence regime. In other words, obtaining an optimal

sample bound was not just a matter of improved analysis, but a

new algorithm was required.

Most relevant to the results of this paper is the concurrent work

by Kim, Balakrishnan, and Wasserman [27]. Kim et al. [27] give

equivalence and independence testers for discrete distributions

with respect to the total variation distance (i.e., in the same setting

as ours) whose sample complexities beat standard amplification as

a function of δ (in some parameter regimes). As we show in this

paper, their sample complexity upper bounds are sub-optimal – by

roughly a quadratic factor. See Section 1.4 for a detailed description

of the most relevant prior work.

1.2 Our Contributions
In this work, we systematically investigate the sample complexity

of distribution testing in the high-confidence regime. Our main

focus is on the problems of closeness (equivalence) testing and

independence testing. We develop new techniques that lead to the

first sample-optimal testing algorithms for these properties. More-

over, we prove information-theoretic lower bounds showing that

the sample complexity of our algorithms is optimal in all param-

eters (within a constant factor). Our techniques can be naturally

adapted to give sample-optimal testers for other properties. To illus-

trate the generality of our methods, we show that our techniques

lead to sample-optimal testers (and matching lower bounds in the

full version of this paper) for testing properties of collections of

distributions and testing closeness with unequal sized samples.

We start with a general definition of distribution property testing

for tuples of distributions.

Definition 1.1 ((ϵ, δ )-testing of property P). Let P be a property

of a k-tuple of distributions. Given parameters 0 < ϵ, δ < 1, and

sample access to a collection of distributions p(1), . . . ,p(k ), we want
to distinguish with probability at least 1 − δ between the following

cases:

• Completeness: (p(1), . . . ,p(k )) ∈ P.
• Soundness: (p(1), . . . ,p(k )) is ϵ-far fromP, in total variation
distance, i.e., for every (q(1), . . . ,q(k )) ∈ P the average total

variation distance between p(i) and q(i), i ∈ [k], is at least ϵ .

We call this the problem of (ϵ, δ )-testing property P. An algorithm

that solves this problem will be called an (ε, δ )-tester for property
P.

Here we focus on testing properties of distributions on discrete

domains. Definition 1.1 captures all testing tasks we study in this

paper. Our contributions are described in detail in the proceeding

discussion.

The task of closeness testing (or equivalence testing) of two

discrete distributions p,q supported on [n] corresponds to the case

k = 2 of Definition 1.1 and the property in question is P = {(p,q) :
p = q}. In other words, given samples from p and q, we want to
distinguish between the cases that p = q and dTV (p,q) ≥ ϵ . For
closeness testing, we show:

Theorem 1.2 (Closeness Testing). There exists a computation-

ally efficient (ϵ, δ )-closeness tester for discrete distributions of support
size n with sample complexity

Θ
(
n2/3 log1/3(1/δ )/ϵ4/3 + (n1/2 log1/2(1/δ ) + log(1/δ ))/ϵ2

)
.

Moreover, this sample size upper bound is information-theoretically

optimal, within a universal constant factor, for all n, ϵ, δ .

The statistical task of (two-dimensional) independence testing of

a discrete distribution p on the domain [n] × [m] corresponds to the
case k = 1 of Definition 1.1, where the property of interest is P =
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{p : p is a product distribution}. That is, we want to distinguish

between the case thatp is a product distribution versus ϵ-far, in total
variation distance, from any product distribution. For independence

testing, we show:

Theorem 1.3 (Independence Testing). There exists a computa-

tionally efficient (ϵ, δ )-independence tester for discrete distributions
on [n] × [m], where n ≥ m, with sample complexity:

Θ
(
n2/3m1/3

log
1/3(1/δ )/ϵ4/3

)
+

+Θ
(
((nm)1/2 log1/2(1/δ ) + log(1/δ ))/ϵ2

)
.

Moreover, this sample size upper bound is information-theoretically

optimal, within a universal constant factor, for all n,m, ϵ, δ .

The main focus of this paper is on developing the techniques

required to establish Theorems 1.2 and 1.3. Building on these tech-

niques, we obtain optimal testers for two additional fundamental

properties.

In the task of testing collections of distributions, we are given

access to m distributions p(1), . . . ,p(m) supported on [n] and we

want to distinguish between the case that p(1) = p(2) = . . . = p(m)

and the case that minq (1/m)
∑m
i=1 dTV (p

(i),q) ≥ ϵ . Our algorithm
is given samples of the form (i, j), where i is drawn uniformly at

random from [m] and j ∈ [n] is drawn from p(i). While this problem

has strong similarities to independence testing, it also has some

significant differences. For this testing task, we show:

Theorem 1.4 (Testing Collections of Distributions). There

exists a computationally efficient (ϵ, δ )-tester for testing closeness of
collections ofm distributions on [n] with sample complexity:

Θ
(
n2/3m1/3

log
1/3(1/δ )/ϵ4/3

)
+

+Θ
(
((nm)1/2 log1/2(1/δ ) + log(1/δ ))/ϵ2

)
.

Moreover, this sample size upper bound is information-theoretically

optimal, within a universal constant factor, for all n,m, ϵ, δ .

Our final result is for the problem of testing closeness between

two unknown discrete distributions when we have access to un-

equal sized samples from the two unknown distributions. This

problem interpolates between the vanilla closeness testing task

(with equal sized samples) and the task of identity testing (where

one of the two distributions is known exactly). For this task, we

show:

Theorem 1.5 (Closeness Testing with Uneqal Sized Sam-

ples). There exists a computationally efficient (ϵ, δ )-closeness tester
for discrete distributions of support size n that drawsO(K+k) samples

from one distribution and O(k) samples from the other, as long as

k ≥ C
(
n
√
log(1/δ )/min(n,K) + log(1/δ )

)
/ϵ2 ,

where C > 0 is a universal constant. Moreover, this sample size trade-

off is information-theoretically optimal, within a universal constant

factor, for all n, ϵ, δ .

1.3 Overview of Techniques
In this section, we provide a detailed overview of our upper and

lower bound techniques. Full statements of the lower bounds and

their proofs can be found in the full version of this paper. Our main

technical and conceptual innovation lies in the development of

our upper bounds. To keep this section concrete, we describe our

techniques in the context of closeness and independence testing.

Our algorithms for testing collections and closeness with unequal

sized samples use very similar ideas to those of our independence

tester.

Closeness Tester. To obtain a closeness tester that performs well

in the high confidence regime, we need to design a test statistic that

exhibits strong concentration bounds. A reasonable approach to

enforce this requirement would be to ensure that the test statistic

is Lipschitz in the samples, so that we can leverage an appropriate

concentration inequality (e.g., McDiarmid’s inequality) to obtain

the necessary concentration.We note that the chi-squared closeness

tester of [8] is Lipschitz, but not Lipschitz enough for the straight-

forward analysis to obtain an optimal bound. While we conjecture

that the [8] closeness tester is indeed optimal, here we develop a

new and easier to analyze closeness tester. Our new closeness tester

(and its analysis) will also be crucially used for our independence

tester.

We are now ready to describe the new statistic that our closeness

tester relies on. Let Xi ,Yi be the number of samples assigned to

bin (domain element) i ∈ [n], from p and q respectively. A natural

starting point is to consider the absolute value of the difference

|Xi −Yi |. Namely, we could consider the statistic Z =
∑n
i=1 |Xi −Yi |

and output “YES” or “NO” based on its magnitude. Unfortunately,

this random variableZ does not havemean zero in the completeness

case (i.e., when p = q). Furthermore, one can construct instances

where the expectation of this statistic is not even minimized when

p = q. To fix this issue, we will need to subtract an appropriate

proxy for what the value should be if p = q. To do this, we draw a

second set of samples with X ′i and Y
′
i samples in bin i from each of

the distributions. We then use the test statistic

Z =
n∑
i=1

(
|Xi − Yi | + |X

′
i − Y

′
i | − |Xi − X

′
i | − |Yi − Y

′
i |

)
.

If p = q, it is clear that Xi ,X
′
i ,Yi ,Y

′
i are i.i.d., and so Z is mean

zero. The challenging part of the proof involves showing that if

p is ϵ-far from q, then E[Z ] must be large. Since Z is Lipschitz, it

satisfies strong concentration bounds, and so with sufficiently many

samples we can distinguish the two cases with high probability. A

careful analysis shows that this tester is indeed sample optimal for

the entire parameter regime.

Independence Tester. Let p be a discrete distribution on [n] × [m].
It is easy to see (and well-known) that the independence testing

problem amounts to distinguishing the case where p = q from the

case that p is ϵ-far from q, where q is the product of p’s marginals.

Unfortunately, directly applying Theorem 1.2 to this domain of

size nm gives a poor sample complexity in one of the three terms.

In particular, the first term would be n2/3m2/3
, not n2/3m1/3

. Of

course, this is an issue even for the constant confidence regime. We

thus need a better bound when this term is dominant, which we
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will obtain using tighter concentration bounds on our statistic Z
from the previous subsection.

We start by observing that if Z is computed by drawing a total of

k independent samples, the fact thatZ is Lipschitz implies a variance

bound ofO(k). ByMcDiarmid’s inequality, it follows thatZ is within

O(
√
k log(1/δ )) of its mean value with probability 1 − δ . However,

we note that the value of the output statistic for Z does not really

depend on all of the samples. In particular, any bin (domain element)

with exactly one sample drawn from it (from the combination of

p and q) will not contribute to the statistic. Hence, if we let N
be the number of non-isolated samples, then in some sense, the

variance ofZ will be bounded above by N . Formally speaking, some

technical work is needed here, because there is a low probability of

N being unusually small in which case it would bound the variance.

To address this, we use a symmetrization argument to show that

|Z − E[Z ]| = O(
√
(N + log(1/δ )) log(1/δ )) with probability at least

1 − δ (see Lemma 4.5). If we can ensure that the number of non-

isolated samples is not too large, this stronger concentration bound

should allow us to use fewer samples.

In order to decrease the number of non-singleton samples in our

distribution, it is natural to want our underlying distributions to

have small ℓ2 norm. An approach to achieve this is by using the

flattening technique of [16]. The basic idea of flattening is to use

some of our samples to identify the heavy bins in our distribution,

and then to artificially subdivide these bins in order to decrease the

total ℓ2 norm of the distribution. This technique is especially useful

for the product distribution q, as we can separately identify the

heavy x-coordinates and heavy y-coordinates, rather than using

what would need to be substantially more samples to identify all of

the heavy pairs. However, there are two major difficulties with using

flattening in this setting. To circumvent these obstacles, new ideas are

needed, as explained in the proceeding discussion.

First, although flattening can be used to reduce the number of

collisions coming from samples of q, it will not necessarily reduce

the number of collisions fromp-samples to acceptable levels. We get

around this issue by noting that if most of the collisions contributing

to N come largely from p-samples, then with high probability it will

be case that Z ≫ N , in which case the larger variance term will not

hurt us much. A second, more difficult, problem to handle is this:

although it is not hard to show that flattening works on average, it

simply is not true that flattening yields a small number of collisions

with sufficiently high probability. This is a major issue in our setting,

since our goal is to obtain the optimal sample complexity with high

confidence!

To circumvent the latter problem, we will need to substantially

restructure our algorithm. Essentially, wewill pick a set S of samples

once at the beginning of our algorithm. We then randomly assign

samples of S to be used either to flatten x and y coordinates, or to

generate samples from p and q. If we got unlucky and our flattening
was not sufficient (because the number of q-samples that collided

was too large), we will try again using the same initial set S of

samples, but re-randomizing the way these samples are used.

To show that this new algorithm works, we will need to establish

two statements:

(1) For any set of initial samples S , the probability that we will

need to try again is at most 50% (so, on average, we only

need to try a constant number of times).

(2) The probability that a given try causes our algorithm to

terminate with the wrong answer is at most δ .

Combining the second statement with the fact that on average we

will only need O(1) many tries before we get an answer, the total

probability of failure will be bounded by δE[# tries] = O(δ ). This
allows us to get a high-probability bound even though our analysis

of flattening only works on average.

Sample Complexity Lower Bounds. We sketch our sample com-

plexity lower bound for independence testing. Details can be found

in the full version of this paper. The corresponding lower bound for

closeness testing follows as a special case in a black-box manner.

Our lower bound proof follows the same outline as the lower

bound proof in [16]. The gist of the argument in that work was

that we reduced to the following problem: We have two explicit

pseudo-distributions
1 Dyes (over independent pseudo-distributions)

and Dno (over usually far from independent pseudo-distributions).

We pick a random pseudo-distribution from one of these families,

take Poi(k) samples from it, hand them to the algorithm, and ask

the algorithm to determine which ensemble we started with. It was

shown in [16] that it is impossible to do this reliably by bounding the

mutual information between the samples and the bit determining

which ensemble was sampled from.

This approach, unfortunately, does not suffice for high probabil-

ity bounds. [16] worked in the constant confidence regime, where

the mutual information is close to 0. In contrast, in the high con-

fidence regime, the mutual information will be close to 1. While,

in principle, bounding the mutual information away from 1 might

suffice to prove lower bounds in the high confidence regime, the

mutual information bounds achievable with the [16] techniques

are not sufficiently strong, in the sense that they can only bound

the mutual information by a quantity bigger than 1, given enough

samples.

To overcome this technical hurdle, we replace our bounds on

mutual information with bounds on KL-divergence. Unlike the

mutual information (which is bounded by 1 bit), the KL-divergence

between our distributions can become arbitrarily large. It is also

not hard to see that if two distributions can be distinguished with

probability 1 − δ , the KL-divergence is Ω(log(1/δ )). (See Fact 2.2.)
Given the above observation, our lower bound ensembles are

identical to the ones used in [16]. Furthermore, the analytic tech-

niques we use to bound the KL-divergence are very similar, using es-

sentially the same expression as an upper bound on KL-divergence

as was used as an upper bound on mutual information. Another

technical issue is that we need to show that the reduction to our hard

instance over pseudo-distributions still works for high probability

testing, which is not difficult, but needs to be carefully checked.

1.4 Prior and Concurrent Work
Prior to this work, the question of developing sample-optimal

testers in the high-confidence regime has been considered for

1
A “pseudo-distribution” is like a distribution, except not necessarily normalized to

sum to one. In other areas of mathematics, they are commonly referred to as finite

measures.
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uniformity testing (and, via Goldreich’s reduction, identity test-

ing). Specifically, [25] showed that Paninski’s uniformity tester

(based on the number of unique elements) has the sample-optimal

sample complexity of O(
√
n log(1/δ )/ϵ2) in the sublinear sample

regime, i.e., when the sample size is o(n). More recently, [14] gave

a different tester that achieves the optimal sample complexity

O((
√
n log(1/δ ) + log(1/δ ))/ϵ2) in the entire regime of parameters.

As alreadymentioned, prior to our work, uniformity was the only

property for which the high confidence regime has been analyzed.

We now comment on some closely related literature. [8] gave a chi-

squared tester and showed that it is sample-optimal in the constant

confidence regime. We believe that the same tester is optimal in

the high-confidence regime. However, a proof of this statement

seems rather non-trivial. In particular, simple analyses based on

McDiarmid’s inequality [29] lead to sub-optimal sample complexity

when the sample size is Ω(n). The new closeness tester introduced

in this work is arguably simpler with a compact analysis, and it is

crucial for our much more involved independence tester.

The work of [1] gave an independence tester that is sample

optimal ’ in the constant confidence regime for the special case that

the two dimensions have the same support size (i.e., n = m). The

performance of this tester is sub-optimal in the high-confidence

regime, as it relies on a non-Lipschitz identity tester. [16] gave a

sample-optimal independence tester for the general case (wheren ≥
m), which is the only known sample-optimal tester in the constant

confidence regime for this problem. Unfortunately, this tester is also

sub-optimal in the high-confidence regime for the following reason.

[16] uses the flattening technique to reduce the problem under

total variation (ℓ1) distance to an ℓ2-closeness testing problem. The

issue is that the ℓ2-testing task does not behave well in the high

probability regime, so this approach does not suffice to give optimal

testers in this setting. While our optimal independence tester in this

paper also leverages the flattening technique, it requires several

new conceptual and technical ideas.

Concurrent and independent work [27] provided testers for close-

ness and independence testing in the high-confidence regime. Their

algorithms distinguish between the Type 1 and Type 2 error proba-

bilities α and β respectively. Our results in this paper correspond

to the setting that α = β = δ . Their testers have polynomial de-

pendence on 1/β and therefore do not perform well in our setting.

For constant β , their testers perform better than naive amplifi-

cation but still sub-optimally in the parameter α . For example,

their Theorem 8.1 gives a closeness tester with sample complex-

ity ofm = O(n2/3 log2/3(1/α)/β4/3 + n1/2 log(1/α)/β2). Even for

β = Θ(1), this is essentially quadratically worse in log(1/α) than
applying Theorem 1.2 with δ = α .

1.5 Organization
After setting up the required preliminaries in Section 2, we give our

testing algorithms for closeness and independence in Sections 3

and 4. Our testers for other properties and sample complexity lower

bounds are deferred to the full version of this paper [13].

2 PRELIMINARIES
We write [n] to denote the set {1, . . . ,n}. We consider discrete

distributions over [n] with corresponding probability mass func-

tions p : [n] → [0, 1] satisfying
∑n
i=1 pi = 1.We use the notation

pi to denote the probability of element i in distribution p. The
ℓ1 (resp. ℓ2) norm of a distribution is identified with the ℓ1 (resp.

ℓ2) norm of the corresponding vector, i.e., ∥p∥1 =
∑n
i=1 pi and

∥p∥2 =
√∑n

i=1 p
2

i . Similarly, the ℓ1 (resp. ℓ2) distance between dis-

tributions p and q is the ℓ1 (resp. ℓ2) norm of the vector of their

difference. The total variation distance between distributions p,q

on [n] is dTV (p,q)
def

= 1

2
· ∥p −q∥1. The KL divergence between two

discrete distributions p and q on [n] is D(p | |q) =
∑
i pi log(pi/qi ).

A Poisson distribution with parameter λ is denoted Poi(λ). The
binomial and multinomial distributions are denoted Binom(n,p)

andMultinom(n, {pi }
k
i=1), respectively.

The main concentration inequality used in our upper bounds is

McDiarmid’s inequality.

Fact 2.1 (McDiarmid’s Ineqality[29]). Let f be a multivariate

function withm independent random inputs whose codomain is R
and such that, for each i ∈ [m], changing the ith coordinate alone can
change the output by at most ci additively. Then

Pr[| f (X ) − E[f (x)]| ≥ t] ≤ 2e
− 2t2∑

i c
2

i .

A commonly used method for bounding from above the total

variation distance in terms of KL divergence is Pinsker’s inequality.

However, Pinsker’s inequality is mainly useful when the KL diver-

gence is small. In the high probability regime, the KL divergence is

larger than 1 and this gives no information about the total varia-

tion distance. Our sample complexity lower bounds instead use a

different inequality, which is better suited for the high probability

regime.

Fact 2.2 (see, e.g., Lemmas 2.1 and 2.6 of [35]). For any pair

of distributions p,q, we have that dTV (p,q) ≤ 1 − (1/2)e−D(p | |q).
Equivalently, it holds D(p | |q) ≥ log(2/δ ), where 1 − δ is the total

variation distance.

3 SAMPLE-OPTIMAL CLOSENESS TESTER
In this section, we give our optimal closeness tester, described in

pseudo-code below.

The main result of this section is the following theorem:

Theorem 3.1. There exists a universal constant C > 0 such that

the following holds: When

k ≥ C
(
n2/3 log1/3(1/δ )/ϵ4/3 +

(
n1/2 log1/2(1/δ ) + log(1/δ )

)
/ϵ2

)
,

(1)

Algorithm Test-Closeness is an (ϵ, δ )-closeness tester in total varia-

tion distance.

To prove Theorem 3.1, we will show that the expected value of

our statistic Z̃ in the completeness case is sufficiently separated

from the expected value of Z̃ in the soundness case, and also that

the value of Z̃ is highly concentrated around its expectation in

both cases. We proceed to prove these two steps in the following

subsections. We will assume that the parameter k in Step 1 of the

algorithm satisfies (1).
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Algorithm 1: Test-Closeness(p,q,n, ϵ, δ )

Input : sample access to distributions p,q over [n], ϵ > 0,

and δ > 0.

Output : “YES” if p = q, “NO” if dTV (p,q) ≥ ϵ ; both with

probability at least 1 − δ .
1 Set k =

C
(
n2/3 log1/3(1/δ )/ϵ4/3 +

(
n1/2 log1/2(1/δ ) + log(1/δ )

)
/ϵ2

)
,

where C > 0 is a sufficiently large universal constant.

2 Set (m̃p ,m̃p
′,m̃q ,m̃q

′) = Multinom (4k, (1/4, 1/4, 1/4, 1/4)).

3 Draw two multi-sets of independent samples from p of sizes

m̃p ,m̃p
′
respectively, and two multi-sets of independent

samples from q of sizes m̃q ,m̃q
′
respectively. Let

X̃ = (X̃i )
n
i=1, X̃

′ = (X̃ ′i )
n
i=1, Ỹ = (Ỹi )

n
i=1, Ỹ

′ = (Ỹ ′i )
n
i=1 be

the corresponding histograms of the samples.

4 Compute the value of the random variable Z̃ =
∑n
i=1 Z̃i ,

where, for i ∈ [n], we define

Z̃i = |X̃i − Ỹi | + |X̃
′
i − Ỹ

′
i | − |X̃i − X̃

′
i | − |Ỹi − Ỹ

′
i | .

5 Set the thresholdT = C ′
√
k log(1/δ ), whereC ′ is a universal

constant (derived from the analysis of the algorithm).

6 if Z̃ ≤ T then
7 return “YES"

8 else
9 return “NO"

10 end

3.1 Bounding the Expectation Gap
In this section, we will prove an Ω(

√
k log(1/δ )) expectation gap

between the completeness and soundness cases. We proceed by

analyzing the expectation of a slightly modified random variable

Z obtained by taking the number of samples drawn from p and q
be Poisson distributed. We then relate the expectation of Z to the

expectation of our actual statistic Z̃ .

Definition of modified random variable Z . Independently set

mp = Poi(k),m′p = Poi(k),mq = Poi(k),m′q = Poi(k). Draw two

multi-sets of independent samples from p of sizesmp ,m
′
p respec-

tively, and two multi-sets of independent samples from q of sizes

mq ,m
′
q respectively. Let X = (Xi )

n
i=1, X

′ = (X ′i )
n
i=1, Y = (Yi )

n
i=1,

Y ′ = (Y ′i )
n
i=1 be the corresponding histograms of the samples. We

will analyze the random variable

Z =
n∑
i=1

Zi , where Zi = |Xi −Yi |+ |X
′
i −Y

′
i | − |Xi −X

′
i | − |Yi −Y

′
i | .

(2)

Letm = mp +m
′
p +mq +m

′
q be the total number of samples

drawn from p,q in the definition of Z . By construction, we have

that Z̃ = Z | (m = 4k). This will allow us to argue that E[Z ] and
E[Z̃ ] are close to each other.

Claim 3.2. We have that |E[Z ] − E[Z̃ ]| = O(
√
k).

Proof. Note that the statistic Z is 2-Lipschitz, i.e., adding a

sample can change Z by at most 2. Therefore, |E[Z | m = a] −E[Z |

m = b]| ≤ 2|a − b |. This implies that

|E[Z ] − E[Z̃ ]| = O(E[|m − 4k |]) = O(
√
k) ,

as desired. □

It therefore suffices to show that there is sufficient separation

between E[Z ] in the completeness and soundness cases. Specifically,

this subsection is devoted to the proof of the following lemma:

Lemma 3.3 (Expectation Gap). Let Z be the statistic defined

in (2). Then

(i) If p = q (completeness), we have that E[Z ] = 0.

(ii) If dTV (p,q) ≥ ϵ (soundness), then E[Z ] = Ω(
√
k log(1/δ )).

Note that for each i ∈ [n], Xi ,X
′
i ∼ Poi(kpi ), Yi ,Y

′
i ∼ Poi(kqi ).

Moreover, the random variables {Xi ,X
′
i ,Yi ,Y

′
i }

n
i=1 are mutually

independent.

The proof of Part (i) in Lemma 3.3 is straightforward and holds

for all k ≥ 1. Since p = q, it follows that, for any fixed i ∈ [n], the
random variables Xi ,X

′
i ,Yi ,Y

′
i are identically distributed. There-

fore, the random variables |Xi −Yi |, |X
′
i −Y

′
i |, |Xi −X

′
i |, and |Yi −Y

′
i |

are also identically distributed, which implies that E[|Xi − Yi |] =
E[|X ′i − Y

′
i |] = E[|Xi − X ′i |] = E[|Yi − Y ′i |]. Thus, E[Zi ] = 0 for all

i ∈ [n], and therefore E[Z ] = 0.

The proof of Part (ii) in Lemma 3.3 is significantly more chal-

lenging. We note that the proof of Part (ii) crucially relies on the

assumption that k is sufficiently large, satisfying (1).

We start with the following technical claim:

Claim 3.4. For all i ∈ [n], we have that

E[Zi ] = Ω

(
min

{
|kpi − kqi |, |kpi − kqi |

2,
|kpi − kqi |

2√
kpi + kqi

})
. (3)

Proof. Recall that for each i ∈ [n], Xi ,X
′
i ∼ Poi(kpi ), Yi ,Y

′
i ∼

Poi(kqi ) and that these random variables are mutually independent.

This implies that E[|Xi − Yi |] = E[|X ′i − Y
′
i |] and therefore

E[Zi ] = 2E[|Xi − Yi |] − E[|Xi − X ′i |] − E[|Yi − Y
′
i |] .

Due to the absolute values in the above expression, we can assume

without loss of generality that a := kpi ≥ kqi =: b.
Let c := a−b ≥ 0. Then we can write thatXi ,X

′
i ∼ Poi(b)+Poi(c)

and Yi ,Y
′
i ∼ Poi(b). Let B1,B2 and C1,C2 be mutually independent

random variables with B1,B2 ∼ Poi(b) and C1,C2 ∼ Poi(c). Note
that Bℓ + Cℓ′ , for ℓ, ℓ

′ ∈ {1, 2}, have the same distribution as Xi
and X ′i . By linearity of expectation, we can thus write

E[Zi ] = (1/2) E
[
|B1 +C1 − B2 | + |B1 +C2 − B2 |+

+ |B1 −C1 − B2 | + |B1 −C2 − B2 | − |B1 +C1 − B2 −C2 |−

− |B1 +C2 − B2 −C1 | − 2|B1 − B2 |
]
, (4)

where the first four terms above correspond to 2E[|Xi − Yi |], the
fifth and sixth terms correspond to −E[|Xi −X ′i |], and the last term
corresponds to −E[|Yi − Y ′i |].

Consider the function f : R2→ R defined as

f (x,y) = (1/2) (|x + y | + |y − x | − 2|y |) .
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By the definition of f and (4), we have that

E[Zi ] = E [f (C1,B1 − B2) + f (C2,B1 − B2) − f (C1 −C2,B1 − B2)] .
(5)

Now observe that f (x,y) = max{0, |x | − |y |} and that f (x,y) is an
increasing function of |x |.

For anyx1, x2 ≥ 0 andy ∈ R, we have that |x1−x2 | ≤ max{x1, x2},
hence

(x1 − x2,y) = f (|x1 − x2 |,y) ≤ f (max{x1, x2},y)

= max{ f (x1,y), f (x2,y)} .

This implies that

f (x1,y) + f (x2,y) − f (x1 − x2,y) ≥ f (x1,y) + f (x2,y)

−max{ f (x1,y), f (x2,y)}

=min{ f (x1,y), f (x2,y)}

=f (min{x1, x2},y) .

Using (5), the above inequality gives that

E[Zi ] ≥ E [f (min{C1,C2},B1 − B2)]

= E
[
max

{
0,min{C1,C2} − |B1 − B2 |

}]
. (6)

Therefore, it suffices to establish a lower bound on the RHS of

(6). We proceed to do so by considering two complementary cases,

based on the value of the parameter c ≥ 0.

Case I: c < 1.
In this case, we can write

E[Zi ] ≥ Pr [(min{C1,C2} ≥ 1) ∧ (B1 = B2)]

= Pr[C1 ≥ 1]2Pr[B1 = B2]

≥ Ω
(
c2 min

{
1, 1/
√
b
})
= Ω

(
min

{
c2, c2/

√
b
})
,

where the first inequality follows from (6) (since min{C1,C2} −

|B1 − B2 |} ≥ 1 under the corresponding event), the first equality

uses the independence of B1,B2 andC1, and the last inequality uses

the fact that Pr[C1 ≥ 1] = 1 − e−c ≥ c/2 (since 0 ≤ c < 1)

and that Pr[B1 = B2] = Ω(min{1, 1/
√
b}). To prove the latter

lower bound, we will use the fact that B1,B2 are i.i.d. and that

their common distribution B is supported on integers and has stan-

dard deviation σ =
√
b. By Chebyshev’s inequality, we have that

Pr [|B − b | = O(σ )] ≥ 1/2. Since B is has integer support, there

exists a set of integers S with cardinality |S | ≤ 1 +O(σ ) such that

Pr[B ∈ S] ≥ 1/2. Now note that Pr[B1 = B2] =
∑
i≥0 Pr[B = i]2 ≥∑

i ∈S Pr[B = i]2 ≥ (1/|S |)Pr[B ∈ S]2 ≥ 1/(4|S |), where the sec-

ond inequality follows by the convexity of the quadratic function.

Therefore, Pr[B1 = B2] = Ω(1/(1 + O(σ ))) = Ω (min{1, 1/σ }), as
desired.

Case II: c ≥ 1.
In this case, there exists a universal constant δ0 > 0 such that

δ0 = Pr[min{C1,C2} ≥ c/2]. We will show that Pr[|B1 − B2 | ≤

c/4] = Ω(min{1, c/
√
b}). Using (6), the latter inequality implies

that

E[Zi ] ≥ (c/4) Pr [min{C1,C2} ≥ c/2] Pr[|B1 − B2 | ≤ c/4]

= (c/4)δ0 Ω(min{1, c/
√
b})

= Ω
(
min{c, c2/

√
b}

)
.

To establish the desired upper bound on Pr[|B1 − B2 | ≤ c/4], we
apply the argument from Case I for the random variables B′i =
⌊Bi/(c/4)⌋, i = 1, 2. Note that the B′i is an integer-valued random

variable with standard deviation σ ′ = 1 +O(
√
b/c), and therefore

Pr[B′
1
= B′

2
] = Ω(min{1, 1/σ ′}) = Ω(min{1, c/

√
b}). Finally, we

note that Pr[|B1 − B2 | ≤ c/4] ≥ Pr[B′
1
= B′

2
]. This completes Case

II.

Recall that c = |kpi − kqi | by definition. The proof of Claim 3.4

is now complete. □

Proof of Lemma 3.3 (ii). Suppose that dTV (p,q) ≥ ϵ . For each bin

i ∈ [n], we assign i to set S1, S2, S3 if

min

{
|kpi − kqi |, |kpi − kqi |

2,
|kpi − kqi |

2√
kpi + kqi

}
is equal to |kpi −kqi |, |kpi −kqi |

2
, or

|kpi−kqi |2√
kpi+kqi

respectively (break-

ing ties arbitrarily). This defines a partition of [n] into three sets,

S1, S2, S3. Since
∑n
i=1 |pi − qi | ≥ ϵ/2, for at least one j ∈ {1, 2, 3}

we have that

∑
i ∈Sj |pi −qi | ≥ ϵ/6. In each of these three cases, we

will use Claim 3.4 to prove the desired expectation lower bound.

Case 1:
∑
i ∈S1 |pi − qi | ≥ ϵ/6.

In this case, we have that E[Z ] =
∑n
i=1 E[Zi ] ≥

∑
i ∈S1 E[Zi ] =

Ω(k)
∑
i ∈S1 |pi − qi | = Ω(ϵk). Since k is assumed to satisfy (1)

and in particular we have that k ≥ C log(1/δ )/ϵ2, it follows that

E[Z ] = Ω(
√
k log(1/δ )), as desired.

Case 2:
∑
i ∈S2 |pi − qi | ≥ ϵ/6.

In this case, we have that E[Z ] =
∑n
i=1 E[Zi ] ≥

∑
i ∈S2 E[Zi ] =

Ω(k2)
∑
i ∈S2 |pi − qi |

2 = Ω(k2ϵ2/n), where the last inequality fol-

lows from Cauchy-Schwarz and the fact that |S2 | ≤ n. Since k is

assumed to satisfy (1) and in particular k ≥ Cn2/3 log1/3(δ )/ϵ4/3, it

follows that E[Z ] = Ω(
√
k log(1/δ )), as desired.

Case 3:
∑
i ∈S3 |pi − qi | ≥ ϵ/6. In this case, we can similarly write

that

E[Z ] =
n∑
i=1

E[Zi ] ≥
∑
i ∈S3

E[Zi ] = Ω(k3/2)
∑
i ∈S3

(pi − qi )
2

(pi + qi )1/2

= Ω
(
k3/2ϵ2/n1/2

)
,

where the last bound follows from our assumption that

∑
i ∈S3 |pi −

qi | ≥ ϵ/6 and a careful application of the generalized Holder’s

inequality. Recall that for any triple of vectors x,y, z ∈ Rm , we

have that

∑
i |xiyizi | ≤ ∥x ∥r ∥y∥s ∥z∥t , where 1/r + 1/s + 1/t = 1.

Using this fact, we can write∑
i ∈S3

|pi − qi | =
∑
i ∈S3

|pi − qi |

(pi + qi )1/4
(pi + qi )

1/4

≤
©«
∑
i ∈S3

(pi − qi )
2

(pi + qi )1/2
ª®¬
1/2 ©«

∑
i ∈S3

(pi + qi )
ª®¬
1/4 ©«

∑
i ∈S3

1
4ª®¬

1/4

where we used x =
(
|pi−qi |
(pi+qi )1/4

)
i ∈S3

, y = ((pi + qi )
1/4)i ∈S3 , z =

(1)i ∈S3 , and r = 2, s = t = 4. Since

∑
i ∈S3 (pi + qi ) ≤ 2 and |S3 | ≤ n,

we get that

∑
i ∈S3

(pi−qi )2

(pi+qi )1/2
= Ω(ϵ2/n1/2), as desired.
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We have thus shown that E[Z ] = Ω(k3/2ϵ2/n1/2). Since k is

assumed to satisfy (1) and in particular k ≥ Cn1/2 log1/2(δ )/ϵ2, it

follows that E[Z ] = Ω(
√
k log(1/δ )), as desired.

This completes the proof of Lemma 3.3 (ii). □

3.2 Concentration of Test Statistic: Proof of
Theorem 3.1

By Lemma 3.3, we have that E[Z ] = 0 in the completeness case

and E[Z ] = Ω(
√
k log(1/δ )) in the soundness case respectively.

Combined with Claim 3.2, we have that in the completeness case

E[Z̃ ] = O(
√
k) and in the soundness case E[Z̃ ] = Ω(

√
k log(1/δ )).

The random variable Z̃ depends on 4k inputs: the choice, for

each of the 4k samples, of which distribution to be drawn from and

which coordinate to land in. Z̃ is 2-Lipschitz in these 4k inputs. An

application of McDiarmid’s inequality to Z̃ gives that

Pr
[���Z̃ − E[Z̃ ]��� ≥ C ′

√
k log(1/δ )

]
< 2e−2

(C′
√
(k log(1/δ ))2

4k ·4 = 2δ (C
′)2/8

= 2δC
′′′

for some constant C ′′′. If we apply the variable substitution δ ←

(δ/2)1/C
′′′

, the RHS above becomes δ and the number of samples

only changes by a constant factor. Therefore, our tester is correct

with probability at least 1 − δ , as desired.

4 SAMPLE-OPTIMAL INDEPENDENCE
TESTER

4.1 Intuition and Setup
The goal in independence testing is to distinguish between p and

q = px ×py , i.e., the product of the marginal distributions ofp on the
two coordinates. Unfortunately, we cannot simply use our closeness

tester to solve this problem, as the sample complexity would contain

an (nm)2/3 log1/3(1/δ )/ϵ4/3 term, which is sub-optimal even for

constant δ . Instead, we must take advantage of the fact that q is a

product distribution.

This issue is solved in the large δ case in [16] by flattening. The

idea is that the error in their test statistic can be reduced if q is

guaranteed to have small ℓ2 norm. To achieve this, we use flattening

to split up the heavy bins. This can be done especially effectively for

product distributions, as we can use samples to identify the heavy

bins in the marginals rather than having to individually identify all

of the heavy bins in the product.

To make a technique like this work in our context, there are

several obstacles that must be overcome. The first is that we need

to know how flattening can be used to improve the concentration

bounds on our test statistic Z which is defined later in this subsec-

tion. To see why this might be the case, we will observe that any

bins with only a single sample do not contribute to Z , and thus

do not contribute to its variance. In fact, with some extra work

we can prove stronger concentration bounds on Z that depend on

the number N of non-isolated samples. As distributions with small

ℓ2 norm will likely produce fewer non-isolated samples, this will

hopefully improve our concentration bounds.

Unfortunately, while the basic flattening technique [16] works in

the large δ regime, it does not work with high probability. To over-

come this issue, we note that the goal of our flattening is actually

not to produce a distribution with small ℓ2 norm, but to ensure that

the number of collisions among the samples used to compute Z is

relatively small. For this we note that if we are given a fixed pool

S of samples from which we draw samples both for the purposes

of flattening and for computing Z , it can be shown that no matter

what S is, there is always a good probability that the samples to

compute Z have few collisions. The overall strategy for our tester

will be to take this fixed set of samples and repeatedly try different

subdivisions into flattening and testing samples until we find one

that works.

The most basic unit of our tester will be an algorithm called

BasicTest, which runs one iteration of this strategy and returns

one of “YES”, “NO”, or “ABORT”, with the last meaning that our

attempt at flattening has failed and needs to be repeated.

Algorithm 2: FullTest(S): Given a distribution p over

[n] × [m] (where n ≥ m), test if p is a product distribution.

Input :Sample access to a 2-dimensional distribution p
over [n] × [m]

Output : “YES" if p ∈ P, “NO" if infq∈P dTV (p,q) ≥ ϵ ,
where P is the set of product distributions, both

with probability at least 1 − δ .
1 k ←

C
(
n2/3 log1/3(1/δ )/ϵ4/3 +

(
n1/2 log1/2(1/δ ) + log(1/δ )

)
/ϵ2

)
,

where C > 0 is a sufficiently large universal constant.

2 S ← 100k samples from p.

3 result ← ABORT

4 while result = ABORT do
5 result ← BasicTest(S)

6 end
7 return result

The main result of this section is the following theorem:

Theorem 4.1. There exists a universal constant C > 0 such that

the following holds: When

k ≥ C

(
n2/3m1/3

log
1/3(1/δ )

ϵ4/3
+
(nm)1/2 log1/2(1/δ ) + log(1/δ )

ϵ2

)
,

(7)

Algorithm FullTest is an (ϵ, δ )-independence tester in total variation
distance.

Setup. Our independence testing procedure BasicTest has the

following basic structure:

(1) Choose a large multiset set of samples S .

(2) Choose from S a flattening F = (Fx , Fy ), and possibly ABORT.

(3) Choose from S a set S of “flattened” samples, and possibly

ABORT.

(4) Use S to compute a test statistic Z .
(5) Accept or reject based on the test statistic.

At various points in the process, the algorithm may choose to

ABORT (for example, if the number of non-singletons in S is 100×

more than expected). We will show that if the algorithm is run on

a random set S of samples, the probability of outputting a wrong
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answer is O(δ ), but that for any set S of samples the chance of

aborting is at most 1/2. Therefore, when we abort, we can start

over from Step 2, and repeat until we output “YES" or “NO", with-

out increasing the sample complexity and with only O(δ ) failure
probability.

Flattening. Flattening involves choosing a set F of samples from

the distribution p with marginals px and py . We then flatten the

rows and columns of p independently, giving us a new distribution

pf with marginals p
f
1
and p

f
2
. The following definition appears as

Definition 2.4 in [16] and describes a subdivision of the domain of

a distribution p that aims at reducing its ℓ2 norm. For this transfor-

mation to be useful to us, we need to always make sure that the

domain size does not increase by more than a constant factor as a

result.

Definition 4.2 ([16]). Given a distribution p on [n] and a multiset

S of elements from [n], we define the split distribution pS over

[n + |S |] as follows: For 1 ≤ i ≤ n, let fi be the number of times

element i appears in S , and ai = 1 + fi . Our new distribution pS is

supported on the set B = {(i, j) : i ∈ [n], 1 ≤ j ≤ ai }. In order to

get a sample (i, j) from pS , we first draw i according to p and then

j uniformly at random from [ai ].

Note the following fact about split distributions:

Fact 4.3. Let p and q be probability distributions on [n], and S
a given multiset of [n]. Then: (i) We can simulate a sample from pS
or qS by taking a single sample from p or q, respectively. (ii) It holds
that ∥pS − qS ∥1 = ∥p − q∥1.

When we are dealing with multidimensional distributions, it will

be useful to have a definition of flattening only on a specific mar-

ginal. The definition below is given for 2-dimensional distributions,

but it can be easily generalized.

Definition 4.4. Given a distribution p on [n]× [m] with marginals

px and py . Also let S be a multiset of elements from [n] (respectively
[m]), we define the row-split (respectively column-split) distribution

pS over [n + |S |] × [m] (respectively [n] × [m + |S |]) as follows:
in order to get a sample ((i,k), j) (respectively (i, (j,k))) from the

row-split (respectively column-split) distribution pS , we first draw
(i, j) according to p and then independently draw k uniformly at

random from [ai ] (respectively [aj ]).

Test Statistic. Define the product distributionqf := p
f
1
×p

f
2
. Note

that dTV (p
f ,qf ) = dTV (p,q)where q = px ×py . Therefore, the goal

of determining whether p is a product distribution or far from it

is equivalent to distinguishing between pf = qf and pf far from

qf . In addition to sampling from pf , we can sample qf by taking

two samples from pf : we combine the first coordinate of the first

sample with the second coordinate of the second sample.

The sample set S consists of four pieces:

• Sp0, Sp1: two sets of Poi(k) samples from pf .

• Sq0, Sq1: two sets of Poi(k) samples from qf .

We let X
(p0)
u denote the number of times element u appears in

Sp0, and similarly for the other three sets. For each u in the range

of qf we get the test statistic:

Zu := |X
(p0)
u −X

(q0)
u |+|X

(p1)
u −X

(q1)
u |−|X

(p0)
u −X

(p1)
u |−|X

(q0)
u −X

(q1)
u |

Our final test statistic is the sum of this:

Z :=
∑
u

Zu .

Note that, if a given item u appears exactly once in the entire set

S of samples, then Zu = 0. We say that such a sample is a singleton,

and define N ≤ |S | to be the number of non-singleton samples.

4.2 Concentration of Z
The goal of this section is to prove that the test statistic Z concen-

trates. We will show this happens for any setting of the flattening

F , and ignoring the possibility of ABORT (that is, if we ran even

aborted procedures to completion). In particular, our goal is the

following lemma:

Lemma 4.5. For a fixed flattening F and any δ > 0, there exists a

constant C > 0 such that

Pr[|Z − E[Z ]| > C ·
√
(N + log(1/δ )) log(1/δ )] ≤ δ .

Intuitively, the idea is that since singletons do not change the

statistic, the variance—and concentration—of Z should depend on

the number of non-singletons N rather than the total number of

samples k . Note that the concentration is relative to N , which is

also a random variable.

We show this using symmetrization. For the sake of analysis we

introduce an independent copy of the statistic Z ′, generated from

another set S ′ of samples. Let T = S ∪ S ′ be the set of all samples

used by Z and Z ′, and letM be the number of non-singletons in T .
Note that we could generate these same variables in a different

way: rather than first generating Sp0 and S
′
p0 with Poi(k) samples

each and setting Tp0 = Sp0 ∪ S
′
p0, we can instead first sample Tp0

with Poi(2k) samples, then randomly assign each sample in Tp0 to
one of Sp0 and S

′
p0 (and similarly forp1,q0,q1). These are equivalent

generative processes. This second process leads to the following

lemma:

Lemma 4.6. For every possible T , and any δ > 0,

Pr[|Z − Z ′ | >
√
8M log(2/δ ) | T ] ≤ δ .

Proof. We apply McDiarmid’s inequality, and use the alterna-

tive generative process. Conditioned onT = (Tp0,Tp1,Tq0,Tq1), the
only randomness lies in whether each sample v is placed in S or S ′.
Let cv be the maximum amount that |Z − Z ′ | can change by when

v ∈ T is switched between S and S ′. Switching v can only change

Z by at most 2, and similarly for Z ′, so cv ≤ 4. Moreover, if v is

a singleton in T , then switching v has zero effect on Z or Z ′, so
cv = 0. Hence ∑

v ∈T
c2v ≤ 16M .

Since Z and Z ′ are identically distributed, E[Z − Z ′ | T ] = 0.

Therefore McDiarmid’s inequality states that, for any t ,

Pr[|Z − Z ′ | ≥ t | T ] ≤ 2e−
2t2
16M .

Setting t appropriately gives the result. □
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Since our desired lemma is in terms of N , notM , we relate the

two:

Lemma 4.7. There exists a constant C such that, for every possible

T , and any δ > 0,

Pr[M > C(N + log(1/δ )) | T ] ≤ δ .

Proof. We again use the alternative generative process. There

areM non-singletons in T , which means we can pair them up into

M/2 disjoint pairs of colliding elements. Each such pair has a 1/4

chance of having both elements land in S , independent of every
other pair. Let n be the number of such pairs that land entirely in S .
By a Chernoff bound:

Pr[n ≤ M/16 | T ] ≤ e−M/C

for some constantC ≥ 8. Now, ifT is such thatM ≤ C log(1/δ ), the
lemma statement is trivially true. Otherwise, since N ≥ 2n,

Pr[M ≥ 8N | T ] ≤ δ

as desired. □

We also need to prove a constant-probability version of the result:

Lemma 4.8. It holds that

Pr[|Z − E[Z ]| ≥ C
√
N + 1] ≤ 1/2.

Proof. We will show this with Markov’s inequality, by showing

E[(Z − E[Z ])2/(N + 1)] = O(1) (8)

using symmetrization. Since Z ′ is independent of Z , and by con-

vexity,

E[(Z − E[Z ])2/(N + 1)] ≤ E[(Z − Z ′)2/(N + 1)]

= ET [E[(Z − Z ′)2/(N + 1)|T ]]. (9)

For any fixedT , by Lemma 4.6 and Lemma 4.7 applied with δ/2 and
a union bound we have with probability 1 − δ that both:

(Z − Z ′)2 ≤ 8M log(4/δ )

N ≥ M/C − log(2/δ )

The latter equation implies N + 1 ≥ M/(C log(2/δ )), and hence

(Z − Z ′)2/(N + 1) ≤ 8C log(4/δ ) log(2/δ )

with probability 1 − δ . This strong concentration implies a bound

in expectation:

E[(Z − Z ′)2/(N + 1)|T ] ≤ O(C) = O(1).

Plugging back into (9) gives (8), which implies the result. □

We now have the tools for the main result of the section.

Proof of Lemma 4.5. Consider any two thresholds τ and τ ′,
where τ is a random variable depending on the sampling used

for Z and τ ′ depends on that for Z ′. Because Z ′ is independent of
Z , we have:

Pr[|Z − E[Z ]| > τ ∩ |Z ′ − E[Z ]| < τ ′] = Pr[|Z − E[Z ]|

> τ ]Pr[|Z ′ − E[Z ]| < τ ′].

On the other hand,

Pr[|Z − E[Z ]| > τ ∩ |Z ′ − E[Z ]| < τ ′] ≤ Pr[|Z − Z ′ | > τ − τ ′].

Hence

Pr[|Z − E[Z ]| > τ ] ≤ Pr[|Z − Z ′ | > τ − τ ′]/Pr[|Z ′ − E[Z ]| < τ ′].
(10)

We now define these two thresholds τ and τ ′.

Defining τ ′. By Lemma 4.8 applied to Z ′, with 50% probability

we have

|Z ′ − E[Z ]| ≤ O(
√
N ′ + 1). (11)

Define τ ′ to be this RHS.

By Lemma 4.7, with 1 − δ probability we have

M = O(N + log(1/δ )). (12)

(Note that we are no longer conditioning onT .) Since N ′ ≤ M , this

implies that there exists a constant C > 0such that

τ ′ ≤ C
√
N + log(1/δ ) (13)

with probability 1 − δ .

Defining τ . On the other hand, combining (12) with Lemma 4.6,

with 1 − 2δ probability we have

|Z − Z ′ | ≤ O(
√
(N + log(1/δ )) log(2/δ )).

We would like to define τ to be this RHS plus τ ′, but this would be

invalid: τ must be independent of Z ′. Hence we instead define τ

to be this RHS plus C
√
N + log(1/δ ); by (13), this is larger than the

RHS plus τ ′ with 1 − δ probability. Hence:

Pr[|Z − Z ′ | > τ − τ ′] ≤ 3δ (14)

for this τ , which is O(
√
(N + log(1/δ )) log(2/δ )).

Combining the results. Plugging (14) and (11) into (10), we have

for this τ that

Pr[|Z − E[Z ]| > τ ] ≤ 3δ/(1/2) = 6δ .

Using δ ′ = δ/6 gives the desired result. □

4.3 Algorithm
We begin with a helper algorithm BasicTest (Algorithm 3).

Our analysis will depend on two key facts:

(1) For any set of samples S , the probability that BasicTest

returns ABORT is at most 1/2.

(2) If BasicTest is run on a set of i.i.d. samples from p, the
probability that it returns an incorrect answer (“NO” if p is

actually independent, or “YES” ifp is ϵ-far from independent)

is at most δ .

The latter of these points will hold because our algorithm will

ABORT unless Nq is small. This, combined with Lemma 4.5 and

Claim 4.14, will imply that the output is correct (along with a

separate argument (see Lemma 4.12) for when N ≫ Nq ).

To show the first of these points, one can first use Markov to

bound the probability of aborting due to Fx or Fy or ℓ or ℓ′ being

too large. The more interesting case is to show that Nq is bounded

with appropriate probability. This will follow from the following

lemma:
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Algorithm 3: BasicTest(S): Given a distribution p over

[n] × [m] (where n ≥ m) test if p is a product distribution.

Input :A Multiset S of 100k samples from [n] × [m] with
k =

C

(
n2/3m1/3

log
1/3(1/δ )

ϵ 4/3
+

√
nm log(1/δ )

ϵ 2 +
log(1/δ )

ϵ 2

)
,

where C is a sufficiently large universal constant.

Output : Information relating to whether these samples

came from an independent distribution.

/* Choose flattening F */

1 Fx , Fy ← ∅

2 for s ∈ S do
3 Fx = Fx ∪ {s} with prob min{n/100k, 1/100}

4 Fy = Fy ∪ {s} with probm/100k ; // note that

k > m always.

5 end
6 if |Fx | > 10n or |Fy | > 10m then
7 return ABORT

8 end

/* Draw samples S
f
p , S

f
q */

9 Let S
′
= {(xi ,yi )} be a uniformly random permutation of

S \ (Fx ∪ Fy )

10 Draw ℓ, ℓ′ ∼ Poi(2k).

11 if 2ℓ + ℓ′ > |S ′ | then
12 return ABORT

13 end
14 Let Sq = {(x2j−1,y2j )}

ℓ
j=1, Sp = {(x j ,yj )}

2ℓ+ℓ′

j=2ℓ+1

15 Create S
f
p , S

f
q by assigning to corresponding sub-bins

uniformly at random

16 Np ← ♯samples in S
f
p that collide with another sample in S

f
p

17 Nq ← ♯samples in S
f
q that collide with another in S

f
p ∪ S

f
q .

18 if Nq > cmax(k/m,k2/mn) then
19 return ABORT

20 end
21 if Np > 20Nq +C

′
log(1/δ ) then // C ′ a sufficiently

large constant
22 return “NO"

23 end
/* Compute test statistic Z */

24 Flag each sample of S
f
p , S

f
q independently with prob. 1/2.

25 Let X
(p0)
i ,X

(q0)
i be the number of times element i appears

flagged in each set S
f
p , S

f
q respectively and X

(p1)
i ,X

(q1)
i be

the corresponding counts on unflagged samples.

26 Compute the statistic Z =
∑
i Zi , where Zi = |X

(p0)
i −

X
(q0)
i | + |X

(p1)
i − X

(q1)
i | − |X

(p0)
i − X

(p1)
i | − |X

(q0)
i − X

(q1)
i |.

27 if Z < C ′ ·
√
min(k, (k2/(mn) + k/m)) log(1/δ ) then

28 return “YES"

29 else
30 return “NO"

31 end

Lemma 4.9. For any set of samples S ,

E[Nq | S] = O

(
max

(
k2

nm
,k/m

))
,

where Nq is considered to be 0 in the case that the algorithm aborts

before computing it.

Proof. Throughout this proof we will condition on S . We note

that ℓ ≥ k/2 except with probability exponentially small in k , in
which case Nq = O(k). Thus, the contribution from the case where

ℓ < k/2 is O(1) and we can henceforth assume that ℓ ≥ k/2 (note
that given the size of the parameters k/m > 1).

In order to bound Nq we bound it as a sum of simpler random

variables whose expectations we can bound individually. For 1 ≤

i ≤ 100k , we let Ni be 0 unless the i
th

element of S is in Sp , and in

that case, it is the number of elements of S
f
q that the corresponding

element of S
f
p collides with (with the exception that we define Ni

to be 0 if ℓ < k/2). For 1 ≤ i , j ≤ 100k let Ni , j be 0 unless one

of the elements of Sq is obtained by taking the x-coordinate from

the ith element of S and y-coordinate from the jth element of S ,

and if so is equal to the number of other elements in S
f
q that the

corresponding element of S
f
q collides with (with the exception that

we define Ni , j to be 0 if ℓ < k/2). It is easy to see that

Nq ≤
∑
i

Ni +
∑
i , j

Ni , j . (15)

Our final result will follow from two bounds: Firstly, for all i , we
claim that

E[Ni ] = O(max

(
k2

nm
,k/m

)
/k). (16)

We also claim that for all i, j that

E[Ni , j ] = O(max

(
k2

nm
,k/m

)
/k2). (17)

We begin with our proof of Equation (16) as it is slightly easier.

Assume that the ith element of S is (X ,Y ). Let CX denote the num-

ber of other elements of S with the same x-coordinate and CY the

number with the samey-coordinate. Upon flattening, let FX and FY
denote the number elements of Fx equal to X and the number of

elements of Fy equal to Y , respectively. Note that FX is distributed

as a binomial distribution Binom(CX ,min(n/100k, 1/100)) and thus
E[1/(FX + 1)] = O(1/(CX min(n/k, 1))). Similarly, E[1/(FY + 1)] =
O(k/(CYm)).

Once we have conditioned on the flattening sets Fx and Fy , we
considerCX ,Y , the number of elements of Sq equal to (X ,Y ), where
CXY is set to 0 if ℓ < k/2 (recall that this case can safely be ignored

in our final analysis). We claim that E[CX ,Y |Fx , Fy ] ≪ CXCY /k .
This is because the expectation of CX ,Y is a sum of all pairs of one

of theCX elements of S with the correct x-coordinate and one of the
CY elements of S with the correct y-coordinate of the probability
that this pair of elements is used to create an element of Sq . We claim

that this probability is O(1/k). In fact, this probability is at most

1/ℓ, where ℓ ≥ k/2 due to our conditioning. That is because even

conditioning on ℓ and which 2ℓ elements of S are used to construct

the elements of Sq , there is only anO(1/ℓ)= O(1/k) probability that
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the two designated elements of S are adjacent to each other after

the random permutation is applied.

However, once Sq is fixed, each of these CX ,Y elements that

might collide with our ith element of S only do if they are mapped

to the same sub-bin. This happens only with probability 1/((1 +

FX )(1 + FY )). Therefore, we have that:

E[Ni |CX ,Y , FX , FY ] =
CX ,Y

(1 + FX )(1 + FY )
.

Therefore, using the fact that FX , FY are independent random vari-

ables, we have that

E[Ni ] ≤ sup

FX ,FY
(E[CX ,Y |FX , FY ])E[1/(1 + FX )]E[1/(1 + FY )]

= O(CXCY /k)O(max(k/n, 1)/CX )O(k/(CYm))

= O(max(k/(mn), 1/m)),

as desired.

The proof of Equation (17) is similar. Assume that the ith element

of S has x-coordinate X and that the jth element has y-coordinate

Y . Let CX and CY be the number of other elements of S with x-
coordinate equal to X and y-coordinate equal to Y , respectively.
Again let FX and FY denote the number elements of Fx equal to X
and the number of elements of Fy equal to Y , respectively. Once
again E[1/(FX + 1)] = O(1/(CX min(n/k, 1))) and E[1/(FY + 1)] =
O(k/(CYm)).

We now let CX ,Y be 0 unless ℓ ≥ k/2 and the ith and jth ele-

ments pair to make an element of Sq , and in this case define it to

be the number of other elements of Sq equal to (X ,Y ). We claim

now that E[CX ,Y |Fx , Fy ] ≪ CXCY /k
2
(note that this differs from

the above because of the k2 in the denominator rather than k). This
is because CX ,Y is the sum over the CXCY pairs of other elements

with the correct x and y values of the probability that this pair

of elements of S and the pair of the ith and jth elements both

end up in Sq . Even conditioning on Fx , Fy and ℓ, the probability

that the random permutation of elements put the two elements of

both of these pairs next to each other is O(1/ℓ2) = O(1/k2). Thus,
E[CX ,Y |Fx , Fy ] ≪ CXCY /k

2
.

From here the argument is the same as above. Each of these

CX ,Y elements of Sq has only a 1/((FX + 1)(FY + 1)) of colliding
with our designated one after assigning them to random sub-bins.

Thus, we have that Therefore, we have that:

E[Ni , j |CX ,Y , FX , FY ] =
CX ,Y

(1 + FX )(1 + FY )
.

And thus,

E[Ni , j ] ≤ sup

FX ,FY
(E[CX ,Y |FX , FY ])E[1/(1 + FX )]E[1/(1 + FY )]

= O(CXCY /k
2)O(max(k/n, 1)/CX )O(k/(CYm))

= O(max(1/(mn), 1/(km))),

as desired.

Our lemma now follows from combining Equations (15), (16) and

(17). □

We are now prepared to prove the second of our main points

about BasicTest.

Lemma 4.10. For any sample multiset S , the probability that Ba-
sicTest returns ABORT is at most 1/2.

Proof. First, consider the case that BasicTest returns ABORT

in line 6, because either |Fx | > 10n or |Fy | > 10n. Note that Fx ∼
Binom(100k,min{n/100k, 1/100}) and Fy ∼ Binom(100k,m/100k).
Therefore, we have that: E[|Fx |] ≤ n and E[|Fy |] =m. By applying

Markov’s inequality for each random variable and a union bound,

we get that

Pr[(|Fx | > 10n) ∨ (|Fy | > 10n)] ≤ 1/5 .

The second possibility to return ABORT is in line 11 when 2ℓ+ℓ′ >

|S
′
| ≥ 100k − |Fx | − |Fy |. Thus, we need to bound: Pr[2ℓ + ℓ′ +

|Fx | + |Fy | > 100k]. Note that by linearity of expectation:

E[2ℓ+ℓ′+|Fx |+|Fy |] = E[2ℓ]+E[ℓ′]+E[|Fx |]+E[|Fy |] ≤ 4k+2k+k+k .

By applying Markov’s inequality again, we get that:

Pr[2ℓ + ℓ′ + |Fx | + |Fy | > 100k] ≤ 8/100 .

It remains to bound the chance of ABORT on line 18. By Lemma 4.9

and Markov’s inequality,

Pr[Nq > c ·max{k/m,k2/nm}|S] < 1/5 ,

for some constant c .
Using a union bound for all the above three cases, we get that

the probability that BasicTest returns ABORT is at most 1/5 +

8/100 + 1/5 < 1/2. □

For the rest of the analysis, we consider running BasicTest on

a set S of random samples from some distribution p on [n] × [m].
We note that we can simulate the algorithm in the following way:

First, for each i from 1 to 100k , if our algorithm wants to add an

element to Fx or Fy , we generate a random element from p and

add it to the appropriate set(s). If either |Fx | > 10n or |Fy | > 10m
we abort, so we will condition on Fx and Fy for which this does

not happen. Next, we generate an infinite sequence of elements

(xi ,yi ) from p, and let Sq be the set of (x2j−1,y2j ) for j ∈ [1, ℓ] and
Sp the set of (x j ,yj ) for j ∈ [2ℓ + 1, 2ℓ + ℓ

′]. Note that conditioned

on not returning ABORT, this gives sets Fx , Fy , Sp , Sq identically

distributed as BasicTest. However, unconditionally, it gives an Sq
and Sp sets of Poi(2k) samples from q := px ×py and p, respectively.
Furthermore, we can compute Z ,Nq and N regardless. Note that

this statistic Z will be an instance of the statistic computed for our

closeness tester applied to the distribution pf and qf . In particular,

Lemmas 4.5, 4.6, 4.8 and 4.11 will still apply to it.

For the next several lemmas, we consider Fx and Fy as being

fixed and Z ,Nq and N being computed in this way regardless of

potential aborts. In the next few lemmas, we wish to show that with

high probability N will beO(Nq ) if p is a product distribution. This

will allow us to use our bounds on Nq as bounds on N (or more

precisely, allow us to reject if N is not bounded in terms of Nq ).

Lemma 4.11. For a fixed set of samples S
f
p , S

f
q , consider the distri-

bution of Z over the partition into p0/p1 and q0/q1. We have:

Pr[Z < Np/6 − 2Nq − 100] < 1/2.

Proof. Let X
(p)
i denote the number of times element i appears

in S
f
p , so that Np =

∑
i :X (p)i >1

X
(p)
i . Define the statistic Z̃ =

∑
i Z̃i ,
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where Z̃i = X
(p0)
i +X

(p1)
i − |X

(p0)
i −X

(p1)
i | = 2min(X

(p0)
i ,X

(p1)
i ), to

be the value Z would take if S
f
q were empty. Since Z is 2-Lipschitz

and invariant to singletons, we have

|Z − Z̃ | ≤ 2Nq . (18)

Hence, our goal is to show that Z̃ is usually at least Np/4. We have

that

E[Z̃i ] ≥ ⌊X
(p)
i /2⌋ ,

because we can partition the elements i into ⌊X
(p)
i /2⌋ pairs, each

of which has a 1/2 chance of being divided between p0 and p1, and

hence contributing 1 to each of X
(p0)
i and X

(p1)
i , or 2 to Z̃i . We also

have that

Var(Z̃i ) ≤ 4X
(p)
i ,

because Z̃i is a 2-Lipschitz function of X
(p)
i independent random

choices, and of course Var(Z̃i ) = 0 if X
(p)
i = 0. Therefore,

E[Z̃ ] ≥ Np/3, Var[Z̃ ] ≤ 4Np .

By Chebyshev’s inequality, this means

Pr[Z̃ < Np/3 − 4
√
Np ] ≤ 1/4, or

Pr[Z̃ < Np/6 and Np > 600] ≤ 1/4.

Combined with (18), we have

Pr[Z < Np/6 − 2Nq and Np > 600] ≤ 1/4 .

But, of course, Pr[Z < 0] = 0, so for all Np we have that

Pr[Z < Np/6 − 2Nq − 100] ≤ 1/4 < 1/2 .

□

We can now bound the probability that we reject incorrectly on

line 22.

Lemma 4.12. If p is a product distribution, then the probability

that BasicTest returns “NO" on line 22 is O(δ ).

This is essentially because if N is a sufficient multiple of Nq
then by Lemma 4.11 we have that Z is likely to be at least a large

multiple of N . However Lemma 3.3 says that E[Z ] = 0 and Lemma

4.5 says that |Z − E[Z ]| ≪
√
N log(1/δ ) with high probability.

Finally, we can bound the probability of BasicTest giving an

incorrect output on lines 30 or 28.

Lemma 4.13. Ifp is a product distribution, then the probability that
BasicTest returns “NO" on line 30 isO(δ ). Similarly, if dTV (p,q) > ϵ
then the probability that BasicTest returns “YES" is O(δ ).

This holds because if we reach this stage of the algorithm N =
Np +Nq . We know by previous checks that Nq is not too large and

Np is not much bigger than Nq . This gives us strong concentration

bounds onZ and a careful analysis of the separation in expectations

between the soundness and completeness cases will yield our result.

Proof. In order for the algorithm to return “YES" or “NO" on

line 30, it has to avoid “aborting" or returning “NO" on line 22.

Therefore, it must be the case that Np ≤ 20Nq +C
′
log(1/δ ) and

Nq = O( k
2

nm + k/m), which implies N = O( k
2

nm + k/m). Note also

that
k2

nm ≥ log(1/δ ) ,as well as k ≥ log(1/δ ) by definition of k .
Note also the trivial bound that N = O(k).

Therefore, by Lemma 4.5, we have that:

Pr[|Z − E[Z ]| > C
√
min(k, (k2/mn + k/m)) log(1/δ )] ≤ δ/2 ,

for some constant C > 0.

If p is a product distribution (i.e., p = q), then by Lemma 3.3,

we have that E[Z ] = 0. Thus, the algorithm will return “NO" with

probability at most δ/2.
For the soundness case, where dTV (p,q) > ϵ , it suffices to show

the following lower bound on the expected value of Z :

Claim 4.14. If dTV (p,q) > ϵ , then

E[Z ] ≥ 2C ′
√
min(k, (k2/mn + k/m)) log(1/δ ) .

Proof. Suppose that we condition on the flattening samples.

This will determine the flattened distributions pf ,qf . From the

proof of Lemma 3.3 it follows that:

E[Z |Fx , Fy ] = Ω
©«min

ϵk,
k2ϵ2

|Dp f |
,
k3/2ϵ2√
|Dp f |


ª®®¬ ,

where |Dp f | = Θ(nm) is the domain size of the flattened distribution.

We now distinguish the following three cases:

• Case 1: E[Z |Fx , Fy ] = Ω(ϵk).

Using the fact that k = Ω(log(1/δ )/ϵ2), it follows that

E[Z |Fx , Fy ] = Ω(
√
k log(1/δ )).

• Case 2: E[Z |Fx , Fy ] = Ω
(
k2ϵ 2
nm

)
– Using the fact that k = Ω

(√
nm log(1/δ )

ϵ 2

)
, we get that:

E[Z |Fx , Fy ] = Ω

(
kϵ2

nm
·

√
nm log(1/δ )

ϵ2

)
= Ω

(√
k2

nm
log(1/δ )

)
.

– Using the fact that k = Ω

(
n2/3m1/3

log
1/3(1/δ )

ϵ 4/3

)
, we get that:

E[Z |Fx , Fy ] = Ω

(√
k

m
·
ϵ2k3/2

n
√
m

)
= Ω

(√
k

m
·
ϵ2n

√
m log(1/δ )

ϵ2n
√
m

)
= Ω

(√
(k/m) log(1/δ )

)
.

• Case 3: E[Z |Fx , Fy ] = Ω
(
k3/2ϵ 2√
nm

)
.

We note that this is larger than the expression in Case 2

unless k > nm. Thus, it suffices to show that
k3/2ϵ 2√
nm

=

Ω(
√
k log(1/δ )). However, this follows from the fact that

k = Ω

(√
nm log(1/δ )

ϵ 2

)
.

Combining these two bounds, we get the required statement for

any possible choice of flattening samples. Thus, the unconditional

version of the statement also holds. □

This completes the proof of the lemma. □

Recall that the full algorithm is the following:

(1) Let S be a random set of 100k samples.
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(2) Run BasicTest on S until it does not return ABORT.

(3) Return “YES"/“NO" as appropriate.

Lemma 4.15. If p = q the probability that FullTest returns “NO"

is O(δ ), and if dTV (p,q) > ϵ the probability that it returns “YES" is

O(δ ).

Proof. We bound the probability as follows:

Pr[FullTest incorrect]

=

∞∑
t=0

Pr[BasicTest Returns ABORT t times

and then wrong output]

=

∞∑
t=0

ES [Pr[BasicTest returns ABORT|S]t

· Pr[BasicTest returns wrong output|S]]

≤

∞∑
t=0

2
−tES [Pr[BasicTest returns wrong output|S]]

=

∞∑
t=0

2
−tPr[BasicTest returns wrong output]

= 2Pr[BasicTest returns wrong output] = O(δ ).

□

Proof of Theorem 4.1. By Lemma 4.15, we get that there exists

some constant c > 0, such that Algorithm 2 outputs “NO" with

probability at most δ ′ = c · δ if p is a product distribution, and

outputs “YES" with probability at most δ ′ if dTV (p,px × py ) ≥ ϵ .
Since δ = δ ′/c , the sample complexity is:

Θ
(
n2/3m1/3

log
1/3(1/δ ′)/ϵ4/3

)
+

+Θ
(
((nm)1/2 log1/2(1/δ ′) + log(1/δ ′))/ϵ2

)
.

as desired. □
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