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Abstract
To reproduce the observed spectra and light curves originated in the neighborhood of compact objects
requires accurate relativistic ray-tracing codes. In this work we present Skylight, a new numerical
code for general-relativistic ray tracing and radiative transfer in arbitrary space-time geometries
and coordinate systems. The code is capable of producing images, spectra and light curves from
astrophysical models of compact objects as seen by distant observers. We incorporate two different
schemes, namely Monte Carlo radiative transfer, integrating geodesics from the astrophysical region
to distant observers, and camera techniques with backwards integration from the observer to the
emission region. The code is validated by successfully passing several test cases, among them: thin
accretion disks and neutron stars hot spot emission.

Keywords radiative transfer · gravitation · black hole physics · methods: numerical

1 Introduction

The theory of general relativity (GR) has been tested under
a wide variety of circumstances, ranging from planetary
to cosmological scales, and within different degrees of
nonlinearity. The most elusive tests, still to be completed,
remain those in the strong field regime. Compact relativis-
tic objects, including neutron stars and black holes, are
excellent natural laboratories where extreme phenomena
takes place allowing us to probe the behavior of matter
under the influence of very strong gravitational fields. In
these scenarios, the gravitational field plays a crucial role in
the astrophysical processes which occur, leaving an imprint
on the observations by shifting the energies and deflecting
the trajectories of the emitted photons. In turn, this also
allows us to put GR to the test at the very instances where
its nonlinearities are the strongest.
For example, X-ray pulse profiles generated from hot spots
on the surface of spinning neutron stars are severely affected
by the gravitational field of the star (Pechenick et al., 1983).
The emission lines produced in black hole accretion disks
suffer relativistic broadening due to the combined effect
of gravitational redshift and Doppler boosting to the fluid
frame (Miller et al., 2002).

In the last few years, new instruments with increased
sensitivity like NICER (Gendreau et al., 2012) began to
operate producing very accurate observational data. The
forthcoming mission eXTP (Zhang et al., 2019) will also
add up to this in the near future. The modelling of pulse
profiles and comparison with these high-quality data can
be used, e.g., to constrain the mass-radius relation of
neutron stars, and consequently their equations of state and
interior compositions (Riley et al., 2019, 2021; Pang et al.,
2021). It has also been used to infer the possible topology
of the magnetic field near the stellar surface, suggesting
the existence of global-scale multipolar components in
millisecond pulsars (particularly for PSR J0030+0451)
(Bilous et al., 2019; Chen et al., 2020; Kalapotharakos
et al., 2021). Thus, challenging the standard pulsar picture
consisting of a centered magnetic dipole which would yield
two antipodal emitting polar cap regions.
Recently, the Event Horizon Telescope collaboration ob-
tained an image of the black hole M87*, being the first
image of a black hole ever captured (Akiyama et al., 2019).
This opened unprecedented possibilities to deepen our un-
derstanding of physics in these extreme regimes, such as
investigating the gravitational fields and charges of black
holes (Psaltis et al., 2020; Kocherlakota et al., 2021), the
magnetic field structure near the event horizon (Akiyama
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et al., 2021), the jet launching and collimation mechanisms
(Jeter et al., 2020), and so on.
To theoretically reproduce the spectrum and light curves
of these sources with high precision requires accurate
general-relativistic ray-tracing and radiative transfer codes.
A number of such codes have been developed for that
purpose, generally adjusting to one of two schemes: e.g.
Schnittman & Bertschinger (2004); Noble et al. (2007); Dex-
ter & Agol (2009); Psaltis & Johannsen (2011); Bronzwaer
et al. (2018); Pihajoki et al. (2018) and Mościbrodzka &
Gammie (2018), which follow observer-to-emitter schemes,
i.e. tracing rays from a virtual observer to the source back-
wards in time; and, on the other hand, Dolence et al. (2009)
and Schnittman & Krolik (2013) that follow Monte Carlo
schemes in which photon packet distributions are sampled
at the source and are later propagated outwards.
In this paper, we present a new numerical general-
relativistic ray-tracing and radiative transfer code,
Skylight, and we demonstrate its accuracy and appropri-
ateness for astrophysical applications. Skylight supports
transfer in arbitrary asymptotically-flat space-time geome-
tries and coordinate systems. The reason we adopted
this geometry-agnostic position for our code is that in the
near future we will incorporate approximate and numerical
metrics to investigate emission models in binary systems,
systems for which no exact metrics are known. Both the
observer-to-emitter and emitter-to-observer schemes are
implemented in Skylight, a property only shared with
the code described in Schnittman & Krolik (2013). While
the observer-to-emitter scheme demands less allocations
and computational time, often working fine in a laptop, the
emitter-to-observer is more amenable to the inclusion of
scattering processes in a future generalization. The code
is capable of producing images, phase-resolved and phase-
averaged spectra, light curves, sky maps and animations.
The code may also be applied to any astrophysical problem
involving radiation transport in a curved spacetime, not
necessarily in the presence of compact objects, as in the
propagation of light at cosmological scales. The ray-tracing
facility may also be used to compute the trajectories of
massive particles in an arbitrary spacetime.
Our ray-tracing algorithm is natively written in the relatively
new high-performance dynamically-typed language Julia.
In the past, McKinnon (2015) has ported to Julia the
Python ray tracer STARLESS1, but it is restricted to the
Schwarzschild spacetime. Skylight has the first Julia ray
tracer that is able to handle arbitrary space-time geometries.
This paper also serves as a demonstration of the suitability
of Julia for scientific astrophysical problems.
One of our main goals in developing Skylight is to use it
in combination with the 3D general-relativistic force-free
code Onion (Carrasco & Reula, 2017). Many relevant as-
trophysical scenarios involving compact objects are likely
to be filled by a magnetically dominated plasma, well suited
to the force-free (FF) approximation. Such plasma envi-

1https://github.com/rantonels/starless

ronments would typically allow to channel a fraction of the
available kinetic energy into the sourrounding electromag-
netic field; energy which can be then reprocessed within the
magnetosphere to produce emissions on the different bands
of the electromagnetic spectrum. The main limitation of the
FF approach is, however, that it does not directly account
for particle acceleration and micro-physical processes re-
sponsible of producing the actual electromagnetic signals.
Hence, several strategies were developed –mainly in the
study of pulsars– to connect the global electromagnetic
field configurations provided by the FF description with the
micro-physics involved in the emission processes (e.g., Bai
& Spitkovsky (2010); Lockhart et al. (2019); Chen et al.
(2020); Kalapotharakos et al. (2021)). The idea is to first
numerically solve the magnetosphere of different relevant
systems within the FF approximation (see e.g. Carrasco
et al., 2018, 2019, 2021) and then use these solutions as a
starting point to model possible electromagnetic emissions
processes and compute their associated light curves and
spectra with Skylight.
The structure of this paper is as follows: in Section 2,
we present the basic physical setup of the ray-tracing and
radiative transfer problem. In Section 3, we describe the
code giving the details of both the emitter-to-observer and
observer-to-emitter schemes, including the initial data set-
ting, the ray-tracing and the flux calculation steps. We show
validation tests of the ray-tracing integrator in Section 4,
using the constants of motion of the Kerr spacetime and
comparing with a semi-analytic ray-tracing function in the
Schwarzschild spacetime. In Section 5, we validate the
complete structure of radiative transfer within the context
of some astrophysical test applications. Then, we present
tests of numerical convergence for the observer-to-emitter
and emitter-to-observer schemes in Section 6. Finally, we
summarize our work and conclude in Section 7.

2 Physical setup

2.1 Geodesic equations

In the general theory of relativity (GR) spacetime is rep-
resented by a four-dimensional Lorentzian manifold. The
metric 𝑔𝜇𝜈 is a symmetric non-degenerate rank-2 tensor
field over spacetime and represents the gravitational field.
Skylight supports arbitrary space-time geometries and
coordinate systems, provided only that they are asymptot-
ically flat. The geometry enters the code simply via the
components of the metric and the Christoffel symbols,

Γ𝛼
𝜇𝜈 =

1
2
𝑔𝛼𝜌 (𝜕𝜇𝑔𝜈𝜌 + 𝜕𝜈𝑔𝜇𝜌 − 𝜕𝜌𝑔𝜇𝜈) , (1)

written as functions in the coordinate system of choice.
In GR, freely falling test particles follow the timelike or null
geodesics of the spacetime. The equations of the geodesics
are

𝑑2𝑥𝛼

𝑑𝜆2 + Γ𝛼
𝜇𝜈

𝑑𝑥𝜇

𝑑𝜆

𝑑𝑥𝜈

𝑑𝜆
= 0 , (2)
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where 𝑥𝛼 is the position of the particle and 𝜆 is proper
time in the timelike case and an affine parameter in the null
case. The type of geodesic is determined by the mass of the
particle, where massive particles follow timelike geodesics
and massless particles follow null geodesics.
Photons are no exception to this principle of geodesic
motion. Thus, gravity can deflect them and redshift their
energies. Therefore, light curves and spectra will be
severely affected by space-time curvature whenever the
photons are emitted close to a strong gravitational field
source like a black hole or a neutron star.

2.2 Covariant transport

The radiation field on a curved spacetime can be covariantly
described in terms of a Lorentz invariant phase-space
photon density, F (𝑥𝜇, 𝑘𝜇), where 𝑥𝜇 is space-time position
and 𝑘𝜇 is four-momentum (Lindquist, 1966),

𝑘𝜇 =
𝑑𝑥𝜇

𝑑𝜆
. (3)

The invariant density is related to the specific intensity of
the radiation field via F = 𝜈−3𝐼𝜈 , where 𝜈 is the photon
frequency. Note that 𝜈3 and 𝐼𝜈 are not separately Lorentz
invariant. We adopt this latter description in terms of
specific intensity, which is more commonly used. In these
terms, the covariant transport equation along a geodesic
reads

𝑑

𝑑𝜆

(
𝐼𝜈

𝜈3

)
=
𝑗𝜈

𝜈2 − 𝜈𝛼𝜈
(
𝐼𝜈

𝜈3

)
, (4)

where 𝜆 is the affine parameter of the geodesic and 𝑗𝜈
and 𝛼𝜈 are the emissivity and absorptivity of the medium,
respectively. Each term in the equation is Lorentz invariant.
The operator 𝑑/𝑑𝜆 is the Liouville operator, i.e. the convec-
tive derivative in phase space. However, once the geodesic
is given, the operator acts just as an ordinary derivative
with respect to 𝜆.
For the moment, we have not included cases with 𝛼𝜈 ≠ 0,
and in our current applications the support of 𝑗𝜈 is contained
within a three-surface which is spatially compact. This
includes, for example, the emission from neutron star hot
spots and thin accretion disks. We have left the general
case for a future work.
In vacuum, the density F (𝑥𝜇, 𝑘𝜇) is also invariant under
the geodesic flow, since

𝑑

𝑑𝜆

(
𝐼𝜈

𝜈3

)
= 0 , (5)

i.e. its value is constant along the geodesic generated by 𝑘𝜇
at the point 𝑥𝜇. Therefore, in vacuum, the task essentially
consists in obtaining enough solutions to the geodesic
equations with different starting points and momentum
vectors and connecting the information between the extreme
points. This is done by using the fact that 𝐼𝜈0/𝜈3

0 = 𝐼𝜈/𝜈3,
where 𝜈0 is the frequency at the starting point and 𝜈 is the
gravitationally redshifted frequency at the endpoint.

3 Code description

Skylight has two different schemes of operation. On the
one hand, an emitter-to-observer scheme, in which the local
emissivity is sampled as a distribution of photon packets,
and photons are propagated up to a large distance where
virtual observers are located. And on the other hand, an
observer-to-emitter scheme, in which a virtual detector is
set at the location of the observer, and from every pixel
the path of a past-directed photon is traced towards the
emitting source.
Most of our applications will correspond to the emission
generated in a region which rotates stationarily around an
axis, as is usually the case, e.g., in spinning neutron stars
and black hole accretion disks. Under this circumstance,
all physical quantities depend on time and azimuth only
via the combination 𝜔𝑡 − 𝜑, namely the angular phase.
Here 𝜔 is the angular rotation frequency of the system.
Throughout the description below, after dealing with the
general case, we will emphasize this particular instance of
stationary rotation, as it simplifies the treatment and we
will use it often.
The most computationally demanding part of the code
is the ray tracing. The integration of equations (2) for
millions of rays throughout large distances requires a high-
performance programming language. This part of the
code is written in the relatively new high-performance
dynamically typed language Julia. In particular, we use
the package DifferentialEquations.jl (Rackauckas & Nie,
2017). In this sense, Skylight also serves as a proof
of the suitability of Julia and the mentioned package for
high-performance scientific computing in astrophysics.
The setting of the initial data and the post-processing of
the output data are written in Python, and the whole code
is integrated via a metadata management structure.
In Section 3.1, we describe our ray-tracing algorithm. Later,
in Sections 3.2 and 3.3, we give the details of the initial
data and post-processing in both transport schemes of the
code.

3.1 Ray-tracing algorithm

Instead of integrating the equations (2) in its second-order
form directly, Skylight integrates its enlarged first-order
form:

𝑑𝑥𝛼

𝑑𝜆
= 𝑘𝛼 ,

𝑑𝑘𝛼

𝑑𝜆
= −Γ𝛼

𝜇𝜈𝑘
𝜇𝑘𝜈 ,

(6)

where 𝑘𝛼 is the four-momentum of the photon. This
formulation avoids computational issues at radial turning
points, where the signs of the first derivatives would have
to be checked to proceed in the second-order formulation.
More importantly, adopting this formulation allows us to
use the standard methods for the numerical solution of first
order systems of ODEs.
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For the numerical integration of the differential equations
we use the Julia package DifferentialEquations.jl (Rack-
auckas & Nie, 2017), which provides a wide variety of
built-in algorithms for the numerical solution of ODEs,
much wider than traditional libraries. Apart from the
standard algorithms, this library includes many algorithms
which are the result of recent research and are known to be
more efficient than the traditional choices. Thus, we have at
our disposal many different methods to choose according to
the size of the system, the required accuracy, the presence
of stiffness, the need of adaptivity, the available storage, etc.
The package also counts with an efficient automated solver
selector (Rackauckas & Nie, 2019) and it easily admits
parallelization.
Even though we are not bound to any particular method,
we are specially fond of the method VCABM (Hairer et al.,
1993), an adaptive-order adaptive-time Adams-Moulton
method, which is a good choice for high accuracy in very
large systems as the ones we deal with. Step size adaptivity
also comes in handy: small steps are required close to
the source of the gravitational field in order to preserve
accuracy, but far away from the source, geodesics are
approximately straight lines, so large steps are convenient
there to reduce computational costs. VCABM is the solver
method we used in all the applications presented in this
paper. The relative and absolute tolerances can be set as
parameters of the method. See Section 4 for a validation
of our ray-tracing algorithm.
The cutoff conditions for the integration of the geodesics
depend on the scheme (emitter-to-observer or observer-
to-emitter) and on the particular problem. For example,
in the emitter-to-observer where photons are propagated
outwards from the source, the integration of a geodesic
would terminate when it arrived at a sufficiently large
distance, where virtual detectors are supposed to be located.
On the other hand, in the observer-to-emitter scheme, the
geodesics would be integrated from the image plane until
they arrived upon the emitting surface or they strayed
too far from the source without having intersected it. If,
for example, there was a black hole in the numerical
domain, the geodesic integration would terminate whenever
it entered the event horizon, since thereupon it could never
exit that region.

3.2 Emitter-to-observer scheme

3.2.1 Initial data

In this scheme, the emission model enters the code via
an emissivity distribution, 𝑗𝜈 , which depends on space-
time position, frequency and direction of emission. This
distribution encodes the relevant information about the
astrophysical processes occurring in the region of interest.
In terms of the emissivity, the photon number density
satisfies

𝑑𝑛 =
𝑗𝜈

ℎ𝜈

√−𝑔𝑑4𝑥𝑑𝜈𝑑Ω , (7)
where ℎ is the Planck constant, 𝜈 is the photon frequency,
𝑑Ω is the solid angle element and √−𝑔𝑑4𝑥 is the invariant

volume element. The frequency and the direction of
emission are referred to the frame where the emissivity
is defined. In most cases there is a preferred class of
frames, namely the orthonormal frames where the local
phenomena giving origin to the photons are at rest, which
we call local comoving frames. These frames are of the
form {𝑒𝜇(𝑎) : 0 ≤ 𝑎 ≤ 3}, where the greek letter is a
contravariant vector index and the latin letter is a label,
satisfying

𝑔𝜇𝜈𝑒
𝜇

(𝑎)𝑒
𝜈
(𝑏) = 𝜂 (𝑎) (𝑏) , (8)

where the right-hand side is the flat metric in its diagonal
form. For the emission region to be at rest in this frame,
the timelike vector field must equal the four-velocity of the
emitting material, i.e. 𝑒𝜇(0) = 𝑢

𝜇. For the rest of the vector
fields —the spacelike vector fields— there is a certain
degree of freedom, as long as they satisfy equation (8).
Whenever we require them, we calculate the spacelike
vectors are obtained by orthonormalizing a trial set of
spacelike vectors via a Gram-Schmidt algorithm.
For representing the local emissivity, we must sample a
distribution of photon packets following

𝑑𝑁 =
𝑑𝑛

𝑤
=

1
𝑤

𝑗𝜈

ℎ𝜈

√−𝑔𝑑4𝑥𝑑𝜈𝑑Ω , (9)

where 𝑤 is the weight of the packet, i.e. the relative amount
of photons it carries. This resembles what is done in Monte
Carlo simulations. Associating a weight to the packets is
not strictly necessary at this instance, but might be very
convenient in some situations as we will explain later.
In the first place, we take a set of initial space-time positions
distributed according to the momentum-integrated version
of equation (9). In the case of a stationarily rotating
system, the initial time can be taken as 𝑡 = 0 for all packets,
deferring all timing considerations to the post-processing
of the output data, as we describe in Section 3.2.2.
Then, at each initial point we do a random sampling of
the initial four-momenta of the photon packets. The four-
momentum of a packet can be written as

𝑘𝜇 = 𝑘 (𝑎)𝑒𝜇(𝑎) , (10)

where 𝑘 (𝑎) = 𝜈(1,𝛀) are the momentum components in
the local comoving frame, 𝜈 is the frequency and 𝛀 is the
direction of emission. The frequency and angular distribu-
tions are sampled according to equation (9) evaluated at
each point. In the case where 𝛼𝜈 = 0, a single frequency
can be taken as a representative of the entire spectrum,
avoiding spectral sampling, since the trajectories do not
depend on frequency.
Finally, we convert the four-momenta to the coordinate
frame according to equation (10), using the frame vectors
𝑒
𝜇

(𝑎) calculated at each initial point. Once the initial set
of packets is ready, we propagate them as described in
Section 3.1 up to a large distance where virtual detectors
are located.
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3.2.2 Flux calculation

The virtual detectors are located at a distance large enough
so that curvature is negligible there, and, hence, the analysis
can be done as in Euclidean geometry (recall that our
spacetime is required to be asymptotically flat). The
effects of curvature, e.g. redshift and deflection of photon
trajectories, have been already encoded in the map relating
the initial and the final data sets.
In practice, the virtual detectors are simply small bins on
the celestial sphere. In order to measure the monochromatic
flux through a detector at inclination 𝜉 and azimuth 𝜑, we
collect the photons passing through it, and bin the ranges
of frequency and time. Then, we calculate the flux as

𝐹𝜈 =
1

𝐷2ΔΩΔ𝑡Δ𝜈

∑︁
𝑖

(ℎ𝜈)𝑖𝑤𝑖 , (11)

where 𝐷 is the distance to the observer, ΔΩ ≈ sin 𝜉Δ𝜉Δ𝜑
is the solid angle occupied by the detector, Δ𝑡 is the size of
a small temporal bin, and Δ𝜈 the size of a small frequency
bin. The sum is over all photon packets collected by the
detector. In this manner, we can produce phase-resolved
and phase-averaged spectra, and by integrating on spectral
windows we can also obtain sky maps and light curves. By
taking into account the final direction of the photon packets
three-momenta we can also produce images of the emitting
source.
In the stationarily rotating case, all physical quantities
depend on time and azimuth only via the angular phase
𝜔𝑡 − 𝜑. In particular, the flux also depends on time and
azimuth only via 𝜔𝑡 − 𝜑, so we only need to look at the
flux corresponding to detectors at 𝜑 = 0 for different
inclinations. We mentioned before that this symmetry
allows us to sample and evolve a single set of initial
photon packets departing from the source at the same time
coordinate 𝑡. With the final positions of these photon
packets in the celestial sphere and taking advantage of the
symmetry of our system we can calculate everything we
need. If we want to know the flux corresponding to a
detector at an inclination 𝜉 and azimuth 𝜑 = 0, we can
concentrate on all the photon packets of our final data set
which satisfy |𝜉 − 𝜉f | ≤ Δ𝜉/2 and 0 ≤ 𝜑f < 0, where
𝜉f is the final polar angle of the photon and 𝜑f its final
azimuth. This region is an annular strip of width Δ𝜉 on
the celestial sphere centered at the inclination 𝜉 of the
detector, and occupying a solid angle ΔΩ ≈ 2𝜋 sin 𝜉Δ𝜉.
Let us suppose a photon (which departed at 𝑡 = 0 from
the source) arrives to this annular strip at a time 𝑡f with
a final azimuth 𝜑f (not necessarily at 𝜑f = 0, where the
detector lies). Then, due to the symmetry of our system,
another photon (possibly emitted at a different initial time)
would arrive at the detector with the same properties as the
former, but at a different final time. The time of arrival
of this latter photon to the detector can be computed as
follows. For convenience, let us first define the observation
phase as 𝜙 = (𝜔𝑡 − 𝜑)/2𝜋; at the location of the detector,
the relation between time and observation phase reduces
to 𝑡 = 𝜙𝑇 , where 𝑇 = 2𝜋/𝜔 is the period of the system.

Thus, the latter photon will arrive at the detector with an
observation phase

𝜙 = − 𝜑f
2𝜋

+ 𝑡f
𝑇
. (12)

Therefore, by the formula above we can assign an obser-
vation phase to all the photon packets which arrive to the
annular strip. Then, in terms of the observation phase, the
monochromatic flux at the detector can then be calculated
as

𝐹𝜈 =
1

2𝜋𝐷2 sin 𝜉Δ𝜉𝑇Δ𝜙Δ𝜈

∑︁
𝑖

(ℎ𝜈)𝑖𝑤𝑖 , (13)

where we have used that Δ𝑡 = 𝑇Δ𝜙 at the detector, and
the sum is over all photon packets which lie in the annular
strip, within the corresponding phase and frequency bins.

3.3 Observer-to-emitter scheme

Recall that spacetime is required to be asymptotically flat,
therefore at distances as large as those of the observers,
the analysis can be carried out as in flat spacetime. Let us
take an inertial coordinate system (𝑡, 𝑥, 𝑦, 𝑧) such that the
observer is at rest on the 𝑥𝑧-plane at a distance 𝐷 from the
origin, and at an inclination 𝜉 with respect to the 𝑧-axis.
The monochromatic flux through a surface element at the
location of the observer (the detector) is related to the
specific intensity of the radiation field via

𝐹𝜈 (𝑡) =
∫
U
𝐼𝜈 (𝛀, 𝑡)n · d𝛀 , (14)

whereU is a solid angle containing the source, n is the three-
vector normal to the surface element, and all quantities are
evaluated at the position of the observer.
Since the detector is far away from the source, the light rays
arriving to it are almost exactly parallel. Thus, considering
that for such rays n · d𝛀 ≈ 𝑑Ω and using 𝑑Ω = 𝑑𝐴/𝐷2, we
can rewrite the integral of equation (14) in the following
form:

𝐹𝜈 (𝑡) =
1
𝐷2

∫
S
𝐼𝜈 (𝛼, 𝛽, 𝑡)𝑑𝛼𝑑𝛽 , (15)

where S is an image plane perpendicular to the line of
sight, and (𝛼, 𝛽) are rectangular coordinates over S. These
coordinates are related to the inertial coordinates via

𝑥 = −𝛽 cos 𝜉 + 𝑑 sin 𝜉 , (16)
𝑦 = 𝛼 , (17)
𝑧 = 𝛽 sin 𝜉 + 𝑑 cos 𝜉 , (18)

where 𝑑 is the distance of the virtual detector. The setting
is shown in Fig. 1. Notice that S need not be located at
the true distance 𝐷, but a smaller distance 𝑑 is acceptable
provided the effects of gravity in the direction of travel are
negligible as well, since in such a case the result of the
integral depends only on the impact parameters of the light
rays and not on 𝑑 itself. For this reason, although our real
astrophysical sources of interest might be many kiloparsecs
away, we will usually set our virtual detectors at distances
as small as 1000𝑀 in geometrized units, 𝑀 being the mass
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𝑥
𝑦

𝑧

𝑑 𝜉

𝛼

𝛽

Figure 1: Sketch of the initial data setting in the observer-
to-emitter scheme, showing the rectangular coordinates
(𝛼, 𝛽) on the image plane, the inclination of the observer 𝜉
and the distance to the image plane 𝑑.

of the source. Also note that S does not represent a true
physical surface, but it is just the transformed integration
domain after the change of variables from solid angle to
impact parameters. Thus, equation (14) is not precisely the
flux through an extended physical surface, but represents
the flux through a surface element at the location of the
observer.
In order to compute the integral of equation (15) as a
Riemann sum, we take a grid of 𝑁𝛼 × 𝑁𝛽 points,

𝛼𝑚 = −𝐿𝛼

2
+
(
𝑚 + 1

2

)
Δ𝛼 , 0 ≤ 𝑚 ≤ 𝑁𝛼 − 1 , (19)

𝛽𝑚 = −
𝐿𝛽

2
+
(
𝑛 + 1

2

)
Δ𝛽 , 0 ≤ 𝑛 ≤ 𝑁𝛽 − 1 , (20)

where 𝐿𝛼 and 𝐿𝛽 are the sides of the image plane, Δ𝛼 =

𝐿𝛼/𝑁𝛼 and Δ𝛽 = 𝐿𝛽/𝑁𝛽 . The image plane must be large
enough to cover the image of the source, usually meaning
that it has to be of about the same size as the source (recall
that the image plane does not represent a true physical
surface).
Then, each grid-point is taken as the initial position of a
photon with initial three-momentum normal to the image
plane and pointing towards the source. The time component
of the four-momenta are fixed so that the resulting four-
vector is null, with the choice of the negative sign for the
geodesic to be past-directed. When the system we consider
is stationarily rotating, it is enough to trace the geodesics
for a single common initial time, say 𝑡 = 0. Otherwise,
we simply have to evolve various photon grids starting at
different initial times.
The ray tracing is done as described in Section 3.1, with the
only difference that in this scheme the equations are solved
towards the past. The rays are traced until they intersect
the emitting surface or otherwise stray too far away from
the source without having hit it.
We know the quantity 𝜈−3𝐼𝜈 is both geodesic and Lorentz
invariant, so it can be used to compute 𝐼𝜈 (𝛼, 𝛽, 𝑡) in terms
of the intensity at the source in the local comoving frame
where the emission model is defined. The ratio of the

frequency at the camera to the frequency at the source in
the comoving frame is

𝜈

𝜈em
=
𝑔𝜇𝜈,i𝑘

𝜇

i 𝑡
𝜈

𝑔𝜇𝜈,f𝑘
𝜇

f 𝑢
𝜈
, (21)

where 𝑔𝜇𝜈,i(f) is the metric at the initial (final) point of the
geodesic, 𝑘𝜇i(f) is the initial (final) four-momentum, 𝑡𝜇 = 𝜕𝑡

is the four-velocity of the observer and 𝑢𝜇 is the local
four-velocity of the emitter. For a given photon trajectory,
this quotient is independent of the initial frequency. Thus,
if a geodesic with initial coordinates on the image plane
(𝛼, 𝛽) intersects the emitting surface at a time 𝑡em < 0 and
spatial position xem, then

𝐼𝜈 (𝛼, 𝛽, 𝑡) =
(
𝜈

𝜈em

)3
𝐼
(0)
𝜈em (xem, 𝑡 + 𝑡em) , (22)

where 𝐼 (0)𝜈em is the specific intensity in the comoving frame2.
Finally, we approximate the flux as

𝐹𝜈 (𝑡) '
Δ𝛼Δ𝛽

𝐷2

∑︁
𝑚,𝑛

𝐼𝜈 (𝛼𝑚, 𝛽𝑛, 𝑡) , (23)

where the sum is over all photons on the grid of the image
plane.

4 Verification of the ray-tracing algorithm

4.1 The Kerr metric in Kerr-Schild Cartesian
coordinates

Even though our code admits arbitrary space-time ge-
ometries, our present applications and verification tests
circumscribe to the Kerr metric, which we briefly intro-
duce in this section. We have chosen Kerr-Schild Cartesian
coordinates, whose benefits are their intuitiveness and their
regularity across the black hole event horizon and over
the symmetry axis. The downside of these coordinates is
that all the components of the metric are nonzero, and the
Christoffel symbols are quite involved (see Appendix A for
explicit expressions). Since we envision to use this code

2Usually, the astrophysical model provides such an intensity
at the source. For example, in spinning neutron stars, solving the
local transport in the atmosphere results in a specific intensity
distribution over the surface of the star (e.g. Heinke et al., 2006;
Potekhin, 2014). However, in other cases the model might instead
provide an emissivity with support on a spacetime hypersurface.
This special case can still be treated with the techniques described
above, but an additional factor dependent on the incidence angle
of the ray to the surface must be included. To see why, imagine
the hypersurface locally as a thin layer of finite width: clearly, the
intensity that a ray picks up when crossing the layer is proportional
to the length of the path that it traces within it. Therefore, an
additional factor must be 1/𝑛𝜇𝑘𝜇 , where 𝑛𝜇 is the unit normal to
the hypersurface (this is most easily seen in the local comoving
frame, where the factor equals 1/cos𝛼, and 𝛼 is the angle between
the vectors). The factor remains present after taking the limit as
the width tends to zero.
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for much more complicated space-time geometries, which
might not even be given as symbolic functions, we are not
particularly worried about these algebraic complexities.
The Kerr spacetime is the unique vacuum stationary black
hole solution of Einstein’s equations. It is parameterized
by two quantities, the mass 𝑀 and the spin 𝑎, and it is
extremely useful in astrophysical problems.
In Kerr-Schild Cartesian coordinates (and geometrized
units), the Kerr metric takes the form

𝑔𝜇𝜈 = 𝜂𝜇𝜈 + 2𝐻𝑙𝜇𝑙𝜈 , (24)
where 𝜂𝜇𝜈 is the flat metric, and

𝐻 =
𝑀𝑟3

𝑟4 + 𝑎2𝑧2
, 𝑙𝜇 =

(
1,
𝑟𝑥 + 𝑎𝑦
𝑟2 + 𝑎2 ,

𝑟 𝑦 − 𝑎𝑥
𝑟2 + 𝑎2 ,

𝑧

𝑟

)
. (25)

The function 𝑟 is implicitly defined by

𝑥2 + 𝑦2

𝑟2 + 𝑎2 + 𝑧
2

𝑟2 = 1 . (26)

Any metric in the form of equation (24) –for arbitrary 𝐻
and 𝑙𝜇– is said to be in Kerr-Schild form. This metric is
stationary and axi-symmetric. For values of 𝑀 > 0 and
0 ≤ 𝑎/𝑀 ≤ 1 there is a black hole region in the spacetime.
Other values of 𝑎 are regarded unphysical due to the
presence of a naked singularity. The vector 𝑙𝜇 is null both
with respect to 𝑔𝜇𝜈 and 𝜂𝜇𝜈 . Moreover, 𝑙𝜇 is also geodesic
with respect to both metrics, i.e., 𝑙𝜇𝜕𝜇𝑙𝜈 = 𝑙𝜇∇𝜇𝑙

𝜈 = 0.
In Cartesian coordinates the components of the metric
remain regular across the event horizon, which is convenient
since it prevents numerical issues to arise close to the black
hole region. These coordinates are also regular over the
symmetry axis of the metric. Moreover, they also have
the appealing property that √−𝑔 = 1 everywhere. Hence,
the invariant volume element is homogeneous, thus doing
justice to the Cartesian nature of the coordinates. This
property is especially useful in the emitter-to-observer
scheme, since the invariant volume element for the photon
packet sampling is simply 𝑑4𝑥.

4.2 Conservation of the constants of motion

The Kerr spacetime is stationary and axisymmetric, mean-
ing that it has a time-translation Killing vector 𝐾 = 𝜕𝑡 ,
and a rotational Killing vector 𝑅 = −𝑦𝜕𝑥 + 𝑥𝜕𝑦 . These
Killing vectors provide two constants of motion: the energy
𝐸 = −𝐾𝜇𝑘

𝜇 and the angular momentum 𝐿 = 𝑅𝜇𝑘
𝜇, where

𝑘𝜇 is the tangent vector of the geodesic. The metric itself,
as a trivial Killing tensor, provides the constant of motion
𝑚2 = −𝑔𝜇𝜈𝑘𝜇𝑘𝜈 , namely the squared mass. The Kerr
metric is of Petrov type D, whereas 𝑙𝜇 is precisely one of its
repeated principal null vectors. This results in the presence
of a fourth constant of motion, the Carter constant, not
related to the obvious symmetries of the metric. The con-
stant comes from an additional Killing tensor, independent
of the metric and tensor products of Killing vectors, which
can be written as

𝐶𝜇𝜈 = −𝑠 (𝜇𝑙𝜈)Δ + 𝑟2𝑔𝜇𝜈 , (27)
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Figure 2: Absolute errors in the conservation of the four
constants of motion for initial photons over a meridian at
𝜌 = 5𝑀 in Kerr spacetime with 𝑎/𝑀 = 0.99.

where Δ = 𝑟2 − 2𝑀𝑟 + 𝑎2, 𝑙𝜇 is the null one-form of
equation (25), and

𝑠𝜇 = 𝑙𝜇 + 2𝑎
Δ
𝑅𝜇 + 2(𝑟2 + 𝑎2)

Δ
𝐾𝜇 . (28)

The Carter constant then reads

𝐶 = 𝐶𝜇𝜈𝑘
𝜇𝑘𝜈 = −Δ(𝑙𝜇𝑘𝜇)2

− 2𝑙𝜇𝑘𝜇 [𝑎𝐿 − (𝑟2 + 𝑎2)𝐸] − 𝑟2𝑚2 . (29)

We used these four constants of motion as a test of the
accuracy of our ray-tracing algorithm. As an example
we set 100 initial points over a meridian of the sphere
𝜌2 = 𝑥2 + 𝑦2 + 𝑧2 = (5𝑀)2 in Kerr spacetime with
𝑎/𝑀 = 0.99. We took 103 photons at each point, with
directions of emission isotropically distributed over the
outward directed hemisphere, yielding a total 𝑁 = 105

photons. We propagated these photons up to 𝑟 = 103𝑀
using the method "VCABM" (see Section 3.1). The relative
tolerance of the method was set to 10−8. In Fig. 2 and Fig. 3
we show the results obtained for the absolute and relative er-
rors in the conservation of the constants of motion between
the initial and final points. (We exclude the relative error
in 𝑚2 because its exact value is close to zero). Naturally,
the particles, which are initially massless, acquire mass
due to numerical errors in the evolution. However, these
differences are very small, and the conformity with the
expected accuracy is excellent.

4.3 Comparison with the ray-tracing function

Some codes which are restricted to the Schwarzschild
spacetime have used what is called the ray-tracing function
to compute the deflection angle of geodesics in a semi-
analytic manner (e.g. Pechenick et al., 1983; Page, 1994;
Perna & Gotthelf, 2008). That expression can be used as a
verification of our ray-tracing alogrithm.
Let a photon be located at radius 𝑟, and let 𝛿 be the angle
between the three-momentum of the photon and the radial
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Figure 3: Relative errors in the conservation of the constants
of motion for initial photons over a meridian at 𝜌 = 5𝑀 in
Kerr spacetime with 𝑎/𝑀 = 0.99. (The exact value of the
mass is zero, therefore its relative error is unstable and is
disregarded.)

vector 𝜕𝑟 measured in the frame of a static observer. The
angle 𝛿 satisfies

sin 𝛿 =
𝑏

𝑟

√︂
1 − 2𝑀

𝑟
, (30)

where 𝑏 = 𝐿/𝐸 is the impact parameter of the photon.
Then, the deflection angle can be written as

𝛼𝛿 =

∫ 𝑅𝑠
2𝑟

0
𝑑𝑢 sin 𝛿

[(
1 − 𝑅𝑠

𝑟

) (
𝑅𝑠

2𝑟

)2

− (1 − 2𝑢) 𝑢2 sin2 𝛿
]−1/2

− 𝛿 , (31)

where 𝑅𝑠 = 2𝑀 is the Schwarzschild radius.
As a test of our ray-tracing algorithm, we took 104 photons
at (𝑥, 𝑦, 𝑧) = (0, 0, 5𝑀) with directions of emission isotrop-
ically distributed over the outwards directed hemisphere.
We propagated those photons up to 𝑟 = 103𝑀 using the
method "VCABM" (Section 3.1). The relative tolerance of
the method was set to 10−8. In Fig. 4 we show the differ-
ence

√︁
Δ𝜃2 + Δ𝜙2 between the final angles obtained with

our code and the final angles computed from formula (31).
Again, the agreement is excellent.

4.4 Interpolation of a numerical metric

In principle, Skylight can also handle numerical –i.e.
tabulated– metrics. Although our applications so far restrict
to analytical metrics, to test this possibility in a simple
setting we implemented the metric of a general spherically
symmetric spacetime, which in spherical coordinates takes
the form

𝑑𝑠2 = −𝑒2𝛼(𝑟 )𝑑𝑡2+𝑒2𝛽 (𝑟 )𝑑𝑟2+𝑟2 (𝑑𝜃2+sin2 𝜃𝑑𝜑2) , (32)

where 𝛼(𝑟) and 𝛽(𝑟) are arbitrary functions that might be
provided in the form of tables. The Christoffel symbols
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Figure 4: Difference between the final angles obtained with
our code and those obtained with the ray-tracing function
of equation (31) for a total of 104 photons initially at
(𝑥, 𝑦, 𝑧) = (0, 0, 5𝑀) in Schwarzschild spacetime and with
directions isotropically distributed on the outward pointing
hemisphere.

can be computed straightforwardly from the expression
above, and the code does this before starting the integration,
to avoid having to compute many numerical derivatives
at each time step. Once the metric and the Christoffel
symbols are tabulated, we build interpolator functions for
them.
These spacetimes correspond to spherically symmetric
distributions of matter. In the case of vacuum in GR, the
metric reduces to the Schwarzschild metric, with

𝛼(𝑟) = 1
2

log
(
1 − 2𝑀

𝑟

)
, (33)

𝛽(𝑟) = −𝛼(𝑟) . (34)

Therefore, we can use mock tables of the Schwarzschild
metric and connection functions to test our interpolation
scheme for ray tracing in numerical spacetimes. For this
test, we applied the same procedure as in the previous
section: as initial data, we took 104 photons at 𝑟 = 5𝑀
with emission directions isotropically distributed outwards
and we propagated those photons up to 𝑟 = 103𝑀 both
with the analytical and numerical metrics. We used four
distinct resolutions for the metric tables, with 500, 103, 104

and 105 logarithmically spaced nodes between 𝑟 = 2.1𝑀
(close to the event horizon) and 𝑟 = 103𝑀. The relative
tolerance of the geodesic integration method was set to
10−8. In Fig. 5 we show the difference

√︁
Δ𝜃2 + Δ𝜙2 for

the final spherical angles in all four cases with respect to
the angles obtained with the analytical metric. In all cases
the matching is excellent, and it improves with increasing
resolution.
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Figure 5: Difference in final spherical angles for the evolu-
tion of 104 photons initially at 𝑟 = 5𝑀 , with the interpolated
Schwarzschild metric and the analytical metric. Each panel
corresponds to different resolution of the numerical metric,
with 500, 103, 104 and 105 logarithmically spaced nodes
correspondingly.

5 Astrophysical tests

5.1 Relativistically broadened emission line from a
thin accretion disk

The gravitational influence of accreting black holes has im-
portant effects on the emission generated on their accretion
disks. In particular, the iron emission lines produced in
such accretion disks might suffer a relativistic broadening
due to the combined effect of gravitational redshift and
Doppler boosting to the frame of the fluid. Here we repro-
duce the results of Dexter & Agol (2009) for the broadening
of an emission line in a simple model of a thin accretion
disk around a Kerr black hole. The disk is optically thick
and geometrically thin and lies on the equatorial plane of
the black hole. The inner radius of the disk is defined as the
radius of the marginally stable circular orbit 𝑟ms (Bardeen,
1973), and the outer radius is 𝑟out = 15𝑀. The particles
of the disk rotate in circular orbits, with an angular speed
given by

𝜔± =
±
√
𝑀

𝑟3/2 ± 𝑎
√
𝑀
, (35)

where 𝜔+ and 𝜔− correspond to prograde and retrograde
disks respectively. The emissivity is defined in the local
comoving frame of the disk, and it is monochromatic,
isotropic, and weighted by a factor of 𝑟−2:

𝑗𝜈 (𝑥𝜇) ∝
1
𝑟2 𝛿(𝑧)𝛿(𝜈 − 𝜈0)𝜒(𝑟) , (36)

where the function 𝜒(𝑟) equals 1 if 𝑟ms ≤ 𝑟 ≤ 𝑟out and
zero otherwise, and 𝜈0 is the frequency of emission in the
comoving frame.
We computed the spectrum of the disk for an observer at a
distance 𝑟 = 103𝑀 and an inclination angle of 𝜉 = 30◦ in
the cases of prograde and retrograde rotation using both
schemes of Skylight. The black hole spin is 𝑎/𝑀 = 0.5.
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Figure 6: Relativistic broadening of an emission line in
a thin accretion disk with the observer-to-emitter scheme
of Skylight. The black hole spin is 𝑎/𝑀 = 0.5 and the
viewing angle is 𝜉 = 30◦.

0.5 0.6 0.7 0.8 0.9 1.0

E/E0

0

1

2

3

4

5
F

lu
x

(a
rb

it
ra

ry
)

Prograde

Retrograde

Skylight

Dexter & Agol

Figure 7: Relativistic broadening of an emission line in
a thin accretion disk with the emitter-to-observer scheme
of Skylight. The black hole spin is 𝑎/𝑀 = 0.5 and the
viewing angle is 𝜉 = 30◦.

In the observer-to-emitter scheme, we used a square image
plane of side 𝐿 = 2.1𝑟out at a distance 𝑑 = 103𝑀 with
𝑁 = 200 grid points per side. In the emitter-to-observer
scheme, we took 5 × 10−3 initial points on the disk and
5 × 10−3 uniformly sampled emission directions in the
comoving frame, with a total of 𝑁 = 2.5 × 107 photons.
The virtual detectors are located at 𝑑 = 103𝑀. In Fig. 6
and Fig. 7 we compare the results of both schemes to those
of Dexter & Agol (2009), finding an excellent agreement
in both cases. Also, in Fig. 8 we show an image of the
disk model for a black hole spin of 𝑎/𝑀 = 0.99 as seen at
an inclination angle of 𝜉 = 85◦ obtained with observer-to-
emitter scheme of Skylight using the same image plane
size as above but increasing the resolution to 𝑁 = 500 grid
points per side of the image plane.
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Figure 8: Image of the simple thin disk model with black
hole spin 𝑎/𝑀 = 0.99 with the observer-to-emitter scheme
at a viewing angle of 𝜃 = 85◦.

5.2 Hot spot orbiting a Schwarzschild black hole

Since the accretion disk of the previous test is stationary
and axisymmetric, it serves mostly as a probe of the spectral
dependence of Skylight but not as much of timing. To test
the correct treatment of timing in our code we implemented
a different model: the orbiting hot spot model described in
Schnittman & Bertschinger (2004). The emission region
is a circular spot orbiting a Schwarzschild black hole on
the equatorial plane. The center of the spot follows the
innermost stable retrograde circular orbit with radius 𝑟 =
6𝑀 at a retrograde Keplerian angular speed𝜔 = −

√
𝑀/𝑟3/2.

The emissivity is monochromatic and isotropic in the frame
of the spot, and is modulated by a Gaussian profile

𝑗𝜈 (x𝜇) ∝ 𝛿(𝑧)𝛿(𝜈 − 𝜈0) exp{−|x − xspot (𝑡) |2/2𝑅2
spot} ,

(37)
where x = (𝑥, 𝑦, 𝑧), xspot (𝑡) is the position of the spot center,
𝜈0 is the frequency of emission in the local comoving frame
of the spot, and the standard deviation of the Gaussian
profile is 𝑅spot = 0.25𝑀 . Due to the small size of the spot,
the distance of an emission point to the center of the spot
is computed as in local Euclidean geometry. In practice,
we truncate the emissivity at a distance 4𝑅spot from the
center of the spot, where it is safely close to zero. The
four-velocity of all points inside the spot is taken equal to
that of the guiding geodesic trajectory. This means that
the energy in the local "comoving" frame of the spot of a
photon with four-momentum 𝑘𝜇 located anywhere inside
the spot is calculated as −𝑘𝜇𝑣𝜇 (xspot), where 𝑣𝜇 (xspot) is
the four-velocity of the guiding geodesic trajectory.
For the observer-to-emitter scheme we used square image
planes of side 𝐿 = 20𝑀 at a distance 𝑑 = 103𝑀 with
𝑁 = 800 grid points per side. In Fig. 9 we show a
spectrogram obtained with this scheme for a viewing angle
of 𝑖 = 60◦ and in Fig. 10 we show the bolometric light
curves at various viewing angles. Each light curve is
normalized to 1 and then scaled to the maximum value of
the 𝑖 = 80◦ light curve. As the inclination increases, the
light curves become more sharply peaked because Doppler
beaming becomes more important and gravitational redshift

becomes stronger for rays coming from behind the black
hole. Both figures are in excellent agreement with the
results of Schnittman & Bertschinger (2004).
For the emitter-to-observer scheme, in order to avoid setting
many initial photon sets at different locations of the spot
along its orbit, we introduce a slight modification to the
model. This is because a constant four-velocity throughout
the spot is in conflict with the hypothesis of stationarity, i.e.
that all physical quantities depend on 𝜙 and 𝑡 only via the
combination 𝜔𝑡 − 𝜙. To simplify the calculations, we must
have a self-consistent stationary model which respects that
symmetry. Notice that for the spot to maintain its shape
along its orbit, the four-velocity cannot be constant over
the spot. Thus, we implemented a modified model in
which the four-velocities inside the spot correspond to a
rigidly rotating hot spot, with the same angular velocity
as that of the guiding geodesic trajectory of the original
model. These are the four-velocities we use to set the local
orthonormal frame at each point. Also, we reduce the
radius of the spot to 𝑅spot = 0.05𝑀 to highlight the region
where both four-velocity models approximately agree.
To check consistency, we computed the light curves of
this modified model using the observer-to-emitter scheme,
finding almost no difference with Figs. 9 and 10 of the
original model. Thus, we conclude the modification to
the model is not important, and it is still useful to do a
comparison of the emitter-to-observer scheme with the
results of Schnittman & Bertschinger (2004). This is
because, in the end, what only matters is what happens
really close to the center of the spot, where both models are
essentially the same. Finally, we ran the emitter-to-observer
scheme in the modified model with a total 𝑁 = 128 million
photons propagated from the surface of the spot to the
virtual detectors located at 𝑑 = 103𝑀 . In Fig. 11 we show
the light curves of this modified model for various viewing
angles. The light curves are scaled in the same manner as
in the observer-to-emitter scheme. Again, the agreement
both with the results of the other scheme and with those of
Schnittman & Bertschinger (2004) is very good. Although
the light curve at 𝑖 = 80◦ is somewhat wider than in the other
scheme, we consider the similitude to be acceptable, rather
focusing on the fact that the relations of the amplitudes of
the pulses and the phases of the peaks are correct. Other
noticeable differences appear for the lowest inclination light
curves. This is due to the fact that the photon collector
area gets smaller by a factor of sin 𝑖. Therefore, the photon
statistics at lower inclinations is expected to be worse as
compared to higher inclinations for the same data.
In general, if we are interested in the light curves at only
a few inclination angles, using the observer-to-emitter
scheme for each angle is still more efficient than using
the emitter-to-observer scheme to extract them all at once.
However, our main motivation in introducing and testing
the emitter-to-observer scheme is that it will be more easily
adaptable for the inclusion of scattering processes in the
future as a Monte Carlo simulation, rather than trying to
include them as emissivity and absorptivity coefficients into

10
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Figure 9: Spectrogram of a circular hot spot of radius
𝑅 = 0.25𝑀 for a viewing angle of 𝑖 = 60◦ in the observer-
to-emitter scheme.
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Figure 10: Light curves for a circular hot spot of radius
𝑅 = 0.25𝑀 at various viewing angles using the observer-
to-emitter scheme. The light curves are normalized to 1
and scaled to the maximum value of the curve at 𝑖 = 80◦.

the transport equation. Moreover, it is more natural to use
the emitter-to-observer scheme for defining astrophysical
models in which the location of the emission region is
dynamical, as in, e.g., the radio emission from dynamical
current sheets obtained with FF simulations of black hole
and neutron star magnetospheres.

5.3 Neutron star hot spot X-ray emission

Bogdanov et al. (2019) provided a set of verified high-
precision synthetic neutron star X-ray pulse profiles for
other codes to be tested against. We implemented some of
those tests, implying a simultaneous test of timing and spec-
tral dependence of Skylight. Besides, the reference pulse
profiles are in physical units, therefore they also serve as a
test of the normalization of our curves and our treatment
of units in general. The multiple codes compared in Bog-
danov et al. (2019) use the Schwarzschild + Doppler (S+D)
and Oblate-Schwarzschild (OS) approximations, in which
spacetime is modeled as Schwarzschild and the neutron
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Figure 11: Light curves for a circular hot spot of radius
𝑅 = 0.05𝑀 at various viewing angles using the emitter-to-
observer scheme. The light curves are normalized to 1 and
scaled to the maximum value of the curve at 𝑖 = 80◦.

star surface is supposed to be either a sphere or an oblate
spheroid, respectively (see their paper for details). Follow-
ing their nomenclature, we have implemented the class SD1
of models in which the neutron star is approximated as a
spinning sphere in Schwarzschild spacetime. The neutron
star’s mass and radius are 𝑀 = 1.4𝑀� and 𝑅 = 12 km
respectively. The emission comes from a single circular
hot spot on the surface of the star. The specific intensity
is assumed to be isotropically distributed and follows a
Planckian distribution with 𝑘𝑇 = 0.35 keV (everything
referred to the local corotating frame). The distance to
the observer is 𝐷 = 200 pc. The rest of the parameters
of the model are the colatitude of the spot center 𝜃𝑐 , the
angular radius of the spot Δ𝜃, the colatitude of the observer
𝜉, and the rotation frequency of the neutron star 𝜈. The
values of these parameters for the cases we reproduced
(SD1c–e) are listed in Table 1. In Figs. 12–14 we compare
the observed monochromatic particle flux at 1 keV obtained
with the observer-to-emitter scheme of Skylight against
the profiles of Bogdanov et al. (2019), finding a very good
agreement between the profiles.

6 Convergence tests

6.1 Observer-to-emitter scheme

We performed a convergence test for the observer-to-emitter
scheme in the simple hot spot model SD1d of Bogdanov
et al. (2019) described in the Section 5.3. The observer is
at a distance 𝐷 = 200 pc and a colatitude 𝜉 = 90◦. The neu-
tron star has a mass of 𝑀 = 1.4𝑀�, a radius of 𝑅 = 12 km,
and a rotation frequency of 𝜈 = 200 Hz. The colatitude
of the spot center on the star is 𝜃𝑐 = 90◦ and its angular
radius is Δ𝜃 = 1. In the corotating frame the emission
follows Planck’s law with a temperature corresponding to
𝑘𝑇 = 0.35 keV. We compared six different runs using a
square image plane of side 𝐿 ≈ 2.75𝑅 and 𝑁𝑖 = 25 × 2𝑖
points per side (0 ≤ 𝑖 ≤ 5). In Fig. 15 we show the relative
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Table 1: Parameters of the reference neutron star hot spot tests we implemented

Parameter Test SD1c Test SD1d Test SD1e
Colatitude of the spot center (◦) 90 90 60
Angular radius of the spot (rad) 0.01 1 1
Colatitude of the observer (◦) 90 90 30

Rotation frequency (Hz) 200 200 400
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Figure 12: Monochromatic particle flux at 1 keV for the
neutron star hot spot model SD1c of Bogdanov et al. (2019).
The parameters are 𝜃𝑐 = 90◦, Δ𝜃 = 0.01, 𝜉 = 90◦ and
𝜈 = 200 Hz.
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Figure 13: Monochromatic particle flux at 1 keV for the
neutron star hot spot model SD1d of Bogdanov et al.
(2019). The parameters are 𝜃𝑐 = 90◦, Δ𝜃 = 1, 𝜉 = 90◦ and
𝜈 = 200 Hz.
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Figure 14: Monochromatic particle flux at 1 keV for the
neutron star hot spot model SD1e of Bogdanov et al.
(2019). The parameters are 𝜃𝑐 = 60◦, Δ𝜃 = 1, 𝜉 = 60◦ and
𝜈 = 400 Hz.

𝐿2-errors for the monochromatic particle flux at 1 keV with
respect to the highest-resolution run, namely

𝑒𝑖 =
| | 𝑓𝑖 (𝑡) − 𝑓5 (𝑡) | |𝐿2

| | 𝑓5 (𝑡) | |𝐿2

, 0 ≤ 𝑖 ≤ 4 . (38)

A least-squares linear fit of the error data gives the relation
log10 (𝑒𝑖) ≈ −1.65−0.47𝑖, meaning the error approximately
follows a power law

𝑒𝑖 ≈ 8 × 10−4
(
𝑁𝑖

200

)−1.57
(39)

in terms of the number of points per side of the image
plane.
In other words, for this configuration we find that a reso-
lution of 𝑁 = 200 points per side is enough to obtain an
approximate relative error of order 10−4, and that this error
scales as a power law of index 𝑝 ≈ −1.57 with respect to 𝑁 .
The resolution required for achieving the same error will be
greater if the emission region has a higher a complexity or
a more detailed structure. However, this simple example is
useful as an estimation for the range of accurate operation
of our code.

6.2 Emitter-to-observer scheme

For a convergence test of the emitter-to-observer scheme
we chose the (modified) rigidly orbiting hot spot model
described in Section 5.2. The radius of the spot is 𝑅spot =
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Figure 15: The dots correspond to the relative 𝐿2-errors for
the convergence test using the SD1d model of Bogdanov et
al. (2019) with 𝑁𝑖 = 25 × 2𝑖 points per side of the image
plane. The solid line is the least squares linear fit of the
data points. The error approximately follows a power law
with index 𝑝 = −1.57 in terms of the number of points per
side of the image plane.

0.25𝑀 . We compared seven different runs sampling 𝑁𝑖 =

2 × 2𝑖 million photon packages (0 ≤ 𝑖 ≤ 6). In Fig. 15 we
show the relative 𝐿2-errors for the light curves with respect
to the highest-resolution run, namely

𝑒𝑖 =
| |𝐹𝑖 (𝑡) − 𝐹6 (𝑡) | |𝐿2

| |𝐹6 (𝑡) | |𝐿2

, 0 ≤ 𝑖 ≤ 5 . (40)

A least-squares linear fit of the error data gives the relation
log10 (𝑒𝑖) ≈ −0.87−0.18𝑖, meaning the error approximately
follows a power law

𝑒𝑖 ≈ 10−2
(

𝑁𝑖

64 × 106

)−0.6
(41)

in terms of the number of photon packages in the sample.
Note that the index of the power law is consistent with what
is commonly expected from Monte Carlo simulations.

7 Conclusions

We have presented Skylight, a new general-relativistic
ray-tracing and radiative transfer code for calculating the
observable quantities associated to astrophysical models
of compact objects. One of the strengths of Skylight
is its flexibility, in that it supports arbitrary space-time
geometries and coordinate systems. We have kept this
flexibility because in the near future we will apply the
code to problems which do not restrict to the Kerr metric,
particularly with approximate and numerical metrics of
compact binary systems. The code has two equivalent
schemes of operation, an observer-to-emitter scheme and an
emitter-to-observer scheme, and it is capable of producing
images, spectra and light curves.
We have verified the correctness of our ray-tracing algo-
rithm by checking the constants of motion and comparing
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Figure 16: The dots correspond to the relative 𝐿2-errors
for the convergence test of the emitter-to-observer scheme
in the orbiting hot spot model with a total of 𝑁𝑖 = 2 × 2𝑖
million photon packages. The solid line is the least squares
linear fit of the data points. The error approximately follows
a power law with index 𝑝 = −0.6 in terms of the number
of photon packages.

with a semianalytic ray-tracing function, demonstrating
the great accuracy of the integrator. Additionally, we
have proved the usefulness of both operation schemes of
Skylight for astrophysical applications by testing them
in various problems and comparing with the literature:
the relativistic broadening of an emission line from a thin
accretion disk around a Kerr black hole, a hot spot orbiting
a Schwarzschild black hole, and a hot spot over the sur-
face of a spinning neutron star. This involves tests of the
spectral and temporal dependencies of the code, and the
management of units and normalization of curves. In all
cases we obtained an excellent agreement with the results in
the literature, having checked also the mutual equivalence
of both Skylight schemes and the expected convergence
rates.
Besides, this is the first Julia ray tracer which can handle
arbitrary space-time geometries. This means our work also
demonstrates the suitability of the relatively new language
Julia for applications to highly-demanding computing prob-
lems in astrophysics.
As mentioned before, our plan is to explore diverse electro-
magnetic emission models and apply Skylight to various
astrophysical scenarios, starting from emission models
built on top of the corresponding force-free numerical solu-
tions. Currently, we are already working on the X-ray light
curves of millisecond pulsars from the FF pulsar solutions
in Carrasco et al. (2018) (which take into account the space-
time curvature) and based on the simple emission model
proposed in Lockhart et al. (2019). In the near future, we
plan to use the code to search for observable features on
magnetar X-ray light curves associated to outburst events
(like those studied in Carrasco et al. (2019)). And, fur-
ther, we also aim at adapting Skylight to investigate the
inspiral phase of black hole-neutron star binary systems,
considering some candidate emission models based on
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the numerical solutions of e.g. Carrasco et al. (2021) to
probe the signatures of potential precursor electromagnetic
signals in different bands of the spectrum.
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A Christoffel symbols of the Kerr metric in
Kerr-Schild Cartesian coordinates

Since all the components of the Kerr metric in Kerr-Schild
coordinates are nonzero, obtaining the Christoffel symbols
analytically to use them in the ray tracer implies quite
involved calculations. To the best of our knowledge, they
have not been explicitly written in the literature before, so
we give some details here for future reference.
A general Kerr-Schild metric has the form

𝑔𝜇𝜈 = 𝜂𝜇𝜈 + 2𝐻𝑙𝜇𝑙𝜈 , (42)

where 𝜂𝜇𝜈 is the flat metric, 𝐻 is a scalar function and
𝑙𝜇 is a null covector. From equation (2.3) of Gürses &
Gürsey (1975), we can derive the following expression for
the Christoffel symbols of a general metric in Kerr-Schild
form:

Γ𝛼
𝜇𝜈 = 𝜕𝜇 (𝐻𝑙𝜈 𝑙𝛼) + 𝜕𝜈 (𝐻𝑙𝜇𝑙𝛼) − 𝜕𝛼 (𝐻𝑙𝜇𝑙𝜈) +

+ 2𝐻𝑙𝛼𝑙𝜇𝑙𝜈 𝑙𝜌𝜕𝜌𝐻 .
(43)

Thus, we only need to compute the derivatives of 𝐻 and 𝑙𝜇
and insert them into equation (43). In the special case of
the Kerr metric, these derivatives are:

𝜕𝑥𝑟 =
𝑥𝑟3 (𝑟2 + 𝑎2)

𝑎2𝑧2 (2𝑟2 + 𝑎2) + 𝑟4 (𝑥2 + 𝑦2 + 𝑧2)
,

𝜕𝑦𝑟 =
𝑦𝑟3 (𝑟2 + 𝑎2)

𝑎2𝑧2 (2𝑟2 + 𝑎2) + 𝑟4 (𝑥2 + 𝑦2 + 𝑧2)
,

𝜕𝑧𝑟 =
𝑧𝑟 (𝑟2 + 𝑎2)2

𝑎2𝑧2 (2𝑟2 + 𝑎2) + 𝑟4 (𝑥2 + 𝑦2 + 𝑧2)
.

(44)

These quantities satisfy the useful relation 𝑙𝑥𝜕𝑥𝑟 + 𝑙𝑦𝜕𝑦𝑟 +
𝑙𝑧𝜕𝑧𝑟 = 1. On the other hand, we have

𝜕𝑥𝐻 =
−𝑀 (𝑟6 − 3𝑎2𝑟2𝑧2)

(𝑟4 + 𝑎2𝑧2)2 𝜕𝑥𝑟 ,

𝜕𝑦𝐻 =
−𝑀 (𝑟6 − 3𝑎2𝑟2𝑧2)

(𝑟4 + 𝑎2𝑧2)2 𝜕𝑦𝑟 ,

𝜕𝑧𝐻 =
−𝑀𝑟2 [2𝑎2𝑟𝑧 + (𝑟4 − 3𝑎2𝑧2)𝜕𝑧𝑟]

(𝑟4 + 𝑎2𝑧2)2 ,

𝑙𝜌𝜕𝜌𝐻 =
−𝑀𝑟2 (𝑟4 − 𝑎2𝑧2)

(𝑟4 + 𝑎2𝑧2)2 ,

(45)

and, finally,

𝜕𝑥 𝑙𝑥 =
(𝑥 − 2𝑟𝑙𝑥)𝜕𝑥𝑟 + 𝑟

𝑟2 + 𝑎2 ,

𝜕𝑦 𝑙𝑥 =
(𝑥 − 2𝑟𝑙𝑥)𝜕𝑦𝑟 + 𝑎

𝑟2 + 𝑎2 ,

𝜕𝑧 𝑙𝑥 =
(𝑥 − 2𝑟𝑙𝑥)𝜕𝑧𝑟
𝑟2 + 𝑎2 ,

𝜕𝑥 𝑙𝑦 =
(𝑦 − 2𝑟𝑙𝑦)𝜕𝑥𝑟 − 𝑎

𝑟2 + 𝑎2 ,

𝜕𝑦 𝑙𝑦 =
(𝑦 − 2𝑟𝑙𝑦)𝜕𝑦𝑟 + 𝑟

𝑟2 + 𝑎2 ,

𝜕𝑧 𝑙𝑦 =
(𝑦 − 2𝑟𝑙𝑦)𝜕𝑧𝑟
𝑟2 + 𝑎2 ,

𝜕𝑥 𝑙𝑧 = − 𝑧

𝑟2 𝜕𝑥𝑟 ,

𝜕𝑦 𝑙𝑧 = − 𝑧

𝑟2 𝜕𝑦𝑟 ,

𝜕𝑧 𝑙𝑧 =
1
𝑟
− 𝑧

𝑟2 𝜕𝑧𝑟 .

(46)

The expressions are cumbersome, but we only need to
introduce them into the code and add them together appro-
priately, according to equation (43).
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