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Abstract
In cognitive modeling, it is often necessary to complement a core model with a choice rule to derive testable predictions 
about choice behavior. Researchers can typically choose from a variety of choice rules for a single core model. This article 
demonstrates that seemingly subtle differences in choice rules’ assumptions about how choice consistency relates to underly-
ing preferences can affect the distinguishability of competing models’ predictions and, as a consequence, the informativeness 
of model comparisons. This is demonstrated in a series of simulations and model comparisons between two prominent core 
models of decision making under risk: expected utility theory and cumulative prospect theory. The results show that, all 
else being equal, and relative to choice rules that assume a constant level of consistency (trembling hand or deterministic), 
using choice rules that assume that choice consistency depends on strength of preference (logit or probit) to derive predic-
tions can substantially increase the informativeness of model comparisons (measured using Bayes factors). This is because 
choice rules such as logit and probit make it possible to derive predictions that are more readily distinguishable. Overall, the 
findings reveal that although they are often regarded as auxiliary assumptions, choice rules can play a crucial role in model 
comparisons. More generally, the analyses highlight the importance of testing the robustness of inferences in cognitive 
modeling with respect to seemingly secondary assumptions and show how this can be achieved.
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Introduction

Choice rules are widely used in cognitive modeling in many 
domains of psychology, including decision making under 
risk (e.g., Bhatia & Loomes, 2017; Zilker et al., 2020), cat-
egorization (Kruschke, 1992; Love et al., 2004; Nosofsky, 
1984), intertemporal choice (Wulff & Bos, 2018), fairness 
preferences (Olschewski et al., 2018), memory (Brown et al., 
2007), and reinforcement learning (Erev & Roth, 1998). As 
link functions, they map decision variables that quantify 
the evidence in favor of different response options onto pre-
dictions about observable choice behavior. Because choice 
rules are typically not considered part of the core model but 
assumed to complement it (e.g., Kellen et al., 2016; Krefeld-
Schwalb et al., 2022), the same core model can often be 
paired with various choice rules. However, inferences drawn 

in cognitive modeling are not necessarily robust to the use 
of different choice rules: For instance, parameter estimates 
for the same core model may differ substantially when dif-
ferent choice rules are used (see Blavatskyy & Pogrebna, 
2010), and the combination of specific choice rules (e.g., 
parameterized logit) with specific core model components 
(e.g., a parameterized value function) can lead to param-
eter interdependencies (Broomell & Bhatia, 2014; Krefeld-
Schwalb et al., 2022; Stewart et al., 2018). Moreover, it has 
been recognized that different choice rules can have differ-
ential effects on model fit and performance (e.g., Blavatskyy 
& Pogrebna, 2010; Loomes et al., 2002; Rieskamp, 2008; 
Stott, 2006; Wulff & Bos, 2018). This article demonstrates 
that implementing otherwise identical models using different 
choice rules can affect not only which model is inferred to 
perform best in a model comparison, but also the strength 
of the evidence obtained. In other words, the selection of 
choice rule can systematically affect the informativeness of 
model comparisons.

In this paper, a model comparison is considered inform-
ative to the extent that it changes the researcher’s beliefs 
about the relative plausibility of the competing models. 
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Informativeness thus refers to the relative strength of evi-
dence obtained for the competing models, which can be 
quantified using Bayes factors. For instance, if the data 
yield equal amounts of evidence for two models, the model 
comparison is uninformative.1 How informative a model 
comparison is depends on whether and how the compet-
ing models’ predictions for a given set of choice problems 
differ (e.g., Broomell et al., 2019). If they do not differ, 
observed behavior is consistent with both models or with 
neither—either way, it is undiagnostic. The distinctiveness 
of competing models’ predictions depends not only on the 
experimental designs and stimulus materials used to col-
lect data (e.g., Broomell et al., 2019; Glöckner & Betsch, 
2008; Jekel et al., 2011; Myung & Pitt, 2009; Scheibehenne 
et al., 2009; Schönbrodt & Wagenmakers, 2018), but also on 
the assumptions made when implementing and estimating 
the models themselves, including the choice rule selected. 
This is because different choice rules make slightly differ-
ent predictions about choice consistency. For instance, the 
deterministic choice rule and the trembling hand choice 
rule assume a constant probability of choosing the option 
that is deemed more attractive according to the core model 
(i.e., constant choice consistency). The logit choice rule and 
the probit choice rule instead assume that the probability of 
choosing the higher valued option (and thus choice consist-
ency) increases as a function of the options’ difference in 
attractiveness according to the core model. Therefore, pair-
ing the same core model with a different choice rule can 
produce different predictions about choice consistency. As 
will be shown, these seemingly subtle differences can deter-
mine whether competing models’ predictions for a given set 
of choice problems can be distinguished, thus rendering a 
model comparison substantially more (or less) informative.

In what follows, this argument is developed and illus-
trated with reference to four common choice rules and tested 
in a series of simulations and model comparisons between 
several variants of two influential models of decision making 
under risk: expected utility theory (EUT; Bernoulli, 1954) 
and cumulative prospect theory (CPT; Tversky & Kahne-
man, 1992). The informativeness of each model comparison 
is quantified using Bayes factors. The results demonstrate 
that combining the same pair of core models with the logit or 
probit choice rule, as opposed to the trembling hand or deter-
ministic choice rule, can generate a systematic advantage in 

terms of informativeness (even when using the same stim-
uli). All else being equal, the selection of choice rule can 
thus determine the strength of the evidence obtained in a 
model comparison. Selecting a choice rule may be a power-
ful tool for enhancing diagnosticity, especially in situations 
where researchers lack complete control over experimental 
stimuli. For instance, in paradigms where participants learn 
about the options by sampling from noisy payoff distribu-
tions (e.g., in decisions from experience; Hertwig & Erev, 
2009; Wulff et al., 2018), the encountered sampled distribu-
tion typically deviates from the ground truth payoff distribu-
tion in ways that are beyond the researcher’s control. Control 
over stimuli may also be limited in re-analyses of archi-
val data or field experiments. More generally, the present 
analyses highlight the importance of systematically testing 
whether inferences in cognitive modeling are robust in the 
face of changes in seemingly secondary assumptions (Lee 
et al., 2019), and they showcase how this can be achieved. 
The insight that choice rules can considerably shape models’ 
predictions—sometimes more than core assumptions do—
blurs the conventional distinction between core and auxiliary 
assumptions in cognitive modeling.

An Exemplary Pair of Core Models

This article uses two prominent models of decision mak-
ing under risk, EUT (Bernoulli, 1954) and CPT (Tversky & 
Kahneman, 1992), as exemplary core models.2 Both EUT 
and CPT describe preferences between options with proba-
bilistic outcomes—for instance, a choice between an option 
offering an 80% chance to win $4, otherwise nothing, and 
an option offering a safe gain of $3. Both EUT and CPT 
can be paired with various choice rules. For the sake of the 
argument, they can be viewed as competing models of risky 
choice. Therefore, these models are well suited to illustrate 
how the choice rule used to derive predictions from com-
peting core models can affect the distinctiveness of those 
predictions.

Both EUT and CPT compute subjective valuations for the 
options in risky choice problems. To keep formal complexity 
to a minimum, this article focuses on choice problems where 
each option j in each choice problem i offers one nonzero 
outcome xi,j from the domain of gains (xi,j > 0), which can 

1  This conceptualization of informativeness can be applied to model 
comparisons even if none of the competing models is the true genera-
tive model, or if the true generative mechanism is unknown. Informa-
tiveness is not equated with the ability to identify the true generative 
model. After all, a set of data may provide more evidence in favor of 
one model than the other, even if neither is the true generative model, 
thus allowing for an informative model comparison. This conceptual-
ization of informativeness is discussed in more detail below.

2  Other core models that originate in some other domain of psychol-
ogy where behavior can be described as choice between response 
alternatives, and where choice rules are used to derive predictions 
from decision variables (see Krefeld-Schwalb et  al., 2022), could 
also have been used. Accordingly, the ensuing argument about the 
impact of choice rules on model distinguishability may be applicable 
to model comparisons in a wide range of domains other than risky 
choice (see also the “Discussion” section).
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be obtained with an associated probability p(xi,j) > 0, and 
an alternate outcome of zero, which can be obtained with 
probability 1 − p(xi,j). In safe options, p(xi,j) equals 1. In both 
EUT and CPT, objective outcomes are transformed into sub-
jective values according to a value function v:

The outcome sensitivity parameter α can vary in the range 
[0,2]. For outcomes from the domain of gains, values of 
α < 1 indicate a concave value function, α = 1 indicates a 
linear value function, and values of α > 1 indicate a convex 
value function. In both EUT and CPT, the value function 
for the domain of gains is typically assumed to be con-
cave (α < 1).3 In EUT, each subjective value v(xi,j) is then 
weighted by its objective probability p(xi,j), and all weighted 
subjective values are summed up within each option. This 
yields the option’s overall valuation, VEUT,i,j, which, given 
only one nonzero outcome per option, simplifies to

When applying CPT to such choice problems, the prob-
ability of each option’s nonzero outcome is transformed 
according to a probability-weighting function4 w:

before weighting the corresponding subjective values 
v(xi,j) to obtain each option’s overall valuation:

The probability-weighting function w has a curvature 
parameter γ in the range [0,2]. For γ < 1 the probability-
weighting function is inverse S-shaped—the shape com-
monly assumed in CPT. Under an inverse S-shape, small 
probabilities are overweighted, whereas mid-range and high 
probabilities are underweighted. For γ > 1, the probability-
weighting function is S-shaped. For γ = 1, the probability-
weighting function is linear, constituting weighting by 
objective probabilities, such that w(p) = p. Note that EUT 
is nested in CPT and can be expressed as CPT with a linear 
probability-weighting function—that is, with γ = 1.

Based on the valuations in EUT and CPT, it is possible 
to compute a decision variable Vdiff  capturing the difference 

(1)v
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in valuation between the options A and B on each choice 
problem i:

These decision variables Vdiff can be understood as 
indicating both direction and strength of preference in the 
respective core model. The sign of Vdiff captures the direc-
tion of preference. If Vdiff is positive, A is preferred over B; 
if Vdiff is negative, B is preferred over A. Vdiff = 0 indicates 
indifference. The absolute value |Vdiff| measures strength of 
preference. The larger the absolute difference in valuation 
between the options, |Vdiff|, the more strongly the core model 
that generated those valuations prefers the option with the 
higher valuation.

Four Choice Rules for Deriving Predictions 
From Core Models

To derive predictions about choice behavior from EUT and 
CPT that can be compared in the light of choice data, both 
models need to be paired with a choice rule. A choice rule 
maps the models’ latent preferences, captured in the deci-
sion variables, onto predictions about choice probabilities. 
To predict manifest choices, one can draw from a Bernoulli 
distribution, using the probability of choosing option A over 
option B on a given choice problem, p(A ≻ B), yielded by 
the choice rule, as the probability of success. This section 
describes four choice rules that can be used for this purpose: 
the deterministic choice rule, the trembling hand choice rule, 
the probit choice rule, and the logit choice rule.

Deterministic Choice Rule

The deterministic choice rule predicts that the option with 
the higher valuation according to the given core model is 
always chosen. This can be formalized in terms of a step 
function which yields a probability of choosing option A 
over option B, p(A ≻ B), of either 0 or 1:

Figure 1A illustrates p(A ≻ B) under this choice rule. 
As can be seen, deterministic predictions depend only on 
the sign of Vdiff and not on its absolute value |Vdiff|. That 
is, deterministic predictions reflect direction of preference, 
but not strength of preference (see Busemeyer & Townsend, 
1993).

The deterministic choice rule is typically considered 
overly simplistic. After all, people often behave differently 

(5)
Vdiff ,EUT ,i = VEUT ,i,A − VEUT ,i,B

Vdiff ,CPT ,i = VCPT ,i,A − VCPT ,i,B

.

(6)p(A ≻ B) =

{

1, if Vdiff ≥ 0

0, if Vdiff < 0.

3  The special treatment of losses in CPT, described by Tversky and 
Kahneman (1992), is not relevant here because only choice problems 
with outcomes from the domain of gains are considered.
4  The slightly more complex rank-dependent transformation of 
cumulative probabilities into decision weights in choice problems 
with several nonzero outcomes is described in detail in Tversky and 
Kahneman (1992).
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when responding to the same choice problem more than 
once (Bhatia & Loomes, 2017; Hey, 2001; Mosteller & 
Nogee, 1951; Rieskamp et al., 2006; Wilcox, 2008). Sto-
chastic choice rules make it possible to better account for 
such variable human behavior (Rieskamp, 2008) by predict-
ing choice probabilities that can deviate from 0 and 1. They 
therefore allow for some inconsistencies—that is, choices 
of the option with the lower valuation according to the core 
model.

Trembling Hand Choice Rule

The stochastic choice rule that most closely resembles the 
deterministic choice rule is the trembling hand choice rule 
(Harless & Camerer, 1994). This choice rule implies that 
the option with the lower valuation is chosen with a constant 
error probability perr in the range [0,0.5]. Accordingly, the 
choice probability p(A ≻ B) is given by

where s denotes a step function

analogous to the one constituting the deterministic choice 
rule (Eq. 6). As a consequence, and in analogy to determinis-
tic predictions, the choice probability predicted by trembling 
hand also depends only on the direction (the sign of Vdiff) and 
not on the strength (the absolute value |Vdiff|) of preference 
in the core model. The trembling hand choice rule is illus-
trated in Fig. 1B. Note that the deterministic choice rule can 
be viewed as a special case of trembling hand, with perr = 0.

Logit Choice Rule

The logit (or softmax) choice rule specifies the probability 
that option A is chosen over option B as

(7)p(A ≻ B) =
(

1 − perr
)

⋅ s
(

Vdiff

)

+ perr ⋅ s
(

−Vdiff

)

,

(8)s(x) =

{

1, if x ≥ 0

0, if x < 0

This choice rule has a choice consistency parameter ρ ≥ 0. 
Under ρ = 0, the choice probability is 0.5—that is, behavior 
is random and independent of Vdiff. With increasing values 
of ρ, the probability of choosing the option with the higher 
valuation according to the core model increases. Under 
very high values of ρ, the probability of choosing the option 
with the higher valuation approaches 1 (i.e., deterministic 
behavior).

Moreover, note that in Eq. 9 p(A ≻ B) also depends on 
Vdiff. For instance, the probability of choosing A over B, 
p(A≻B), increases under higher positive values of Vdiff—
that is, if option A is more strongly preferred over option B, 
option A is predicted to be chosen more consistently. More 
generally, stronger preferences (higher absolute values |Vdiff|) 
imply choice probabilities closer to 0 or 1 (more consist-
ent behavior), whereas weaker preferences (lower absolute 
values |Vdiff|) imply mid-range choice probabilities closer to 
0.5 (more inconsistent behavior). Probabilistic predictions 
derived from the logit choice rule thus depend on both direc-
tion and strength of preference (see Busemeyer & Townsend, 
1993). The logit choice rule is illustrated in Fig. 1C.

Probit Choice Rule

The probit choice rule (Thurstone, 1927) is defined as

where Φ denotes a probit transformation of the subsequent 
term, scaling values on the real line to the range between 
0 and 1 (see Rouder & Lu, 2005). It has a choice consist-
ency parameter β > 0. For lower values of β, the probability 
of choosing the option with the higher valuation increases. 
As Fig. 1D shows, the sigmoidal shape of the probit choice 
rule closely resembles that of the logit choice rule. The 
choice probability predicted by probit depends on both the 
choice consistency parameter and the difference in valuation 

(9)p(A ≻ B) =
1

1 + e−𝜌⋅Vdiff

.

(10)p(A ≻ B) = Φ
Vdiff

β
,

Fig. 1   Schematic illustration of the link between the decision variable Vdiff, capturing latent preference, and predicted choice probabilities under 
four choice rules. Note. For choice rules with free parameters, example settings of these parameters are color-coded.
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between the options. Thus, like the choice probabilities pre-
dicted by the logit choice rule, choice probabilities predicted 
by the probit choice rule covary with both direction and 
strength of preference.

How Might Different Choice Rules Affect 
Model Distinguishability?

The distinguishability of competing models’ predictions is a 
crucial precondition for informative model comparisons. If 
the competing models’ predictions for a given set of choice 
problems do not differ from each other, then the observed 
behavior is consistent with both models or with neither—
either way, it is undiagnostic.

How and under what circumstances can the choice rule 
used to derive predictions from competing models affect 
the distinguishability of those predictions? Two exemplary 
choice problems illustrate this point. Choice problem 1 
offers option A1, an 80% chance to gain $4, otherwise noth-
ing; and option B1, a 100% chance to gain $3. Choice prob-
lem 2 offers option A2, a 20% chance to gain $4, otherwise 
nothing; and option B2, a 25% chance to gain $3. These prob-
lems are based on classical experiments by Kahneman and 
Tversky (1979) and were used more recently by Broomell 
et al. (2019) to illustrate issues of model distinguishability. 
Table 1 displays the decision variable Vdiff for EUT and CPT 
as well as the corresponding choice probabilities, derived 
using each of the four choice rules, for these two choice 
problems. The rightmost column for each choice problem 
specifies whether the predictions of EUT and CPT derived 
from each choice rule are distinguishable from each other.

As can be seen, in choice problem 1, the predicted choice 
probability p(A ≻ B) derived from EUT can be distinguished 
from the corresponding choice probability derived from CPT 

under each of the four choice rules. However, this is not the 
case for choice problem 2; here, the predicted choice prob-
abilities p(A ≻ B) are indistinguishable when the determin-
istic choice rule or the trembling hand choice rule is used. 
This simple example illustrates that the distinguishability 
of the same pair of competing core models’ predictions can 
indeed depend on the choice rule used. But why is that the 
case?

Note that in choice problem 1, EUT and CPT differ in 
both direction and strength of preference (both the sign and 
the absolute value of Vdiff differ between EUT and CPT). As 
established earlier, the predictions of all four choice rules 
depend on the direction of preference. Hence, under all four 
choice rules, the predictions of competing models can be 
distinguished whenever their decision variables imply dif-
ferent directions of preference. More specifically, in choice 
problem 1, EUT predicts that option A1 is more likely to be 
chosen than option B1, and is thus distinguishable from CPT, 
which predicts that option B1 is more likely to be chosen 
than option A1—under all choice rules.

In choice problem 2, however, EUT and CPT differ only 
in strength, not direction of preference (only the absolute 
value, not the sign, of Vdiff differs between EUT and CPT). 
Therefore, under all choice rules, both EUT and CPT predict 
that option A2 is more likely to be chosen than option B2. 
Because the choice probabilities predicted by the determin-
istic choice rule and the trembling hand choice rule depend 
only on direction of preference, not on strength of prefer-
ence, predictions derived using either of these choice rules 
cannot be distinguished when the core models’ decision 
variables differ only in strength of preference (as is the case 
for EUT and CPT in choice problem 2).

By contrast, the choice probabilities predicted by logit 
and probit do depend on strength of preference. Predic-
tions derived from competing models using logit or probit 

Table 1   Decision variables Vdiff and predicted choice probabilities p(A ≻ B) derived from EUT and CPT for two exemplary choice problems

To compute the decision variables, the parameters of expected utility theory (EUT) and cumulative prospect theory (CPT) were set to α = 0.88 
and γ = 0.61, based on the parameter values derived by Tversky and Kahneman (1992) in their introduction of CPT. To compute the choice prob-
abilities, the parameters of the choice rules were set to exemplary values of perr = 0.1, ρ = 5, and β = 0.5. Choice problem 1: Option A1 offers an 
80% chance to gain $4, otherwise nothing. Option B1 offers a 100% chance to gain $3. Choice problem 2: Option A2 offers a 20% chance to gain 
$4, otherwise nothing. Option B2 offers a 25% chance to gain $3.

Choice problem 1 Choice problem 2

EUT CPT Distinguishable? EUT CPT Distin-
guish-
able?

Decision variable Vdiff 0.08  − 0.57 0.02 0.12
Predicted p(A ≻ B)

Deterministic 1 0 Yes 1 1 No
Trembling hand (perr = 0.1) 0.9 0.1 Yes 0.9 0.9 No
Logit (ρ = 5) 0.6 0.05 Yes 0.53 0.64 Yes
Probit (β = 0.5) 0.56 0.13 Yes 0.52 0.59 Yes
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can therefore be distinguishable even if the core models’ 
decision variables differ only in strength of preference. For 
instance, in choice problem 2, the absolute value of Vdiff 
is higher for CPT than for EUT. Therefore, choice consist-
ency is predicted to be higher (i.e., p(A ≻ B) is closer to 1) 
for CPT than for EUT under both logit and probit. The two 
models can therefore be distinguished on the basis of differ-
ences in observed choice consistency.

To summarize, whether or not competing models’ pre-
dictions for a given set of choice problems can be distin-
guished can depend systematically on the choice rule used 
to derive them. For choice problems where the core models 
compared differ in direction of preference, the predictions 
can be distinguished under all of the choice rules considered. 
For choice problems where the core models compared differ 
in strength, but not direction of preference, the predictions 
can be distinguished only if they were derived using logit 
or probit.

The capacity of logit and probit to predict differences in 
choice consistency on the basis of differences in strength of 
preference alone might therefore render model comparisons 
using these choice rules systematically more informative 
than model comparisons using the deterministic or trem-
bling hand choice rule. Arguably, however, the choice prob-
abilities predicted for competing models that differ only in 
strength of preference can be quite similar (under both logit 
and probit). For instance, in choice problem 2, the choice 
probabilities predicted by probit for EUT and CPT differ by 
just 0.07. It is not clear whether such small differences in 
predicted choice probabilities noticeably increase the infor-
mativeness of model comparisons and, if so, by how much. 
Therefore, the next sections explicitly test and quantify how 
the informativeness of model comparisons is affected by 
(potentially small) differences in predictions about choice 
consistency caused by using logit or probit rather than the 
trembling hand or the deterministic choice rule. To this end, 
data are generated from different variants of EUT and CPT, 
paired with the four choice rules. For each data set, several 
model comparisons between EUT and CPT are conducted, 
based on predictions derived using each of the four choice 
rules. Bayes factors are used to quantify how the informa-
tiveness of these comparisons differs depending on the 
choice rule used.

Method

Choice Problems

A pool of 10,000 choice problems, each offering a risky 
option A and a safe option B, were constructed using the fol-
lowing procedure: The nonzero outcome of the risky option, 
xi,A, was uniformly sampled from the range from 1 to 10 

and rounded to two digits. The second outcome of the risky 
option was set to zero. The probability p(xi,A) of the nonzero 
outcome of the risky option was sampled uniformly from the 
range 0.01 to 0.99 (thus also yielding the probability of the 
zero outcome 1 − p(xi,A)). The safe outcome xi,B was sam-
pled from a uniform distribution ranging from the smaller 
to the larger risky outcome of the same choice problem and 
rounded to two digits. This procedure prevents dominated 
choice problems (i.e., problems where all outcomes of one 
option are larger than all outcomes of the other option). The 
probability of the safe outcome was set to p(xi,B) = 1.

From the pool of 10,000 choice problems, 30 smaller 
subsets were sampled, each consisting of 100 choice prob-
lems for which EUT (with α = 0.88) and CPT (with α = 0.88, 
γ = 0.61)5 imply the same direction, but different strengths of 
preference (analogous to choice problem 2 in the “Introduc-
tion” section). These problems make it possible to isolate 
and measure the potential gain in informativeness of model 
comparisons when predictions are derived using choice rules 
that can predict differences in choice consistency on the 
basis of strength of preference, relative to choice rules that 
cannot.6 Repeating the analyses for various sets of choice 
problems helps to ensure robustness—that is, to ensure that 
the results obtained are not merely an artefact of a particular 
set of stimuli.

Simulations

In separate runs of the simulation, eight generative mod-
els were used to simulate data, each consisting of either 
EUT or CPT as the core model, complemented by one of 
the four choice rules. These generative models can be writ-
ten as EUTdeterministic, EUTtrembling hand, EUTlogit, EUTprobit, 
CPTdeterministic, CPTtrembling hand, CPTlogit, and CPTprobit. The 
choice rule used to simulate data is henceforth referred to as 
the generative choice rule. The parameters of the generative 
choice rules were set to perr = 0.1, ρ = 5, and β = 0.5 for the 
simulations. The parameters of the generative core models 
EUT and CPT were set to α = 0.88 and γ = 0.61. The “Dis-
cussion” section and Appendix B demonstrate how vary-
ing the parameter settings of both core models and choice 
rules can affect the distinguishability of competing models’ 
predictions. Each of the eight generative models was used 
to simulate 100 responses to each of the 30 sets of choice 
problems. In total, this procedure yielded 8 (generative 
models) × 30 (sets of choice problems) = 240 data sets, each 

5  These core model parameters are based on the parameter values 
derived by Tversky and Kahneman (1992) when introducing CPT.
6  Appendix A presents analogous analyses that also include choice 
problems in which EUT and CPT differ in direction of preference.
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consisting of 100 (choices per problem) × 100 (problems per 
problem set) = 10, 000 choices.

Each of the 240 data sets was subjected to four model 
comparisons between EUT and CPT. The four model com-
parisons for each simulated data set differed with respect to 
the choice rule used to derive predictions from the compared 
core models—henceforth referred to as the recovered choice 
rule. That is, for each data set, one model comparison was 
conducted between EUTdeterministic and CPTdeterministic, one 
between EUTtrembling hand and CPTtrembling hand, one between 
EUTlogit and CPTlogit, and one between EUTprobit and CPTprobit. 
Running these four model comparisons for each data set made 
it possible to test whether and to what extent the recovered 
choice rule affects the informativeness of model comparisons, 
all else being equal (i.e., with the same choice problems and 
data). Note that the procedure achieves a full crossover of 
choice rules used in data generation and model comparison. 
This also implies that in some model comparisons, the vari-
ants compared include the true generative model (e.g., when 
EUTlogit and CPTlogit are compared based on data generated 
in EUTlogit), whereas in other model comparisons, they do not 
(e.g., when EUTlogit and CPTlogit are compared based on data 
generated in EUTdeterministic). In the former case, it is possible 
to assess both whether the true generative model could be suc-
cessfully identified and how informative the model compari-
son was. In the latter case, it is not meaningful to ask whether 
the true generative model was successfully identified (because 
it was not among the candidate models compared), but it is 
nevertheless possible to evaluate how informative the model 
comparison was. This is because a set of data may be more 
likely under one of the models than the other, even if neither 
is the true generative model—at least as long as the candidate 
models make distinguishable predictions. The “Discussion” 
section further elaborates implications of this notion of infor-
mativeness in model comparisons in which the true generative 
model is not among the compared models.

Quantifying the Informativeness of Model 
Comparisons Using Bayes Factors

Bayes factors (Jeffreys, 1961; Kass & Raftery, 1995; Raft-
ery, 1995) are an intuitive and well-established tool for com-
paring models. They measure how much evidence a given 
set of data, D, provides in favor of one competing model 
relative to another. Put differently, they make it possible to 
assess how much D changes one’s beliefs about the relative 
plausibility of the competing models (Morey et al., 2016)—
that is, how informative a comparison of the models based 
on D is. The Bayes factor for comparing EUTc and CPTc 
(where c stands for a given recovered choice rule used to 
derive the compared predictions) for a data set D is given by

The marginal likelihoods p(D|EUTc) and p(D|CPTc) 
capture how likely the data set D is under EUTc and CPTc, 
respectively. For instance, a Bayes factor BEUTc, CPTc

 = 10 
indicates that D is 10 times more likely under EUTc than 
under CPTc. More generally, if D is equally likely under 
EUTc and CPTc—that is, if the model comparison is undi-
agnostic—the Bayes factor is BEUTc, CPTc

 = 1. If the model 
comparison provides evidence in favor of EUTc over CPTc, 
the Bayes factor is BEUTc,CPTc

 > 1, and if the model com-
parison provides evidence in favor of CPTc over EUTc, 
the Bayes factor is B

EUT
c
, CPT

c

 < 1. The Bayes factor can be 
rendered symmetric at 0 by applying a log transformation. 
Table 2 offers suggestions for interpreting Bayes factors, 
adapted from Lee and Wagenmakers (2013) and Schön-
brodt and Wagenmakers (2018).

The Savage–Dickey density-ratio method (Wagen-
makers et al., 2010) was used to estimate Bayes factors 
BEUTc, CPTc

  in the current analyses. This method makes 
it possible to compute Bayes factors for comparisons 
between nested models. In the current implementation, 
each EUTc with a given choice rule c is nested in the cor-
responding variant of CPTc with the same choice rule. 
Whereas in EUTc, the parameter γ is fixed to the value 
of 1, constituting weighting by objective probabilities, in 
CPTc, the parameter γ can vary in the range [0, 2]. The 
Bayes factor BEUTc, CPTc

 can be obtained by fitting a data 
set in CPTc, with γ as a free parameter, and dividing the 
height of the posterior density of γ at the value of γ = 1 by 
the height of the prior density of γ at the value of γ = 1:

(11)BEUTc,CPTc
=

p(D|EUTc)

p(D|CPTc)
.

Table 2   Guidelines for interpreting Bayes factors

The choice rule used to derive predictions from EUT and CPT is 
indexed by c.

Interpretation B
EUT

c
,CPT

c
log(B

EUT
c
,CPT

c
)

Extreme evidence favoring CPTc  < 1/100  <  − 4.6
Very strong evidence favoring CPTc 1/100 – 1/30  − 4.6 – − 3.4
Strong evidence favoring CPTc 1/30 – 1/10  − 3.4 – − 2.3
Moderate evidence favoring CPTc 1/10 – 1/3  − 2.3 – − 1.1
Anecdotal evidence favoring CPTc 1/3 – 1  − 1.1 – 0
No evidence favoring either model 1 0
Anecdotal evidence favoring EUTc 1 – 3 0 – 1.1
Moderate evidence favoring EUTc 3 – 10 1.1 – 2.3
Strong evidence favoring EUTc 10 – 30 2.3 – 3.4
Very strong evidence favoring EUTc 30 – 100 3.4 – 4.6
Extreme evidence favoring EUTc  > 100  > 4.6
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A more detailed introduction to the Savage–Dickey 
density-ratio method is provided by Wagenmakers et al. 
(2010).

To obtain the posterior densities p(γ = 1|D,CPTc), each 
simulated data set was fitted in the various variants of CPTc 
with the different recovered choice rules c. Each variant of 
CPTc was implemented in a nonhierarchical manner, because 
the simulations assumed no individual differences in the 
generative parameters. All model variants were implemented 
in JAGS and estimated using the R2jags package for R (Su 
& Yajima, 2015) by running 30 parallel chains of 35,000 
samples each. The first 5000 samples from each chain con-
stituted the burn-in period and were discarded from analysis. 
The posterior samples for the parameters α and γ and the 
parameters of the different stochastic choice rules were mon-
itored. In models that pair a parameterized value function 
with a parameterized choice rule (e.g., CPT), these func-
tions’ parameters often trade off against each other. These 
structural parameter interdependencies can make it difficult 
to reliably identify appropriate parameter estimates, but this 
problem can be resolved by retransforming the options’ valu-
ations to their original scale according to

before subjecting their difference, Vdiff,CPT,i = VtCPT,i,A − VtCPT,i,B, to 
the choice rule (see Krefeld-Schwalb et al., 2022; Stewart et al., 
2018). This retransformation was applied to each estimated vari-
ant of CPT.

If the potential scale reduction factor (Gelman & Rubin, 
1992) was R̂ ≤ 1.01 for all parameters of the fitted model 
(indicating good convergence), the obtained estimates were 
included in the further analyses. Table 3 provides an over-
view of the proportion of models that failed to converge. 

(12)
p(D|EUT

c
)

p(D|CPT
c
)
=

p(γ = 1|D,CPT
c
)

p(γ = 1|CPT
c
)

(13)
Vt

CPT ,i,A = V

(

1

�

)

CPT ,i,A

Vt
CPT ,i,B = V

(

1

�

)

CPT ,i,B

As can be seen, convergence did not depend much on 
whether EUT or CPT was used as the data-generating core 
model. Convergence tended to be better when fitting models 
equipped with the deterministic or trembling hand choice 
rule as the recovered choice rule than when fitting models 
equipped with logit or probit. Convergence also depended on 
the choice rule assumed in the generative process. Specifi-
cally, 0% of models failed to converge when the trembling 
hand choice rule was used as the generative choice rule, 
whereas a higher proportion of models failed to converge 
when other choice rules were used as the generative choice 
rule. Appendix C provides more detailed results on conver-
gence for individual model parameters.

For the converged models, the posterior densities 
p(γ = 1|D,CPTc) were obtained based on kernel density esti-
mation on the posterior samples of γ using the KernSmooth 
package in R (Wand, 2020). In some cases, this density estima-
tion yielded values for the posterior density at p(γ = 1|D,CPTc) 
that were extremely close to zero but negative (i.e., impos-
sible) or that equaled zero (making log transformation of the 
Bayes factor intractable). These estimates were excluded from 
further analyses. Appendix D reports the results when these 
density estimates are replaced by arbitrarily small positive 
values instead, showing that this does not sway the qualita-
tive pattern of results. A noninformative uniform prior on 
the interval [0,2] was used for γ, yielding a prior density of 
p(γ = 1|CPTc) = 0.5. The detailed prior specification for the 
remaining model parameters is reported in Appendix E. Enter-
ing the posterior densities p(γ = 1|D,CPTc) and the prior den-
sity of p(γ = 1|CPTc) = 0.5 into Eq. 12 yields Bayes factors. 
These Bayes factors were log-transformed. Finally, for each set 
of model comparisons between EUTc and CPTc with a particu-
lar choice rule c and for each generative model g, the median 
μc,g across the individual log-transformed Bayes factors was 
calculated and rounded to three digits. As a measure of the 
central tendency, μc,g quantifies the expected informativeness 
of the respective set of model comparisons.

Results

Figure 2 displays the results for all model comparisons 
between EUTc and CPTc for the four recovered choice rules 
c used to derive predictions from the core models. Each 
small gray triangle indicates the log-transformed Bayes 
factor obtained in an individual model comparison for one 
of the 30 data sets simulated using each generative model. 
The larger colored triangles represent μc,g for each genera-
tive model g and recovered choice rule c. The strength of 
evidence indicated by μc,g—that is, the expected informa-
tiveness of this set of model comparisons—is color-coded 
according to Table 2. The values of μc,g, rounded to three 
digits, are summarized in Table 4. Comparing these values 

Table 3   Percentage of models that failed to converge

Generative 
core model

Recovered choice rule

Deterministic Trembling hand Logit Probit

EUT 2% 2% 12% 23%
CPT 1% 4% 17% 36%

Generative choice rule
Deterministic Trembling hand Logit Probit

EUT 16% 0% 12% 12%
CPT 16% 0% 22% 19%
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provides insights into whether and how much the recovered 
choice rule c used to derive compared predictions from 
the core models affects the informativeness of the model 
comparisons.

Model Comparisons Based on Deterministic 
Predictions

Figure 2A displays the results obtained for the comparisons 
between EUTdeterministic and CPTdeterministic—that is, when the 

deterministic choice rule was used as the recovered choice 
rule. Because EUT and CPT differ in strength but not direc-
tion of preference in the choice problems used for simula-
tions, the predictions of EUTdeterministic and CPTdeterministic are 
indistinguishable from each other in the current choice sets. 
Consistently, μdeterministic,g varied between 0.527 and 1.034 
across the eight generative models g, indicating anecdo-
tal evidence. That is, even if one of the models compared 
(EUTdeterministic or CPTdeterministic) was the true generative 
model, it could not be successfully identified. The  model 
comparisons based on data generated using other variants 
of EUT and CPT were also largely uninformative.

Model Comparisons Based on Trembling Hand 
Predictions

A similar picture emerged for the comparisons between 
EUTtrembling hand and CPTtrembling hand (Fig. 2B). Because 
EUT and CPT differ in strength but not direction of pref-
erence in the choice problems used for the simulations, 
the predictions of EUTtrembling hand and CPTtrembling hand 
were again indistinguishable from each other in these 
problems. Consistently, the values of μtrembling hand,g var-
ied between 0.564 and 1.027 across the eight generative 
models g. This indicates that the model comparisons 

Fig. 2   Bayes factors for model comparisons between EUTc and CPTc 
with the four recovered choice rules c, and based on data generated 
using different generative models g (y-axis). Note. Each small gray 
triangle indicates the log-transformed Bayes factor obtained in an 
individual model comparison based on one of the 30 data sets for 

each generative model g. Larger colored triangles indicate the median 
μc,g across the individual log-transformed Bayes factors for each com-
bination of a generative model g and a recovered choice rule c. The 
strength of evidence indicated by μc,g is color-coded. EUT = expected 
utility theory; CPT = cumulative prospect theory.

Table 4   Results of model comparisons between EUTc and CPTc 
based on various recovered choice rules c and data generated in vari-
ous generative models g 

Generative model 
g

μdeterministic,g μtrembling hand,g μlogit,g μprobit,g

EUTdeterministic 1.012 1.014  − 34.839 0.592
CPTdeterministic 1.012 1.014  − 34.432 0.592
EUTtrembling hand 1.012 1.006  − 34.668  − 34.666
CPTtrembling hand 1.012 1.013  − 34.952  − 34.161
EUTlogit 1.034 1.027 3.203 3.067
CPTlogit 0.527 0.677  − 34.158  − 35.066
EUTprobit 1.004 1.006 2.203 2.749
CPTprobit 0.674 0.564  − 34.914  − 34.400
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between EUTtrembling hand and CPTtrembling hand were largely 
uninformative, and this held across the generative mod-
els. That is, even when one of the models compared 
(EUTtrembling hand or CPTtrembling hand) was the true genera-
tive model, it could not be successfully identified.

These uninformative model comparisons between 
EUTdeterministic and CPTdeterministic and between EUT-
trembling hand and CPTtrembling hand establish a baseline against 
which it is possible to gauge how much informativeness 
increases when predictions are derived using a choice rule 
that is able to predict differences in choice consistency 
on the basis of differences in strength of evidence (logit, 
probit). Can using logit or probit rather than the trembling 
hand or the deterministic choice rule noticeably increase 
the informativeness of model comparisons?

Model Comparisons Based on Logit Predictions

Figure 2C displays the results for the comparisons between 
EUTlogit and CPTlogit. Although EUT and CPT differ only 
in strength, not direction of preference in the choice prob-
lems used for the simulations, the predictions of EUTlogit 
and CPTlogit can be distinguished. The absolute difference 
between the choice probabilities predicted by EUTlogit and 
CPTlogit across the various sets of choice problems was, on 
average, 0.0503. Did these subtle differences between the 
models’ predictions under the logit choice rule noticeably 
enhance the informativeness of the model comparisons?

First, consider the results when one of the models com-
pared (EUTlogit or CPTlogit) was the true generative model: 
The model comparisons based on data generated in EUTlogit 
yielded μlogit,EUTlogit = 3.203, indicating strong evidence for 
EUTlogit over CPTlogit. The model comparisons based on data 
generated in CPTlogit yielded μlogit,CPTlogit =  − 34.158, indi-
cating extreme evidence for CPTlogit over EUTlogit. In both 
cases, the true generative model was successfully identi-
fied, and the model comparisons were highly informative. 
Next, consider the model comparisons for data generated in 
models other than EUTlogit or CPTlogit—that is, where the 
true generative model was not among the models compared. 
Although it is not meaningful to ask whether the true gen-
erative model could be identified in these cases, the Bayes 
factors still make it possible to evaluate how informative the 
model comparisons were. Notably, the model comparisons 
based on data generated in EUTdeterministic, CPTdeterministic, 
EUTtrembling hand, CPTtrembling hand, and CPTprobit also yielded 
extreme evidence. Only when data was generated in EUTprobit 
was evidence merely moderate. That is, the model compari-
sons between EUTlogit and CPTlogit were also considerably 
more informative than the corresponding model comparisons 
between EUTdeterministic and CPTdeterministic and between EUT-
trembling hand and CPTtrembling hand.

Model Comparisons Based on Probit Predictions

The results for the model comparisons between EUTprobit and 
CPTprobit are displayed in Fig. 2D. The absolute difference 
between the choice probabilities predicted by EUTprobit and 
CPTprobit across the various sets of choice problems was, on 
average, 0.0595, comparable to the differences between the 
choice probabilities predicted by EUTlogit and CPTlogit.

First, consider the results for the comparisons where one 
of the models compared was the true generative model: The 
model comparisons based on data generated in EUTprobit 
yielded μprobit,EUTprobit = 2.749, indicating strong evidence for 
EUTprobit over CPTprobit. The model comparisons based on 
data generated in CPTprobit yielded μprobit,CPTprobit =  − 34.400, 
indicating extreme evidence for CPTprobit over EUTprobit. 
That is, in both cases, the true generative model was suc-
cessfully identified, and the model comparisons were highly 
informative. These results further support the idea that 
deriving predictions using a choice rule such as probit (or 
logit) that can predict differences in choice consistency on 
the basis of differences in strength of preference can increase 
the informativeness of model comparisons.

Next, consider the model comparisons for data generated 
in models other than EUTprobit or CPTprobit, that is, where the 
true generative model was not among the models compared. 
Whereas some of these model comparisons also yielded 
strong (for data generated in EUTlogit) or even extreme evi-
dence (for data generated in EUTtrembling hand, CPTtrembling hand, 
and CPTlogit), others yielded only anecdotal evidence (for 
data generated in EUTdeterministic and CPTdeterministic). These 
results add the important insight that relying on a choice rule 
that makes it possible to derive distinguishable predictions 
does not necessarily entail an increase in informativeness. 
Instead, whether such an increase manifests also depends 
on the data. Specifically, it depends on whether the data 
are indeed more likely under one of the models compared 
(see Eq. 11)—which may or may not be the case when the 
true data-generating model is not among the models com-
pared. A given set of data may still be similarly likely (or 
unlikely) under both models, even if they make different 
predictions. Therefore, relying on a choice rule such as logit 
or probit alone does not guarantee informativeness, espe-
cially if the true data-generating model is unknown. Navarro 
et al. (2004) offer an in-depth discussion of the relationship 
between competing models, their distinguishability, and the 
data used to compare them.

Discussion

The present analyses provide evidence that the capacity of 
the logit and probit choice rules to predict differences in 
choice consistency on the basis of differences in strength of 
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preference can render model comparisons more informative 
than model comparisons using the deterministic or trembling 
hand choice rule, whose predictions only depend on direc-
tion of preference. Seemingly subtle differences in predic-
tions about choice consistency can noticeably (and even sub-
stantially) increase the distinctiveness of compared models’ 
predictions and the informativeness of model comparisons. 
The analyses here highlight that building blocks of models 
that are often portrayed as auxiliary, and considered second-
ary to assumptions that supposedly constitute the core of a 
model, can fundamentally shape predictions and inferences.

The following sections discuss the impact of parameter 
settings on the distinguishability of models’ predictions, the 
notion of informativeness when true data-generating models 
are unknown, the impact of stimuli and data on informative-
ness, the generalizability of the results to other domains and 
types of core model, and in which situations it might be 
particularly useful to maximize model distinguishability by 
selecting an appropriate choice rule.

Model Distinguishability Depends on Parameter 
Settings

The simulations reported in this manuscript relied on a 
fixed set of parameters for the core constructs of EUT and 
CPT, as well as for the diverse choice rules. Varying these 
parameters may modulate the results. For instance, if CPT’s 
parameter γ were set closer to 1, the probability-weighting 
function would become more linear—that is, more similar 
to the assumption of objective weighting in EUT. As a con-
sequence, the two models’ predictions would become more 
similar, and less distinguishable, even given a choice rule 
such as logit or probit. This is demonstrated in more detail 
in Appendix B.

Likewise, the choice rules themselves could be equipped 
with parameter values under which they mimic each oth-
er’s predictions to a higher degree. For instance, when the 
parameter ρ of the logit choice rule is set to a very high 
value, the shape of the sigmoid approaches a step func-
tion—rendering the predictions less distinguishable in terms 
of strength of preference. The same holds when assum-
ing extremely low values for the parameter β of the probit 
choice rule. The predictions of a given model—and their 
distinguishability from predictions of other models—may 
vary considerably when assuming different parameter set-
tings of its choice rule. Appendix B demonstrates how the 
similarity of predictions derived from the logit choice rule 
and the trembling hand choice rule depends on their param-
eter settings. It also showcases that in some cases, varying 
the parameter settings of a choice rule may even impact a 
model’s predictions more drastically than would reliance on 
different core assumptions.

Overall, it is important to acknowledge that the distin-
guishability of model predictions—and hence informative-
ness—depends not only on the specific functional form 
of the employed choice rules or core models, but also on 
their parameter settings. Moreover, the substantial impact 
of choice rules’ parameter settings on model predictions, 
which can sometimes be more severe than the impact of 
core assumptions (see Appendix B) calls into doubt whether 
it is reasonable to distinguish between auxiliary and core 
assumptions in the first place.

Comparing Models When the True Generative 
Process is Unknown

In some of the conducted model comparisons the true gen-
erative model was not among the compared models. These 
cases resemble many applications of model comparisons 
to empirical data, where the true generative model is typi-
cally unknown and an exact representation of it is unlikely 
to be among the candidate models. Such model comparisons 
provide instructive examples that showcase how drawing 
a distinction between auxiliary and core assumptions may 
lead researchers’ intuitions astray, and they highlight some 
crucial aspects of the current notion of informativeness.

Distinguishing Between Core and Auxiliary 
Assumptions Can Be Misleading

In a model comparisons based on data generated using 
EUTtrembling hand, the evidence strongly favored CPTlogit 
over EUTlogit—although EUTlogit relies on the same core 
assumptions as the true generative model, EUTtrembling hand, 
and might thus intuitively be considered the better model to 
account for the data. Did the model comparison fail because 
it pointed in the apparently wrong direction by favoring 
CPTlogit? To address this question, consider that the intuition 
that EUTlogit might be a better model for data generated in 
EUTtrembling hand than CPTlogit is based purely on the matched 
core assumptions. However, both compared models deviate 
from the true generative process—at least if one takes into 
account their choice rules as well. In this light, the results 
here indicate that the predictions of EUTtrembling hand devi-
ate more strongly from those of EUTlogit than from those of 
CPTlogit. This highlights that core assumptions may not nec-
essarily be the key determinant of a model’s predictions (and 
thus the evidence it obtains), and that in some cases, aux-
iliary assumptions may be similarly if not more important. 
This point is also demonstrated in Appendix B, which shows 
that varying the parameter of choice rules can have a more 
substantial impact on model distinguishability compared to 
relying on a different set of core assumptions. Crucially, the 
obtained Bayes factors are informative regarding the entirety 
of the models. Interpreting them with an exclusive focus on 
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core assumptions while disregarding auxiliary ones can give 
rise to misconceptions—such as the notion that the model 
comparison might have failed because the core assumptions 
of the nonfavored model match the generative process better 
than do those of the favored model. Instead of casting doubt 
on the results of the model comparison, the example above 
highlights how the artificial distinction between core and 
auxiliary assumptions may lead intuition and the interpreta-
tion of results astray.

How can Model Comparisons be Informative When 
All Compared Models are Wrong?

Informativeness, as defined and quantified here in terms of 
Bayes factors, does not refer to the ability to identify the 
true model. Such a narrow definition would imply that most 
empirical investigations, in which an exact representation 
of the true model is typically unknown and unlikely to be 
among the candidate models, are bound to be uninformative. 
Instead, model comparisons can be considered informative 
to the extent that they help refine the researchers’ beliefs 
about the relative plausibility of different hypotheses—
regardless of whether the true generative model is one of 
them. In this sense, the model comparison between CPTlogit 
and EUTlogit based on data generated in EUTtrembling hand dis-
cussed above can be considered highly informative, since 
it shows that the data are much more plausible under one 
of the compared models than the other. One might even 
argue that the impression that CPTlogit being favored over 
EUTlogit is counterintuitive—arguably itself an indication of 
prior beliefs about the relative plausibility of the data given 
the models—is a sign that the model comparison is highly 
informative.

Bayes Factors as a Measure of Informativeness

Some features of using the Bayes factor as a measure for 
informativeness also warrant further discussion.

Punishment of Model Complexity

When interpreting the results of the presented simulations, it is 
helpful to note that the Bayes factor implicitly punishes model 
complexity. Given a more complex model whose prior predic-
tions cover a larger range of eventualities, data consistent with 
the model’s predictions provide weaker evidence in favor of 
the model than if the model had been more parsimonious and 
made more informed predictions (Wagenmakers et al., 2010). 
If the data are uninformative regarding the compared mod-
els, the Bayes factor will favor the more parsimonious model. 
For instance, take a comparison between EUTdeterministic and 
CPTdeterministic in choice problems where both models predict 
the same choices—that is, where data are uninformative. The 

two models are identical, except that the parameter γ is fixed 
to 1 in EUTdeterministic, whereas the prior for γ in CPTdeterministic 
is spread out across the range [0, 2]. This difference makes 
CPTdeterministic more complex than EUTdeterministic. Consistently, 
the Bayes factors for this model comparison slightly favor 
EUTdeterministic (see Table 4). The same is true for other model 
comparisons between EUTdeterministic and CPTdeterministic, and 
between EUTtrembling hand and CPTtrembling hand. While this is a 
rather intuitive assessment of model complexity, additional 
analyses presented in Appendix F more rigorously corroborate 
that each variant of CPT included in the current compari-
sons is more complex than the nested variant of EUT; this is 
achieved by quantifying the flexibility of their prior predic-
tive distributions. Overall, the impact of model complexity 
explains why the Bayes factors computed for uninformative 
model comparisons (i.e., where the deterministic or trem-
bling hand choice rule are used as the recovered choice rule) 
slightly but consistently favor EUT (see Table 4).

Relative Versus Absolute Evidence

Defined as the ratio of marginal likelihoods of competing 
models, the Bayes factor is an inherently relative measure 
of evidence. Therefore, similar Bayes factors—in the cur-
rent context indicating similarly informative model com-
parisons—can result from very different constellations of 
marginal likelihoods. For instance, a Bayes factor close to 
1, indicating an uninformative model comparison, could 
reflect that the data provide either strong or weak support 
for both of the compared models. Moreover, a model with 
a low marginal likelihood can be favored by a highly deci-
sive Bayes factor, as long as the alternative model performs 
even worse. Therefore, in principle, Bayes factors—and thus 
informativeness—could be hacked by intentionally entering 
an abysmal model into the comparison. This illustrates that 
maximizing informativeness alone and at all costs does not 
guarantee that a model comparison will ultimately be useful 
(see also the section “Choosing Model Assumptions to Max-
imize Informativeness at All Costs?” below). Sometimes it 
may be helpful to quantify not only the relative but also the 
absolute evidence for considered models, by computing their 
individual marginal likelihoods. While the Savage–Dickey 
density-ratio method evades the computation of marginal 
likelihoods, other powerful methods exist that can be used 
for this purpose (e.g., bridgesampling; Gronau et al., 2017, 
2020).

Choosing Model Assumptions to Maximize 
Informativeness at All Costs?

Informativeness is an important objective when designing 
and conducting model comparisons, but it is not the only 
one. Identifying which (core and auxiliary) assumptions of 
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models are reasonable to implement also depends on the 
substantial research question that the model comparison is 
intended to address. This implies that in some situations, 
there may be a trade-off between maximizing the distinc-
tiveness of compared models’ predictions and formalizing 
one’s hypotheses about the data-generating processes in a 
veritable, undistorted manner. For instance, if an essential, 
psychologically meaningful aspect of the hypotheses to be 
tested is that the error term conforms to a trembling hand, 
it may not be sensible to implement models using a logit 
or probit choice rule for the sole purpose of rendering the 
models’ predictions more distinctive. Although the model 
comparison might be informative, it might be informative for 
a different hypothesis. In such a case, the researcher might 
prefer to pragmatically bypass the described trade-off by 
maximizing informativeness using other available tools, 
such as the designing stimuli and experimental designs, to 
the extent possible.7 Another possibility to increase the dis-
tinctiveness of competing models is to consider predictions 
regarding various dependent variables, such as choice data 
and response times (Evans et al., 2019).

Overall, choosing model assumptions with an exclusive 
focus on informativeness may defeat the purpose of conduct-
ing a given model comparison in the first place if it comes 
at the cost of addressing the substantial research question. 
The present work should not be interpreted as a general rec-
ommendation to use the logit or probit choice rules for this 
sole purpose at all costs. Rather, it highlights an important 
facet of how choice rules can modulate model predictions, 
thus enabling researchers to select choice rules and other 
auxiliary assumptions in a more informed manner—while 
keeping in mind the research question at hand.

Generalizability to Comparisons of Different Types 
of Core Models

The analyses reported here relied on exemplary models 
of risky choice, EUT and CPT, to illustrate and test how 
choice rules affect the informativeness of model compari-
sons. Choice rules are common not only in models of deci-
sion making under risk (e.g., Bhatia & Loomes, 2017; Zilker 
et al., 2020), but also in models of categorization (Kruschke, 
1992; Love et al., 2004; Nosofsky, 1984), intertemporal 
choice (Wulff & van den Bos, Wulff & Bos, 2018), fair-
ness preferences (Olschewski et al., 2018), memory (Brown 
et al., 2007), reinforcement learning (Erev & Roth, 1998), 
and other domains of psychology. Choice rule selection 

may therefore also affect model distinguishability in these 
domains.

However, not all models lend themselves to being com-
plemented by (all of) the stochastic choice rules discussed 
here. Consider, for example, heuristics, a prominent class 
of mostly deterministic models (Gigerenzer & Todd, 1999). 
Many heuristics do not compute a decision variable that 
quantifies the evidence in favor of different response options 
and that could be subjected to a choice rule such as logit or 
probit (cf. He et al., 2022). It is possible to render heuris-
tics probabilistic by using a constant implementation error 
(analogous to trembling hand). However, like deterministic 
predictions, predictions based on trembling hand performed 
relatively poorly in terms of model distinguishability in the 
present analyses. This limited potential to complement heu-
ristics with different stochastic choice rules may create a 
systematic disadvantage in terms of diagnosticity for model 
comparisons including models from this class. For instance, 
Brandstätter et al. (2006) proposed the priority heuristic, a 
noncompensatory strategy for risky choice, as a competitor 
to the compensatory calculus of CPT. It was later pointed 
out that a comparison between these models based on deter-
ministic predictions was largely uninformative (Glöckner 
& Betsch, 2008). The lack of diagnosticity was primarily 
attributed to undiagnostic choice problems (Broomell et al., 
2019; Glöckner & Betsch, 2008). The present results suggest 
that the problems might equally be viewed as rooted in the 
implausible assumption of deterministic behavior. While it 
is generally advisable to assess diagnosticity before running 
model comparisons, it may be especially important to be 
alert to the higher risk of model indistinguishability when 
comparing models that can be complemented only by the 
deterministic choice rule or by a constant error term.

The Impact of Stimuli

Along with core and auxiliary assumptions of the compared 
models, experimental stimuli can also crucially shape the 
distinguishability of models’ predictions.

How Choice Problems Modulate Informativeness

The present analyses relied on choice problems in which the 
compared core models, EUT and CPT, differed in strength 
but not direction of preference. Since in such choice prob-
lems the predictions derived using the deterministic or 
trembling hand choice rule are indistinguishable, whereas 
predictions derived using the logit or probit choice rule are 
distinguishable, this selection of stimuli provides proof of 
concept that choice rules can crucially modulate informa-
tiveness. Appendix A presents analogous analyses in which 
the stimuli were randomly sampled from the total set of 
10,000 choice problems, without the constraint of equivalent 

7  Nevertheless, there may be situations where such tools may not be 
applicable, as outlined in the section “Enhancing Model Distinguish-
ability When Stimuli Are Difficult to Control.”.
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direction of preference. These analyses show that in such 
cases, the model comparisons using the deterministic or 
trembling hand choice rule become more informative, and 
make it possible to identify the true generative models to a 
higher degree. When data were generated using logit or pro-
bit, the model comparisons using the logit or probit choice 
rule remained more informative than those using the deter-
ministic or trembling hand choice rule. Otherwise, employ-
ing these more diverse sets of stimuli rendered informa-
tiveness comparable across model comparisons employing 
different choice rules. These analyses provide further evi-
dence that the capacity of logit and probit to predict differ-
ences in choice consistency, based on differences in strength 
of preference, is the critical factor driving their advantage in 
terms of informativeness. Moreover, they show that concur-
rently relying on both diagnostic stimuli and an appropriate 
choice rule—as far as possible—can lead to higher informa-
tiveness than either of these approaches alone.

Enhancing Model Distinguishability When Stimuli 
are Difficult to Control

Elegant and powerful methods exist to identify experi-
mental designs and stimuli for which the candidate models 
make maximally distinct predictions, such as optimal and 
adaptive experimental design (Cavagnaro et al., 2010; Kim 
et al., 2014; Myung & Pitt, 2009; Pitt & Myung, 2019) and 
Bayes factor design analysis (Schönbrodt & Wagenmak-
ers, 2018). These methods are arguably most useful when 
researchers have full control over the experimental stimuli 
and design. This may, however, not always be the case—for 
instance, if the stimuli are inherently stochastic. Consider 
decisions from experience, where participants learn about 
risky options by repeatedly sampling from their payoff dis-
tributions (Hertwig et al., 2004). Stimulus diagnosticity can 
be an obstacle in model comparisons for decisions from 
experience (e.g., Broomell et al., 2019) because partici-
pants encounter an “experienced” sampling distribution of 
each option, which may be but a coarse representation of the 
underlying “ground truth” payoff distribution—especially 
when samples are small (Fox & Hadar, 2006). Thus, even 
if ground truth choice problems are carefully designed to 
distinguish competing models of decisions from experience, 
researchers cannot be sure that the sampling distributions of 
these problems are equally diagnostic (Broomell & Bhatia, 
2014; Broomell et al., 2019).

Selecting an appropriate choice rule may help to com-
bat this problem: A model comparison based on predictions 
derived using a choice rule whose predictions are invari-
ant to strength of preference (e.g., deterministic, trembling 
hand) may remain diagnostic after sampling only if the 
competing core models differ in direction of preference for 
the experienced variant of a choice problem. However, a 

model comparison based on predictions derived using a 
choice rule whose predictions can covary with both direc-
tion and strength of preference (e.g., logit, probit) may also 
remain diagnostic if the competing core models differ only 
in strength, not necessarily in direction, of preference for 
the experienced variant of a problem. Therefore, the lack 
of control over stimuli encountered by participants and the 
mismatch between ground truth and experienced choice 
problems in decisions from experience may pose a lesser 
threat to model comparisons when the predictions of the 
choice rule used covary with both direction and strength of 
preference compared to just direction of preference. Beyond 
such paradigms with inherently stochastic stimuli, control 
over stimuli may also be limited in re-analyses of archival 
data and in field experiments.

Conclusion

Although choice rules are arguably among the most widely 
used building blocks in cognitive modeling, the reasons for 
or against using a particular choice rule are not often spelled 
out explicitly. However, in many cases, conclusions may not 
be robust to the use of different choice rules. Pairing other-
wise identical models with different choice rules can affect 
not only which model is deemed the best-performing (as 
shown by, e.g., Wulff & van den Bos, 2018), but also the 
strength of the evidence in support of such conclusions. As 
the current analyses show, the choice rule used to derive 
predictions from the core models can determine whether 
it is possible to obtain compelling evidence for either of 
the models compared, or whether the model comparison 
is bound to be uninformative. The analyses showcase that 
assumptions that are conventionally considered auxiliary can 
shape predictions and inferences to a similar or even higher 
degree than assumptions that are conventionally thought to 
constitute the core of formal models. These insights cast 
doubt upon the conventional division between core assump-
tions and auxiliary assumptions in computational modeling 
and emphasize the potential pitfalls.

In light of these observations, computational modeling 
may benefit from adopting systematic robustness analyses 
more widely. The issue that inferences may strongly hinge 
on seemingly minor analytic decisions has spawned sub-
stantial interest and debate in many areas of psychological 
research in recent years (e.g., Gelman & Loken, 2013; Sil-
berzahn et al., 2018; Simmons et al., 2011; Steegen et al., 
2016; Wagenmakers et al., 2011), and powerful approaches 
have been developed to explore and expose the impact of 
analytic decisions (e.g., multiverse analysis and specifica-
tion curve analysis; see Harder, 2020; Orben & Przybylski, 
2019; Rohrer et al., 2017; Simonsohn et al., 2020; Steegen 
et al., 2016). Such sensitivity analyses could also help to 
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systematically explore the consequences of specific assump-
tions in computational modeling. Adopting them may result 
in a better grounded, more systematic understanding of 
which constructs truly have little effect on predictions and 
inferences and can thus be deemed auxiliary.

Appendix A

Model Recoveries for Extended Sets of Choice 
Problems

The analyses presented in the main text relied on choice 
problems in which the compared core models, EUT and 
CPT, differed in strength, but not direction, of preference. 
In such choice problems, the predictions derived using the 
deterministic or trembling hand choice rule are indistin-
guishable, whereas predictions derived using the logit or 
probit choice rule are distinguishable. This section presents 
analogous analyses in which the stimuli were instead ran-
domly sampled from the total set of 10,000 choice problems, 
without the constraint of equivalent direction of preference. 
That is, in each of the choice problems employed here, the 
compared models can (but do not have to) differ in both 
direction and strength of preference. Otherwise, the current 
analyses relied on the same methods employed for the analy-
ses reported in the main text.

Figure 3 and Table 5 display the results for all model com-
parisons between EUTc and CPTc for the four recovered choice 
rules c used to derive predictions from the core models, analo-
gous to Fig. 2 and Table 4 in the main text. Comparing the 
results with those obtained for the analyses based on narrower 
sets of choice problems (Fig. 2 and Table 4) reveals some 
notable differences. Specifically, in the current model com-
parisons, where the compared models can differ in strength 
and direction of preference—thereby allowing all four choice 
rules to make distinguishable predictions—the model com-
parisons using the deterministic or trembling hand choice rule 
are considerably more informative than are those in which the 
compared models can differ only in strength of preference. The 
model comparisons between EUTdeterministic and CPTdeterministic 
yielded extreme evidence in favor of CPTdeterministic whenever 
data was generated in a variant of CPT, and moderate evidence 
in favor of EUTdeterministic whenever data was generated in a 
variant of EUT. An analogous pattern emerged for the model 
comparisons between EUTtrembling hand and CPTtrembling hand. 
That is, if the true generative model was among the compared 
models, it could be reliably recovered; if it was not present, the 
model comparisons were nevertheless informative. The model 
comparisons between EUTlogit and CPTlogit, as well as those 
between EUTprobit and CPTprobit, also yielded extreme evidence 
favoring CPTlogit or CPTprobit whenever data was generated 
in a variant of CPT. They yielded moderate, strong, or very 

strong evidence favoring EUTlogit or EUTprobit whenever data 
was generated in a variant of EUT. The only exception was the 
comparison between EUTlogit and CPTlogit based on data gen-
erated in EUTtrembling hand, which yielded anecdotal evidence 
favoring CPTlogit. Overall, the model comparisons between 
variants of EUT and CPT equipped with the logit or probit 
choice rule still tended to yield slightly stronger evidence—
and were thus slightly more informative—than those between 
variants of EUT and CPT equipped with the deterministic or 
trembling hand choice rule, especially when the generative 
core model was EUT. This likely reflects that even though 
the current randomly sampled sets of choice problems also 
included problems on which EUT and CPT differ in direction 
of preference, this may not be the case for all choice problems. 
Therefore, model comparisons relying on the deterministic or 
trembling hand choice rule may be diagnostic in a lower pro-
portion of choice problems—and thus be slightly less inform-
ative—than comparisons relying on logit or probit. Overall, 
these analyses provide further evidence that the capacity of 
choice rules to predict differences in choice consistency, based 
on differences in strength of preference, is critical for enhanc-
ing informativeness.

Appendix B

Varying Parameter Settings

As addressed in the “Discussion” section (“Model Distin-
guishability Depends on Parameter Settings”), not only the 
functional form of core models and choice rules, but also 
their specific parameter settings can substantially shape 
model predictions and their distinguishability. The following 
analyses illustrate this interplay between model distinguish-
ability and parameter settings in some exemplary cases.

Table 5    Results of model comparisons between EUTc and CPTc 
based on various recovered choice rules c and data generated in vari-
ous generative models g 

Note. Results are presented for randomly sampled stimuli in which 
compared models can differ both in direction and strength of prefer-
ence

Generative model 
g

μdeterministic,g μtrembling hand,g μlogit,g μprobit,g

EUTdeterministic 2.115 2.214 2.639 1.880
CPTdeterministic  − 35.168  − 35.477  − 34.444  − 34.954
EUTtrembling hand 2.115 2.115  − 0.104 1.217
CPTtrembling hand  − 35.211  − 34.739  − 34.453  − 34.657
EUTlogit 2.031 1.921 3.454 3.737
CPTlogit  − 34.420  − 35.415  − 33.693  − 34.660
EUTprobit 2.031 2.026 3.556 3.606
CPTprobit  − 35.546  − 34.964  − 34.159  − 34.531

411Computational Brain & Behavior (2022) 5:397–421



1 3

These analyses rely on the Kullback–Leibler (KL) diver-
gence (Kullback & Leibler, 1951) to quantify the distin-
guishability of different models’ predictions (see also He 
et al., 2022). The KL divergence is an information-theoretic 
measure that quantifies the dissimilarity between probability 
distributions and can be used to assess how well the predic-
tions of a given generative model G with parameter settings 
θG can be accounted for by a second model R with parameter 
settings θR. The KL divergence between these two models’ 
predictions in a set of N choice problems Q is denoted by 
DKL[fG(Q|θG)||fR(Q|θR)]. A KL divergence of zero indicates 
that the two models’ predictions are identical; a larger KL 
divergence indicates greater dissimilarity—that is, that 
model R accounts for the predictions of model  G to a lesser 
degree. Following He et al. (2020; see also Zilker & Pachur, 
2021), DKL[fG(Q|θG)||fR(Q|θR)] can be obtained by

Here, Aq and Bq are the options A and B in a choice prob-
lem q. fG(o|θG) is a vector of length N containing the pre-
dicted probabilities of choosing option o in problem q under 
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model G with parameter settings θG. fG(o|θG) is a vector of 
length N containing the predicted probabilities of choosing 
option o in problem q under model R with parameter settings 
θR. Summing up across choice problems (from q = 1 to N) 
yields the overall KL divergence between the predictions 
regarding the entire choice set.

Varying Core Model Parameters

First, let us consider the effects of the parameter settings of 
the core models on model distinguishability. Since EUT is 
nested in CPT (under γ = 1), the predictions of CPT become 
more similar to those of EUT when γ approaches 1. The 
following analyses quantitatively corroborate this intuition.

To illustrate how different settings of γ affect the dis-
similarity between predictions of EUT and CPT, quanti-
fied in terms of the KL divergence, model R was defined 
as EUTlogit with the parameter settings α = 0.88 and 
ρ = 5. Model G was defined as CPTlogit with parameters 
α = 0.88, ρ = 5, and various settings of γ. Specifically, γ 
was varied in 11 equally spaced increments in the range 
0.1 to 1.9. Each variant of CPTlogit was used to compute 
the KL divergence to EUTlogit according to Eq. 14. The 
set of choice problems Q contained all problems in the 

Figure 3   Bayes factors for model comparisons between EUTc and CPTc 
with the four recovered choice rules c and based on data generated 
using different generative models g (y-Axis). Note. Each small gray 
triangle indicates the log-transformed Bayes factor obtained in the 
individual model comparison based on one of the 30 data sets for 
each generative model g. Larger colored triangles indicate the median 

μc,g across the individual log-transformed Bayes factors for each 
combination of a generative model g and a recovered choice rule c. 
The strength of evidence indicated by μc,g is color-coded. Results are 
presented for randomly sampled stimuli in which compared models can 
differ in both direction and strength of preference
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pool of 10,000 choice problems generated for the analyses 
reported in the main text. To ensure that all KL diver-
gences are tractable, all predicted choice probabilities 
were constrained to the range between 0.001 and 0.999 
(i.e., choice probabilities of 1 were set to 0.999, and 
choice probabilities of 0 were set to 0.001). This pro-
cedure yields the KL divergences between EUTlogit and 
CPTlogit under different settings of γ.

Figure 4 displays the resulting values of the KL diver-
gence on the y-axis, plotted against the different values 
of γ in CPTlogit. As shown, the KL divergence is zero 
when γ equals 1—that is, when probability weighting is 
linear such that EUTlogit and CPTlogit make identical pre-
dictions. The KL divergence—and thus the dissimilarity 
between the two models’ predictions—increases when γ 
deviates from 1 in either direction, with a steeper increase 
for values of γ < 1 than for values of γ > 1. This highlights 
that model distinguishability—and as a consequence, the 
informativeness of model comparisons—not only depends 
on the functional form of core assumptions, but also on 
the particular parameter settings assumed.

Varying Levels of Noise

Next, let us consider the impact of parameter settings of a 
choice rule on differences between the choice rules’ pre-
dictions, and hence model distinguishability. For exam-
ple, under higher values of the parameter ρ the shape of 
the logit choice rule increasingly approaches the shape 
of a deterministic step function (or of the trembling 
hand choice rule with perr = 0). As a consequence, the 

predictions of logit become less sensitive to differences in 
strength of preference according to the core model. The 
following analyses illustrate how different settings of ρ 
in the logit choice rule and of perr in the trembling hand 
choice rule affect the similarity of their predictions.

To this end, model R was defined as CPTlogit with 
parameters α = 0.88 and γ = 0.61. The noise parameter ρ 
was varied in the range from 1 to 12 in increments of 1. 
Model G was defined as CPTtrembling hand with parameters 
α = 0.88 and γ = 0.61. The noise parameter perr was varied 
in 12 equally spaced increments in the range 0 to 0.5. The 
set of choice problems Q contained all problems in the 
pool of 10,000 choice problems generated for the analyses 
reported in the main text, on which CPT and EUT dif-
fer in strength, but not direction, of preference. To ensure 
that all KL divergences are tractable, all predicted choice 
probabilities were again constrained to the range [0.001, 
0.999]. This procedure yields the KL divergences between 
two models with matched core assumptions that make dif-
ferent assumptions about the shape of the choice rule and 
its parameter settings—CPTlogit with various settings of ρ, 
and CPTtrembling hand with various settings of perr.

Figure  5 displays the results. As can be seen, given 
perr = 0 (i.e., when the trembling hand yields deterministic 
predictions, displayed in the darkest color), the KL diver-
gence decreases under higher values of ρ. That is, the predic-
tions of CPTlogit and CPTtrembling hand increasingly resemble 
each other because the shape of the logit choice rule also 
approaches a deterministic step function. Consequently, the 
logit choice rule becomes less sensitive to differences in 
strength of preference according to the core model, which 
likely reduces its advantage in terms of informativeness. 

Figure  4   The KL divergence quantifies the distinguishability of 
model predictions of EUTlogit and CPTlogit,assuming various settings 
of the parameter γ 

Figure 5   Assessment of distinguishability of model predictions using 
the KL divergence. Note. KL divergences were computed between 
CPTlogit with various settings of ρ and CPTtrembling hand with various 
settings of perr
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Given higher settings of perr (brighter colors), the KL diver-
gence instead increases for higher values of ρ. That is, the 
predictions of CPTlogit and CPTtrembling hand become increas-
ingly dissimilar because the trembling hand assumes increas-
ing levels of noise, while the logit choice rule approaches 
a deterministic step function. Overall, Figure 5 underscores 
that the logit choice rule can mimic the trembling hand 
choice rule to some degree and that the extent of mimicry 
depends on their specific parameter settings. Even though 
sigmoid choice rules like logit are in principle more flex-
ible in terms of capturing differences in strength of prefer-
ence compared to step functions like the trembling hand, 
this feature—and thus, the advantage sigmoid choice rules 
have in rendering model comparisons more informative—is 
conditioned on the particular parameter settings.

Impact of Core Assumptions and Choice Rule 
Parameters

The following analyses illustrate that varying the parameter 
settings of a choice rule may even impact a model’s predic-
tions—and thus, its distinguishability from other models—
more severely compared to relying on a different core model.

To this end, the KL divergence between the predic-
tions of G and several variants of two distinct models R, 
henceforth R1 and R2, were computed according to Eq. 14. 
Model G was defined as CPTlogit with parameters α = 0.88, 
γ = 0.61, and ρ = 5. R1 was defined as CPTlogit, with 
α = 0.88, γ = 0.61, and ρ varied in the range from 1 to 12 in 
increments of 1. R2 was defined as EUTlogit, with α = 0.88 
and ρ varied in the range from 1 to 12 in increments of 1. 
The set of choice problems Q contained all problems in the 
pool of 10,000 choice problems generated for the analyses 
reported in the main text, on which CPT and EUT differ in 
strength, but not direction, of preference. To ensure that 
all KL divergences are tractable, all predicted choice prob-
abilities were again constrained to the range [0.001,0.999]. 
This procedure yields the KL divergences between CPTlogit 

with one specific setting of ρ and CPTlogit with various 
other settings of ρ, and between CPTlogit with one specific 
setting of ρ and EUTlogit (a model that makes different core 
assumptions), while also varying the settings of ρ.

Figure 6 displays the results. First, consider Figure 6A, 
which displays on the y-axis the KL divergence between 
CPTlogit with ρ = 5 and the same model with different set-
tings of ρ (varied along the x-axis). The value of ρ = 5 in 
the generative model G is marked by a vertical line. The 
KL divergence is zero when R1 also assumes ρ = 5—that 
is, when the two models’ predictions are identical. Modi-
fying ρ in either direction increases the KL divergence, 
illustrating how the predictions of CPTlogit become less 
similar when assuming different levels of noise. Next, 
consider Figure 6B, which displays on the y-axis the KL 
divergence between CPTlogit with ρ = 5 and the EUTlogit 
with different settings of ρ (varied along the x-axis). The 
value of ρ = 5 in the generative model G is marked by 
a vertical line. In contrast to the previous analyses, the 
KL divergence never equals zero, because the two mod-
els are never fully identical due to their mismatched core 
assumptions. Moreover, assuming a value of ρ = 5 in both 
CPTlogit and EUTlogit does not minimize their distinguish-
ability. That is, assuming the same numerical setting of a 
choice rule parameter in two models equipped with differ-
ent core assumptions does not necessarily imply that their 
predictions are rendered more similar. Instead, among the 
analyzed settings of ρ, a value of ρ = 3 minimizes the dis-
similarity between the models’ predictions, yielding a KL 
divergence of 689.9. This value is marked by a horizontal 
line in both subplots.

Notably, the minimal KL divergence between CPTlogit and 
EUTlogit obtained in these analyses, 689.9, is smaller than the 
KL divergences between CPTlogit with different settings of ρ: 
In Figure 6A, the horizontal line marking the value of 689.9 
runs below the KL divergence computed between CPTlogit with 
ρ = 5 and ρ = 1, ρ = 2, and ρ = 12. These analyses demonstrate 
that the predictions of the same model, CPTlogit, equipped with 
different assumptions regarding the level of noise, can be less 

Figure 6   Assessment of distin-
guishability of model predic-
tions using the KL divergence. 
Note. Panel A: KL divergence 
between model G, CPTlogit with 
ρ = 5, and model R1, CPTlogit 
with various settings of ρ. Panel 
B: KL divergence between 
model G, CPTlogit with ρ = 5, 
and model R2, EUTlogit with 
various settings of ρ 
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similar than the predictions of two models that systematically 
differ in their core assumptions (CPTlogit and EUTlogit). Aux-
iliary assumptions, such as choice rules and their parameters, 
substantially shape the predictions of models—sometimes to 
a larger degree than do core assumptions.

Appendix C

Convergence by Parameter

Figure 7 displays the proportion of models in which a given 
parameter converged ( ̂R < 1.01). Across parameters, conver-
gence tended to be highest when the trembling hand choice 
rule was used as the generative choice rule. Moreover, con-
vergence tended to be higher when the deterministic or trem-
bling hand choice rule was used as the recovered choice rule, 
compared to when the logit or probit choice rule was used as 
the recovered choice rule. These results parallel the findings 
reported in Table 3.

Appendix D

Analyses Replacing Negative Density Estimates

To obtain Bayes factors using the Savage–Dickey density ratio 
method for the reported model comparisons, it is necessary to 
assess the posterior density of p(γ = 1|D,CPTc). These densities 
were obtained based on kernel density estimation on the poste-
rior samples of γ using the KernSmooth package in R (Wand, 
2020). In some cases, this density estimation failed, in that it 
yielded values for the posterior density at p(γ = 1|D,CPTc) that 
were extremely close to zero, but negative (i.e., impossible), or 
exactly equaled zero (making log transformation of the Bayes 
factors impossible). Visual inspection of the respective pos-
terior distributions revealed that in these cases, no posterior 
mass was located at γ = 1. The analyses reported in the main 

text excluded these estimates. The results reported below are 
for analogous analyses, in which the implausible estimates of 
p(γ = 1|D,CPTc) ≤ 0 were replaced by arbitrarily small positive 
values instead. Specifically, any value of p(γ = 1|D,CPTc) ≤ 0 
was replaced by a sample from a uniform distribution ranging 
from 10–15 to 10–20. Otherwise, the same methods used for the 
analyses reported in the main text were applied.

Figure 8 and Table 6 display the results. The only notable dif-
ference to the results reported in the main text (Fig. 2 and Table 4) 
concerns model comparisons between EUTdeterministic and CPT-
deterministic based on data generated in CPTprobit. Here, the Bayes fac-
tors now indicate that the model comparisons are no longer largely 
uninformative. This is because replacing the excluded values of 
p(γ = 1|D,CPTc) ≤ 1 by an arbitrarily small value implies adding 
Bayes factors that provide extreme evidence favoring CPTdeterministic, 
thus swaying the evidence in this direction. Otherwise, the results 
were robust to this change in analytic strategy.

Appendix E

Prior Specification

Across the variants of CPTc, the prior for the parameter of 
the probability-weighting function, γ, was specified as a uni-
form distribution on the range from 0 to 2:

The prior for the parameter of the value function, α, was 
specified as

Here, Φ denotes a probit transformation of the subsequent 
term, scaling values on the real line to the range between 0 and 
1 (see Rouder & Lu, 2005). Probit transforming the Gaussian 

(15)γ ∼ U(0, 2).

(16)
μ� ∼N(−0.15, 1)

� = 2 ⋅Φ��

.

Figure 7   Proportion of models in which estimation of a given parameter converged ( ̂R < 1.01).
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with mean − 0.15 and multiplying the resulting values by 2 
yields a slightly positively skewed distribution scaled to the 
range between 0 and 2.

The prior on the parameter ρ of the logit choice rule was 
specified as

yielding a positively skewed, strictly positive distribution with 
most probability mass concentrated between 0 and 5 (see Nils-
son et al., 2011, for a similar approach). Uniform priors were 
assumed for the parameters perr of the trembling hand choice 
rule and the parameter β of the probit choice rule

Appendix F

Assessing Model Complexity

Intuitively, EUT seems to be less complex than CPT, since it 
has one less free parameter and is otherwise nested in CPT. 
The Bayes factor punishes model complexity conceptualized 
in terms of the flexibility of the prior predictive distribu-
tions. This section illustrates and quantifies the difference 
in complexity between EUT and CPT in this sense. Specifi-
cally, a model whose prior predictive distribution covers a 

(17)
μ� ∼ U(−3, 3)

� = e
��

(18)
perr ∼ U(0, 0.5)

� ∼ U(0, 5).

Figure  8   Bayes factors for model comparisons between EUTc and 
CPTc with the four recovered choice rules c and based on data gen-
erated using different generative models g (y-axis). Note. Each small 
gray triangle indicates the log-transformed Bayes factor obtained in 
the individual model comparison based on one of the 30 data sets for 

each generative model g. Larger colored triangles indicate the median 
μc,g across the individual log-transformed Bayes factors for each com-
bination of a generative model g and a recovered choice rule c. The 
strength of evidence indicated by μc,g is color-coded

Table 6   Results of model comparisons between EUTc and CPTc 
based on various recovered choice rules c and data generated in vari-
ous generative models g 

Note. Results are presented for analyses in which negative estimates 
of the posterior density were replaced by arbitrarily small positive 
values

Generative model 
g

μdeterministic,g μtrembling hand,g μlogit,g μprobit,g

EUTdeterministic 1.012 1.014  − 35.483 0.592
CPTdeterministic 1.012 1.014  − 35.483 0.592
EUTtrembling hand 1.012 1.006  − 35.483  − 35.483
CPTtrembling hand 1.012 1.013  − 35.483  − 35.483
EUTlogit 1.027 1.027 3.203 3.067
CPTlogit 0.526 0.523  − 35.483  − 35.483
EUTprobit 1.004 1.006 2.203 2.749
CPTprobit  − 34.919  − 0.486  − 35.483  − 35.483
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Figure 9   Samples from the 
prior predictive distributions of 
EUT and CPT, equipped with 
different choice rules, for each 
choice problem in the model 
comparisons reported in the 
main text
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larger range of eventualities, thus allowing it to predict a 
larger range of outcomes, can be considered more complex. 
Data consistent with such a model’s predictions provides 
weaker evidence in favor of the model than if the model had 
been more parsimonious and made more informed predic-
tions (Wagenmakers et al., 2010). The Bayes factor implic-
itly accounts for this regularity and thereby punishes model 
complexity.

The flexibility of the prior predictive distribution, and 
hence model complexity, can be quantified in terms of the 
prior predictive complexity (PPC; Vanpaemel, 2009). Prior 
predictive complexity compares the universal interval (UI)—
the range of outcomes that are in principle observable—to 
the predicted interval (PI)—the interval containing all out-
comes predicted by the model, averaged across all m stimuli

For probabilistic models, the predicted interval can be 
defined as the smallest interval that contains a predetermined 
proportion (e.g., 99%) of prior predictive mass. For the cur-
rent case of EUT and CPT, which both predict choice proba-
bilities in the range 0 to 1, the width of the universal interval 
equals 1, such that the prior predictive complexity reduces 
to the average width of the predicted interval across stimuli. 
For each variant of CPT and EUT, equipped with different 
choice rules, the width of the predicted interval was derived 
as follows: For each of the 30 sets of choice problems used 
to simulate data for the analyses reported in the main text, 

(19)PPC =
1

m

m
∑

i=1

|PIi|

|UIi|
.

100 samples were drawn from each model’s prior predic-
tive distribution, and the predicted choice probabilities were 
recorded. Then, the width of the 99% highest density interval 
of these samples was obtained, individually for each choice 
problem. Averaging across these predicted intervals within 
each model variant yields the prior predictive complexity.

Figure 9 displays the samples from the prior predictive 
distributions of the different variants of CPT and EUT. 
Choice problems are ordered according to the mean dif-
ference in valuation under EUT across the various samples 
from the prior predictive distribution within each problem. 
Even without quantifying the prior predictive complex-
ity, this illustration hints at the differences in complexity 
between the models: The prior predictive mass is spread 
out more widely across the range of possible outcomes in 
each variant of CPT, compared to the corresponding vari-
ant of EUT. This is particularly evident in the upper left 
quadrant of each subplot. The prior predictions of CPT 
with a nonlinear probability-weighting function tend to 
cover more of the conceivable outcomes in this quadrant 
than do those of EUT, indicated by this area being more 
darkly shaded under CPT than under EUT.

Quantifying the prior predictive complexity corroborates 
this impression. Figure 10 displays the prior predictive com-
plexity for each variant of CPT and EUT. Higher values 
indicate a more flexible prior predictive distribution and thus 
a more complex model. As can be seen, each variant of CPT 
has a higher prior predictive complexity, and is thus more 
complex, than the corresponding nested variant of EUT with 
the same choice rule. Overall, the models equipped with 
the deterministic choice rule are least complex, followed by 
variants equipped with the probit choice rule. Variants of 
EUT and CPT equipped with the logit and trembling hand 
choice rules tend to be most complex. Note that these results 
are conditioned on the specific constellation of priors and 
choice problems employed in the analyses in this article. 
These differences in complexity help to explain why, given 
uninformative data, model comparisons based on Bayes fac-
tors tend to favor the less complex model, EUT, over the 
more complex CPT.
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