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1.  INTRODUCTION

Monitoring the environmental impact of human
activities is critical to preserve the existence, func-
tioning, and ultimately the associated services pro-
vided by ecosystems. Thus, there is interest in find-
ing indicators of environmental status that, while
re flecting ecosystem complexity, remain relatively

simple and easy to assess at large spatial and tempo-
ral monitoring scales (Dale & Beyeler 2001).

Microbial communities comprise the greatest share
of biological diversity on Earth and have been shown
to rapidly adjust their composition and/or functions in
response to changing environments. In particular, sig-
nificant correlations between aquatic microbial com-
munities and environmental factors have been re-
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vealed when analysing natural gradients in key
physico chemical variables such as salinity (Lozupone
& Knight 2007), temperature (Fuhrman et al. 2008), pH
(Fierer & Jackson 2006), inorganic nutrients and light
availability (Schiaffino et al. 2011), and concentration
and quality of dissolved organic matter (Amaral et al.
2016). Microbial communities have also been shown to
respond significantly to specific disturbances like oil
spills (Newton et al. 2013), contamination by heavy
metals and polycyclic aromatic hydrocarbons (Sun et
al. 2012), contamination by emergent contaminants
(Subirats et al. 2018), and hydrological fragmentation
(Fazi et al. 2013). Furthermore, bacterial communities
have been used as biosensors to accurately distinguish
unpolluted groundwater sites from those contaminated
with uranium or nitrate across the watershed of an
area contaminated with nuclear waste (Smith et al.
2015), to identify markers of urban impact (Fisher et al.
2015), and to construct indexes for assessing the eco-
logical status of specific aquatic ecosystems (Lau et al.
2015, Aylagas et al. 2017, Li et al. 2018).

Thus, the accumulated evidence indicates that
micro bial communities are natural candidates for en-
vironmental monitoring. However, they have been
out of the spotlight in this field, where animals and
plants are the organisms typically chosen to act as en-
vironmental indicators (Siddig et al. 2016). The com -
paratively difficult methodology to approach micro -
bial diversity and ecology undoubtedly has played a
role discouraging their use by environmental practi-
tioners. Even though microorganisms have long been
used to assess faecal pollution using an array of cul-
turable taxa (Clesceri et al. 1999, Meals et al. 2013),
the use of molecular tools has greatly boosted the pos-
sibility of finding alternative indi cators; e.g. suitable
to discern sewage vs. animal sources, a fundamental
advancement for the prevention and remediation of
this kind of environmental impact (McLellan & Eren
2014, Roguet et al. 2018).

A key attribute of the widely employed high-
throughput sequencing methodology is the opportu-
nity to deeply evaluate microbial diversity in large
numbers of samples. This allows for the application
of microbial communities using similar approaches to
the ones initially developed for macro-organisms.
Among those approaches lie the tools for the identifi-
cation of taxa indicators of environmental quality,
which has been recently claimed by the scientific
community in regards to the European Union Marine
Strategy Framework Directive (Caruso et al. 2016,
Pawlowski et al. 2018).

One of the indices most frequently employed to
study the relationships between species and their

habitats is the indicator value index (IndVal; Dufrene
& Legendre 1997), which directly assesses the value
of a species as a bioindicator of a specific type of
habitat (De Cáceres & Legendre 2009). The applica-
tion of IndVal to aquatic microbes has shown how
bacterial community composition (BCC) changes
with changing seasonal conditions across the Colum-
bia River coastal margin (Fortunato et al. 2013), indi-
vidual water column compartments in a meromictic
lake (Gies et al. 2014), streams impacted by alkaline
mine drainage (Bier et al. 2015), and different water
masses of the eastern Mediterranean (Techtmann et
al. 2015). This approach also identified indicator taxa
of a threshold in oxygen concentration that leads to
significant changes in community composition (Spi-
etz et al. 2015). IndVal has also served to identify in -
dicator archaeal lineages in a global survey of a wide
range of aquatic habitats, highlighting their eco lo -
gical importance and providing phylogeographical
clues on the ecology and evolution of Archaea
(Auguet et al. 2010).

Despite its proven suitability in conservation biol-
ogy, IndVal remains relatively unexplored as a tool
for environmental monitoring based on microbial
communities. In particular, the application of IndVal
to microbial communities has the potential for
broader outcomes, like exploring their role as pre -
dictors of different habitat conditions, which has
been rarely done (Xiong et al. 2014, Lanzén et al.
2021). To that end, effort is needed in terms of quan-
tifying the performance (i.e. assessing the predictive
capacity) of IndVal, analysing the practical chal-
lenges for its calculation while dealing with such
diverse communities, and evaluating the suitability
of its combination with common machine learning
(ML) techniques for the classification of samples into
environmental categories, using indicator species as
predictors.

In this work, we analysed the bacterioplankton
community composition of 4 different estuaries along
with standard physicochemical metadata, either pro-
duced during this study or obtained from public
repositories. Our goal was to search for combinations
of bacterial operational taxonomic units (OTUs) as
indicators of specific environmental conditions rep-
resented by groups of samples defined according to
physicochemical variables typically measured while
monitoring aquatic systems. These indicators should
be able to assign each sample to its corresponding
group, based only on the BCC data, acting as a proof
of principle for the application of IndVal to bacterio-
plankton-based prediction of habitat categories.
Additionally, we present and discuss methodological
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details for the application of IndVal to such diverse
communities — including its combination with a suite
of ML approaches — in order to further promote its
utilization among microbial ecologists.

2.  MATERIALS AND METHODS

2.1.  Río de la Plata sample collection and 
environmental variables

Sub-superficial water samples (n = 30) were taken
at 3 zones of the Río de la Plata (RdlP), located at the
upper, middle, and lower parts of the estuary, during
5 sampling campaigns between March 2013 and
March 2014 (Fig. 1). In each campaign, 2 samples
were taken from each zone, differing in their dis-
tance to the coast (0.05−0.27 nautical miles, named
‘coastal water’ and 3.19−4.16 nautical miles, referred
to as ‘open water’). Exact site locations have been
provided elsewhere (Martínez de la Escalera et al.
2017).

At each sampling point, conductivity (mS cm−1),
turbidity (nephelometric turbidity units [NTU]), and
temperature (°C) were measured using a SeaBird 19

plus CTD profiler equipped with a turbidity sensor
(SeaPoint Turbidity Meter). Dissolved oxygen (mg
l−1), salinity, total dissolved solids (TDS, g l−1), density
(sigma-t), and pH were measured with a Horiba mul-
tiparameter sensor. Total phosphorus (TP, μg l−1),
total nitrogen (TN, mg l−1), phosphate (PO4, μg l−1),
ammonium (NH4, mg l−1), reactive silica (Si, mg l−1),
and chlorophyll a (chl a, μg l−1) were estimated fol-
lowing standard methods (Eaton et al. 1999, Mar -
tínez de la Escalera et al. 2017).

2.2.  Bacterial DNA collection, extraction, 
and sequencing

Water samples were pre-filtered through a 23 μm
sieve before collecting between 150 and 1000 ml sam-
ple−1 onto 0.22 μm mixed cellulose esters filters (Milli-
pore). DNA extraction was carried according to a
modified protocol of Zhou et al. (1996), previously ap-
plied in this system (Alonso et al. 2010). DNA was pu-
rified using QIAquick Gel Extraction Kit (QIAGEN),
and its quality was checked using a standard PCR
protocol for the 16S rRNA gene. The purified DNA
was submitted to the company Research and Testing
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Fig. 1. The Río de la Plata
estuary, showing sampling
zones. Each zone was
sampled 5 times, at 2 sta-
tions varying in distance to
the coast. Different panels
de pict variation in some
key environmental vari-
ables: (A) salinity, (B) tur-
bidity, (C) total phospho-
rus, and (D) chlorophyll a.
Data points in each zone
are ordered according to
the date of the campaign, 

from left to right
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Laboratory for amplification using the pri mers 28F
5‘-GAG TTT GAT CNT GGC TCA G-3’ and 519R
5‘-GTN TTA CNG CGG CK-G CTG-3’ (V1−V3 re -
gion), and further sequencing with Illumina MiSeq.
All samples, except for one (UppCW0613), were suc-
cessfully sequenced. Sequences were deposited at
the European Molecular Biology Laboratory (EMBL)
(study accession code PRJEB29989).

2.3.  BCC in other estuaries

A list of the main estuaries in South America, North
America, Europe, Asia, Africa, and Oceania was
compiled, and a search was performed using the
terms ‘bacterioplankton’, ‘16S’, and the name of each
estuary. From the results retrieved, those studies
having next generation sequencing (NGS)-derived
se quences and accompanying physicochemical me ta -
data were examined. Finally, a common data set was
generated with studies encompassing the 16S rRNA
gene V1−V3 region, accomplishing a se quence qual-
ity check (see Section 2.4.1) and sharing a minimum
core of physicochemical data with our RdlP data set;
those estuaries were the Delaware (Dlwr) (Campbell
& Kirchman 2013, Kirchman et al. 2017), Krka (Kor-
lević et al. 2016), and Pearl (Liu et al. 2015) (Table 1).
For subsequent analyses, the database was curated,
retaining the samples that had the complete set of
physicochemical data and at least 1000 reads (see
Table S1 in the Supplement at www. int-res. com/
articles/ suppl/ a088 p001 _ supp. pdf).

2.4.  Bioinformatic analysis

2.4.1.  Data pre-processing and integration

In this study, we integrated amplicon data of 16S
rRNA genes generated with 2 different sequencing
technologies: Illumina (RdlP data set) and Roche-454
(Dlwr, Krka, and Pearl data sets). Hence, the initial
pre-processing step performed on the data differed
accordingly. For the Illumina sequences, the pair-end
reads were merged with the PEAR tool (Zhang et al.
2014), and for the 454 sequences, the adapter se qu -
ences from the single-end reads were removed with
the ‘cutadapt’ tool (Martin 2011). Subsequently, in
the 4 data sets, we quality trimmed to Q20 and fil-
tered out reads shorter than 75 bp with the ‘BBDuk’
tool (http://jgi.doe.gov/data-and-tools/bb-tools), de-
replicating the sequences and removing chimeras
with the VSEARCH tool (Rognes et al. 2016).
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To integrate the data, the pre-processed se quen -
ces were aligned to the core reference alignment of
GreenGenes (McDonald et al. 2012) using the
PyNAST tool (Caporaso et al. 2010) to extract the
V1− V3 region overlapping in all the data sets.
PyNAST performs an alignment of the full amplicon
sequences, allowing at the same time a straight -
forward visualization of the overlapping region in
the multiple sequence alignment. To obtain the
alignment coordinates for this task, we previously
aligned the forward and reverse primer sequences
used in the 4 data sets to the reference alignment.
The 5' coordinate was then determined as the great-
est end position of all forward primers, and the 3'
coordinate, as the smallest start position of all re -
verse primers (i.e. 137 and 2227, respectively). All
sequences that aligned with an identity lower than
70% were  discarded.

2.4.2.  Sequence clustering and 
taxonomic annotation

The sequences of all 4 pre-processed data sets
were clustered into OTUs using a 97% identity
threshold with the VSEARCH tool. We deliberately
choose a relatively low identity threshold to counter-
act the different error profiles of Illumina and 454
sequencing technologies. However, to explore the
possible outcomes using a more optimal identity
threshold for defining bacterial species (Edgar 2018),
the amplicon sequences generated in this study were
also OTU-clustered with VSEARCH at 99% identity.

To taxonomically annotate the OTUs, we per-
formed a local BLASTN search (Camacho et al. 2009)
of the centroid sequences against the Silva 132 SSU
Ref NR 99 database (Quast et al. 2013), using an e-
value of 1e-4. To select the best hits, we used the
same (empirically defined) criteria as applied in the
SILVAngs pipeline (Quast et al. 2013), that is: (se -
quence identity + alignment coverage) / 2 ≥ 93. We
formatted the final results as taxonomically anno-
tated OTU abundance tables; from these tables, we
filtered out the OTUs classified as mitochondria or
chloroplasts and removed the singleton sequences.

All following analyses were conducted using R
software (version 4.0.3) (R Core Team 2020).

2.5.  Definition of groups of samples

For each estuary, a non-redundant set of standard-
ized variables (z-score transformation) was deter-

mined based on their correlation coefficients and
variance inflation factor calculation. The selec ted
variables in each case are highlighted in bold charac-
ters in Table 1. Based on those variables, clustering
and non-hierarchical partitioning of the samples was
performed on each estuary data set using Euclidean
distance and 2 different algorithms in each case
(UPGMA and Ward for clustering, K-means and
PAM for non-hierarchical partitioning). The optimal
number of groups for each estuary was determined
based on clustering consistency analyses (e.g. graph
of fusion levels, silhouette analysis, Mantel analysis,
calinski and ssi criteria; Legendre & Legendre 1998).
A permutational multivariate analysis of variance
(PERMANOVA) test was run to assess the statistical
significance of each partition. The partition finally
selected for each estuary was the one providing the
highest number of significantly different groups,
supported by at least 2 methods.

In addition, to test whether bacterial indicators
could distinguish between estuaries, we created a
common database, integrating the amplicon data of
the bacterioplankton communities of the 4 estuaries,
in which the samples were grouped according to the
estuary of origin.

The R packages used for the variable standardiza-
tion, clustering, partition, and PERMANOVA analy-
ses were ‘vegan’ (Oksanen et al. 2012), ‘cluster’ (Ok -
sanen et al. 2012), and ‘pairwiseAdonis’ (Martinez
Arbizu 2020).

2.6.  Search for indicator OTUs

The IndVal analysis was conducted to identify and
select indicators for each sample group based on the
OTUs abundance matrix (Dufrene & Legendre 1997),
using the R package ‘indicspecies’ (De Cáceres &
Legendre 2009). The IndVal index assesses the po -
tential of a given species to act as an indicator for
each target group. Its value varies between 0 and 1
and is the product of 2 components: component A
(specificity or positive predictive value), which is
maximum when the species is only present in the tar-
get group, and component B (sensitivity or fidelity),
which is maximum when the species is present in all
samples of the target group (Dufrene & Legendre
1997). Statistical significance of the IndVal statistic is
tested using a permutation test (i.e. randomizing
either the species vector or the group membership
vector) (De Cáceres & Legendre 2009).

The IndVal framework has been extended to con-
sider species combinations, in addition to single spe-
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cies, as potential indicators (De Cáceres et al. 2012).
The large number of species in bacterial communi-
ties offers the opportunity to explore the indicator
value of species combinations. Thus, we took the 500
or 1000 most abundant OTUs of each data set and, for
each group to be indicated, we selected those OTUs
with a frequency threshold value (Bt) of at least 0.5
(i.e. present in 50% of samples in the target group) as
candidates to form species combinations. Next, we
used the function ‘indicators’ to assess the predictive
value of combinations of up to 6 OTUs among those
selected as candidates, as well as their statistical
 significance. The threshold for selecting the most
abundant species as well as the maximal order of
combinations (up to 6 OTUs) was chosen to keep the
calculation time-effective, as there were many candi-
date species per group.

Based on this analysis, a list of potential indicators
(either single OTUs or combinations thereof) was
obtained for each group, from which the best indica-
tor was selected as the one with the highest IndVal,
utilising the ‘pruneindicators’ function in the R pack-
age ‘indicspecies’. Whenever applicable, the ‘prun-
ing’ function was also run, maximizing the positive
predictive value (A) instead of maximizing the Ind-
Val statistic. ‘pruneindicators’ selects indicators for
which the lower bound of the 95% confidence inter-
val of IndVal (or one of its components) is equal to or
greater than a user-defined threshold value. It keeps
the set of non-nested indicators and selects the one
with the highest IndVal (or one of its components)
among those maximizing the coverage of the target
group (De Cáceres 2013).

2.7.  Prediction of sample membership based on
bacterial indicators

The ability to predict the assignment of each sam-
ple to its corresponding group was tested using the
‘predict’ function of the ‘indicspecies’ package. This
function takes into account the presence of the indi-
cator in each sample in order to assign it to a given
group. When the indicator is found in the sample, the
probability of belonging to the target group is equal
to its specificity (i.e. A, the positive predictive value
of the indicator). For samples where 2 or more indica-
tors are present, the probability of belonging to the
target group is equal to the highest specificity value
across all indicators found (De Cáceres 2013). Impor-
tantly, given a query sample, the ‘predict’ function
independently estimates the probability of belonging
to each group. Thus, the sum of probability values of

a sample across all groups does not necessarily add
up to 1.

For the purpose of this work, the ‘predict’ function
was modified to include the leave-one-out cross-
 validation technique, in which the prediction of a
given sample is done without taking into account the
identification of indicators. This cross-validation tool
is particularly useful for relatively small data sets
(James et al. 2013), as is the case of the data sets of
the different estuaries when analysed independ-
ently. Additionally, the function was also modified in
order to use a training set and a test set. We applied
this latter approach to evaluate the accuracy of the
group predictions when using the combined data set,
where each estuary was defined as a different group.
Specifically, we used a random 80:20 partition to
generate the training and test data sets (162 and 38
samples, respectively). Both modifications were
developed in the context of this work and are now
available in the current version (1.7.8) of the ‘indic-
species’ package.

Predictive performance of bacterial indicators for
the combined data set was further explored using
them as group predictors in diverse commonly used
ML methods (C5.0 decision tree, linear discriminant
analysis, neural network, random forest, support vec-
tor machine). Briefly, indicators exhibiting significant
correlation coefficients >0.9 were removed, taking
into account their importance in a preliminary classi-
fication test using the R package ‘randomForest’
(Liaw & Wiener 2002). Then, the random 80:20 data
partition was taken, but instead of using the whole
community as above, the matrices contained the
abundance of every indicator in every sample. Each
of the models was trained and the corresponding
hyperparameters optimized, using the ‘training set’.
The performance of the final models was evaluated
on the ‘test set’. All analyses were run with the R
Package ‘caret’ (Kuhn et al. 2016).

Finally, for the RdlP indicators, we assessed the
importance of the different environmental variables
in determining their abundance. Generalized linear
models (GLMs) were run employing the negative
binomial distribution to account for the overdisper-
sion observed with the Poisson distribution (Faraway
2006). The environmental variables used were previ-
ously standardized in order to obtain comparable
coefficients. The model choice was done using
Akaike’s information criterion (AIC), conducting a
stepwise mixed selection procedure until the lowest
possible AIC value was obtained. The R packages
used for GLM were ‘MASS’ (Venables & Ripley 2002)
and ‘vegan’ (Oksanen et al. 2012).

6



3.  RESULTS

3.1.  Río de la Plata estuary

3.1.1.  BCC patterns

A total of 38 phyla were detected in the RdlP
data set, with Proteobacteria dominating the com-
munity at all sites (Fig. 2A). Acidobacteria, Actino -
bacteria, and Verrucomicrobia were comparatively

more abun dant in the upper zone, whereas the
con tribution of Cyanobacteria and Bacteroidetes
increased along the estuary (Fig. 2A). The 16 most
abundant phyla (which accounted for >99% of the
total abundance in all samples) were represented
by 178 recognized families, of which the 22 most
abundant represented 57% of the total abundance
in all samples (Fig. 2B). Differential distribution of
these families was also observed along the estuary,
with SAR11 clade III (LD12) dominating in the

Alonso et al.: Bacterioplankton as an environmental indicator 7

Fig. 2. Bacterial community composition of the different samples of the Río de la Plata estuary at the (A) phylum and (B) family
level. Detailed proportions are given for the 16 most abundant bacterial phyla and the 22 most abundant bacterial families. 

The vertical dashed lines separate the samples taken in the 3 sections of the estuary (upper, medium and lower)
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upper estuary and SAR11 clade I dominating the
middle and lower estuary. Other families typically
found in comparatively higher proportions at the
freshwater end were Burkholderiaceae, Holopha -
 gaceae, Sporichtychaceae, and Pseudomonadaceae
(Fig. 2B). Conversely, families relatively more abun -
dant at the marine end were Cyanobiaceae, Opitu-
taceae, Rhodobacteraceae, Fla vo bacteriaceae, and
SAR116 clade, while the proportion of Thio glo ba -
ceae members in the community increased in the
middle and lower estuary (Fig. 2B).

3.1.2.  Environmental clustering of samples

The grouping of samples reflected a strong spatial
and (to a lesser extent) temporal variation (Fig. 3). G1
was the only group composed of samples from 2 dif-
ferent zones (medium and lower estuary), while the
remaining groups were composed exclusively of
samples from the medium (G2), upper (G3), or lower
estuary (G4). Accordingly, group G3 was charac-
terised by very low salinity values, high levels of TN
and TP, and the lowest chl a concentrations. In con-

trast, G4 had the highest mean salinity values, the
lowest mean levels of TN and TP, and the highest
chl a values. Although G1 and G2 exhibited very
similar mean salinity values, they mainly differed in
turbidity and nutrient levels (Fig. 3).

3.1.3.  Bacterial indicators

The indicators finally selected from the 97% simi-
larity OTU clustering are summarized in Table 2. It
was possible to find indicators for all groups exhibiting
very high or even perfect IndVal. All indicators were
based on the co-occurrence of 2 or 3 OTUs. In the case
of G1 and G4, their indicators had 2 constituents, each
of them given by the sum of 2−3 OTUs. Taxonomically,
the indicators were composed of OTUs belonging to
several of the most abundant phyla (Actinobacteria,
Bacteroidetes, Planctomy ce tes, Proteobacteria, and
Verrucomicrobia) and families (Actinomarinaceae,
Flavobacteriaceae, Altero mo nadaceae, Burkholderi-
aceae, Halieaceae, Pseudohongiellaceae, Rhodobac-
teraceae, SAR11 clades), although other less abundant
families were also represented (Table 2).

8

Fig. 3. Left panel: physicochemical variables characterising each of the 4 groups of the Río de la Plata estuary. Lower and up-
per hinges of the boxes: first and third quartiles; whiskers: minimum and maximum values without outliers; dots: outliers; hor-
izontal lines: median values. Right panel: assignment to groups according to the bacterial indicators, using leave-one-out 

cross-validation
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Modelling the abundance of the indicators evi-
denced that they responded significantly to all of the
environmental variables used for clustering the sam-
ples, although differing in the number and identity of
variables to which each of them responded (Table 3).
For all groups, at least one of the indicators was signif-
icantly influenced by salinity and temperature. TN,
NH4, and TDS were also key drivers for most of the
 indicators, whereas TP, oxygen, pH, and chl a were
determinants for indicators of half of the groups.

Predictions of sample assignment to each one of the
4 groups based on these indicators are shown in
Fig. 3. Bacterial indicators performed perfectly, as-
signing their target samples to the corresponding
group using leave-one-out cross-validation. The same
was true when using the indicators obtained with the
OTUs defined at 99% similarity (Tables S2 & S3).

3.2.  Krka and Pearl estuaries

According to the physicochemical data, Krka estu-
ary samples were divided into 3 significantly differ-
ent groups (G1−G3). G1 included all deep samples,
characterised by high salinity and low nutrients and
chl a (Fig. S1). G2 exhibited the lowest mean depth
along with the highest means for salinity, nutrients,
and chl a. Finally, G3 was intermediate between the
former groups but closer to G1 in terms of mean
salinity and nutrient values.

Pearl estuary samples were also divided into 3 sig-
nificantly different groups (G1−G3) based on the
physicochemical variables. G1 was composed of sam-
ples taken at intermediate depths, characterised by
very low oxygen concentrations while exhibiting the
highest nutrient and turbidity values (Fig. S2). G2 in-

cluded only subsurface samples along
with intermediate nutrients and the
highest oxygen concentration. Fi nally,
G3 was composed of most of the sam-
ples taken at greater depths, ex hibiting
intermediate oxygen concentrations
and lower nutrient values (Fig. S2).

Table 4 summarizes the indicators
found for the Krka and Pearl estuaries.
In both cases, it was possible to find
bacterial indicators exhibiting the
highest possible IndVal that were able
to assign almost all samples to the cor-
rect group using leave-one-out cross-
validation (Figs. S1 & S2). Here, repre-
sentatives of widespread families were
also the consti tuents of the different
indicators (Balneolaceae, Burk hol de -
ria ceae, Cyanobiaceae, Micro bac te -

9

Environ- No. of IndVal Indicator OTUs and their taxonomic affiliation
mental candidate A B
group species

G1 100 1 0.75 OTU1017 (Methylomonaceae Milano-WF1B-03) + OTU5016 (Rubinisphaeraceae)
1 0.75 OTU12128 (Ascidiaceihabitans) + OTU3135 (NOR5 clade) + OTU5503 (Pseudohongiella)

G2 103 1 1 OTU1626 (SAR86) + OTU1236 (Burkholderiaceae, Candidatus Symbiobacter) +
OTU10581 (Candidatus Actinomarina)

G3 128 1 1 OTU10228 (SAR11 clade III) + OTU3793 (Verrucomicrobiae)
G4 121 1 0.83 OTU12473 (Rheinheimera) + OTU1718 (NS4 marine group) + OTU11480 (SAR11 clade II)

1 0.83 OTU13284 (Rickettsiaceae) + OTU10326 (SAR11 clade I)

Table 2. Bacterial indicators of the 4 environmental groups defined for the Río de la Plata estuary. The candidate species are
those who meet the criterion of being present in at least 50% of the samples composing each group. A and B denote the IndVal
components of specificity and sensitivity, respectively. The indicator operational taxonomic units (OTUs) are the combination
of candidate OTUs that were selected as the best indicators of each group among all possible significant combinations (p < 0.05). 

All indicators achieved 100% group coverage

indG1a indG1b indG2 indG3 indG4a indG4b

Salinity −0.85*** ns 1.51*** −1.17** ns 3.78***
Temperature 0.58* ns −0.72*** 0.92*** −1.29*** ns
pH ns 0.71** ns −0.53* ns ns
Turbidity ns ns 0.50* ns ns ns
Oxygen ns ns −0.53** ns −0.65** 0.68*
TDS ns −0.86** ns 0.53* ns −1.06*
NH4 ns 0.40. ns −0.78** ns −0.47*
PO4 0.47* ns ns ns ns ns
TP ns ns 0.37* ns ns −1.49*
TN ns −1.38*** ns 1.09** −0.68** ns
Chl a 0.70*** ns ns −0.43. ns ns

Table 3. Summary of the generalized linear model coefficients of each envi-
ronmental variable and their significance in explaining the abundance of the
indicators of the different groups of sites. TDS: total dissolved solids; TP: total
phosphorus; TN: total nitrogen. ***p < 0.0001; **p < 0.001; *p < 0.01; (.) p < 

0.05; ns: not significant (p > 0.05)
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ria  ceae, Oligoflexaceae, Pseudohongiellaceae, Rho -
do  bac teraceae, Sporichthyaceae, SAR11 clades, and
SAR86).

3.3.  Delaware estuary

Delaware estuary samples split into 4 significantly
different groups (G1−G4) according to strong spatial
and temporal variations in the physicochemical vari-
ables. G1 and G3 were both composed of low-salinity
samples, while G1 exhibited the highest mean tem-
perature value and G3 had a very low average tem-
perature. Furthermore, G1 exhibited higher means in
chl a and PO4 levels while G3 displayed higher aver-
age Si and NO3 concentrations (Fig. S3). G2 was com-
posed of samples with the highest salinity and the low-
est nutrient concentrations. Finally, G4 was composed
of samples with intermediate salinity and nutrient val-
ues and the lowest average temperature (Fig. S3).

Contrary to the other estuaries, no indicators ex -
hibiting perfect IndVal were found for the Dlwr sam-
ples. Still, 92% of the samples were correctly assigned
to a group using leave-one-out cross-validation
(Fig. S3). The notable exception was G3, for which no
indicator was found with 100% coverage of the group
(Fig. S3, Table 5). Most of the indicator’s components
were members of different SAR11 clades (Table 5).

3.4.  Indicators to identify samples 
in a combined data set

Initially, we attempted to search for indicators in
one estuary and try to predict the group membership

of the samples from another estuary. To perform such
analysis, it is necessary to have environmental
groups composed of samples from different estuar-
ies. This way, it would be possible to assess whether
the indicators obtained for the samples from a given
estuary can be used to classify the samples from
other estuaries. However, this exercise was not possi-
ble to perform given the characteristics of the data
sets: while Dlwr and Pearl were the only pair not sig-
nificantly distinguishable based on the physicochem-
ical variables measured (Table S4), they harboured
completely different communities (Fig. 4). On the
contrary, while Dlwr and RdlP bore similar communi-
ties (Fig. 4), they were significantly distinct based on
the physicochemical variables measured (Table S4).

Thus, the samples from the 4 estuaries were com-
bined in a single data set, in which each estuary was
defined as a different group, to test whether it was
possible to identify bacterial indicators that would
recognize their estuary of origin. Indicators for each
group were identified and the assignment of the
samples was performed, as before, using leave-one-
out cross-validation and the 80:20 partition of sam-
ples, using the smaller set for testing. The indicators
characteristic of each estuary are presented in
Table 6.

Using leave-one-out cross-validation, we were able
to assign 93% of the samples to the correct estuary,
except for a few Dlwr samples which were either not
assigned to any group (9 samples) or wrongly as -
signed to RdlP estuary (5 samples) (Table S5). When
the prediction was performed on the ‘test set’, the per-
centage of correctly assigned samples was 92−95%,
depending on whether the predictors were the indi-
cators pruned in IndVal or its A component.
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Environ- No. of IndVal Indicator OTUs and their taxonomic affiliation
mental candidate A B
group species

Krka
G1 259 1 1 OTU7716 (SAR86) + OTU27236 (SAR11 clade Ia) + OTU26668 (Rhodobacteraceae)
G2 265 1 1 OTU12036 (Candidatus Aquiluna) + OTU2691 (Burkholderiaceae RS62 marine group) +

OTU13774 (Pseudohongiella)
G3 410 0.96 1 OTU2076 (Balneola) + OTU3691 (Oligoflexaceae) + OTU5482 (SAR86)

Pearl
G1 221 1 1 OTU_12048 (hgcI) + OTU_2127 (Burkholderiaceae)
G2 243 1 1 OTU_23055 (Cyanobium PCC-6307) + OTU_26114 (Cyanobium PCC-6307)
G3 200 1 1 OTU_23055 (Cyanobium PCC-6307) + OTU_13159 (SAR202)

Table 4. Bacterial indicators of the environmental groups defined for the Krka and Pearl estuaries. The candidate species are
those who meet the criterion of being present in at least 50% of the samples composing each group. A and B denote the IndVal
components of specificity and sensitivity, respectively. The indicator operational taxonomic units (OTUs) are the combination
of candidate OTUs that were selected as the best indicators of each group among all possible significant combinations (p < 0.05). 

All indicators achieved 100% group coverage
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This combined data set was further used to train
and test different ML models using the indicators’
abundance as predictor variables. Fig. 5 shows the
accuracy and kappa values obtained by each model
in the training data set, with neural networks dis-
playing significantly larger values of both parame-

ters. Nevertheless, for the ‘test set’, the accuracy of
all 5 models was the same (95%), whereas the mis-
classified cases depended on the model used
(Table 7). Table S6 shows the detailed performance
of each model by group.

4.  DISCUSSION

Estuaries are particularly appealing for evaluating
the relationships between bacterial communities and
their habitat as, in a relatively small spatial scale,
they cover an ample range of physicochemical condi-
tions found in aquatic systems. In the 4 estuaries ana-
lysed in this work, bacterial OTUs differed signifi-
cantly in their distribution along the spatial gradient,
due to environmental and geographical factors
(Alonso et al. 2010, Campbell & Kirchman 2013, Liu
et al. 2015, Korlević et al. 2016). Accordingly, it was
possible to find bacterial OTUs to be used as indica-
tors of each estuary in a combined database and of
the different environmental groups defined within
each estuary.

The development and use of ecological indicators
relies on 2 key premises: (1) organisms effectively
integrate different environmental variables of inter-
est and (2) costs are lower than directly measuring
the target variables (Niemi & McDonald 2004). In this
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Environ- No. of IndVal Indicator OTUs and their taxonomic affiliation
mental candidate A B
group species

G1 87 0.99 0.54 OTU9092 (SAR11 clade II) + OTU6107 (hgcI)
0.99 0.49 OTU10327 (SAR11 clade III) + OTU9372 (Cyanobium PCC-6307)
0.97 0.49 OTU9241 (SAR11 clade III) + OTU12191 (SAR11 clade I) + OTU5103 (Rubinisphaeraceae)
0.98 0.42 OTU10304 (Cyanobium PCC-6307) + OTU800 (Nitrosomonadaceae; IS-44) + OTU10580

(SAR11 clade II)
G2 145 0.90 0.82 OTU8635 (SAR11 clade I) + OTU11046 (Ascidiaceihabitans)

0.87 0.36 OTU933 (MB11C04 marine group) + OTU10773 (Synechococcus CC9902) + OTU9765
(SAR11 clade I)

G3 110 0.84 0.71 OTU6051 (CL500-29) + OTU4920 (hgcI) + OTU4868 (hgcI)
0.80 0.71 OTU9092 (SAR11 clade II) + OTU9241 (SAR11 clade III) + OTU6291 (hgcI)
0.79 0.42 OTU10327 (SAR11 clade III) + OTU6265 (SAR324) + OTU5151 (Pseudohongiella)

G4 154 0.93 0.72 OTU9052 (SAR11 clade I) + OTU10059 (SAR11 clade Ia) + OTU9352 (SAR11 clade Ia) + 
0.94 0.68 OTU11164 (SAR116) + OTU1593 (NS3a marine group)
0.94 0.68 OTU9241 (SAR11 clade III) + OTU13500 (SAR11 clade II) + OTU12434 (SAR11 clade III) + 

OTU9903 (SAR11 clade II) + OTU5657 (SAR324) + OTU875 (Pseudohongiella)
OTU9052 (SAR11 clade I) + OTU10059 (SAR11 clade Ia) + OTU12763 (SAR11 clade III) + 
OTU12434 (SAR11 clade III) + OTU1687 (SAR86) + OTU9761 (SAR11 clade III)

Table 5. Bacterial indicators of the 4 environmental groups defined for the Delaware estuary. The candidate species are those
who meet the criterion of being present in at least 50% of the samples composing each group. A and B denote the IndVal com-
ponents of specificity and sensitivity, respectively. The indicator operational taxonomic units (OTUs) are the combination of
candidate OTUs that were selected as the best indicators of each group among all possible significant combinations (p < 0.05). 

All indicators achieved 100% group coverage, with exception of the G3 indicator which had 95.8% coverage

Fig. 4. Non-metric multidimensional scaling with groups
given by Ward clustering superimposed, both based on the
Bray-Curtis distance among samples, according to their bac-
terial community composition. The shapes of the symbols
indicate the Ward clusters; symbol colours indicate the estu-
ary to which each sample belongs (RdlP: Río de la Plata; 

Dlwr: Delaware)
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work, we demonstrated that bacterial indica-
tors re sponded significantly to the set of envi-
ronmental variables used to define the
groups of sites, with each indicator display-
ing a unique pattern of response (Table 3).
While the environmental variables measured
here are certainly cheaper to monitor than
the bacterial indicators, this work aims to act
as a proof of principle and a guide for further
studies where the variables of interest are
costly or cumbersome to measure. A poten-
tial application could be the identification of
hotspots of the presence and concentration of
certain pollutants. In particular cases, aquatic
bacterial communities have been success-
fully used to categorize samples according to
how they are impacted by different pollu-
tants such as uranium, nitrate, hydrocarbons,
heavy metals, or organic enrichment (Smith
et al. 2015, Lanzén et al. 2021).

4.1.  On the definition of groups of samples 
and IndVal calculation

Although it might seem obvious, it is worth
stressing the importance of the variables cho-
sen to define the groups, as different sets led
to different groupings. This study aimed to
evaluate the performance of bacterial indica-
tors for categorizing samples into groups
defined based on variables external to the
BCC (i.e. all non-redundant environmental
variables). Certainly, there are other possible
partitions, depending on which variables are
used for the definition of the groups.

Therefore, in order to correctly apply this
ap proach, it is critical to (1) decide which is
the focus of the grouping for later sample as-
signment to select the variables which are
most relevant for the grouping and (2) assure
a non-redundant set of variables to allow for
optimal performance of the ordination/clus-
tering methods chosen to define the groups
(Le gendre & Legendre 1998). The bacterial
response to the variables of interest might be
masked by the influence of main drivers of
BCC, such as salinity or temperature (Fuhr -
man et al. 2008, Barberán & Casa mayor 2010).

Although it is possible to define the groups
of samples based on the BCC itself (Fortu-
nato et al. 2013), when looking for indicators
of environmental conditions it is advisable to
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maintain statistical independence between the vari-
ables used for the definition of groups and the com-
munity composition (De Cáceres & Legendre 2009),
as exemplified here.

IndVal has mainly been used for macro-organisms,
which form communities that are typically far less
diverse than microbial communities and for which
the identification methods yield similar numbers of
individuals examined per sample. This has practical
consequences for the IndVal calculation using ‘indic-
species’ while dealing with microbial communities.
To start with, the number of individuals sampled
across sites can vary by orders of magnitude, not due
to true sampling effort, but to the method used to ob -
tain the identity of the microorganisms. Thus,
although much information can potentially be lost,
the samples need to be rarefied to the minimum sam-
pling effort to obtain comparable abundances, at
least within each group of sites. Rarefaction is a long-
standing technique to render different sampling
efforts comparable and remains a very robust tool
compared to alternative approaches more recently
developed for dealing specifically with bacterial
communities (Weiss et al. 2017).

Another very distinctive issue of microbial commu-
nities is that there could be orders of magnitude dif-
ference in the abundance of the dominant and rare
species. A remarkable advantage of the IndVal
approach as a strategy for detecting differential
abundance is that the indicator value of each species
is evaluated independently of the others, and thus
indicators are identified regardless of their abun-
dance (Dufrene & Legendre 1997). This feature has
the drawback that rare species can be selected as
indicators, posing concern for whether their differen-
tial distribution is due to environmental filtering or
under-sampling. However, this disadvantage can be
easily overcome due to the very high diversity of
microbial communities. This high diversity allows
hundreds of candidate species to act as indicators of
a given group. Although this is a notable advantage,
it poses a computational challenge since a large
number of possible combinations of OTUs will have
to be evaluated. Thus, the number of candidate
OTUs to consider per group needs to be reduced by
applying different strategies. In particular, while
using the ‘indicspecies’ package this can be achieved
by setting a relatively stringent threshold to the B
value and selecting a convenient maximum order of
possible OTUs combinations (De Cáceres 2013).

A final methodological consideration concerns pre-
diction; in this work, the ‘indicspecies’ package was
modified in order to introduce 2 validation strategies.

13

Fig. 5. Accuracy and Kappa values obtained by each model
in the training data set. Boxplot parameters: lower and
upper hinges: first and third quartiles; dots: outliers; hori-

zontal lines: median values

Reference
RdlP Dlwr Krka Pearl

RF
RdlP 4 1 0 0
Dlwr 1 24 0 0
Krka 0 0 5 0
Pearl 0 0 0 3
LDA
RdlP 5 0 0 0
Dlwr 0 25 1 1
Krka 0 0 4 0
Pearl 0 0 0 2
NNet
RdlP 4 0 0 0
Dlwr 1 25 1 0
Krka 0 0 4 0
Pearl 0 0 0 3
SVM
RdlP 5 1 0 0
Dlwr 0 24 1 0
Krka 0 0 4 0
Pearl 0 0 0 3
C5.0
RdlP 4 0 0 0
Dlwr 1 25 0 1
Krka 0 0 5 0
Pearl 0 0 0 2

Table 7. Confusion matrices for each machine learning me -
thod, showing the assignation of the samples in the test data
set composed of 5 samples from Río de la Plata estuary
(RdlP), 25 samples from Delaware estuary (Dlwr), 5 samples
from Krka estuary, and 3 samples from Pearl estuary. RF:
Random Forest; LDA: Linear Discriminant Analysis; NNet:
Neural Network; SVM: Support Vector Machine; C5.0: 

Decision Tree



Aquat Microb Ecol 88: 1–18, 202214

We showed that the bacterial indicators were very
effective in predicting the true group membership of
virtually all samples of the 4 estuaries using leave-
one-out cross-validation. The indicators also per-
formed very well when utilised as predictors of a test
set, generated by a random partition of samples,
using the combined database.

As mentioned above, the ‘predict’ function of the
‘indicspecies’ package relies on the presence of the
indicator — not on its abundance — restricting its
performance. However, this work shows that pro-
vided the number of samples is sufficiently large,
robust indicators can be selected using the IndVal
approach and then their abundance utilised as
 predictors by employing a suite of ML techniques,
overcoming that limitation. ML has formerly been
used for classifying samples using the entire com-
munity composition (Smith et al. 2015, Lanzén et al.
2021) or known in dicator taxa as predictors, i.e. fae-
cal bacteria (Roguet et al. 2018). Microbial composi-
tion data sets are ty pically characterized by exhibit-
ing a much larger number of OTUs compared to the
number of samples (known as a high-dimensional
problem). IndVal might be conveniently applied as
a feature-selection methodology, allowing dimen-
sionality reduction prior to the application of any
ML technique. Feature selection allows for better
control of collinearity, helping to deal with model
overfitting (Hastie et al. 2009) and substantially
decreasing computational time.

In this work, the predictions performed using the
‘indicspecies’ package already exhibited a very high
degree of accuracy and, although the combination of
IndVal + ML performed in the upper range of accu-
racy, there was not much room for improvement.
However, while dealing with very large data sets
and/or when the predictive capacity of individual
indicators is not as powerful, the combination of pre-
selecting the predictive variables using IndVal and
then testing different ML models could be of particu-
lar utility. Thus, depending on the data set, it would
be advisable to evaluate and compare the perform-
ance of both approaches in combination.

4.2.  How good are bacterial indicators?

The IndVal for our bacterial indicators were rela-
tively high (median value: 0.74; Tables 2, 4, & 5), in
the upper range of values when compared to other
biological communities to which this approach has
been traditionally applied. Examples include plant
indicators of peatland restoration with IndVal be -

tween 0.25 and 0.61 (González et al. 2013), spiders as
indicators of heathland restoration (IndVal: 0.27−
0.92) (Cristofoli et al. 2010), or multi-taxa (plants,
moths, and songbirds) indicators of ecosystem recov-
ery after reduction in deer density (IndVal: 0.50−
0.97) (Bachand et al. 2014). Even though the environ-
mental assessment of those works mainly evaluated
restoration, which is broader than evaluating the
response to a restricted set of physicochemical vari-
ables, the high IndVal shown by the microbial com-
munities are noteworthy.

The high IndVal obtained here were mainly due to
the specificity component (A), which was generally
high, but they also exhibited high fidelity (meaning
presence in all sites of their target group), especially
compared to plant indicators (Bachand et al. 2014,
Vieira et al. 2015). This high specificity might be a
characteristic of microbial communities, due to their
large population sizes and potential for long-distance
dispersal (Finlay & Clarke 1999, Cohan & Koeppel
2008) combined with their high responsiveness to
environmental conditions (de Wit & Bouvier 2006).
Although more comparative studies are needed, the
results obtained so far indicate that biofilm and ben-
thic microbial indicators revealed by massive rRNA
gene sequencing are equivalent to, or even outper-
form, metazoan indicators in the prediction of eco-
logical status (Lau et al. 2015, Cordier et al. 2018).

4.3.  Who are the bacterial indicators?

Indicator OTUs belonged to a handful of phyla
(Proteobacteria, Actinobacteria, Cyanobacteria, Bac-
teroidetes, Planctomycetes, Verrucomicrobia, and
Chloroflexi), probably reflecting the numerical dom-
inance of these groups in aquatic systems (Barberán
& Casamayor 2010). Also, within each phylum, indi-
cator OTUs were mostly affiliated with certain taxa.
Thus, Alphaproteobacteria, in particular SAR11, was
the most common taxonomic affiliation of indicator
OTUs, while SAR86, Burkholderiaceae, and Pseudo-
hongiella stood out among the Gammaproteobacte-
ria. Within the Actinobacteria, hgcI and Actinomari-
naceae were the clades with indicator OTUs, while
all cyanobacterial indicator OTUs belonged to 2 gen-
era: Cyanobium and Synechococcus. This could
merely derive from their numerical abundance in
estuarine environments, and it could also be ex -
plained by a particularly strong ecological diversifi-
cation of these groups. Aquatic Alphaproteobacteria
(mainly SAR11) have been shown to exhibit very
high levels of micro-diversity (Acinas et al. 2004,
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Ettema & Andersson 2009) attributable to environ-
mental forcing (Logares et al. 2009). There is emerg-
ing evidence that this could be also the case for
SAR86 (Hoarfrost et al. 2020) and hgcI (Neuen-
schwander et al. 2018).

The species composition of the indicators was in
concordance with the known ecology of the respective
clades. Salinity was clearly an important factor, easily
linkable to the eco-physiological characteristics of
several taxa. For example, members of the actinobac-
terial cluster hgcI, typically found in freshwater habi-
tats (Warnecke et al. 2004), were frequently compo-
nents of indicators for groups of  samples characterized
by low salinity, whereas high-salinity groups had
among their indicators common members of marine
communities, e.g. the proteobacterial clades SAR11
and SAR86, the NS4 Flavobacteriaceae cluster, or the
Chloroflexi SAR 202 clade (Morris et al. 2002, Alonso
et al. 2007, Schattenhofer et al. 2009, Mehrshad et al.
2018). The pattern of response to salinity was also evi-
dent in clusters from intermediate salinity where com-
mon freshwater representatives (hgcI and Burkholde-
riaceae) were indicators along with typical marine
members (SAR11, SAR86, Actinomarinaceae, or the
flavobacterial NS3a marine group).

Other eco-physiological features, although more
subtle, were also evident: indicators for the groups
exhibiting lower chl a values frequently included
members known to thrive under less-rich conditions,
such as SAR11, SAR202, SAR324, SAR116 (Schatten-
hofer et al. 2009, Choi et al. 2015, Cao et al. 2016,
Mehrshad et al. 2018), while the opposite was true
for indicators of the groups with high chl a values,
which included members of Rheinheimera, NS4,
Cyanobium, and Planctomycetales, which have fre-
quently been found associated with phytoplankton
blooms or high chl a (Brettar et al. 2006, Pizzetti et al.
2011, Díez-Vives et al. 2019, Li et al. 2020).

Thus, IndVal also appears to be a powerful tool to
gain further insight into the ecology of different bac-
terial taxa. This aspect is remarkable, as we have
only recently been able to evidence eco-physiologi-
cal patterns of aquatic bacteria at the species level
while dealing with whole community data sets
(Osterholz et al. 2016, Chafee et al. 2018).

4.4.  How do the identified bacterial indicators
relate to water quality?

A meta-analysis of databases containing both com-
munity composition and appropriate environmental
parameters would yield information on how general

or specific the bacterial indicators are for the differ-
ent types of aquatic systems, as well as the degree of
impact to which they are subjected. This was one of
the objectives of this work. However, it was surpris-
ing to see how little information is available in public
repositories regarding bacterioplankton composition
evaluated by NGS that is also accompanied by envi-
ronmental metadata for estuaries worldwide. More-
over, a comparative analysis is further impeded by
the utilisation of different regions of the 16S rRNA
gene as sequencing targets. Thus, after an exhaus-
tive search, only a handful of data sets could be
included and the question of universality could not
be addressed, as there was no true overlap among
the environmental conditions measured in different
estuaries (Fig. 4, Table S4). In particular, the appar-
ent environmental similarity of Dlwr and Pearl sug-
gested by the statistical tests probably resulted from
the difference between the set of physicochemical
variables measured in each study. Notably, while dis-
solved oxygen was the main driver of the BCC in the
Pearl estuary (Liu et al. 2015), it was not reported in
the Dlwr data set (Table 1).

Despite its limitations, this data set contained rep-
resentatives from the full range of trophic states
(Table 1), and the bacterial indicators were able to
identify their estuary in the combined data set
(Tables S5 & 7). Although the amount of data is not
sufficient to establish a correlation among indicator
taxa and trophic condition, the prevalence of differ-
ent SAR11-related OTUs among the indicator taxa is
outstanding, suggesting that the high niche differen-
tiation within this clade could be a useful trait in the
search for bioindicators. In this context, the selection
of taxa associated with human activity is also re mar -
kable; i.e. Polynucleobacter (Hosen et al. 2017) as an
indicator of the Pearl estuary, which is the most
impacted system in the data set.

The search for novel microbial indicators appears
to be a promising tool for environmental manage-
ment, complementing long-standing legislation stan-
dards typically restricted to bacterial indicators of
faecal contamination with more integrative indica-
tors of environmental quality. This could include fur-
ther development of quality indexes based on BCC
developed for specific habitats and/or anthropogenic
impacts (Lau et al. 2015, Aylagas et al. 2017, Li et al.
2018) or the identification of non-culturable target
taxa to be monitored through qPCR, in a similar
approach to the detection of certain waterborne
microbial pathogens (Clark et al. 2011, Eschbach et
al. 2017). Moreover, the IndVal approach is also
applicable beyond rRNA genes (Paula et al. 2014),
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opening up the possibility to search for indicators of a
given process/pathway related to specific environ-
mental conditions.

5.  CONCLUSIONS

IndVal is an index that can be compared across
very different biological communities as a measure
of their suitability to reflect different environmental
conditions. The results of this proof of principle study
indicate that bacterioplankton species, as reported in
16S rRNA-based OTUs, appear to be promising can-
didates to consider in the context of monitoring and
conservation of aquatic systems. The possibility of
generating large databases harbouring environmen-
tal and functional information along with the micro-
bial community composition data for several habitats
is a good basis for developing and improving the en -
vironmental quality indicator potential of these di -
verse communities.
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