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RELATING CUT AND PASTE INVARIANTS AND TQFTS

CARMEN ROVI, MATTHEW SCHOENBAUER

Abstract

In this paper we shall be concerned with a relation between TQFTs and
cut and paste invariants introduced in [KKNO73]. Cut and paste invariants,
or SK invariants, are functions on the set of smooth manifolds that are in-
variant under the cutting and pasting operation. Central to the work in this
paper are also SKK invariants, whose values on cut and paste equivalent
manifolds differ by an error term depending only on the glueing diffeomor-
phism. Here we investigate a surprisingly natural group homomorphism
between the group of invertible TQFTs and the group of SKK invariants
and describe how these groups fit into an exact sequence. We conclude in
particular that all positive real-valued SKK invariants can be realized as
restrictions of invertible TQFTs.

All manifolds are smooth and oriented throughout unless stated otherwise.

1. Introduction

1.1. Cut and Paste Invariants. Our knowledge of cut and paste invari-
ants is fruit of several decades of exciting developments in differential and
algebraic topology. To understand these invariants, mathematicians needed
a solid grasp of characteristic classes, cobordism theory, and the signature.
The motivation to study these invariants came from the study of the index
of elliptic operators.

The 1950s and 1960s saw incredible developments in all of these areas.
In 1953, Vladimir Rokhlin uncovered much about the signature; he found
a connection between Pontryagin classes and the signature and discovered
the signature’s importance in cobordism theory. Crucial here is also Thom’s
cobordism theory, which he developed during those same years. It was also
at this time when Friedrich Hirzebruch proved his famous theorem relating
the signature and the Pontryagin numbers, an immensely important devel-
opment in the theory of characteristic classes. Work continued throughout
the next decade, and Sergei Novikov first presented the additivity property
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of the signature in 1966. Once this result was published in 1970, our knowl-
edge of the signature and cobordism was firm enough for work to be done
on the SK and SKK invariants.

However, it was the study of the index of elliptic operators that actually
brought attention to the study of these invariants. This topic had also been
substantially developed in this time period, in particular by Michael Atiyah
and Isadore Singer who proved the Atiyah-Singer Index Theorem in 1963.
This was a groundbreaking development in both analysis and topology, and
showed a deep connection between the two fields. In an attempt to in-
vestigate certain aspects this work, Klaus Jaenich noticed that the index of
elliptic operators had the properties of invariants that were not influenced by
cut and paste operations. In 1968 and 1969, he wrote two papers [Jan68],
[Jan69] studying these invariants. These papers included very interesting
results but lacked a systematic approach to these ideas.

This opened the door for four young authors, Ulrich Karras, Matthias
Kreck, Walter Neumann, and Erich Ossa, to give these invariants a more
thorough treatment. These four authors published a short book in 1973 ti-
tled Cutting and Pasting of Manifolds; SK Groups, in which they completely
classified these invariants [KKNO73]. They were the first to use the terms
“SK invariants” and “SKK invariants.” The “SK” stands for “schneiden”
and “kleben,” which mean “cut” and “paste” in German. The second K in
SKK stands for “kontrollierbar,” the German word for “controllable.”

1.2. Topological Quantum Field Theories. The idea of Topological
Quantum Field Theories originated in the 1980s, an era of rapid development
of our understanding of the relationship between geometry and physics. The
most credit for the initial development of TQFTs is due to Edward Witten
and Michael Atiyah. Both did work in mathematics and theoretical physics;
Witten was more the physicist and Atiyah more the mathematician. Wit-
ten contributed by laying the mathematical foundation for super-symmetric
quantum mechanics. This theory is rather complicated, and Atiyah con-
tributed by looking at a simplified, purely mathematical version of Witten’s
theories. In [Ati88] Atiyah axiomatized TQFTs, which, unlike Witten’s the-
ory, did not involve any geometric ideas such as curvature or Riemannian
metric.

1.3. The origin of this project. The relation between SKK invariants
and invertible TQFTs was first investigated by Matthias Kreck, Stephan
Stolz and Peter Teichner. The exact sequence presented in this paper was
due to them, even if they had not published their work.

1.4. Acknowledgements. The second named author would like to give
great thanks to his REU advisor Dr Carmen Rovi for mentoring the research
project that has given rise to this paper. He would like also like to thank
the REU organization in Bloomington for the very enjoyable experience
during the summer of 2017. In addition to this, he would like to thank
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Prof Frank Connolly for improving his mathematical maturity over the last
year. Both authors would like to thank Prof Chris Schommer-Pries for
useful conversations about certain ideas needed to prove the existence of the
desired split exact sequence.

2. Cut and Paste

In this section we will describe an equivalence relation on manifolds called
the “cut and paste” relation. We will conclude by imposing further structure
on these equivalence classes to form the SK and SKK groups.

We first briefly describe the cut and paste operation on oriented manifolds.
To perform this operation on a manifold M , cut M along a codimension-1
submanifold Σ with trivial normal bundle and paste the resulting manifold
back together via an orientation-preserving diffeomorphism f : Σ → Σ.

Definition 2.1. Two closed oriented manifolds M and N are said to be
cut and paste equivalent or SK equivalent if N can be obtained from M
by a finite sequence of cut and paste operations. In this case we write
[M ]SK = [N ]SK .

This is clearly an equivalence relation. A pictorial representation of a
nontrivial cut and paste operation is shown in Figure 1. The figures on the
top right and bottom are mapping tori of the map f : Σ → Σ.

We now describe the cut and paste invariants. Let Mn denote the set of
all closed oriented n-manifolds, and let M,N ∈ Mn.

Definition 2.2. Let G be an abelian group. A function Θ : Mn → G is
said to be an n-dimensional cut and paste invariant or SK invariant if the
following hold.

• Θ(M) = Θ(N) whenever M and N are cut and paste equivalent.
• Θ(M

∐

N) = Θ(M) + Θ(N)

It follows from the additivity properties of the signature and Euler char-
acteristic that both are SK invariants.

We can also define a weaker class of invariants, which will be especially
interesting for later use.

Definition 2.3. Let G be an abelian group. A function ξ : Mn → G is said
to be an n-dimensional SKK invariant if the following hold.

• Suppose M and N are cut and paste equivalent, i.e. M = X1 ∪f X2

and N = X1 ∪g X2 so that f and g are the gluing diffeomorphisms
of M and N , respectively. Then

ξ(M)− ξ(N) = ξ(f, g)

where ξ(f, g) ∈ G depends only on f and g.
• ξ(M

∐

N) = ξ(M) + ξ(N)
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Figure 1. Cutting and pasting a mapping torus

It is clear from the definitions that every SK invariant is an SKK invari-
ant. For an SK invariant, the “error” function ξ(f, g) is always zero. Note
that the converse is not true, since there exist SKK invariants which are
not SK invariants. One such example is the Kervaire semicharacteristic.

Definition 2.4. LetM be a compact, oriented n-dimensional manifold. We
define the Kervaire semicharacteristic χ1/2 by

χ1/2(M) =







1
2χ(M) n even
(
∑

i=0
rankH2i(M)

)

mod 2 n odd,
(2.1)

where χ is the Euler characteristic.
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See [KKNO73, p. 44] for a proof that χ1/2 is an SKK invariant in dimen-
sions 4n+1. It is an SKK invariant in all dimensions other than dimensions
4n− 1.

In order to classify SK and SKK invariants, we must define the SK
and SKK groups. Mn is a communtative monoid under the disjoint union
operation, so we can form its Grothendieck group G(Mn). We form quotient
groups of this group, which will give us more concise and useful definitions
of SK and SKK invariants.

Definition 2.5. Let RSKn denote the subgroup of G(Mn) generated by all
elements of the form [M ]

∐

−[N ] where [M ]SK = [N ]SK . G(Mn)/R
SK
n =

SKn is called the nth SK group.

This definition gives us an alternative description of SK invariants.

Proposition 2.6. Let G be an abelian group. A function Θ : Mn → G is
an n-dimensional SK invariant if and only if it is an element of the group
Hom (SKn, G).

We can now give a full description of SK invariants. In the following
theorem, σ denotes the signature and χ denotes the Euler characteristic.

Theorem 2.7. [KKNO73, p. 7]

(a) For n odd, we have

SKn = 0. (2.2)

(b) For n ≡ 0 mod 4, we have
(

χ− σ

2

)

⊕ σ : SKn
∼=
−→ Z⊕ Z, (2.3)

so the signature σ and the Euler characteristic χ together form a
complete set of invariants.

(c) For n ≡ 2 mod 4, we have

χ

2
: SKn

∼=
−→ Z, (2.4)

so χ is a complete invariant.

We would like to construct a quotient group of G(Mn) that serves the
same purpose as SKn, but for SKK invariants. How can this be done? The
stated condition

ξ([M ])− ξ([N ]) = ξ(f, g) (2.5)

when [M ]SK = [N ]SK and f and g are the gluing diffeomorphisms of M =
X1 ∪f X2 and N = X1 ∪g X2, respectively, is equivalent to the condition

ξ([M ])− ξ([N ]) = ξ([M ′])− ξ([N ′]) (2.6)

when [M ′]SK = [N ′]SK and f and g are also the gluing diffeomorphisms of
M ′ = Y1 ∪f Y2 and N ′ = Y1 ∪g Y2, respectively. This leads to the following
definition.
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Definition 2.8. Let RSKKn denote the subgroup of G(Mn) generated by all
elements of the form

[M ]
∐

−[N ]
∐

−[M ′]
∐

[N ′], (2.7)

where [M ]SK = [N ]SK , [M
′]SK = [N ′]SK and the gluing diffeomorphisms

are given by the above description. G(Mn)/R
SKK
n = SKKn is called the

nth SKK group.

Just as in the case of SKn, we will let [M ]SKK denote the SKK equiv-
alence class of a closed manifold M . We now get our desired description of
SKK invariants.

Proposition 2.9. Let G be an abelian group. An n-dimensional SKK
invariant is an element of the group Hom (SKKn, G).

3. Cobordisms and SKK Groups

In this section we briefly describe cobordisms, which is needed both for
the classification of SKK invariants and the definition of TQFTs.

Definition 3.1. Let Σ0 and Σ1 be closed oriented (n − 1)-manifolds. An
oriented n-cobordism M : Σ0  Σ1 is a manifold M along with orientation-
preserving diffeomorphisms

φin : Σ0 → ∂inM and φout : Σ1 → ∂outM, (3.1)

where
∂M = ∂inM

∐

∂outM. (3.2)

Here ∂inM is called the in-boundary of M and ∂outM is called the out-
boundary of M . Similarly, φin and φout are call the in-boundary diffeomor-
phism of M and the out-boundary diffeomorphism of M , respectively.

The cobordism relation is an equivalence relation and the set Ωn−1 con-
sisting of all oriented cobordism classes of (n − 1)-dimensional manifolds
forms an abelian group with disjoint union as composition operation.

Note that there is a natural gluing operation on two cobordisms M :
Σ0  Σ1 and N : Σ1  Σ2. The gluing diffeomorphism ∂outM → ∂inN is
the map φ′in ◦φ

−1
out, where φ

′
in is the in-boundary diffeomorphism Σ1 → ∂inN

of N . We will denote the resultant cobordism MN .

Definition 3.2. Two cobordisms M : Σ0  Σ1 and N : Σ0  Σ1 are said
to be equivalent if there exists an orientation-preserving diffeomorphism ψ
making the following diagram commute.

M

Σ0 Σ1

N

φin

φ′
in

φ′
out

φout

ψ
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In this case we write M ∼ N .

We now relate the cobordism groups to the SKK groups.

Theorem 3.3. [KKNO73, p. 44] The homomorphism SKKn → Ωn that
assigns to each manifold its cobordism class is a surjective SKK invariant.

Theorem 3.4. [KKNO73, p. 44] The following sequence is exact:

0 → In → SKKn → Ωn → 0, (3.3)

where

In =











Z n ≡ 0 mod 2

Z2 n ≡ 1 mod 4

0 n ≡ 3 mod 4

(3.4)

In addition, χ splits the sequence in dimensions divisible by 4, and χ1/2 splits
the sequence in dimensions n ≡ 1, 2 mod 4.

Thus the SKK invariants are none other than linear combinations of the
Euler characteristic, the Kervaire semicharacteristic, and bordism invariants.

4. Topological Quantum Field Theories and the Group of

Invertible TQFTs

In this section we give the definition of a TQFT. Furthermore we will
describe a multiplication operation on TQFTs, which will allow us to define
the group of invertible TQFTs.

Definition 4.1. An n-dimensional oriented TQFT is a symmetric monoidal
functor T from the n-cobordism category to the vector space category, as-
signing to each closed oriented (n − 1)-manifold Σ a k-vector space T (Σ)
and to each oriented n-dimensional cobordism M : Σ0 → Σ1 a linear map
T (M) : T (Σ0) → T (Σ1), satisfying the following properties:

(1) Two equivalent cobordisms have the same image.

M ∼ N =⇒ T (M) = T (N) (4.1)

(2) A glued cobordism goes to a composition of linear maps.

T (MN) = T (M) ◦ T (N) (4.2)

(3) A cylinder cobordism gets sent to the identity map.

T (Σ× I) = IdT (Σ) (4.3)

(4) Disjoint unions of (n − 1)-manifolds and cobordisms get sent to a
tensor product of vector spaces and linear maps, respectively.

T (Σ
∐

Σ′) = T (Σ)⊗ T (Σ′) (4.4)

T (M
∐

N) = T (M)⊗ T (N) (4.5)

(5) The empty manifold ∅ gets sent to the ground field k.

T (∅) = k (4.6)
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Similarly to the case of cobordisms, we will refer to all oriented TQFTs
as “TQFTs” for brevity.

We can now form a category of TQFTs, which we will denote by nTQFT
k

,
where the objects are TQFTs and the arrows are natural transformations of
TQFTs. This is a symmetric monoidal functor category, which has a natural
symmetric monoidal structure.

Definition 4.2. The product of two TQFTs T1 and T2 is the TQFT

T1 ⊗ T2 (4.7)

that assigns to each (n− 1)-manifold Σ the vector space

T1(Σ)⊗ T2(Σ) (4.8)

and to each n-cobordism M : Σ0  Σ1 the linear map

T1(M)⊗ T2(M) : T1(Σ0)⊗ T2(Σ0) → T1(Σ1)⊗ T2(Σ1). (4.9)

The trivial TQFT, which sends each (n − 1)-manifold to k and each n-
cobordism to the identity, is an identity element under the tensor product
operation.

We wish to study the invertible objects in nTQFT
k

, that is, the TQFTs
T with an inverse T ′ such that T ⊗T ′ is the trivial TQFT. It is a consequence
of the axioms of TQFTs that TQFTs only assign finite-dimensional vector
spaces to closed (n − 1)-manifolds (See [Koc04, p. 31]). Since tensoring
multiplies the dimension of finite-dimensional vector spaces, each vector
space that an invertible TQFT T assigns to an (n − 1)-manifold must be
1-dimensional, i.e. isomorphic to k.

Since all linear maps k → k are simply scalar multiplication, each map
that an invertible TQFT T assigns to an n-manifold can be canonically
associated with a scalar. All linear maps assigned by invertible TQFTs
must be invertible, that is, multiplication by a nonzero scalar.

It is clear that the set of invertible TQFTs forms a group under the
composition operation in nTQFT

k

. We will denote this group as nTQFT×
k

.
What we will do next combines many of the ideas that we have presented

so far. Our goal is to determine how invertible TQFTs evaluate two cut and
paste equivalent closed manifolds, considered as cobordisms ∅ ∅.

Let T be an invertible TQFT and letM andN be cut and paste equivalent
closed manifolds, with gluing diffeomorphisms f and g, respectively, as in
Figure 2.

Also, let δ be the canonical isomorphism Hom
k

(k,k) → k, where Hom
k

(k,k)
is the vector space of k-linear automorphisms of k. Now using the fact that
Σ has a collar neighborhood in both M and N , we can replace M and N
with the equivalent cobordisms

M1CfM2 and M1CgM2, (4.10)

where Cf and Cg denote the mapping cylinders of f and g respectively, as
in Figure 4.
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pasted via f
M

pasted via g
N

Figure 2. Cut and paste equivalent manifolds

pasted via f
CfM1 M2

pasted via g
CgM1 M2

Figure 3. Equivalent cobordisms

Now evaluating T on both cobordisms and taking a quotient, we see an
interesting relation.

δ(T (M1CfM2))

δ(T (M1CgM2))
=
δ(T (M1)) · δ(T (Cf )) · δ(T (M2))

δ(T (M1)) · δ(T (Cg)) · δ(T (M2))
=
δ(T (Cf ))

δ(T (Cg))
(4.11)

Note that the above equation is valid because all scalars are required to be
nonzero by the invertibility of T .

5. Results

We now relate the ideas of invertible TQFTs and SKK invariants. Let
k

× be the multiplicative group on k − {0}. The relation will be expressed
by means of a group homomorpism

Ψn : nTQFT×
k

→ Hom (SKKn,k
×). (5.1)

Let T ∈ nTQFT×
k

. If X is a smooth n-dimensional manifold, then we
set Ψn(T )([X]) = δ(T ([X])). Now let M and N be cut and paste equivalent
closed oriented n-manifolds, where f and g are the gluing diffeomorphisms
of M and N , respectively. We have shown that

Ψn(T )(M)

Ψn(T )(N)
=
δ(T (M))

δ(T (N))
=
δ(T (Cf ))

δ(T (Cg))
= Ψn(T )(f, g). (5.2)

The notation is a bit different since we are dealing with a multiplicative
group, but this is precisely the first criterion in the description of SKK
invariants in Definition 2.3.
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Thus Ψn(T ) induces a homomorphism SKKn → k

×. Hence Ψn(T ) is an
SKK invariant on n-manifolds, and Ψn is a homomorphism nTQFT×

k

→
Hom (SKKn,k

×).
This homomorphism Ψn gives a natural relationship between invertible

TQFTs and SKK invariants. Note that this relationship only makes sense
if G from Definition 2.3 is the multiplicative group of a field. This causes a
problem for the SKK invariants we have given, since the target groups here
include Z, which is not isomorphic to the multiplication group of any field.
However, the problem is solved by the exponential map exp : x→ ex. This
exponential map exp sends Z monomorphically to a subgroup of R×. This
allows us to think of the our additive integer and rational-valued invariants
as elements of Hom (SKKn,R

×).
We will be interested in finding the kernel and image of Ψn. The kernel

is easy to describe.

Theorem 5.1. Let T n
k

be the subgroup of nTQFT×
k

that consists of all

T ∈ nTQFT×
k

such that T (M) = id
k

for all n-cobordisms M with empty
boundary. Then T n

k

= ker(Ψn).

Proof. Let T be an invertible n-TQFT, and suppose Ψn(T ) is the trivial
SKKn-invariant, i.e. the invariant that sends all closed n-manifolds to 1 ∈
k

×. Then obviously T ∈ T n
k

. It is also clear that T ∈ T n
k

=⇒ T ∈
kerΨn. �

The proposition above expresses a degree of “forgetfulness” of Ψn. TQFTs
assign values to all cobordisms, with or without boundary, and SKK invari-
ants are only defined on closed manifolds. Thus by applying Ψn to T , one
loses some information about T , as we will show in Theorem 5.3.

We start by proving the following Lemma.

Lemma 5.2. If T ∈ T n
k

, then for any cobordism M , T (M) only depends
on the in-boundary and out-boundary of M .

Proof. Let M : Σ0  Σ1 and N : Σ0  Σ1 be cobordisms. Consider the
cobordism M : Σ0  Σ1. Also let

BΣ0
: ∅ Σ0

∐

Σ0

and

BΣ1
: Σ1

∐

Σ1  ∅

be the cobordisms with cylinder n-manifolds and identity boundary diffeo-
morphisms. We have

δ−1(1) = T (BΣ0
(M

∐

M)BΣ1
) = T (BΣ0

)T (M)T (M)T (BΣ1
)

so T (M) = (T (BΣ0
)T (M)T (BΣ1

))−1. The same reasoning shows that
T (N) = (T (BΣ0

)T (M )T (BΣ1
))−1. �
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Theorem 5.3. T n
k

is trivial if and only if k× is trivial.

Proof. First suppose k× is trivial. Then there is obviously only one possible
invertible TQFT, which is the trivial TQFT. In this case T n

k

is clearly
trivial.

Now suppose k× is nontrivial. We must define T ∈ nTQFT×
k

so that T
evaluates closed manifolds trivially and manifolds with boundary nontriv-
ially. We proceed as follows.

Let T (Σ) = k for all (n − 1)-manifolds Σ. Then assign to each closed
connected (n− 1)-manifold Σ a scalar λΣ. We require λΣ /∈ {0, 1} if Σ 6= ∅,
and λ∅ = 1. Now for any cobordism

M :
n
∐

i=0

Σi  
m
∐

j=0

Σj (5.3)

we define

T (M) = δ−1
(

n
∏

i=0

λΣi
·
m
∏

j=0

λ−1
Σj

)

. (5.4)

Now we check the axioms of Definition 4.1 in order. The value T as-
signs to an n-cobordism depends only on its in-boundary and out-boundary.
Equivalent cobordisms must have the same in-boundary and out-boundary,
so (1) holds.

Now consider axiom (2), and let

N :

m
∐

j=0

Σj  

l
∐

k=0

Σk (5.5)

be another cobordism. We have

T (MN) = δ−1
(

n
∏

i=0

λΣi
·
m
∏

k=0

λ−1
Σk

)

= δ−1
(

n
∏

i=0

λΣi
·
m
∏

j=0

λ−1
Σj

·
m
∏

j=0

λΣj
·

l
∏

k=0

λ−1
Σk

)

= δ−1
(

n
∏

i=0

λΣi
·
m
∏

j=0

λ−1
Σj

)

◦ δ−1
(

·
m
∏

j=0

λΣj
·

l
∏

k=0

λ−1
Σk

)

= T (M) ◦ T (N)

(5.6)

and (2) is satisfied. A connected cylinder cobordism of Σ is a cobordism
Σ Σ, so we have

T (Σ × I) = δ−1(λΣ · λ−1
Σ )

= δ−1(1)

= id
k

×

(5.7)
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so (3) is satisfied. The disconnected case follows from (4), which clearly
follows from Equation (5.4). (5) is satisfied trivially.

Thus T is an invertible n-TQFT, and for all closed manifolds M ,

T (M) = δ−1(λ∅ ◦ λ
−1
∅ )

= δ−1(1)

= id
k

× .

(5.8)

We chose T to take on nontrivial values, so T is not the trivial TQFT. �

We now want to try to figure out the image of Ψn. One problem, of
course, comes from the “forgetfullness” of Ψn. Given an SKK invariant ξ,
we would like to choose an invertible n-TQFT T such that Ψn(T ) = ξ. But
ξ gives us no explicit information as to how T should evaluate cobordisms
with nonempty boundary.

Some of the SKK invariants that we’ve listed, however, do give us infor-
mation about how to evaluate such cobordisms. We cannot with perfect ac-
curacy say that any of these invariants define TQFTs, since these invariants
(composed with exponential functions, if necesarry) assign nonzero scalars
to manifolds rather than invertible linear maps k → k. This difference is,
however, superficial, and we therefore choose to ignore it. Specifically, if M∂

n

denotes the set of diffeomorphism classes of compact oriented n-manifolds
with boundary, then we will say that a function Θ : M∂

n → k

× defines an
invertible n-TQFT if the formula

T (M) = δ−1(Θ(M)) (5.9)

defines an invertible n-TQFT. The following proposition shows us exactly
when Θ has this property.

Theorem 5.4. The function Θ : M∂
n → k

× defines an invertible n-TQFT
if and only if

Θ([M ∪
f
N ]) = Θ([M ]) ·Θ([N ]) (5.10)

for all [M ], [N ] ∈ M
∂
n. Here f is any orientation-preserving diffeomorphism

∂outM → ∂inN , where ∂outM and ∂inN are unions of boundary components
of M and N , respectively.

Proof. First suppose that Equation (5.10) holds. We check the TQFT ax-
ioms of Definition 4.1.

(1) is clearly satisfied, since for any equivalent n-cobordisms M and N ,
there is an orientation-preserving diffeomorphism ψ : M → N . Θ must
evaluate such cobordisms equally. (2) is satisfied by Equation (5.10). To
show (3), note that

Θ([Σ× I]) = Θ([Σ× I]) ·Θ([Σ× I]) (5.11)

for all closed (n − 1)-manifolds Σ. This true because the two identical
cylinder cobordisms can be glued to produce another cylinder cobordism.
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Thus we have Θ([Σ× I]) = 1. (4) is also satisfied by Equation (5.10), where
f is an empty map. (5) is satisfied trivially.

Now suppose Θ defines an invertible n-TQFT T . Then T must evaluate
n-cobordisms based only on their oriented diffeomorphism class. Now let
f : ∂outM → ∂inN be an orientation-preserving diffeomorphism. We can
easily form cobordisms M : ∂inM  ∂outM and N : ∂outM  ∂outN , where
the in-boundary diffeomorphism of N is f and all other diffeomorphisms are
the identity. The resulting glued cobordism has

M ∪
f
N (5.12)

as its n-manifold. Thus by axiom (2) of Definition 4.1, Equation (5.10)
holds. �

Corollary 5.5. If an oriented n-diffeomorphism invariant Θ on manifolds
with boundary defines an invertible n-TQFT, then it restricts to a linear
combination of the Euler characteristic and signature on closed manifolds.

Proof. Because our choice of f was arbitrary in Theorem 5.4, Θ restricts
to an SK invariant on closed manifolds. The result follows from Theorem
2.7. �

Corollary 5.6. The Euler characteristic χ and semicharacteristic χ1/2 de-
fine invertible n-TQFTs if and only if n is even. The signature σ defines an
n-TQFT.

Proof. For n even, χ and χ1/2 satisfy Equation (5.10) by the union formula
for the Euler characteristic and the fact that the Euler characteristic of
any closed odd-dimensional manifold is zero. The result then follows from
Theorem 5.4.

Now let n be odd. The n-disk has Euler characteristic 1. We can glue
two n-disks via the identity of the boundary to form an n-sphere, which
has Euler characteristic 0, contradicting Equation (5.10). Thus the Euler
characteristic cannot does not define an invertible n-TQFT for n odd.

That χ1/2 cannot does not define an n-TQFT for n odd follows from
Corollary 5.5.

The signature σ satisfies Equation (5.10) by Novikov additivity. �

Note that the above corollary is not a proof that Ψn is not surjective.
We have only given conditions for an oriented diffeomorphism invariant on
manifolds with boundary to define a TQFT. In general, an n-TQFT can
pick up more information than just the oriented diffeomorphism class of the
n-manifold; in particular, it notices the choice of boundary manifolds and
diffeomorphisms. These choices completely determine how cobordisms are
glued. This is why Θ does not notice how manifolds are glued.

We would like to describe

Ψn : nTQFT×
k

→ Hom (SKKn,k
×) (5.13)



14 CARMEN ROVI, MATTHEW SCHOENBAUER

by giving an exact sequence that includes these terms and the kernel and
cokernel of Ψn. This is difficult to do in general, but under a few assumptions
it is feasible. In particular, we shall see that if the target group of the SKK
invariants is the multiplicative group of positive reals, then we can describe
the sequence. Before we go into the description of this exact sequence we
give a preliminary definition and lemma.

Definition 5.7. LetM be a compact oriented manifold with boundary. We
define the double of M to be the closed manifold

D(M) =M ∪
id∂M

M. (5.14)

The following lemma gives a relation in SKKn that will be necessary for
the description of our exact sequence.

Lemma 5.8. Let X1, X2, and X3 be oriented n-manifolds with boundaries
Σ1, Σ2 and Σ3, respectively. An example is pictured in Figure 4.

X1 X3

Σ1 Σ2 Σ3

X2

Figure 4. X1, X2, and X3

Let

f : Σ1 → Σ2 and g : Σ2 → Σ3 (5.15)

be orientation-preserving diffeomorphisms. Then in SKKn, we have

[X1 ∪
f
X2] + [X2 ∪

g
X3] = [X1 ∪

g◦f
X3] + [D(X2)]. (5.16)

The desired relation is pictured in Figure 5.

Proof. Recall that in SKKn, whenever M and N are pasted, respectively,
via the same diffeomorphisms as M ′ and N ′,

[M ]− [N ] = [M ′]− [N ′]. (5.17)

We will make use of this equation to prove the lemma. To do this, we must
start with two “cut” manifolds with boundary, glue each in two different
ways, and apply (5.17). Our starting manifolds will be

X∗
1 = X1

∐

X2

∐

X ′
2

∐

X3, (5.18)
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X1 ∪
f
X2

+

X2 ∪
g
X3

=

X1 ∪
g◦f

X3

+

D(X2)

Figure 5. Our desired relation in SKKn

X1 X ′
2 X3

Σ1 Σ2 Σ3Σ′
2

X2

Figure 6. X∗
1

which is pictured in Figure 6,
and

X∗
2 = X1

∐

X2

∐

X ′
2

∐

Cg−1 ∪
idΣ2

X2, (5.19)

where Cg−1 is the mapping cylinder of g−1. This manifold is pictured in
Figure 7.

Both have

Σ1

∐

Σ2

∐

Σ′
2

∐

Σ3 (5.20)

as their boundaries. The two gluing diffeomorphisms are

F1 =

{

f : Σ1 → Σ2

g : Σ′
2 → Σ3

and F2 =

{

g ◦ f : Σ1 → Σ3

id : Σ2 → Σ′
2

(5.21)
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X1 X ′
2

Σ1 Σ2 Σ′
2

X2

Σ3

Cg−1 ∪
idΣ2

X2

Figure 7. X∗
2

Gluing X∗
1 via F1, we obtain

[X1 ∪
f
X2] + [X2 ∪

g
X3], (5.22)

as in Figure 8.

X1 ∪
f
X2

X2 ∪
g
X3

Figure 8. X∗
1 glued via F1

Gluing X∗
1 via F2, we obtain

[X1 ∪
g◦f

X3] + [D(X2)], (5.23)

as in Figure 9.

X1 ∪
g◦f

X3 D(X2)

Figure 9. X∗
1 glued via F2
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Gluing X∗
2 via F1, we obtain

[X1 ∪
f
X2] + [D(X2)], (5.24)

as in Figure 10.

X1 ∪
f
X2 D(X2)

Figure 10. X∗
2 glued via F1

Gluing X∗
2 via F2, we obtain

[X1 ∪
f
X2] + [D(X2)], (5.25)

as in Figure 11.

X1 ∪
f
X2 D(X2)

Figure 11. X∗
2 glued via F2

Now we apply Equation (5.17). We have

[X1 ∪
f
X2] + [X2 ∪

g
X3]− [X1 ∪

g◦f
X3]− [D(X2)] = [X1 ∪

f
X2] + [D(X2)]

− [X1 ∪
f
X2]− [D(X2)].

Therefore

[X1 ∪
f
X2] + [X2 ∪

g
X3]− [X1 ∪

g◦f
X3]− [D(X2)] = 0,

and

[X1 ∪
f
X2] + [X2 ∪

g
X3] = [X1 ∪

g◦f
X3] + [D(X2)],

as desired. �
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We now have everything we need to describe our sequence.

Theorem 5.9. Let T n
R
(1,−1) denote the subgroup of nTQFT×

R
that con-

sists of all invertible n-TQFTs that take on the values of δ−1(1) and δ−1(−1)
on closed manifolds. Then the following sequence is split exact:

0 → T
n
R (1,−1)

in−→ nTQFT×
R

|Ψn|
−−→ Hom (SKKn,R

×
+) → 0 (5.26)

Here in is the inclusion map, R×
+ is the multiplicative group of positive reals,

and |Ψn| is the homomorphism

|Ψn|(T ) := [M ]SKK → |δ(T ([M ]SKK))|. (5.27)

Proof. Checking exactness at the term nTQFT×
R

is easy. Because of the
absolute value bars in the definition of |Ψn|, it is clear that |Ψn| ◦ in is
trivial. Also, if |Ψn|(T ) is the trivial SKKn invariant, then

|δ(T ([M ]SKK))| = 1 (5.28)

on all closed manifolds X. This shows that

T ([M ]SKK) = δ−1(±1) (5.29)

and T ∈ T n
R
(1,−1).

The difficult part is defining the splitting homomorphism

S : Hom (SKKn,R
×
+) → nTQFT×

R
. (5.30)

That is, given an n-dimensional SKK invariant ξ with values in the positive
reals, we must find an invertible TQFT S(ξ) such that |Ψn|(S(ξ)) = ξ.
This cannot be a completely arbitrary assignment, because S must be a
homomorphism.

We first make use of Theorem 3.4 to describe Hom (SKKn,R
×
+). We let

χ∗ denote the subgroup of Hom (SKKn,R
×
+) given by multiples of the expo-

nential map composed with the Euler characteristic. Since R×
+ is torsion-free,

we have

Hom (SKKn,R
×
+) =











0 n odd

χ∗ n ≡ 2 mod 4

χ∗ ⊕Hom (Ωn,R
×
+) n ≡ 0 mod 4

(5.31)

Here we are using the fact that Ωn is finite for n 6≡ 0 mod 4.
We know exactly how to define S on the direct summands given by χ∗;

exp ◦χ is a generator of χ∗, so we simply take S(χ)(M) = δ−1(exp (χ(M)))
for a cobordism with n-manifold M . By Theorem 5.4, this defines an in-
vertible TQFT, and we obviously have

|Ψn| ◦ S = id (5.32)

on these direct summands. So it only remains to define S on Hom (Ωn,R
×
+)

where 4|n. That is, we can assume 4|n and ξ ∈ Hom (Ωn,R
×
+). Now we take

the necessary steps to define T .
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Under these assumptions, Ωn−1 is finite. Let l be the order of Ωn−1. Then
for every closed connected (n− 1)-manifold Σ, we can choose an n-manifold
BΣ with boundary given by

∂BΣ =
∐

l

Σ. (5.33)

For simplicity we require B∅ = ∅. Now let

M :

n
∐

i=0

Σi  

m
∐

j=0

Σj (5.34)

be a cobordism, where each Σi and Σj is connected. Let φi,in and φj,out
be the in-boundary and out-boundary diffeomorphisms of the components
of ∂M . Before we give the definition, we form a closed manifold C(M) as
follows: Let φ∗in be the orientation-preserving diffeomorphism

n
∐

i=0

∂BΣi
→

∐

l

∂inM (5.35)

given by the appropriate φi,in on each component. Also let φ∗out be the
orientation-preserving diffeomorphism

m
∐

j=0

∂BΣj
→

∐

l

∂outM (5.36)

given by the appropriate φj,out on each component. Now define

C(M) =
(

n
∐

i=0

BΣi

)

⋃

φ∗
in

(

∐

l

M
)

⋃

(φ∗
out

)−1

(

m
∐

j=0

BΣj

)

. (5.37)

Now we can define S(ξ)(M) by the following equation

S(ξ)(M) = δ−1(ξ(C(M))1/l) (5.38)

S is clearly a homomorphism. We need to check the axioms of Definition
4.1 to show that S(ξ) is an n-TQFT. Checking (1) first, suppose that

M :

n
∐

i=0

Σi  

m
∐

j=0

Σj and N :

n
∐

i=0

Σi  

m
∐

j=0

Σj (5.39)

are equivalent coborisms. We will set

Σ0 =
n
∐

i=0

Σi and Σ1 =
m
∐

j=0

Σj (5.40)

for notational simplicity. In addition, we will have φin and φout be the
boundary diffeomorphisms of M and φ′in and φ′out be the boundary diffeo-
morphisms of N . Since ξ evaluates diffeomorphic manifolds equally, we need
only show that C(M) and C(N) are diffeomorphic. Since the in- and out-
boundaries of M and N are the same, (1) will hold by Equation (5.38). We
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have diffeomorphisms for each of the gluing components of C(M), which
include

id :

n
∐

i=0

BΣi
→

n
∐

i=0

BΣi

ψ : N → M

id :
m
∐

j=0

BΣj
→

m
∐

j=0

BΣj

(5.41)

for each of the gluing components of C(M). Recall that the diagram

M

Σ0 Σ1

N

φin

φ′
in

φ′
out

φout

ψ

commutes. This amounts to the assertion that these diffeomorphisms of 5.41
agree on the glued areas of C(M) and C(N). Thus C(M) and C(N) are
diffeomorphic, and (1) holds.

Now we check (2). Let

M :
n
∐

i=0

Σi  
m
∐

j=0

Σj and N :
m
∐

j=0

Σj  

p
∐

k=0

Σk (5.42)

be two cobordisms. To prove (2), we apply Lemma 5.8. Keeping the notation
from the construction of C(M), set

X1 =
(

n
∐

i=0

BΣi

)

⋃

φ∗
in

(

∐

l

M
)

X2 =
m
∐

j=0

BΣj

X3 =
(

∐

l

N
)

⋃

(φ∗
′

out
)−1

(

n
∐

i=0

BΣi

)

f = (φ∗out)
−1

g = φ∗
′

in.

(5.43)

Lemma 5.8 gives

[X1 ∪
f
X2] + [X2 ∪

g
X3] = [X1 ∪

g◦f
X3] + [D(X2)] (5.44)

in SKKn, which gives in our case

[C(M)] + [C(N)] = [C(MN)] + [D(X2)]. (5.45)
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Now note that because [D(X2)] bounds and ξ ∈ Hom (Ωn,R
×
+), we have

ξ([D(X2)]) = 1. Thus

S(ξ)(MN) = δ−1(ξ(C(MN))1/l)

= δ−1(ξ(C(M))1/l · ξ(C(N))1/l)

= δ−1(ξ(C(M))1/l) ◦ δ−1(ξ(C(N))1/l)

= S(ξ)(M) ◦ S(ξ)(N),

(5.46)

as desired. Thus (2) holds.
It should be clear that

C(M
∐

N) = C(M)
∐

C(N). (5.47)

From this (3) clearly follows. For (4), note that for a cylinder cobordism

(

n
∐

i=0

Σi

)

× I :
n
∐

i=0

Σi  
n
∐

i=0

Σi, (5.48)

we have

C
((

n
∐

i=0

Σi

)

× I
)

= D
(

n
∐

i=0

BΣi

)

. (5.49)

Thus

S(ξ)
((

n
∐

i=0

Σi

)

× I
)

= δ−1
(

ξ
(

C
((

n
∐

i=0

Σi

)

× I
))1/l)

= δ−1
(

ξ
(

D
(

n
∐

i=0

BΣi

))1/l)

= δ−1(1)

= idR,

(5.50)

and (4) holds. (5) holds trivially. Thus S(ξ) is an invertible n-TQFT.
Lastly, we need to check that

|Ψn| ◦ S(ξ) = ξ (5.51)

for all ξ ∈ Hom (Ωn,R
×
+). By our requirement that B∅ = ∅, we have for each

closed manifold M

C(M) =
∐

l

M. (5.52)

Thus

|Ψn| ◦ S(ξ)(M) = |Ψn|(δ
−1(ξ(C(M))1/l))

= |Ψn|(δ
−1(ξ(M)))

= ξ(M).

(5.53)

�
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The construction of the splitting homomorphism S is not independent
of the choices of the BΣ’s. To illustrate this, let ξ ∈ Hom (SKK8,R

×
+) be

the bordism invariant given by ξ(M) = exp (p2(M)), where p2 denotes the
Pontryagin number given by the trivial partition of a two-element set. Also

let D8 and D̊8 denote the closed and open 8-disks respectively. Now consider
the cobordism

D8 : ∅ S7. (5.54)

Since Ω7 has order 1, D8 and CP 4 − D̊8 are both sufficient choices for BS7 .
Now defining S with the choice D8, we have

S(ξ)(D8) = δ−1(ξ(S8))

= δ−1(exp (p2(S
8)))

= δ−1(exp (0))

= idR.

(5.55)

Defining S with the choice CP 4 − D̊8, we have

S(ξ)(D8) = δ−1(ξ(CP 4))

= δ−1(exp (p2(CP
4)))

= δ−1(exp (10))

6= idR.

(5.56)

Given a closed manifold Σ that bounds, there is no canonical choice of
manifold M with ∂M = Σ. This is why we do not explicitly define S. An
explicit definition is not necessary, however, for showing that the sequence
splits.
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