
ar
X

iv
:2

20
6.

06
72

2v
1

 [
cs

.F
L

]
 1

4
Ju

n
20

22

Specification sketching for Linear Temporal

Logic

Simon Lutz1, Daniel Neider2, and Rajarshi Roy2

1 Technical University of Kaiserslautern, Kaiserslautern, Germany
2 Max Planck Institute for Software Systems, Kaiserslautern, Germany

Abstract. Virtually all verification and synthesis techniques assume
that the formal specifications are readily available, functionally correct,
and fully match the engineer’s understanding of the given system. How-
ever, this assumption is often unrealistic in practice: formalizing system
requirements is notoriously difficult, error-prone, and requires substan-
tial training. To alleviate this severe hurdle, we propose a fundamen-
tally novel approach to writing formal specifications, named specification
sketching for Linear Temporal Logic (LTL). The key idea is that an en-
gineer can provide a partial LTL formula, called an LTL sketch, where
parts that are hard to formalize can be left out. Given a set of examples
describing system behaviors that the specification should or should not
allow, the task of a so-called sketching algorithm is then to complete a
given sketch such that the resulting LTL formula is consistent with the
examples. We show that deciding whether a sketch can be completed
falls into the complexity class NP and present two SAT-based sketching
algorithms. We also demonstrate that sketching is a practical approach
to writing formal specifications using a prototype implementation.

Keywords: Formal Specifications · Linear Temporal Logic · Sketching

1 Introduction

Due to its unique ability to prove the absence of errors mathematically, for-
mal verification is a time-tested method of ensuring the safe and reliable opera-
tion of safety-critical systems. Success stories of formal methods include applica-
tion domains such as communication system [13,25], railway transportation [2,3],
aerospace [16,9], and operating systems [37,21] to name but a few.

However, there is an essential and often overlooked catch with formal veri-
fication: virtually all techniques assume that the specification required for the
design or verification of a system is available in a suitable format, is functionally
correct, and expresses precisely the properties the engineers had in mind. These
assumptions are often unrealistic in practice. Formalizing system requirements
is notoriously difficult and error-prone [5,28,33]. Even worse, the training effort
required to reach proficiency with specification languages can be disproportion-
ate to the expected benefits [10], and the use of formalisms such as temporal
logics require a level of sophistication that many users might never develop [19].

http://arxiv.org/abs/2206.06722v1

2 Lutz et al.

We address this severe, practical issue by introducing a fundamentally novel
approach to writing formal specifications, named specification sketching. Inspired
by recent advances in automated program synthesis [35,36], our new paradigm
allows engineers to express their high-level insights about a system in terms of
a partial specification, named specification sketch, where parts that are difficult
or error-prone to formalize can be left out. Moreover, the engineer is asked to
provide example executions of the system that the specification should allow or
forbid. Based on this additional data, a so-called sketching algorithm then fills
in the missing low-level details to obtain a complete specification.

While the concept of specification sketching is conceivable for a wide range of
specification languages, we here focus on Linear Temporal Logic (LTL) [29]. The
rationale for this choice is twofold. First, LTL is popular in academia and widely
used in industry [15,16,18], making it the de facto standard for expressing (tem-
poral) properties in verification and synthesis. Second, LTL is well-understood
and enjoys good algorithmic properties [8,29]. Furthermore, its intuitive and
variable-free syntax have recently prompted efforts to adopt LTL (over finite
words) also in artificial intelligence (e.g., to specify reward functions in reinforce-
ment learning [6]).

In the context of specification sketching for LTL, a sketch can leave logical
operators or even entire subformulas unspecified, while examples are ultimately-
periodic words. To illustrate this setting, let us consider the request-response
property P expressing that every request p has to be answered eventually by a
response q. This property can be formalized by the LTL formula ϕ := G(p →
XF q), which uses the standard temporal modalities F (“finally”), G (“glob-
ally”), and X (“next”). However, let us assume for the sake of this example
that an engineer is unsure how to formalize P . In this situation, our sketching
paradigm allows the engineer to express high-level insight in the form of a sketch,
say G(p→ ?), where the question mark indicates which part of the specification
is missing. Additionally, the engineer provides two examples: (i) a positive (infi-
nite) trajectory ({p}{q})ω, expressing that q is the response that should be used
to answer a request, and (ii) a negative (infinite) trajectory {q}ω, intended to
disallow the system to send responses without requests. Our sketching algorithm
then computes a substitution for the question mark such that the completed LTL
formula is consistent with the examples (e.g., XF q). We set up all necessary
definitions in Section 2 and formally define LTL sketching in Section 3.

It turns out that it is not always possible to find a substitution that is consis-
tent with the given examples (see Example 1 on Page 8). However, we show in
Section 4 that the problem of deciding whether such a substitution exists is in the
complexity class NP. Moreover, we develop an effective decision procedure that
reduces the original question to a satisfiability problem in propositional logic.
This reduction permits us to apply highly-optimized, off-the-shelf SAT solvers
to check whether a consistent substitution exists.

In Section 5, we develop two sketching algorithms for LTL. The first algo-
rithm uses the decision procedure of Section 4 as a sub-routine and transforms
the sketching problem into a series of LTL learning problems (i.e., in problems

Specification sketching for Linear Temporal Logic 3

of learning an LTL formula—without syntactic constraints—from positive and
negative examples). This transformation allows us to apply a diverse array of
learning algorithms for LTL, which have been proposed during the last five
years [27,7,31]. Our second sketching algorithm, on the other hand, extends the
LTL learning algorithm by Neider and Gavran [27] and uses a SAT-based tech-
nique as an effective means to search for solutions of increasing size.

Finally, Section 6 presents an empirical evaluation with a prototype imple-
mentation, named LTL-Sketcher. We observed that our algorithms are effective
in completing a variety of sketches having different missing information. Further,
comparing our algorithms, we concluded that our second algorithm outperforms
our first algorithm in terms of running time and size of the solution. We conclude
this paper in Section 7 with a discussion of promising directions for future work.

Related Work The general idea of allowing partial specifications is not entirely
new, but it has not yet been investigated as general as in this work. The most
similar setting is one in which templates are used to mine temporal specifications
from system executions. In this context, a template is a partial formula, similar to
a sketch. However, unlike a sketch, a template is typically completed with single
atomic propositions or simple formulas, usually without temporal modalities
(e.g., restricted Boolean combinations of atomic propositions). An example of
this approach is Texada [22,23], a specification miner for LTLf formulas (i.e.,
LTL over finite horizon). Texada accepts an arbitrary template (property type
in their terminology) and a set of system executions as input and completes the
template with atomic propositions such that the resulting LTL formula satisfies
all of the system executions. Since LTLf (and LTL for that matter) is defined
over a finite, user-provided set of atomic propositions, there are only finitely
many ways to fill in the missing parts of a template, and Texada amounts to a
search over this finite search space. By contrast, our approach can complete a
sketch with complex LTL formulas and, hence, has to search in an infinite space.

Various other techniques operate in settings where the templates are even
more restricted. For example, Li et al. [24] mine LTL specification based on
templates from the GR(1)-fragment of LTL (e.g., GF?, G(?1 → X?2), etc.),
while Shah et al. [34] mine LTL formulas that are conjunctions of a set of common
temporal properties as identified by Dwyer et al. [11]. In addition, the work by
Kim et al. [20] uses a set of interpretable LTL templates, widely used in the
development of software systems, to obtain LTL formulas robust to noise in the
input data. In the context of CTL, on the other hand, Wasylkowski and Zeller [38]
mine specifications using templates of the form AF?, AG(?1 → F?2). However,
all of the works above complete the templates only with atomic propositions
(and their negations in some cases).

Another setting is the one in which general (and complex) temporal specifi-
cations are learned from system executions without any constraint on the struc-
ture of the specification. The most notable work in this setting is that by Neider
and Gavran [27], who learn LTL formulas from system executions using a SAT
solver. Similar to their Neider and Gavran is the work by Camacho et al. [7],

4 Lutz et al.

which proposes a SAT-based learning algorithm for LTLf formulas via Alternat-
ing Finite Automata as an intermediate representation. Raha et al. [30] present
a scalable approach for learning formulas in a fragment of LTLf without the U-
operator, while Roy, Fisman, and Neider [32] consider the Property Specification
Language (PSL). However, none of these works can exploit insights about the
structure of the specification to aid the learning/ mining process.

Finally, it is worth mentioning that LTL sketching can be seen as a particular
case of syntax-guided synthesis, where syntactic constraints on the resulting
formulas are expressed in terms of context-free grammars. While this approach
is more expressive in that it also allows restricting the syntax of the formulas
that can be used to fill in missing parts of a sketch, we are convinced that the
concept of sketching is more natural and intuitive, and it allows for efficient
algorithms. An example of a syntax-guided approach is SySLite [1], a CVC4-
based tool for learning Past-time LTL (over finite executions). However, we are
unaware of any syntax-guided algorithm for our setting: learning LTL formulas
over infinite executions.

2 Preliminaries

We now formally introduce the basic notions that are used throughout the paper.

Finite and Infinite Words To model trajectories of a system, we use the
notion of words over an alphabet that represents the system events. Formally,
an alphabet Σ is a nonempty, finite set. The elements of this set are called symbols.
A finite word over an alphabet Σ is a sequence u = a0 . . . an of symbols ai ∈ Σ
for i ∈ {0, . . . , n}. The empty sequence, referred to as empty word, is denoted by
ε. The length of a finite word u is denoted by |u|, where |ǫ| = 0. Moreover, Σ∗

denotes the set of all finite words over the alphabet Σ, while Σ+ = Σ∗ \ ε is the
set of all non-empty words.

An infinite word over Σ is an infinite sequence α = a0a1 . . . of symbols
ai ∈ Σ for i ∈ N. We denote the i-th symbol of an infinite word α by α[i] and
the finite infix of α from position i up to (and excluding) position j with α[i, j) =
aiai+1 · · · aj−1. We use the convention that α[i, j) = ε for any i ≥ j. Further,
we denote the infinite suffix starting at position j ∈ N by α[j,∞) = ajaj+1 · · · .
Given u ∈ Σ+, the infinite repetition of u is the infinite word uω = uu · · · ∈ Σω.
An infinite word α is called ultimately periodic if it is of the form α = uvω for
a u ∈ Σ∗ and v ∈ Σ+. Finally, Σω denotes the set of all infinite words over the
alphabet Σ.

Propositional Boolean Logic Since the presented algorithms rely on the Sat-
isfiability (SAT) problem, as a prerequisite, we introduce Propositional Logic.
Let V ar be a set of propositional variables, which take Boolean values from
B = {0, 1} (0 representing false and 1 representing true). Formulas in propo-
sitional (Boolean) logic—which we denote by capital Greek letters—are induc-
tively constructed as follows:

Specification sketching for Linear Temporal Logic 5

– each x ∈ V ar is a propositional formula; and
– if Ψ and Φ are propositional formulas, so are ¬Ψ and Ψ ∨ Φ.

Moreover, we add syntactic sugar and allow the formulas true, false , Ψ ∧
Φ,Ψ ⇒ Φ, and Ψ ⇔ Φ, which are defined as usual. A propositional valuation is
a mapping v : Var → B, which maps propositional variables to Boolean values.
The semantics of propositional logic is given by a satisfaction relation |= that is
inductively defined as follows: v |= x if and only if v(x) = 1, v |= ¬Φ if and only
if v 2 Φ, and v |= Ψ ∨ Φ if and only if v |= Ψ or v |= Φ. In the case that v |= Φ,
we say that v satisfies Φ and call it a model of Φ. A propositional formula Φ is
satisfiable if there exists a model v of Φ. The size of a formula is the number
of its subformulas (as defined in the usual way). The satisfiability problem of
propositional logic is the problem of deciding whether a given formula is satis-
fiable. Although this problem is well-known to be NP-complete, modern SAT
solvers implement optimized decision procedures that can check satisfiability of
formulas with millions of variables [4]. Moreover, virtually all SAT solvers also
return a model if the input-formula is satisfiable.

Linear Temporal Logic Linear Temporal Logic (LTL) is a logic to reason
about sequences of relevant statements about a system by using temporal modal-
ities. Formally, given set of propositions P that represent relevant statements
about the system under consideration, an LTL formula—which we denote by
small Greek letters—is defined inductively as follows:

– each proposition p ∈ P is an LTL formula; and
– if ψ and ϕ are LTL formulas, so are ¬ψ, ψ ∨ ϕ, Xψ (“neXt”), and ψUϕ
(“Until”).

As syntactic sugar, we allow the formulas true, false, ψ ∧ ϕ and ψ → ϕ,
which are defined as usual. Additionally, we allow the temporal formulas Fψ :=
trueUψ (“Finally”) and Gψ := ¬F¬ψ (“Globally”). Further, we use FLTL to
denote the set of all LTL formulas using.

LTL formulas are interpreted over infinite words α ∈ (2P)ω. To define how
an LTL formula is interpreted on a word, we use a valuation function V . This
function maps an LTL formula and a word to a Boolean value and is defined
inductively as follows:

V (p, α) = 1 if and only if p ∈ α(0),

V (¬ϕ, α) = 1− V (ϕ, α),

V (ϕ ∨ ψ, α) = max{V (ϕ, α), V (ψ, α)},

V (Xϕ, α) = V (ϕ, α[1,∞))

V (ϕUψ, α) = max
i≥0

{min{V (ψ, α[i,∞)), min
0≤j<i

{V (ϕ, α[j,∞))}}}

We call V (ϕ, α) the valuation of ϕ on α and say that α satisfies ϕ if V (ϕ, α) = 1.

6 Lutz et al.

∨

U F

p G

q

G

q

(a) Syntax Tree

∨

U F

p G

q

(b) Syntax DAG

Fig. 1: Representation of LTL formulas

For a precise representation of LTL formulas, we use syntax trees and syntax
DAGs. Syntax DAGs are directed acyclic graphs (DAG) that one obtains from
a syntax tree by merging the common subformulas, providing a canonical repre-
sentation of LTL formulas. Figure 1 illustrates the syntax tree and syntax DAG
of the formula (pUG q) ∨ FG q.

The size of an LTL formula |ϕ| is defined as the number of its unique subfor-
mulas, which corresponds to the number of nodes in the syntax DAG of ϕ. For
example, the size of the formula (pUG q) ∨ FG q is 6, as can be seen easily in
Figure 1b.

We denote the set of all LTL operators as Λ = P ∪ΛU ∪ΛB . Here, the propo-
sitions are the nullary operators, ΛU = {¬,X,F,G} are the unary operators
and ΛB = {∨,∧,U} are the binary operators of LTL. Further, let FLTL denote
the set of all LTL formulas.

3 Problem Formulation

Since the problem of LTL sketching relies heavily on LTL sketches, we begin
with formalizing them first.

LTL Sketch An LTL sketch is incomplete LTL formulas in which parts that
are difficult to formalize can be left out. The left-out parts are represented using
placeholders, denoted by ?’s as can be seen in Figure 2. We comment on the
superscripts on the placeholders in a moment.

?2

U ?1

?0 G

q

Fig. 2: An LTL sketch

Specification sketching for Linear Temporal Logic 7

Formally, an LTL sketch ϕ? is simply an LTL formula whose syntax is aug-
mented with placeholders. The placeholders we allow can be of three types:
placeholders of arity zero referred to as Type-0 placeholders, that replace miss-
ing LTL formulas; placeholders of arity one referred to as Type-1 placeholders,
that replace missing unary operators; and placeholders of arity two referred to
as Type-2 placeholders, that replace missing binary operators. In the Figure 2
(and in the rest of the paper), Type-i placeholders are represented using ?i.

Given (possibly empty) setsΠ0,Π1 andΠ2 consisting of Type-0, Type-1 and
Type-2 placeholders, respectively, we define LTL-sketches inductively as follows:

– each element of P ∪Π0 is an LTL-sketch; and
– if ϕ?

1 and ϕ?
2 are LTL-sketches, ◦ϕ?

1 is an LTL-sketch for ◦ ∈ ΛU ∪Π1 and
so is ϕ?

1 ◦ ϕ
?
2 for ◦ ∈ ΛB ∪Π2.

Note that an LTL sketch in which Π0 = Π1 = Π2 = ∅ is simply an LTL formula.
Furthur, let Πϕ? = Π0 ∪Π1 ∪Π2 denote the set of all placeholders in an sketch
ϕ?. For the sketch in Figure 2, Π?

ϕ = {?0, ?1, ?2}. For brevity, in the rest of the
paper, we refer an LTL sketch as a sketch.

The placeholders are abstract symbols that apriori do not have meaning.
To assign meaning to a sketch, we need to substitute all Type-0 placeholders
with LTL formulas, all Type-1 placeholders with unary operators and all Type-2
placeholders with binary operators. We do this using a so-called substitution
function (or substitution for short).

Formally, a substitution function s maps placeholders and operators present
in a sketch to LTL operators and LTL formulas in such a way that: s(?) ∈ FLTL

if ? ∈ Π0; s(?) ∈ ΛU if ? ∈ Π1; s(?) ∈ ΛB if ? ∈ Π2; and s(λ) = λ for any LTL
operator λ ∈ Λ. Morever, a substitution s is said to be complete for an sketch
ϕ? if s is defined for every element in Λ ∪Πϕ? in ϕ?.

A complete substitution s can be applied to a sketch ϕ? to obtain an LTL
formula. To make this mathematically precise, we define a function fs, which is
defined recursively on the structure of ϕ? as follows:

fs(ϕ
?
1 ?

2 ϕ?
2) = fs(ϕ

?
1) ◦ fs(ϕ

?
2), where ◦ = s(?2);

fs(?
1ϕ?)) = ◦ fs(ϕ

?), where ◦ = s(?1); and

fs(?
0) = s(?0).

Input sample While there are many ways to fill a sketch, as alluded in the
introduction, we rely on two finite, disjoint sets P,N ⊂ (2P)ω of ultimately
periodic words, such that P ∩N = ∅. The words in P , referred to as the positive
examples, represent the desirable system executions that must be allowed by the
resulting specification. On the other hand, the words in N , referred to as the
negative examples, represent the undesirable system executions that must be
disallowed by the resulting specification. We call the pair S = (P,N) a sample.
Since our sample consists of ultimately periodic words, we assume that they are

8 Lutz et al.

stored as pairs (u, v) of finite words, where u ∈ (2P)∗ and v ∈ (2P)+. Moreover,
let the size of a sample be |S| =

∑

uvω∈P∪N

|uv|.

We say that an LTL formula ϕ is consistent with a sample S = (P,N)
if V (ϕ, uvω) = 1 for each uvω ∈ P (i.e., all positive words satisfy ϕ) and
V (ϕ, uvω) = 0 for each uvω ∈ N (i.e., all negative examples do not satisfy
ϕ);

The LTL sketching problem Having defined the setting, the main problem
that we deal with in the paper is the following:

Problem 1 (LTL sketching). Given an LTL sketch ϕ? and a sample S = (P,N),
find a complete substitution s for ϕ? such that fs(ϕ

?) is consistent with S

Before we address the above (and the more general) problem, let us consider
a simpler version of the problem:

Problem 2 (LTL learning). Given a sample S = (P,N), find a minimal LTL
formula ϕ such that ϕ is consistent with S

The above problem is a restricted version of Problem 1, where the sketch ϕ? =?0

(i.e., a single Type-0 placeholder). Recently, it has attracted a lot of attention
in the recent years due to its application in Explainable AI and Specification
Mining. Along with its theoretical analysis [14], there have been a number of
efficient algorithms [30,27,7] to solve it.

For the LTL learning problem, one can always find a solution due to the
existence of a generic LTL formula that is consistent with a given sample, as
indicated by the following remark:

Remark 1. Given sample S, there exists an LTL formula ϕ such that ϕ is con-
sistent with S and |ϕ| is of size O(|S|4).

To construct such a formula, one needs to perform the following two steps. First,
construct formulas ϕα,β for all α ∈ P and β ∈ N , such that V (ϕα,β , α) =
1 and V (ϕα,β , β) = 0, using a sequence of X-operators and an appropriate
propositional formula to describe the first symbol where α and β differ. Second,
construct the generic consistent formula ϕ =

∨

α∈P

∧

β∈N ϕα,β .
For the LTL sketching problem, however, one may not always find a solution.

This is illustrated using the following example.

Example 1. Consider the LTL-sketch G(?0) and a sample consisting of a sin-
gle positive word α = {p}{q}ω ∈ P and a single negative word β = {q}ω. For
this LTL-sketch and sample, there does not exist any substitution that leads
to an LTL specification consistent with the sample, which can be shown using
contradiction. Towards contradiction, assume that there exists a specification
G(ϕ) such that V (α,G(ϕ)) = 1 and V (β,G(ϕ)) = 0. Based on the seman-
tics of G-operator, V (α,G(ϕ)) = V (α[1,∞),G(ϕ)) = 1. On the other hand,
V (β,G(ϕ)) = V (α[1,∞),G(ϕ)) = 0 since β = α[1,∞) leading to a contradic-
tion.

Specification sketching for Linear Temporal Logic 9

Since there might not exist any complete substitution for a given LTL sketch
and a sample, apriori, it is unclear whether the LTL sketching problem is solvable
by any terminating algorithm. However, we show in Section 4 that it is indeed
possible to find a terminating algorithm for the LTL sketching problem. Later
in Section 5, we exploit this result to find suitable substitutions to sketches.

4 Existence of a Complete Sketch

To devise a terminating algorithm for the LTL sketching problem, we first intro-
duce the related decision problem, which is the following:

Problem 3 (LTL sketch existence). Given an LTL-sketch ϕ? and a sample S =
(P,N), does there exist a complete substitution s for ϕ? such that fs(ϕ

?) is
consistent with S.

In this section, we prove that this problem is indeed decidable and belongs to
the complexity class NP. Later we also provide a decision procedure based on
SAT solving to decide the problem.

4.1 The decidability result

For the decidability result, we introduce some concepts as a preparation. We
begin by observing a key property of ultimately periodic words, which is as
follows:

Observation 1 Let uvω ∈ (2P)ω and ϕ be an LTL formula. Then, uvω[|u| +
i,∞) = uvω[|u| + j,∞) for j ≡ i mod |v|. Thus, V (ϕ, uvω [|u| + i,∞)) =
V (ϕ, uvω[|u|+ j,∞)).

Observation 1 indicates that, for a word uvω, there exists only a finite num-
ber of distinct suffixes of uvω, all of which originate in the initial uv portion
of uvω. We now define the set suffix (uvω) = {uvω[i,∞) | 0 ≤ i < |uv|} of
all (possibly) distinct suffixes of a word uvω. Moreover, we define suffix(S) =
⋃

uvω∈(P∪N) suffix(uvω) to be the set of all suffixes of words in S. Observation 1
further indicates that, to determine the evaluation of an LTL formula ϕ on an
ultimately periodic word uvω, it is sufficient to determine its evaluation on the
initial |uv| suffixes of uvω.

Thus, for a compact representation of the evaluation of ϕ on uvω, we intro-
duce a table notation Tϕuvω . A table Tϕuvω is a |ϕ| × |uv| matrix that consists of
the satisfaction of all the subformulas ϕ′ of ϕ on the suffixes of {uvω}. We define
the entries of the matrix as follows:

Tϕuvω [ϕ
′, t] = V (ϕ′, uvω[t,∞)) for all subformulas ϕ′ of ϕ and 0 ≤ t < |uv|

Based on the above definition of the table Tϕuvω , we identify three properties of
these tables. These properties form important building blocks of the decidability
proof (i.e., proof of Theorem 2) as we see later.

10 Lutz et al.

The first property, which we refer to as Semantic property, is that various
rows of table are related to each other in a way that reflects the semantics of
LTL. We formalize a row of a table using the notation Tϕuvω [ϕ

′, ·], which refers
to the row of Tϕuvω corresponding to subformula ϕ′.

Let us first demonstrate this property on a running example. Consider the
formula ψ = p ∨X q and the word α = {p, q}{p}{q}ω. Figure 3 illustrates the
table Tψα . From the figure, one can see that the row Tψα [p ∨X q, ·] corresponds
to the bitwise-OR of the rows Tψα [p, ·] and T

ψ
α [X q, ·].

0 1 2

p 1 1 0

q 1 0 1

X q 0 1 1

p ∨X q 1 1 1

Fig. 3: Bit-vectors for the subformulas of p ∨X q

To formalize the relation between the rows corresponding to different subfor-
mulas ϕ′ of ϕ, we must uniquely identify the subformulas. To this end, given an
LTL formula ϕ, we assign unique identifiers i ∈ {1, · · · , n} to each node of the
syntax DAG of ϕ. This enables us to denote the subformula of ϕ rooted at Node i
with ϕ[i]. For assigning identifiers, we follow the strategy that: we assign the root
node with 1; and for every node, we assign an identifier smaller than its children,
if it has any. Note that one can analogously assign labels to syntax DAGs of
sketches. Figure 4 demonstrates identifiers for the formula (pUG q) ∧ (F(G q)).
We further define a function ℓ : {1, · · · , n} 7→ Λ that maps the identifiers to the
corresponding operators in the syntax DAG.

∧

U F

p G

q

(a) Syntax DAG

1

2 3

4 5

6

(b) Labeling

Fig. 4: Labeling for formula (pUG q) ∧ (F(G q)).

We now describe the set of equations that formalize the relation between
the rows. How a row Tϕuvω [ϕ[i], ·] corresponding to Node i relates to the others
depends the operator ℓ(i) in the root node of ϕ[i]. Thus, we list the relation
separately for different LTL operators.

Specification sketching for Linear Temporal Logic 11

If ℓ(i) = p for some propostion p, then we have the following relation:

Tϕuvω [ϕ[i], t] =

{

1 if p ∈ uvω[t]

0 otherwise
(1)

If ℓ(i) is a unary operator and Node j is the left child of Node i, we have the
following relations:

if ℓ(i) = ¬ : Tϕuvω [ϕ[i], t] = 1− Tϕuvω [ϕ[j], t] for 0 ≤ t < |uv| (2)

if ℓ(i) = X : Tϕuvω [ϕ[i], t] =

{

Tϕuvω [ϕ[j], t+ 1] for 0 ≤ t < |uv| − 1

Tϕuvω [ϕ[j], |u|] for t = |uv| − 1
(3)

While Equation 2 simply follows from the semantics of ¬-operator, Equation 3
for the X-operator exploits Observation 1 along with its semantics. In particular,
the entry Tϕuvω [ϕ[i], |uv| − 1] relies on the evaluation of ϕ[j] on uvω[|u|,∞).

If ℓ(i) is a binary operator, and Node j and Node j′ are the left and right
children of Node i, respectively, then we have the following relation:

if ℓ(i) = ∨ : Tϕuvω [ϕ[i], t] = Tϕuvω [ϕ[j], t] ∨ T
ϕ
uvω [ϕ[j

′], t] for 0 ≤ t < |uv| (4)

if ℓ(i) = U : Tϕuvω [ϕ[i], t] = (5)






∨

t≤t′′<|uv|

[

Tϕuvω [ϕ[j
′], t′′] ∧

∧

t≤t′<t′′ T
ϕ
uvω [ϕ[j], t

′]
]

for 0 ≤ t < |u|
∨

|u|≤t′′<|uv|

[

Tϕuvω [ϕ[j
′], t′′] ∧

∧

t′∈t#u,vt′′
Tϕuvω [ϕ[j], t

′]
]

for |u| ≤ t < |uv|

Again, one can see that Equation 4 follows from the semantics of the ∨-operator.
Equation 5 for the U-operator consists of two cases: the first case provides the
relation for entries t ∈ {0, · · · , |u|−1} in the initial part u; the second case covers
the entries t ∈ {|u|, · · · , |uv|−1} in the periodic part v. Thereby, the second case
uses the periodic nature of uvω to “loop back” into the periodic part v using the
set t#u,v t

′′ defined as the follows:

t#u,v t
′′ =

{

{t, · · · , t′′ − 1} if t < t′′;

{|u|, · · · , t′′ − 1, t, · · · , |uv| − 1} if t′′ ≤ t

Having defined the Semantic property, let us now describe the second prop-
erty, the Consistency property. This property ensures that Tϕuvω [ϕ, 0] = 1 if and
only if uvω satisfies ϕ. Thus, for an LTL formula ϕ consistent with S, we have
the following relation:

Tϕuvω [ϕ, 0] = 1 for all uvω ∈ P, and Tϕuvω [ϕ, 0] = 0 for all uvω ∈ N (6)

The final property we observe is called the Suffix property. This property orig-
inates from the fact that, LTL, being a future-time logic, has the same evaluation
on equal suffixes, i.e., V (ϕ, u1v

ω
1 [t,∞)) = V (ϕ, u2v

ω
2 [t

′,∞)) for u1v
ω
1 [t,∞) =

u2v
ω
2 [t

′,∞). Formally, we state the property as follows:

Tϕu1v1ω [ϕ, t] = Tϕu2v2ω [ϕ, t′] for all u1v
ω
1 [t,∞) = u2v

ω
2 [t

′,∞) (7)

12 Lutz et al.

This property becomes significant later for constructing LTL formulas for Type-0
placeholders.

Having set up the prerequisites, we now proceed to provide an NP algo-
rithm to decide the LTL sketch existence problem. For ease of presentation, we
demonstrate the algorithm on a simple (but crucial) case in which ϕ? consists
of only a single Type-0 placeholder ?0. For this case, one might assume that
non-deterministically guessing a substitution for the placeholder should suffice.
However, apriori one does not know the size of the LTL formula that is necessary
to substitute the Type-0 placeholder.

Thus, in our NP algorithm, instead of guessing substitutions, we guess all the

entries of the table Tϕ
?

uvω for each uvω in S. Note that the tables have a finite
dimension, precisely |ϕ?| × |uv|, for each word uvω. Thus, the overall process of
simply guessing all the table entries can be done in time O(poly(|ϕ?|, |S|)).

After guessing the table entries, we must verify that the guessed tables sat-
isfy the three properties, Semantic, Consistency, and Suffix, discussed earlier in
this section. It is easy to verify that checking the first two properties for the
tables require time O(poly(|ϕ?|, |uv|)) for each uvω in S. For checking the Suffix
property, one must identify the equal suffixes in suffix(S). This fact that this
can be also done in time poly(|S|), is a consequence of Lemma 2, stated below.
Intuitively, the result states that two suffixes are equal if they are equal only on
a finite portion b of size poly(|u1|, |u2|, |v1|, |v2|).

Lemma 1. u1v
ω
1 [t,∞) = u2v

ω
2 [t

′,∞) if and only if u1v
ω
1 [t, t+b) = u2v

ω
2 [t

′, t′+b),
where b = max(|u1[t, |u1|)|, |u2[t′, |u2|)|) + lcm(|v1|, |v2|).

Proof. First, let us consider u1v
ω
1 [t,∞) = u2v

ω
2 [t

′,∞). Clearly, all prefixes of
u1v

ω
1 [t,∞) and u2v

ω
2 [t

′,∞) are equal, i.e., u1v
ω
1 [t, t+ b) = u2v

ω
2 [t

′, t′ + b) for all
b ∈ N.

For the other direction, we consider u1v
ω
1 [t, t + b) = u2v

ω
2 [t

′, t′ + b), for b =
max(|u1[t, |u1|)|, |u2[t′, |u2|)|) + lcm(|v1|, |v2|). Without loss of generality, let us
assume that |u1[t, |u1|)| ≥ |u2[t′, |u2|)|. To avoid clutter of notation, we denote
µ = |u1[t, |u1|)| and ν = lcm(|v1|, |v2|). Thus, in this case, b = µ+ ν.

The proof, now, is based on two main observations. First, we begin with the
simple observation:

u1v
ω
1 [t, t+ µ) = u2v

ω
2 [t

′, t′ + µ); and

u1v
ω
1 [t+ µ, t+ b) = u2v

ω
2 [t

′ + µ, t′ + b)

Second, we have that

(u1v
ω
1 [t+ µ, t+ b))ω = vω1 ; and

(u2v
ω
2 [t

′ + µ, t′ + b))ω = (vω2 [t
′ + µ, t′ + µ+ |v2|))

ω

The above observation is due to the fact that u1v
ω
1 [t+µ, t+b) = vκ1 for κ = ν/|v1|

and u2v
ω
2 [t

′ + µ, t′ + b) = (vω2 [t
′ + µ, t′ + µ+ |v2|))κ for κ = ν/|v2|.

Specification sketching for Linear Temporal Logic 13

Now, combining the two observations, we have the following:

u1v
ω
1 = u1v

ω
1 [t, t+ µ) · (u1v

ω
1 [t+ µ, t+ b))ω

= u2v
ω
2 [t

′, t′ + µ) · (u2v
ω
2 [t

′ + µ, t′ + b))ω

= u2[t
′, |u2|) · u2v

ω
2 [|u2|, t

′ + µ) · (vω2 [t
′ + µ, t′ + µ+ |v2|))

ω

= u2v
ω
2

⊓⊔

We now prove that if the guessed tables satisfy the three properties, then
there exists a LTL formula ψ that one can replace in the Type-0 placeholder to
obtain a consistent LTL formula. This fact is asserted by the following theorem.

Theorem 1. Let S = (P,N) be a sample, ϕ? be a sketch with only Type-0

placeholders and tables Tϕ
?

uvω be |ϕ?| × |uv| matrices with {0, 1} entries for each

uvω ∈ P ∪ N . Then, the following holds: the tables Tϕ
?

uvω satisfy the Semantic,
Consistency and Suffix properties if and only if there exists a substitution s such
that LTL formula fs(ϕ

?) is consistent with S.

Proof. For simplicity, we again consider that ϕ? consists of only one Type-0
placeholder ?0. The proof can be seemlessly extended to multiple Type-0 place-
holders.

For the forward direction, we show the existence of the substitution s by
explicit construction of an LTL formula for ?0. Towards this, we first construct
a sample S ′ = (P ′, N ′) as follows:

P ′ = {uvω[t,∞) ∈ suffix(S) | Tϕ
?

uvω [?
0, t] = 1, uvω ∈ P ∪N, 0 ≤ i < |uv|}

N ′ = {uvω[t,∞) ∈ suffix(S) | Tϕ
?

uvω [?
0, t] = 0, uvω ∈ P ∪N, 0 ≤ i < |uv|}.

Since the tables satisfy the Suffix property, we have that P ′ ∩ N ′ = ∅. We can
now construct the generic LTL formula ψ consistent with S ′ based on Remark 1.
We claim that this formula ψ can be substituted in ?0 to obtain a consistent
LTL formula.

Towards this, we first prove that T
fs(ϕ

?)
uvω [ψ, ·] = Tϕ

?

uvω [?, ·] for all uv
ω ∈ P ∪N .

To prove this, we exploit two simple observations. First, using the definition of

tables, we have T
fs(ϕ

?)
uvω [ψ, t] = V (ψ, uvω[t,∞)) for each uvω[t,∞) ∈ suffix(S).

Second, since ψ is consistent with S ′, we know V (ψ, uvω[t,∞)) = Tϕ
?

uvω [?, t].

Together, we have T
fs(ϕ

?)
uvω [ψ, t] = Tϕ

?

uvω [?, t].

Next, we prove that T
fs(ϕ

?)
uvω [fs(ϕ

?)[i], ·] = Tϕ
?

uvω [ϕ
?[i], ·] for each 0 ≤ i < |ϕ?|

and word uvω ∈ P ∪N . (Note that we denote the same nodes in fs(ϕ
?) and ϕ?

using the same identifiers.) Towards contradiction, we assume that there exists

some uvω ∈ P ∪ N and some 0 ≤ i < |ϕ?| and such that T
fs(ϕ

?)
uvω [fs(ϕ

?)[i], ·] 6=

Tϕ
?

uvω [ϕ
?[i], ·]. Let i∗ be the maximum row for which the tables become unequal.

14 Lutz et al.

The proof, in general, will proceed via a case analysis on the operator ℓ(i∗) la-
beled in Node i∗. However, since for proof is similar for all the operators, we
assume ℓ(i) = ¬ and Node j∗ is the left child of Node i∗. Recall that j∗ > i∗

based on our assignment of identifiers. Further, based on the Semantic prop-

erty, T
fs(ϕ

?)
uvω [fs(ϕ

?)[i∗], t] = 1 − T
fs(ϕ

?)
uvω [fs(ϕ

?)[j∗], t] and Tϕ
?

uvω [ϕ
?[i∗], ·] = 1 −

Tϕ
?

uvω [ϕ
?[j∗], ·] for each 0 ≤ t ≤ |uv| (Equation 2). This implies that T

fs(ϕ
?)

uvω [fs(ϕ
?)[j∗], ·] 6=

Tϕ
?

uvω [ϕ
?[j∗], ·], contradicting the maximality of i∗.

Finally, observe that T
fs(ϕ

?)
uvω [fs(ϕ

?), ·] = Tϕ
?

uvω [ϕ
?, ·]. As a consequence, since

tables Tϕ
?

uvω satisfy the Consistency property, so does tables T
fs(ϕ

?)
uvω . This implies

that fs(ϕ
?) is consistent with S.

For the other direction, we construct tables Tϕ
?

uvω [ψ, ·] based on the tables

T
fs(ϕ

?)
uvω [ψ, ·]. In particular, we have T

fs(ϕ
?)

uvω [ψ, ·] = Tϕ
?

uvω [ψ, ·] for each 0 ≤ i < |ϕ?|

and uvω ∈ P ∪N . Since tables T
fs(ϕ

?)
uvω [ψ, ·] satisfy the Semantic, the Consistency

and the Suffix properties, so does the tables Tϕ
?

uvω [ψ, ·]. ⊓⊔

With this, we conclude the NP algorithm for the case where ϕ? only has one
Type-0 placeholder. We can easily extend the algorithm to the case where ϕ?

additionally consists of Type-1 and Type-2 placeholders. In particular, we first
guess the operators to be substituted for the Type-1 and Type-2 placeholders and
substitute them. We then obtain a sketch consisting of only Type-0 placeholders.
We can now apply our algorithm that relies on guessing tables, as described
above. In total, we obtain the following result:

Theorem 2. The LTL sketch existence problem is in NP.

While we determine the complexity upper bound of the LTL sketch existence
problem to be NP, the lower bound is open and adds to the list of open problems
in the area of LTL inference (see Section 6 of [14]).

4.2 The decision procedure

Based on the NP algorithm described above, we now devise a decision procedure
to decide the LTL sketch existence problem. The decision procedure relies upon
solving an instance of SAT problem to check if there exists suitable tables Tϕuvω
which satisfy the three properties, discussed in Section 4.1.

To encode entries of the tables, we first introduce the following variables: yu,vi,t
for each i ∈ {1, · · ·n}, t ∈ {0, · · · , |uv| − 1}, and uvω ∈ P ∪N . A variable yu,vi,t
encodes the entry Tϕuvω [ϕ[i], t]. Further, to encode the operators to be substituted
for the Type-1 and Type-2 placeholders in ϕ?, we have the following variables:
(i) xi,λ for each Node i where ℓ(i) is a Type-1 placeholder and each λ ∈ ΛU ;
and (ii) xi,λ for each Node i where ℓ(i) is a Type-2 placeholder and each λ ∈ ΛB

We now impose constraints on the introduced variables to ensure that they
encode tables that satisfy the properties for inferring a consistent LTL formula.

Specification sketching for Linear Temporal Logic 15

We achieve this by constructing a propositional formula Φϕ
?,S using the intro-

duced variables. This formula ensures that the variables yu,vi,t encode tables that
satisfy the three required properties.

Since Φϕ
?,S ensures the existence of a suitable tables, we have the following

property of Φϕ
?,S : there exists a complete substitution s for ϕ? such that fs(ϕ

?)

is consistent with S if and only if Φϕ
?,S is satisfiable. We can now simply check

the satisfiability of Φϕ
?,S using an off-the-shelf SAT solver to determine the

existence of a complete substitution.

Internally, Φϕ
?,S = Φ1,2

? ∧Φsem ∧Φcon ∧Φsuf is a conjunction of four formulas.

The first conjunct Φ1,2
? ensures that the Type-1 and Type-2 placeholders are

substituted by appropriate operators. The conjuncts Φsem , Φcon and Φsuf ensure
that the variables yu,vi,t encode entries of tables that satisfy the Semantic property
(Equations 2 to 5), the Consistency property (Equation 6) and the Suffix property
(Equation 7), respectively. We now describe briefly how each of these formulas
are constructed.

Constraints for Φ1,2
? . For each Node i labeled with a Type-1 placeholder (i.e.,

ℓ(i) ∈ Π1), we have the following constraint:

[

∨

λ∈ΛU

xi,λ

]

∧
[

∧

λ6=λ′∈ΛU

¬xi,λ ∨ ¬xi,λ′

]

, (8)

which ensures that the Type-1 placeholder is substituted by a unique unary
operator. For Type-2 placeholders, we have the exact same constraint except
that the operators range from the set of binary operators ΛB. Now, we construct
Φ1,2
? as the conjunction of all such constraints for the nodes labeled with Type-1

and Type-2 placeholders.

Constraints for Φsem . We define Φsem =
∧

uvω∈P∪N Φ
u,v, where Φu,v is a propo-

sitional formula that ensures that the variables yu,vi,t satisfy the Equations 2 to 5
for word uvω in S. In Φu,v, for instance, for each Node i labeled with X-operator
(i.e, ℓ(i) = X) and has Node j as its left child, we have the following constraint:

[

∧

0≤t≤|uv|−1

[

yu,vi,t ↔ yu,vj,t+1

]]

∧
[

yu,v
i,|uv|−1 ↔ yu,v

j,|u|

]

(9)

This constraints ensures that the variables yu,vi,t satisfy Equation 3 for the word
uvω. We construct similar constraints for the other operators based on their
corresponding semantic relation.

For nodes labeled with Type-1 and Type-2 placeholders, we additionally rely
on variables xi,λ to determine the operator λ to be substituted in Node i. For
instance, for each Node i labeled with a Type-1 placeholder (i.e., ℓ(i) ∈ Π1) that
has Node j as its left child, we have the following constraint:

xi,X →
[

∧

0≤t≤|uv|−1

[

yu,vi,t ↔ yu,vj,t+1

]]

∧
[

yu,v
i,|uv|−1 ↔ yu,v

j,|u|

]

(10)

16 Lutz et al.

The above constraint states that if Node i is substituted with a X-operator (i.e.,
if xi,X is true), the constraint on the yu,vi,t variables is based on Equation 3. We
construct similar constraints for when xi,λ is true for some other operator λ
based on the corresponding equation for λ. Finally, we construct Φu,v as the
conjunction of all such constraints that rely on the semantic equations.

Constraints for Φsem . We construct Φcon as follows:

Φcon =
[

∧

uvω∈P∪N

Φu,v
]

∧
[

∧

uvω∈P

yu,v1,0 ∧
∧

uvω∈N

¬yu,v1,0

]

(11)

This formula ensures that Equation 6 is satisfied for the prospective bit-vectors,
in addition to ensuring Φu,v holds for all uvω in S.

Constraints for Φsuf . In Φsuf , for each Node i labeled with a Type-0 placeholder
(i.e., ℓ(i) ∈ Π0), we have the following constraint:

∧

u1v
ω
1
[t,∞)=u2v

ω
2
[t′,∞)∈suffix(S)

[

yu1,v1
i,t ↔ yu2,v2

j,t′

]

, (12)

which ensures that the variables yu,vi,t the entries of the tables satisfy Equation 7
The following lemma establishes the correctness of the decision procedure.

Lemma 2. Let ϕ? be a sketch, S a sample and Φϕ
?,S the formula as defined

above. Then, Φϕ
?,S is satisfiable if and only if there exists a complete substitution

s such that fs(ϕ
?) is consistent with S.

Proof. If Φϕ
?,S is satisfiable, we can construct a suitable complete substitution s

based on the model v of Φϕ
?,S . To begin with, for Node i labeled with a Type-1 or

Type-2 placeholder ?, we have s(?) = λ, where λ is the unique operator for which
v(xi,λ) = 1. Next, for nodes labeled with Type-0 placeholders, we first construct

tables Tϕ
?

uvω for each uvω ∈ P ∪N using the value of the variables v(yu,vi,t). Based

on the construction of Φϕ
?,S , all of these tables satisfy the Semantic, Consistency

and Suffix properties. Now, we use Lemma 2 to find substitutions to Type-0

placeholders using the tables Tϕ
?

uvω .
For the other direction, we construct a satisfying assignment v using the

substitution function s and tables T
fs(ϕ)
uvω for uvω ∈ P ∪ N . First, we assign

v(xi,λ) = 1 if and only if s(?) = λ for a Node i labeled with a Type-1 or

Type-2 placeholder ?. Second, we assign v(yu,vi,t) = T
fs(ϕ)
uvω [fs(ϕ

?)[i], t] for each

uvω ∈ P ∪N and 0 ≤ t ≤ |uv|. This assignment v satisfies Φ1,2
? , since we obtain

v from the syntax DAG of a valid LTL formula. Further, this assignment satisfies
Φsem , Φcon and Φsuf because the tables satisfy Semantic, Consistency and Suffix
properties, respectively, on which the constraints are based. Overall, v is a model

for Φϕ
?,S . ⊓⊔

Finally, we have the following remark to assess the size of the encoding Φϕ
?,S .

Remark 2. Let n = |ϕ?| and m =
∑

uvω∈P∪N |uv|. The formula Φϕ
?,S ranges

over O(n+ nm) variables and is of size O(n+ nm3 +m2).

Specification sketching for Linear Temporal Logic 17

5 Algorithms to complete an LTL sketch

In this section, we describe two novel algorithms for solving the LTL sketching
problem, which aim at searching for concise LTL formulas from sketches. Our ra-
tionale behind finding concise specifications is motivated by two considerations:
first, they are more human understandable and thus, easier for the engineers
to interpret; second, potentially all verification and synthesis algorithms per-
form better with smaller specifications. To this end, our first algorithm relies on
existing techniques for learning minimal LTL formulas. Our second algorithm,
alternatively, searches for formulas of increasing size using constraint solving.

5.1 Algorithm based on LTL learning

Our first algorithm for finding concise LTL formulas builds upon the decision
procedure for checking the existence of a complete substitution presented in Sec-

tion 4.2. In particular, we exploit the formula Φϕ
?,S to reduce the LTL sketching

problem to a number of instances of the LTL learning problem, one for each
Type-0 placeholder. One can then exploit recent advancements [27,31] in solving
the LTL learning problem to find concise ways of filling out the sketch.

Algorithm 1 outlines the details of the algorithm. The first step is to con-

struct Φϕ
?,S from the given sample and sketch, as described in Section 4.2. If

Φϕ
?,S is unsatisfiable, the algorithm straight-away returns that no solution exists

(Line 12), as established by Theorem 4. If it is satisfiable, we use a model (say

v) of Φϕ
?,S , which can be obtained from any off-the-shelf SAT solver, to fill out

ϕ?. We now describe in detail how to fill out a sketch.

Given a model v of Φϕ
?,S , in a rather straightforward manner, one can substi-

tute the Type-1 and Type-2 placeholders in ϕ? (Line 4). For each Node i where
ℓ(i) is a Type-1 and Type-2 placeholders, we assign s(ℓ(i)) = λ where, λ is the
unique operator for which v(xi,λ) = 1.

The Type-0 placeholders, however, are more challenging to substitute. This
is because, they represent entire LTL formulas. Towards substituting Type-0
placeholders, for every Node i where ℓ(i) is a Type-0 placeholder (i.e., ℓ(i) ∈ Π0),
we first construct a sample Si = (Pi, Ni) (Line 6) as follows:

Pi = {uvω[t,∞) ∈ suffix(S) | v(yu,v1,t) = 1}, and

Ni = {uvω[t,∞) ∈ suffix(S) | v(yu,v1,t) = 0}.

Now, we learn a concise LTL formula ϕi consistent with the sample Si (using
e.g., algorithms by Neider and Gavran [27]) for substituting ℓ(i) (Line 7).

The correctness of the algorithm is established by the following theorem:

Theorem 3. Given sketch ϕ? and sample S, Algorithm 1 terminates and com-
pletes ϕ? to output an LTL formula that is consistent with S, if such a formula
exists.

18 Lutz et al.

Algorithm 1 Algorithm based on LTL learning

1: Input: Sketch ϕ?, Sample S

2: Construct Φϕ?,S = Φ
1,2

?
∧ Φsem ∧ Φcon ∧ Φsuf

3: if Φϕ?,S is satisfiable (say with model v) then
4: Substitute Type-1 and Type-2 placeholders in ϕ? using v

5: for every i such that ℓ(i) ∈ Π0 do
6: Construct Si = (Pi, Ni)
7: Φi ← Learn(Si)
8: Substitute Node i with Φi in t

9: end for
10: return ϕ?

11: else
12: return LTL formula does not exist
13: end if

Observe that Algorithm 1 constructs new samples for each Type-0 place-
holder. Each of these samples have size O(|suffix(S)|) = O(|S|2), which poses a
challenge to the scalability of this algorithm. Furthermore, the new samples are
not optimized to produce the minimal possible substitutions. Our next algorithm
improves both on the runtime and the size of the inferred specification.

5.2 Algorithm based on incremental SAT solving

We, now, introduce an algorithm that is based on a series of SAT solving prob-
lems, similar to the SAT-based algorithm by Neider and Gavran [27]. Given a
sample S and a natural number n ∈ N\{0}, we construct a propositional formula

Ψϕ
?,S

n of size poly(n, |S|) that has the following two properties:

– Ψϕ
?,S

n is satisfiable if and only if one can complete ϕ? to obtain an LTL
formula of size n that is consistent with S; and

– if v is a model of Ψϕ
?,S

n , then v contains sufficient information to complete
ϕ? to construct an LTL formula ϕ of size n that is consistent with S.

However, in contrast to the algorithms by Neider and Gavran, we first solve

Φϕ
?,S (discussed in Section 4.1) to determine the existence of a complete substi-

tution. If and only if Φϕ
?,S is satisfiable, our algorithm checks the satisfiability

of Ψϕ
?,S

n for increasing values of n (starting from 1) to search for an LTL formula
of size at most n that has the same syntactic structure as ϕ?. We construct the
resulting LTL formula by substituting the placeholders in ϕ? based on a model

v of the satisfiable formula Ψϕ
?,S

n . This idea is illustrated in Algorithm 2.

On a technical level, the formula Ψϕ
?,S

n is obtained by modifying certain parts

of the formula Φϕ
?,S . Precisely, Ψϕ

?,S
n = Φ1,2

? ∧Φ′
sem ∧Φcon ∧Φ0

?,n employs a two

modifications: a new formula Φ0
?,n replaces Φsuf ; and Φ

′
sem is obtained by adding

more constraints to Φsem . The formula Φ0
?,n encodes the structure LTL formulas

Specification sketching for Linear Temporal Logic 19

Algorithm 2 Algorithm based on incremental SAT solving

1: Input: Sketch ϕ?, Sample S

2: Construct Φϕ?,S = Φ
1,2

?
∧ Φsem ∧ Φcon ∧ Φsuf

3: if Φϕ?,S is satisfiable then
4: n← |ϕ?| − 1
5: repeat
6: n← n+ 1
7: Construct Ψϕ?,S

n = Φ
1,2

?
∧ Φ

′

sem ∧ Φcon ∧ Φ0

?,n

8: until Ψϕ?,S
n is satisfiable (say with model v)

9: Substitute placeholders in t using v

10: return ϕ?

11: else
12: return LTL formula does not exist
13: end if

that substitute the Type-0 placeholders. Φ′
sem , again as in Φsem , ensures that

the variables yu,vi,t encode table entries Tϕuvω [ϕ[i],] that satisfy Equations 2 to 6.
We now briefly describe the constraints for the newly introduced formulas.

Constraints for Φ0
?,n. The constraints here rely on an additional set of vari-

ables: (i) xi,λ for each Node i labeled with a Type-0 placeholder, and for each
i ∈ {|ϕ?| + 1, · · · , n} such that ℓ(i) is a Type-0 placeholder, and each λ ∈ Λ;
and (ii) li,j and ri,j for each Node i labeled with a Type-0 placeholder, and each
i ∈ {|ϕ?| + 1, · · · , n} and j ∈ {max(i, |t|), · · · , n}. The variable xi,λ, again, en-
code that Node i is labeled with λ. The variables li,j (and ri,j) encode that the
left child (and the right child) of Node i is Node j. Together the new variables
encode the structure of the prospective LTL formulas for Type-0 placeholders.

We now impose constraints, similar to Constraint 8, on the variables xi,λ to
ensure each node is labeled by a unique LTL operator from Λ. Additionally, we
ensure that each Node i has a unique left child using the following constraint:

[

∨

max(i,|t|)≤j≤n

li,j

]

∧
[

∧

max(i,|t|)≤j 6=j′≤n

¬li,j ∨ ¬li,j′
]

, (13)

We have a similar constraint to ensure the uniqueness of right child of a node.
Now, we construct Ψstr as the conjunction of all such structural constraints.

Constraints for Φ′
sem . We rely on new variables yu,vi,t for each Node i labeled

with a Type-0 variables and each i ∈ {|ϕ?|+1, n}, each t ∈ {0, · · · , |uv|−1} and
each uvω in S. On these variables, we impose the following constraint, which is
similar to Constraint 10:

[

xi,X ∧ li,j
]

→
∧

0≤t≤|uv|−1

[

yu,vi,t ↔ yu,vj,t+1

]

∧
[

yu,v
i,|uv|−1 ↔ yu,v

j,|u|

]

, (14)

20 Lutz et al.

that ensures that the yu,vi,t variables encode entries of table that satisfy Equation 3.
We construct Φ′

sem as the conjunction of Φsem and the new semantic constraints.
We, now, establish the correctness of Algorithm 2 using the following theorem:

Theorem 4. Given sketch ϕ? and sample S, Algorithm 2 terminates and com-
pletes ϕ? to output an LTL formula that is consistent with S, if such a formula
exists.

While Algorithm 2 optimizes for the size of the inferred specification, it may
not always return an minimal LTL formula. Example 2 demonstrates one such
situation where Algorithm 2 could produce a sub-optimal result.

Example 2. Consider the sketch ϕ? =?0 ∨XX p (Figure 5a) and sample S con-
sisting of positive examples {}{p}{}ω and {}{}{p}{}ω and a negative example
{}ω. For this input, a possible output by Algorithm 2 is the formula F p∨XX p
(Figure 5b). The minimal consistent formula X p ∨XX p (Figure 5c), however,
is smaller.

∨

?0 X

X

p

(a) Sketch

∨

F X

X

p

p

(b) Possible formula

∨

X

X

p

(c) Minimal formula

Fig. 5: Minimal formulas require sharing of nodes

We leave the challenging problem of devising algorithms for searching for minimal
LTL formulas from a given sketch as a part of future work.

6 Experimental evaluation

In this section, we design experiments to answer the following research question:
how do the presented algorithms perform in terms of their running times and
the size of inferred specification? Can the algorithms recover the specification
intended by the engineer?

To answer these questions, we perform a comparative study of our algorithms
(presented in Section 5). Note that, to the best of our knowledge, none of the
existing tools can solve the LTL sketch existence problem the newly generated
sample from which they learn is not ensured to produce the minimal formula.in

Specification sketching for Linear Temporal Logic 21

0 500 1,000
0

0.5

1

1.5

2

·105

Number of benchmarks

A
cc
.
ti
m
e
in

s

Type-0 set

0 500 1,000
0

0.5

1

1.5

·104

Number of benchmarks

Type-1-2 set

Algo1-SAT Algo1-DT Algo2

Fig. 6: Accumulated runtime of the algorithms on the two benchmark sets

its full generality. Thus, we restrict ourselves to comparisons of the presented
algorithms.

We have implemented a prototype of our algorithms in a tool called
LTL-Sketcher which is publicly available3. While Algorithm 1 can exploit any
LTL learning algorithm, we have chosen the algorithms presented by Neider and
Gavran [27] in their state-of-the-art LTL learning tool—Flie—one based on
SAT solving and one on decision tree learning. We refer to Algorithm 1 relying
on the SAT-based algorithm as Algo1-SAT and the one relying on decision tree
learning as Algo1-DT. We refer to Algorithm 2 as Algo2.

For generating our benchmarks, we used the synthetic benchmark set pre-
sented by Neider and Gavran. Their benchmark set consists of 1196 samples
generated from 12 different LTL properties, which originate from a study by
Dwyer et al. [11]. Based on these samples, we generated two benchmark sets,
which we refer to as the Type-0 set and the Type-1-2 set. Each benchmark in
these two sets is simply a pair (ϕ?, S) consisting of a sample and a sketch, which
forms the input to our presented algorithms.

For generating a benchmark (ϕ?,S) in Type-0 set, we choose a sample S
generated from LTL formula ϕ from the 1196 chosen samples; then construct a
sketch ϕ? from ϕ by substituting an aritrarily chosen subformula of size at least
⌊|ϕ|/2⌋ by a Type-0 placeholder. In this manner, we obtain 1196 pairs (ϕ?,S)
for the Type-0 set. We repeat the same process for the Type-1-2 set, except that
we construct a sketch ϕ? from ϕ by substituting one aritrarily chosen operator
by a Type-1 placeholder, if unary, otherwise with a Type-2 placeholder. Here
again we generate 1196 pairs (ϕ?,S) for the Type-1-2 set.

All the experiments are conducted on a single core of a Debian machine with
Intel Xeon E7-8857 CPU (at 3 GHz) using up to 6 GB of RAM. The timeout
was set to be 1200 s for the run of each algorithm on each benchmark.

Comparison of runtime First, we compare the three algorithms based on their
runtimes on the Type-0 and the Type-1-2 benchmark sets. Figure 6 presents the
accumulated runtimes of the algorithms on the two benchmark sets. From the

3 https://github.com/rajarshi008/LTL-sketcher

https://github.com/rajarshi008/LTL-sketcher

22 Lutz et al.

0 5 10 15 20
0

5

10

15

20

Algo1-SAT

A
lg
o
1
-D

T

0 5 10 15 20

Algo1-SAT

A
lg
o
2

0 5 10 15 20

Algo1-DT

A
lg
o
2

Fig. 7: Comparison of sizes of resulting LTL formula on Type-0 set.

figure, we observe that the runtimes of Algo1-SAT and Algo1-DT is higher than
that of Algo2 on the Type-0 set. In fact, Algo1-SAT and Algo1-DT experiences
957 and 881 time-outs, respectively, while, Algo2 only 289 time-outs. The su-
perior performance of Algo2 can be attributed to the fact that Algo1-SAT and
Algo1-DT perform LTL learning on a newly generated sample S ′ (as discussed
in Section 5.1) of size O(|S|2), which turns out to be an expensive procedure in
most cases.

On the Type-1-2 set, however, Algo1-SAT and Algo1-DT display better run-
time performance. This is because for substituting Type-1 or Type-2 placeholders
only, Algo1-SAT and Algo1-DT do not generate new samples. Rather, they only

solve Φϕ
?,S using a SAT-solver. Algo2, on the other hand, additionally performs

at least one iteration of its incremental SAT solving procedure. This observation
presents a possible future optimization of Algo2 to adapt based on the type of
placeholder present in the sketch.

Comparison of formula sizes We now compare the three algorithms based
on the size of the resulting LTL formulas on the Type-0 set. Figure 7 presents
a pair-wise comparison of the three algorithms in terms of size. We notice that
Algo2 produces the smallest formulas among all the algorithms. This is because,
Algo2 iteratively searches for consistent formulas of increasing size. While Algo1-
SAT and Algo1-DT also try to optimize the size, the newly generated sample
from which they learn is not ensured to produce the minimal formula.

Comparison of formula recovery Finally, we compare the three algorithms
based on whether they were able to recover the intended formula. In our experi-
mental setup, we consider the intended formula to be the one that was used to
generate the input sample. Table 1 illustrates the percentage of runs in which
the intended formula was recovered by the three algorithms on Type-0 and Type-
1-2 benchmark sets. On Type-0 benchmark set, both Algo1-SAT and Algo1-DT
almost never produced the intended formula, while Algo2 produced the original
formula in several runs. A possible explanation can be that Algo2 searches for
simple completions first, finding the intended formula often. For Algo1, however,
the intermediate samples generated will not be optimized to obtain the intended
formulas. On Type-1-2 benchmark set, on the other hand, all the algorithms

Specification sketching for Linear Temporal Logic 23

recover the intended formulas in most runs. This is because, the intermediate
samples do not play a role in this benchmark set and thus, all the algorithms
have a similar performance.

Type-0 Type-1-2

Algo1-SAT 0.1 97.4

Algo1-DT 0 97.4

Algo2 54.9 97.9

Table 1: Percentage of runs in which intended formula is recovered

Overall, we conclude that Algorithm 2 performs better, in terms of runtime,
size and recovery of specifications, even when Algorithm 1 uses state-of-the-art
LTL learning techniques.

7 Conclusion and Future Work

We have introduced LTL sketching, a novel way of writing formal specifications
in LTL. The key idea is that a user can write a partial specification, i.e., a sketch,
which is then completed based on given examples of desired and undesired system
behavior. We have shown that the sketching problem is in NP and presented two
SAT-based sketching algorithms. Our experimental evaluation has shown that
our algorithms can effectively complete sketches consisting of different types of
missing information.

A natural direction for future work is to lift the idea of specification sketching
to other specification languages, such as Signal Temporal Logic (STL) [26], the
Property Specification Language (PSL) [12], or Computation Tree Logic (CTL) [8].
We also plan to investigate how specification sketching can be applied to visual
specifications, including UML (high-level) message sequence charts [17]. More-
over, we intend to extend the notion of sketching beyond the use of examples
to fill out placeholders (e.g., by allowing the engineer to constraint placeholders
using simple logical formulas or regular expressions).

References

1. Arif, M.F., Larraz, D., Echeverria, M., Reynolds, A., Chowdhury, O., Tinelli, C.:
SYSLITE: syntax-guided synthesis of PLTL formulas from finite traces. In: FM-
CAD. pp. 93–103. IEEE (2020)

2. Bacherini, S., Fantechi, A., Tempestini, M., Zingoni, N.: A story about formal
methods adoption by a railway signaling manufacturer. In: FM. Lecture Notes in
Computer Science, vol. 4085, pp. 179–189. Springer (2006)

24 Lutz et al.

3. Badeau, F., Amelot, A.: Using B as a high level programming language in an indus-
trial project: Roissy VAL. In: ZB. Lecture Notes in Computer Science, vol. 3455,
pp. 334–354. Springer (2005)

4. Balyo, T., Heule, M.J.H., Järvisalo, M.: SAT competition 2016: Recent develop-
ments. In: 31st AAAI Conference on Artificial Intelligence, AAAI ’17. pp. 5061–
5063. AAAI Press (2017)

5. Bowen, J.P.: Gerard o’regan: Concise guide to formal methods: Theory, fundamen-
tals and industry applications. Formal Aspects Comput. 32(1), 147–148 (2020)

6. Camacho, A., Icarte, R.T., Klassen, T.Q., Valenzano, R.A., McIlraith, S.A.: LTL
and beyond: Formal languages for reward function specification in reinforcement
learning. In: Kraus, S. (ed.) Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-
16, 2019. pp. 6065–6073. ijcai.org (2019). https://doi.org/10.24963/ijcai.2019/840,
https://doi.org/10.24963/ijcai.2019/840

7. Camacho, A., McIlraith, S.A.: Learning interpretable models expressed in linear
temporal logic. In: ICAPS. pp. 621–630. AAAI Press (2019)

8. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching-time temporal logic. In: Logics of Programs, Workshop, Yorktown
Heights, New York, USA, May 1981. Lecture Notes in Computer Science, vol. 131,
pp. 52–71. Springer (1981). https://doi.org/10.1007/BFb0025774

9. Cofer, D.D., Miller, S.P.: DO-333 certification case studies. In: NASA Formal Meth-
ods. Lecture Notes in Computer Science, vol. 8430, pp. 1–15. Springer (2014)

10. Courtois, P.J., Seidel, F., Gallardo, F., Bowell, M.: Licensing of safety
critical software for nuclear reactors. common position of international nu-
clear regulators and authorised technical support organisations. (12 2015).
https://doi.org/10.13140/RG.2.1.2789.8968

11. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for
finite-state verification. In: FMSP. pp. 7–15. ACM (1998)

12. Eisner, C., Fisman, D.: A Practical Introduction to PSL. Series on Integrated
Circuits and Systems, Springer (2006). https://doi.org/10.1007/978-0-387-36123-9

13. Fecko, M.A., Uyar, M.Ü., Amer, P.D., Sethi, A.S., Dzik, T., Menell, R., McMahon,
M.: A success story of formal description techniques: Estelle specification and test
generation for MIL-STD 188-220. Comput. Commun. 23(12), 1196–1213 (2000)

14. Fijalkow, N., Lagarde, G.: The complexity of learning linear temporal formulas
from examples. CoRR abs/2102.00876 (2021)

15. Fix, L.: Fifteen years of formal property verification in intel. In: 25 Years of Model
Checking. Lecture Notes in Computer Science, vol. 5000, pp. 139–144. Springer
(2008)

16. Gario, M., Cimatti, A., Mattarei, C., Tonetta, S., Rozier, K.Y.: Model checking at
scale: Automated air traffic control design space exploration. In: CAV (2). Lecture
Notes in Computer Science, vol. 9780, pp. 3–22. Springer (2016)

17. Harel, D., Thiagarajan, P.S.: Message sequence charts. In: UML for Real
- Design of Embedded Real-Time Systems, pp. 77–105. Kluwer (2003).
https://doi.org/10.1007/0-306-48738-1 4

18. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Software Eng. 23(5), 279–
295 (1997)

19. Holzmann, G.J.: The logic of bugs. In: SIGSOFT FSE. pp. 81–87. ACM (2002)
20. Kim, J., Muise, C., Shah, A., Agarwal, S., Shah, J.: Bayesian inference of linear

temporal logic specifications for contrastive explanations. In: IJCAI. pp. 5591–5598.
ijcai.org (2019)

https://doi.org/10.24963/ijcai.2019/840
https://doi.org/10.24963/ijcai.2019/840
https://doi.org/10.1007/BFb0025774
https://doi.org/10.13140/RG.2.1.2789.8968
https://doi.org/10.1007/978-0-387-36123-9
https://doi.org/10.1007/0-306-48738-1_4

Specification sketching for Linear Temporal Logic 25

21. Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood,
S.: sel4: formal verification of an operating-system kernel. Commun. ACM 53(6),
107–115 (2010)

22. Lemieux, C., Beschastnikh, I.: Investigating program behavior using the texada
LTL specifications miner. In: ASE. pp. 870–875. IEEE Computer Society (2015)

23. Lemieux, C., Park, D., Beschastnikh, I.: General LTL specification mining (T). In:
ASE. pp. 81–92. IEEE Computer Society (2015)

24. Li, W., Dworkin, L., Seshia, S.A.: Mining assumptions for synthesis. In: MEM-
OCODE. pp. 43–50. IEEE (2011)

25. Lowe, G.: Breaking and fixing the needham-schroeder public-key protocol using
FDR. Softw. Concepts Tools 17(3), 93–102 (1996)

26. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems,
Joint International Conferences on Formal Modelling and Analysis of Timed Sys-
tems, FORMATS 2004 and Formal Techniques in Real-Time and Fault-Tolerant
Systems, FTRTFT 2004, Grenoble, France, September 22-24, 2004, Proceedings.
Lecture Notes in Computer Science, vol. 3253, pp. 152–166. Springer (2004).
https://doi.org/10.1007/978-3-540-30206-3 12

27. Neider, D., Gavran, I.: Learning linear temporal properties. In: FMCAD. pp. 1–10.
IEEE (2018)

28. Pakonen, A., Pang, C., Buzhinsky, I., Vyatkin, V.: User-friendly formal specifica-
tion languages - conclusions drawn from industrial experience on model checking.
In: ETFA. pp. 1–8. IEEE (2016)

29. Pnueli, A.: The temporal logic of programs. In: FOCS. pp. 46–57. IEEE Computer
Society (1977)

30. Raha, R., Roy, R., Fijalkow, N., Neider, D.: Scalable anytime algorithms for learn-
ing formulas in linear temporal logic. CoRR abs/2110.06726 (2021)

31. Riener, H.: Exact synthesis of LTL properties from traces. In: FDL. pp. 1–6. IEEE
(2019)

32. Roy, R., Fisman, D., Neider, D.: Learning interpretable models in the property
specification language. In: IJCAI. pp. 2213–2219. ijcai.org (2020)

33. Schlör, R., Josko, B., Werth, D.: Using a visual formalism for design verification
in industrial environments. In: Services and Visualization: Towards User-Friendly
Design. Lecture Notes in Computer Science, vol. 1385, pp. 208–221. Springer (1998)

34. Shah, A., Kamath, P., Shah, J.A., Li, S.: Bayesian inference of temporal task
specifications from demonstrations. In: NeurIPS. pp. 3808–3817 (2018)

35. Solar-Lezama, A.: Program sketching. Int. J. Softw. Tools Technol. Transf. 15(5-6),
475–495 (2013)

36. Solar-Lezama, A., Rabbah, R.M., Bod́ık, R., Ebcioglu, K.: Programming by sketch-
ing for bit-streaming programs. In: PLDI. pp. 281–294. ACM (2005)

37. Verhulst, E., de Jong, G.G.: Opencomrtos: An ultra-small network centric em-
bedded RTOS designed using formal modeling. In: SDL Forum. Lecture Notes in
Computer Science, vol. 4745, pp. 258–271. Springer (2007)

38. Wasylkowski, A., Zeller, A.: Mining temporal specifications from object usage. Au-
tom. Softw. Eng. 18(3-4), 263–292 (2011)

https://doi.org/10.1007/978-3-540-30206-3_12

	Specification sketching for Linear Temporal Logic

