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Effective medium theory for bcc metals:
electronically non-adiabatic H atom scattering in
full dimensions

Nils Hertl, *ab Alexander Kandratsenka ab and Alec M. Wodtke abc

We report a newly derived Effective Medium Theory (EMT) formalism for bcc metals and apply it for the

construction of a full-dimensional PES for H atoms interacting with molybdenum (Mo) and tungsten (W).

We construct PESs for the (111) and (110) facets of both metals. The EMT-PESs have the advantage that

they automatically provide the background electron density on the fly which makes incorporation of ehp

excitation within the framework of electronic friction straightforward. Using molecular dynamics with

electronic friction (MDEF) with these new PESs, we simulated 2.76 eV H atoms scattering and

adsorption. The large energy losses at a surface temperature of 300 K is very similar those seen for H

atom scattering from the late fcc metals and is dominated by ehp excitation. We see significant

differences in the scattering from different surface facets of the same metal. For the (110) facet, we see

strong evidence of sub-surface scattering, which should be observable in experiment and we predict the

best conditions for observing this novel type of scattering process. At low temperatures the MD

simulations predict that H atom scattering is surface specific due to the reduced influence of the

random force.

1 Introduction

Adsorption is a prerequisite to most surface chemistry and
requires that the incident molecule transfers kinetic energy to
the solid, either via excitations of phonons or electron–hole
pairs (ehp). H-atom adsorption on transition metals is of
special interest1–4 as the efficiency of energy transfer to pho-
nons is reduced, a result of the light mass of hydrogen
compared to the surface atoms. This makes an accurate
description of ehp excitation essential and H atom scattering
from metal surfaces an excellent test case for modeling electro-
nically non-adiabatic dynamics beyond the Born–Oppenheimer
approximation.5

Two theoretical frameworks to accomplish this have evolved
over the last decades: (i) independent electron surface hopping6

and (ii) mean-field methods like the effective Hamiltonian
approach7,8 or molecular dynamics with electronic
friction.9–11 Electronic friction—the most commonly used
approach for H atom interactions with metals—treats the

electrons as a bath, which is well-suited to describe a metal’s
electronic continuum.10,11 The coupling between the transla-
tional degrees of freedom of the atom and metal electrons is
then described by a frictional drag force upon the classically
moving nuclei. The friction tensor is commonly treated simply
as a coefficient, which can then easily be calculated from the
background electron density at the location of the nuclei. This
is referred to as the local density friction approximation
(LDFA).10–13 Using this model of ehp excitations, a Langevin
equation is used to propagate classical trajectories. This intro-
duces a temperature dependent random force that ensures
detailed balance.14 Despite the LDFA works well in modeling
the ehp influence on the dynamics of atoms at metal surfaces,
it is not applicable for molecule-surface scattering. The con-
tribution due to the molecular electronic structure into the
friction can be taken into account by the orbital-dependent
friction approach.15,16

The critical step in carrying out molecular dynamic simula-
tions with LDFA electronic friction is the simultaneous acquisi-
tion of reliable configuration–dependent energies and
background electron densities. Many-body potentials like the
Embedded Atom Method (EAM)17,18 or Effective Medium The-
ory (EMT)19–22 have the advantage that their energy expressions
contain an electron density model, allowing potential gradients
and LDFA based friction coefficients to be computed on the fly.
By parameterizing an EMT expression by fitting to DFT data,
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full-dimensional potential energy surfaces (PES) and electron
density functions can be derived.23 In recent studies, this
approach was used to investigate the scattering dynamics of
H and D atoms from six late fcc (111) transition metal surfaces
and comparisons of predicted energy losses were in excellent
agreement with experiment.23–25 Remarkably, the scattering
dynamics of H and D from these six metals were quite similar,
prompting the authors to speak of ‘‘universal behavior’’.24

In this work, we investigate how the surface and crystal
structure influence the H and D translational energy losses
resulting from collisions at metal surfaces. This required us to
extend the EMT formalism22 to the bcc crystal symmetry, the
formalism for which we also present. We parameterized these
newly derived energy formulae by fitting them to ab initio
energies for two bcc metals, Mo and W, both with (111) surface
structures. We also showed that the same EMT parameters
accurately describe the H interactions with the (110) surfaces of
W and Mo. Finally, we used the PESs and electron densities to
perform LDFA electronic friction molecular dynamics simula-
tions of H atoms scattering and computed energy loss distribu-
tions. We find, as before, that there are only small differences
in the H atom energy losses when comparing different metals.
However, scattering from different facets—even for the same
metal—leads to significantly different scattering dynamics. In
contrast to (111) facets, H scattering from (110) facets leads to
deep H atom penetration followed by scattering back to the
vacuum. This produces a large energy loss that should be
observable in experiment. We make the prediction that H
scattering from W(110) at liquid nitrogen temperature is the
best possibility to observe this novel scattering process.

2 Theory
2.1 Effective medium theory

The Effective Medium Theory (EMT) has proven useful to
describe gas-surface interactions for fcc metals.2,14,22–24,26–30

Here, we extend the previously formulated EMT formalism to
the case of bcc metals.

EMT represents the energy of a real system relative to a
reference system.22 Hence, the total energy E of a system
consisting of N atoms is the sum of the energy of the reference
system and a correction term DE:

E ¼
XN
i¼1

Ei �nið Þ þ DE; (1)

where Ei ( %ni) represents the cohesive energy of atom i and
depends on the average background electron density %ni sur-
rounding the atom. Ei ( %ni) is calculated by considering atom i to
be an impurity embedded in a metal host. Jacobsen et al.22 and
Janke et al.2 chose a perfect fcc crystal as a reference system, but
other choices are possible. In our new formalism, we choose a
perfect bcc crystal to serve as an effective medium, and follow
the derivation used for fcc metals.22

The correction term DE is often represented in the
following form:

DE ¼
XN
i¼1

XN
j4 i

Vij rij
� �
� V ref

i �nið Þ
" #

; (2)

where Vij(rij) is the pairwise correction term due to the inter-
action between atoms i and j separated by the distance rij. Vref

i

( %ni) is the many-body correction term for the reference system.
The background electron density %ni, averaged over the volume
inside a sphere with the radius si, serves as a connection
between the real system and the reference system and is
calculated as

�ni ¼
X
jai

Dnj si; rij
� �

; (3)

where Dnj (si,rij) is the electron density tail of atom j contribut-
ing to the background electron density in the location of atom i.
These density tails can be approximated by exponential func-
tions resulting in the following equation:

�ni ¼
X
jai

Dn0;jeZ1si�Z2rij ; (4)

where Z1 and Z2 describe the fall-off of the many-body and the
pairwise contributions to the average electron density %ni,
respectively. Dn0,j is assumed to be a constant. On the other
hand, the DFT calculations on the level of local density
approximation lead to the following relation:21

%ni = n0e�Z(si�s0), (5)

where s0 defines a sphere of the same volume as the Wigner–
Seitz cell of a perfect fcc or bcc crystal in equilibrium. Setting si

= s0 and assuming that only nearest neighbors contribute to the
background electron density, eqn (4) and (5) give

Dn0 ¼
n0

b1
e�ðZ1�bZ2Þs0 : (6)

Here, b1 denotes the number of nearest neighbors. The geo-
metric factor b relates the neutral sphere radius s0 to the
nearest-neighbor equilibrium distance

r1 = bs0. (7)

In general, it can be shown that the interatomic distance to the
neighbors situated in the q-th shell in a perfect lattice is
given by

rq = dqbs0. (8)

For the fcc metal the coefficients dq are related to the number of
shell q by a simple formula

dðfccÞq ¼ ffiffiffi
q
p

: (9)

It is slightly more complex for the bcc lattice: the values of
d(bcc)

q can be calculated numerically with the aid of the primitive
lattice vectors. Table 1 shows the radii and the number of
atoms for the first 10 shells.
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The geometrical factor b entering eqn (8) is defined by:

b ¼

ffiffiffiffiffiffiffiffi
16p
3

3

r , ffiffiffi
2
p

; for a fcc lattice;ffiffiffiffiffiffiffi
3p26
p

; for a bcc lattice:

8><
>: (10)

Substituting eqn (6) into eqn (4) and comparing with eqn (5)
we obtain the equation:

b1e
�Zðsi�s0Þ ¼

X
jai

eZ1 si�s0ð Þ�Z2 rij�bs0ð Þ; (11)

which implies, for the sake of consistency, that

Z = bZ2 � Z1. (12)

Rose et al.31 developed a functional producing the cohesive
energy for a crystal lattice of the following form

Ei = E0 [1 + l (si � s0)]e�l(si�s0) � E0. (13)

The expression for the neutral sphere radius si can be obtained
from eqn (11):

si ¼ s0 �
1

bZ2
ln

si
b1

� �
; (14)

with si being the short hand notation for

si ¼
X
jai

e�Z2 rij�bs0ð Þ: (15)

E0 is the cohesive energy for the equilibrium geometry. The
pairwise correction term and the potential energy of the refer-
ence system entering eqn (2) can be represented in the
following form

Vij ¼ �V0e
�
k
b

rij�bs0ð Þ
; (16)

and

Vref = �b1V0e�k(si�s0), (17)

respectively.22

The above formalism allows the straightforward extension to
two-component systems like metal alloys or a hydrogen atom at
metal surfaces. Then, the total cohesive energy of the system
consists of the sum of the partial (species-specific) cohesive
energies

EiA ¼ E0;A 1þ lA siA � s0;A
� �� �

e�lA siA�s0;Að Þ � E0;A; (18)

where index A labels species A. In a two-component system the
neutral sphere radius of atom iA belonging to species A is
defined by the following formula:

siA ¼ s0;A �
1

bZ2;A
ln
X2
B¼1

wABs
Bð Þ
iA

b1
; (19)

where index B runs over the species. The important difference
between eqn (19) and (14) resides in the quantity

wAB ¼
n0;Be

�Z1;Bs0;B

n0;Ae
�Z1;As0;A ; (20)

which accounts for the contribution of cross-terms between two
different species to the neutral sphere radius. Note, that wAA = 1
in the case of A = B.

s Bð Þ
iA
¼ g�11;A

XNB

jB¼1
e�Z2;B riAjB

�bs0;Bð ÞyiAjB (21)

is the sum of exponential pair-wise contributions of the atoms
belonging to species B to the neutral sphere radius siA. The sum
in eqn (21) runs over all atoms of species B, and in case of B = A
the self-interacting term ( jA = iA) is excluded from the sum.

The pairwise correction term in eqn (2) is constructed in a
similar way to eqn (21),

VAB ¼ �wAB
V0;A

g2;A

X
iA ;jB

e
�
kB
b

riAjB
�bs0;Bð Þ

yiAjB : (22)

Finally, the reference energy contribution to eqn (2)

V
refð Þ
A ¼ �b1V0;A

XNA

iA¼1
e�kA siA�s0;Að Þ: (23)

is defined as in eqn (17).
The factor

yiAjB ¼ 1þ ea riAjB
�rcð Þ

h i�1
(24)

in the formulas above serves as a smooth cut-off function
needed for molecular dynamics simulations.2 The falloff para-
meter

a ¼ ln
104

rr � rc

� �
(25)

dictates the steepness of the cut-off function, rc = r3 is the cut-
off radius set to the third-nearest neighbor distance in

Table 1 Radius dq of the q-th shell in the units of bs0 and the corres-
ponding number of the atoms bq belonging to it for both the fcc and bcc
crystal

q dfcc
q bfcc

q dbcc
q bbcc

q

1 1 12 1 8
2

ffiffiffi
2
p

6 2ffiffiffi
3
p 6

3
ffiffiffi
3
p

24
ffiffiffi
8

3

r
12

4
ffiffiffi
4
p

12
ffiffiffiffiffi
11

3

r
24

5
ffiffiffi
5
p

24 2 8
6

ffiffiffi
6
p

8 4ffiffiffi
3
p 6

7
ffiffiffi
7
p

48
ffiffiffiffiffi
19

3

r
24

8
ffiffiffi
8
p

6
ffiffiffiffiffi
20

3

r
24

9
ffiffiffi
9
p

36
ffiffiffiffiffi
24

3

r
24

1
ffiffiffiffiffi
10
p

24 3 32
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equilibrium, and

rr ¼
2rc

1

2
d3 þ d4ð Þ

; (26)

where d3 and d4 are given in Table 1. The normalization
coefficients

g1;A ¼
X3
q¼1

bq

b1
1þ ea dq�d3ð Þbs0;A
h i�1

e�Z2;A dq�1ð Þbs0;A (27)

and

g2;A ¼
X3
q¼1

bq

b1
1þ ea dq�d3ð Þbs0;A
h i�1

e�k2;A dq�1ð Þbs0;A (28)

in eqn (21) and (22) ensure that for the perfect bulk structure
the total energy is zero.2,22 The sums in the above equations run
over the first three shells. bq is the number of atoms in shell q.
For a perfect fcc crystal b1 = 12, b2 = 6, and b3 = 24, while for a
bcc crystal b1 = 8, b2 = 6 and b3 = 12.

EMT characterizes each atomic species in the system with
seven parameters: E0, n0, s0, l, Z2, V0 and k. All parameters
except for n0 are connected to bulk properties that can be
obtained experimentally.2,21,22 E0 is the cohesive energy. s0 is
related to the lattice constant a0 by expressions:

s0 ¼

ffiffiffiffiffiffiffiffi
3

16p
3

r
a0; for a fcc lattice;ffiffiffiffiffiffi

3

8p
3

r
a0; for a bcc lattice;

8>><
>>: (29)

which were obtained from eqn (8) noting that a0 = r2 for both
fcc and bcc lattice.

The remaining parameters l, V0, Z2 and k are related to the
elastic moduli of a metal (see Appendix).

2.2 Electronic structure calculations

The optimal EMT parameters must be found by fitting the EMT
energy function to energy values obtained from ab initio

calculations, using a large number of configurations. These
were determined using VASP5.3.532–35 with the PBE
functional36,37 and with the electron-core interactions treated
within the framework of the projector-augmented wave (PAW)
approach.38 The plane-wave basis set cutoff energy was set to
400 eV. Partial occupancies were modeled with the method of
Methfessel–Paxton39 (N = 1) with a smearing width of 0.1 eV.
We calculated the energy for both (111) and (110) facets of W
and Mo metals. The simulation cell contained a (2 � 2) six-
layered slab with the bottom layer held stationary. The k-point
grid for the Brillouin zone for W(111) and Mo(111) was sampled
with the (6 � 6 � 1) Monkhorst–Pack mesh,40 while for W(110)
and Mo(110) the (12 � 12 � 1) and the (10 � 10 � 1) mesh were
used, respectively.

The system geometries were sampled in two ways: (i) H
atoms were placed at nodes of a 3D grid consisting of about
1000 points, while the metal atoms were fixed at their equili-
brium lattice positions (Fig. 1); (ii) configurations were taken
from ab initio molecular dynamics trajectories simulating the
scattering of an H atom from a surface at 120 K. The initial
positions of H atom for these AIMD simulations were set to be 6
Å above the surface at random lateral coordinates. The initial
velocity of the H atom was set to correspond to the incidence
kinetic energy of 5 eV and the incidence angle of 301. The time
step was set to 0.1 fs and the H atom was considered to be
scattered when it was more than 6.05 Å above the surface. The
initial positions and velocities of the surface atoms were
sampled from the equilibrium NVE MD simulations of a metal
slab at 120 K. The snapshots were taken from a 1 ps MD
trajectory with an interval of 100 fs.

2.3 Fitting procedure

A genetic algorithm developed in our group23 was used to fit the
EMT function to the DFT energies described above. We used
the relations of the fitting parameters to the bulk properties of
metals discussed in Subsection 2.1 to constrain values of the
following parameters. s0,M was calculated from eqn (29) using

Fig. 1 Top view on the bcc (110) surface, shown in panel (a), and the bcc (111) surface in panel (b). The cartesian coordinate system, the incidence
azimuth and the most important high symmetry sites are also shown. The white shaded areas mark the p(1 � 1) unit cell.
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the lattice constant a0 obtained from the DFT calculations. The
cohesive energy of the metal E0,M was set to its experimental
value.41 lM was set to a value ensuring a good agreement with
the literature value of the bulk modulus.41 This leaves eleven
parameters remaining, which were optimized to fit the DFT
data. We also used MD simulations to check that the metal slab
remained intact up to 900 K for 100 ps. Finally, we compared
the EMT background electron density to that of the DFT
calculations. Although these two physical quantities are not
strictly comparable, they agree well within one another.

2.4 Non-adiabatic molecular dynamics simulations

We treat electronically non-adiabatic effects in terms of a drag
force and a random force, using the Langevin equation to
govern the motion of the H atom

mr ¼ �@Eðr;RÞ
@r

�mZelðr;RÞ _rþ FLðtÞ; (30)

Here, m and r are the projectile’s mass and position, respec-
tively; Eðr;RÞ is the ground-state potential energy surface
provided by the optimized EMT energy expression that depends
not only on the projectile coordinates r but on the coordinates
of the surface atoms R. Eqn (30) can be derived from the time-
dependent Schrödinger equation using a mean-field approxi-
mation in the limit of weak non-adiabatic couplings.42 In that
case, the friction term Zelðr;RÞ is obtained by Fermi’s golden
rule with perturbations defined first-derivative non-adiabatic
couplings of the electronic states. In this work, we are operating
within the framework of the local density friction approxi-
mation (LDFA),10–12 i.e., we are dealing with a single friction
coefficient instead of a friction tensor. The friction coefficient
is calculated with the aid of the background densities asso-
ciated with the EMT-PES. The detailed mapping procedure
between friction coefficient and background electron density
is described elsewhere.2 The random force FL (t) is modeled by
a stochastic process with a Gaussian white noise of zero
mean value

hFL (t)i = 0, (31)

and the variance being characterized by the second fluctuation-
dissipation theorem43

FLðtÞFLðt 0Þh i ¼ 2kBTmZelðr;RÞdðt� t 0ÞI: (32)

Here, I denotes the 3D unity matrix and T is the surface
temperature. We emphasize that neglecting the random force,
as has sometimes been done,44 can lead to spurious results.14

The EMT-PES and the Langevin propagator integrating eqn (30)
are implemented in our homemade program md_tian2 avail-
able at a public repository.45

The MD trajectories simulating H scattering from a metal
surface were started with a H atom placed at 6 Å above the
surface with a lateral position chosen randomly. The time step
was 0.1 fs and the trajectory was stopped once the projectile was
more than 6.05 Å above the surface. The metal surface was
equilibrated to 70 K and 300 K in the following way: for 100 ps
the slab was equilibrated with an Anderson-thermostat,46 and

then propagated microcanonically for additional 100 ps, using
the velocity-Verlet algorithm.47,48 Afterwards, we ran a 1 ns-
equilibrium trajectory and took a snapshot every picosecond.
These shapshots sample the equilibrium slab geometries at the
desired temperature which served as slab initial conditions for
the scattering dynamics simulations.

3 Results and discussion
3.1 Full dimensional PES for H on W(111) and Mo(111)

Table 2 shows the optimized EMT parameter sets for atomic
hydrogen interacting with both W(111) and Mo(111). Fig. 2
shows cuts through the EMT-PESs for the two metals. The root
mean-square error (RMSE) for H/W(111) and H/Mo(111) is 0.25
eV and 0.26 eV, respectively. Fig. 3 shows comparisons of EMT-
PESs to DFT results as AIMD trajectories that include structures
with surface atoms displaced from their equilibrium positions.
The resulting EMT-PESs for H/Mo and H/W show an overall
RMSE of 0.27 eV and 0.30 eV, respectively. Fig. 4 shows cuts of
the EMT background electron density nðr;RÞ for four surface
symmetry sites along the surface normal, as well as the corres-
ponding electron densities obtained from the DFT calculations
absent the H atom. Again, the agreement is good.

3.2 EMT-PES transferability to the (110)-facet

The EMT energy expression is independent of the surface facet;
hence, the EMT parameters of Table 2 can just as easily be used
to produce a PES for H interacting with a (110) surface. This is
an advantage over other methods like neural networks, which
need to be retrained for each facet. Fig. 5 and 6 show compar-
isons of DFT data to the EMT energies for H on W and Mo(110)
facet. Agreement between the (111)-fitted EMT-PES and DFT is
good. We emphasize that these comparisons sample a wide
variety of configurations including those corresponding to single
bounce scattering as well as penetration of H atom into the bulk.
In all cases the EMT-PESs are in a good agreement with the DFT
calculations with the RMSE of about 330 meV (13.2 meV per atom)
without no adjustment to the fitting parameters.

We also checked the accuracy of the EMT electron densities
against DFT calculations—see Fig. 7. As in the (111) case,
agreement is good. In case of H/Mo(110), the EMT background
electron density (filled circles) is systematically B30% lower
than the one from DFT (solid line). However, this does not
influence the predicted energy loss distributions appreciably.

Nowadays, it is possible to craft Neural-Network potentials
with fitting errors (RMSE) less than 1 meV per atom.49 So, our

Table 2 EMT parameters defining the H/W and H/Mo interaction energies
and background electron density

Z2/Å�1 n0/Å�3 E0/eV l/Å�1 V0/eV k/Å�1 s0/Å

W 3.546 0.051 �8.90 3.505 1.518 2.296 1.564
H 7.049 0.141 �3.36 7.701 0.482 8.047 0.680
Mo 2.782 0.051 �6.82 3.738 2.595 3.899 1.554
H 5.371 0.066 �2.33 6.236 0.407 8.767 0.844
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potentials may seem by comparison inaccurate. But the high
accuracy of Neural-Network potentials comes at a cost of
complexity. It requires far more DFT data to be trained, and
it must be retrained from facet to facet. Furthermore, it delivers
no background electron density information necessary for
computing electronic friction forces. The EMT approach pre-
sented here is by comparison extremely simple, transferable
between facets and, as has been shown, despite the reduced
accuracy in reproducing DFT data, accurate enough to repro-
duce experimental energy loss distributions.24 Another strength
of the EMT-PES is that the projectile cannot enter out-of
sampling regions of the configuration space during MD simu-
lations—an aspect which needs to be always checked when
using Neural-Network potentials.

3.3 MD simulations of H scattering

Using the EMT-PESs described above, we performed LDFA
frictional based molecular dynamics simulations to compute
energy-loss distributions for hydrogen atom scattering from
tungsten and molybdenum. We launched 106 trajectories with

incidence energy of Ein = 2.76 eV and incidence angle Win= 451.
To reflect typical experimental conditions,50 we selected trajec-
tories scattered at the specular angle with the in-plane and out-
of-plane tolerance of �51. We refer to these distributions as
specular energy loss distributions.

Fig. 8 shows simulations for H scattering from both surface
facets of Mo and W at 70 K and 300 K. The energy loss
distribution obtained from electronically adiabatic MD simula-
tions are also shown. The MDEF simulations predict a much

Fig. 3 Interaction energies corresponding to configurations sampled
from AIMD trajectories. The gray crosses represent the ab initio energies
along the trajectories for H/W(111) (left panels) and H/Mo(111) (right
panels), respectively. The black line stands for the energy from EMT fitting
function.

Fig. 4 Background EMT and DFT electron densities for Mo(111) and
W(111) as a function of the H atom height over the surface at four different
high-symmetry sites shown in Fig. 1a. Note that the metal atoms were kept
fixed at their equilibrium lattice coordinates.

Fig. 2 Interaction energy of H atom with the metal as a function of the
projectile’s height z over the surface shown for several high-symmetry
sites (see Fig. 1). The gray crosses mark the DFT energies of H/W(111) and
H/Mo(111), which served as input data for the fit. The black line represents
the EMT fitting function. Note that the metals were held fixed at their
lattice coordinates.
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larger energy loss dominated by ehp excitation. The mean
energy losses are all about 1 eV, consistent with experimental

observations for H atom scattering from fcc metals24 and
similar in magnitude to predictions of another calculation
using a reduced dimensional PES.51 When comparing the four
scattering calculations at two temperatures, we see that there is
very little difference in the energy loss distributions for Mo and
W, when other factors are the same. On the other hand, there is
a distinct difference in the energy loss distributions when

Fig. 5 EMT energy dependence on z coordinate of the H-atom at W(110)
(left panels) and Mo(110) (right panels) shown for several high-symmetry
sites. The gray crosses mark the corresponding DFT energies. Note, the
EMT-PES was fitted to the (111) data.

Fig. 6 H/W(110) and H/Mo(110) interaction energies calculated for the
configurations sampled from AIMD scattering trajectories. The gray
crosses represent the DFT energies. The black line stands for the EMT-PES.

Fig. 7 Background EMT and DFT electron densities for Mo(110) and
W(110) as a function of the H atom height over the surface at four different
high-symmetry sites shown in Fig. 1b.

Fig. 8 Specular energy loss distributions of H atoms scattered from
molybdenum and tungsten surfaces. Upper panels show results for the
surface temperature of 300 K and lower panels for 70 K. The gray dashed
line represent adiabatic simulations for H atom scattering from tungsten,
demonstrating the crucial contribution of electrons to the energy loss of
the scattered particles. The initial conditions are: Ein = 2.76 eV, Win = 451,
and jin = 01 (see Fig. 1).
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comparing different surface facets or different temperatures.
The effect of temperature has been reported previously14 and
arises from the reduced influence of the random force at low
temperature.

The differences seen in the H-atom energy loss distributions
for different surface facets—compare Fig. 8(a)–(d)—are due to
differences in surface structure. This can be inferred from
results presented in Fig. 9. Here, contour plots report the
number of specular scattering events as a function of the energy
loss and depth of penetration for trajectories of panels Fig. 8(c)
and (d), where the surface temperature was 70 K. A clear
correlation between energy loss and the depth of penetration
is seen for both surface geometries—the deeper the H atom
moves into the bulk, the more kinetic energy is lost to
the metal.

This can be qualitatively understood from the structures of
the surfaces. The (111) surfaces allow access to three surface
sites—top, fcc-hollow and hcp-hollow—broadening the energy-
loss distribution as the three sites allow for different degrees of
surface penetration. For (110) surfaces, the surface density is
higher—over 70% of the specular scattered H atoms do not
penetrate the surface. But, the (110) facets also exhibit geo-
metric channels that allow very deep penetration that results in
a better resolved high energy loss feature in the energy loss
distributions. It is noteworthy that subsurface-penetration
scattering processes are predicted by these calculations, and
hints are provided how these might best be observed experi-
mentally. Specifically, we suggest that H atom scattering

experiments using W(110) held at liquid nitrogen temperature
would provide clear signatures of subsurface scattering. Tung-
sten is more favorable to these proposed experiments and it
exhibits higher background electron density (see Fig. 4): result-
ing in higher values of the friction coefficient, which in turn
leads to larger energy losses for deep penetration.

3.4 MD simulations of H adsorption

Finally, we report the sticking probabilities for H under the
incidence conditions of this work—see Table 3. Remarkably,
the sticking probability is uniformly about 0.4 regardless of the
identity of the metal, the surface facet or the temperature. This
reflects the mechanism of adsorption previously identified for
H adsorption to Au(111).2,4 In this mechanism, adsorption
results from trajectories that sample the high electron density
below the surface of the metal and subsequently resurface with
less than enough energy to desorb. In our case, for the (110)
surface, resurfacing originates predominantly from the under-
lying subsurface and—to a minor extend—from the third layer,
while for the (111) surface the resurfacing occurs even from the
sixth metal layer. This strong migration reflects the small
distance between the individual layers in the (111) surface
along with a variety of easy accessible diffusion pathways due
to the low packing density.

4 Conclusion

In summary, we have extended the EMT formalism derived for
fcc metals22 to the bcc case. We then fit the newly derived
formulae to DFT data for H interacting with W and Mo, which
led to full dimensional PESs and electron densities. We
employed the PESs and the electron densities to carry out
electronically non-adiabatic MD simulations of H atom scatter-
ing, following previous work that used the LDFA approximation
with a Langevin propagator. Specifically, we predict energy loss
distributions for H scattering from (111) and (110) facets of
these two metals at 2.76 eV incidence energy. Although no
experiments are currently available for bcc metals, our results
are similar to what has been seen for H scattering from fcc
metals. This suggests that the current results are likely to be a
reliable prediction of experiment. We find only subtle differ-
ences in the energy loss distributions arising from the scatter-
ing of H atom with these two metals; however, scattering from
the (111) and (110) facets are distinctly different. Remarkably,
on the (110) facet, we predict a clearly resolvable energy loss
peak that arises from sub-surface scattering. The calculations

Fig. 9 Distribution of specular scattering events as a function of the
energy loss and the depth of penetration of H atom scattered from (a)
Mo(110), (b) Mo(111), (c) W(110), and (d) W(111). The surface temperature is
70 K. The other conditions are the same as in Fig. 8. The signal above the
black, dashed line indicate from which layer the projectiles repelled. The
labels top, hcp and fcc refer to the high-symmetry sites of the (111) facet
and are shown in Fig. 1(b). The bin sizes are 0.027 eV and 0.063 Å.

Table 3 Sticking coefficient S0 computed from the same set of trajec-
tories that were used for the calculation of the specular energy loss
distributions shown in Fig. 8

System 300 K 70 K

H/Mo(110) 0.44 0.44
H/Mo(111) 0.40 0.41
H/W(110) 0.42 0.41
H/W(111) 0.40 0.40

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
A

pr
il 

20
22

. D
ow

nl
oa

de
d 

on
 6

/8
/2

02
2 

3:
06

:5
8 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2cp00087c


8746 |  Phys. Chem. Chem. Phys., 2022, 24, 8738–8748 This journal is © the Owner Societies 2022

predict that the subsurface scattering is most easily seen for H
scattering from W(110) at reduced surface temperatures.
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Appendix

Derivation of elastic constants with
contributions from the first shell

The components of the elastic tensor can be obtained as
follows:

Cxrst ¼
1

O0

XNB

k;‘¼1

@2e
@rk;r@r‘;t

rk;xr‘;s

					
eq

; (33)

where O0 is the volume per metal atom at equilibrium condi-
tions, e is the energy per atom, rk,r is the Cartesian component
r of the position vector of neighbor k, NB is the total number of
neighbors. In case of a fcc lattice it is sufficient to include only
the neighbors located in the first shell. For a bcc lattice on the
other hand, it is necessary to include the second shell, too. Due
to the symmetry of the elastic tensor, defined by eqn (33), there
are only three independent components: C11 =
{Cxxxx,Cyyyy,Czzzz}, C12 = {Cxxyy,Cxxzz,Cyyzz}, and C44 = {Cxyxy,Cxzxz,-
Cyzyz}. The bulk modulus of the system can be obtained with the
following relationship that holds for all cubic metals

B ¼ C11 þ 2C12

3
: (34)

Now, when we insert the EMT energy expression (1) for a one-
component fcc metal system into eqn (33), we derive the bulk
modulus

B ¼ �E0l2

12ps0
(35)

and the shear modulus

C44 ¼
3V0 bZ2 � kð Þk

8ps0
: (36)

Considering only the nearest neighbors, i.e. neglecting many-
body contributions, one can derive the other elastic constants
for a fcc lattice

C11 ¼
3V0 bZ2 � kð Þk� E0l2

12ps0
; (37)

C12 ¼ �
3V0 bZ2 � kð Þkþ 2E0l2

24ps0
; (38)

and a bcc lattice

C11 ¼ �
E0l2

12ps0
; (39)

C12 ¼ �
E0l2

12ps0
: (40)

Thus, the bulk modulus reads the same as for the fcc case

B ¼ �E0l2

12ps0
; (41)

whereas the third elastic constant for a bcc lattice in EMT is

C44 ¼
V0 bZ2 � kð Þk

3ps0
: (42)

Accounting the second shell
contributions into elastic constants

If a perfect bcc crystal is used as effective medium and only the
nearest neighbors are considered, the elastic constants, given
in eqn (39), (40) and (42), violate the elastic stability criteria.52

As a consequence, we also took the next-nearest neighbors into
account. The three elastic constants and the bulk modulus then
have the following expressions:

C11 ¼ Aþ O �g1 ks0 1þ 3Mkð Þ � 2ð Þ½

þ g2 bZ2s0 1þ 3MZ2

� �
� 2

� ��
;

(43)

C12 = A + O [�g1 (ks0 + 1) + g2 (bZ2s0 + 1)], (44)

C44 ¼ O �g1ðks0 � 2Þ þ g2ðbZ2s0 � 2Þ½

þ
ffiffiffiffiffi
27
p

2
ðg1Mk � g2MZ2Þ

#
;

(45)

and

B = A + O (�g1ks0 (1 + Mk) + g2bZ2s0 (1 + MZ2
)). (46)

The factors A and O are the abbreviation for the following
expressions:

A ¼ �E0l2 þ 4V0kðk� bZ2Þ
16ps0g12

4

3
þ 4ffiffiffi

3
p MZ2 þMZ2

2


 �
; (47)

O ¼ V0k
3ps02g1g2

; (48)

with MZ2
and Mk being

MZ2 ¼ e
�Z2bs0

2ffiffiffi
3
p �1


 �
; (49)

and

Mk ¼ e
�ks0

2ffiffiffi
3
p �1


 �
; (50)

respectively.
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