
1. Motivation
Following a radiative forcing (F) applied to the climate system, the degree of imbalance in the global 
top-of-atmosphere (TOA) radiation budget (N) is given by the sum of F and the radiative response (R) in-
duced by a global surface temperature change ( T ):

.N F R  (1)

In equilibrium, the absorbed and reflected solar shortwave and outgoing terrestrial longwave radiation 
must once again balance ( 0N  ) such that R F  . In turn, R can be described in terms of a Taylor series 
expansion about a climate state (e.g., Roe, 2009):
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where /R T     (units of Wm−2 K−1) is the radiative feedback parameter, which traditionally includes 
radiation anomalies associated with the Planck response and changes in lapse rate, water vapor, clouds, and 
surface albedo (“Charney” or fast feedbacks; Charney et al., 1979). Additional climate processes that affect 
R – such as changes in dust, atmospheric methane, and vegetation – are increasingly well understood and 
might act on similar timescales as the Charney feedbacks (e.g., Thornhill et al., 2020). The term 2( )T  
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represents the sum of all higher-order terms of the Taylor series expansion in T  including nonlinearities 
of individual processes and interactions between different feedbacks.

Two approximations are commonly applied to Equation 2: (a) that T  is sufficiently small that 2( )T  is 
negligible; and (b) that  is constant. Under these assumptions, and setting   , Equations 1 and 2 pro-
vide what can be considered the “Standard Model” of global climate response to forcing (popularized by 
Gregory et al., 2002):

,N F T   (3)

where  must be negative for a stable climate. Using this equation, the warming at equilibrium ( 0N  )  
can be readily expressed as eq/T F    , where eq  denotes the value of the net feedback that brings 
the system into the new equilibrium. The special case of the equilibrium response to 2CO  doubling above 
pre-industrial levels defines the equilibrium climate sensitivity: ECS 2 eq/F   . Note that some studies 
choose an opposite sign convention for  (sometimes referred to as ), but in either case T  and ECS are 
expressed as positive for warming.

Equation 3 has afforded substantial advances in understanding of climate change. For instance, estimates 
of T , F, and N  over the instrumental record or from proxy reconstructions of past climates provide con-
straints on the value of  which, in turn, permit estimates of ECS (e.g., Sherwood et al., 2020). However, 
the traditional assumptions that underpin Equation 3 may not hold to the level needed to make accurate 
estimates of ECS. First, the 2( )T  term is important to account for when considering climates that are 
colder or warmer than the modern (e.g., Bloch-Johnson et al., 2020). Second,  (Equation 2) is in general 
not a constant value, and can vary with the spatial pattern of surface temperature change. This “pattern 
effect” (Gregory & Andrews, 2016) reflects that warming in some regions – such as the western equatorial 
Pacific Ocean – produce a relatively large TOA radiation response (strong negative feedback), while warm-
ing in other regions – such as the eastern tropical Pacific Ocean and Southern Ocean–produce a relatively 
small TOA radiation response (weak negative or positive feedback; e.g., Andrews & Webb, 2018; Ceppi & 
Gregory, 2017; Dong et al., 2019; Zhou et al., 2016). Furthermore, the spatial pattern of warming evolves 
over time owing to the different timescales of ocean adjustment in different regions, with a tendency for 
faster warming in more-negative feedback regions and slower warming in less-negative feedback regions 
leading to a trend toward less-negative values of  as climate equilibrates with an applied radiative forcing 
(e.g., Andrews et al., 2015; Armour et al., 2013; Dong et al., 2020; Marshall et al., 2015; Proistosescu & Huy-
bers, 2017; Rugenstein, Caldeira, & Knutti, 2016; Senior & Mitchell, 2000; Williams et al., 2008). The pattern 
effect arises from changing surface warming patterns, whether those changes are caused by 2CO , aerosol, or 
volcanic forcing or induced by internal variability (e.g., Dessler, 2020; Gregory et al., 2020; Loeb et al., 2018; 
Olonscheck et al., 2020; Paynter & Frölicher, 2015).

In light of the limitations of Equation 3, it is understandable that there has been a proliferation of feedback 
definitions. Several reasonable choices of feedback definition can be made, including a local tangent of 
the radiative response defined by regressing R against T  values ( /R T    ) or the use of a finite climate 
change of one period relative to a reference period ( /R T    ). That feedbacks can vary over time means 
that  and  are not the same as eq  and that their values depend on the time period used and method by 
which a feedback is calculated (e.g., Barnes & Barnes, 2015; Gregory et al., 2020).

In this study, we provide physical interpretations of three different feedback definitions, discuss how they 
relate to each other (Section 2), and illustrate using climate model simulations when each of their applica-
tions is most appropriate (Section 3). We review proposed methods to estimate ECS from climate models 
and suggest how many years of a transient simulation are necessary to estimate ECS with high precision 
(Section 4). We argue that the quests to understand the pattern effect and to narrow the uncertainty in ECS 
should be accompanied by a community-wide agreement on the interpretation and calculation of feedback 
definitions (Section 5).
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Note. For simplicity, all values and notation in the table refer to a doubling of 2CO , and thus, 2F  and ECS. “Gregory plots” illustrate a step-forcing response of 
a climate model in gray, the feedback parameter in red, and the climate sensitivity in orange. Noteworthy properties of the definitions are denoted with bullet 
points, common applications with arrows, advantages with a plus, and disadvantages with a minus.

Table 1 
Properties of Feedback Definitions and Their Corresponding Climate Sensitivity Interpretations
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2. Three Flavors of Radiative Feedbacks
Table 1 contrasts possible feedback definitions with illustrative sketches of the evolution of N  with T  fol-
lowing an abrupt 2CO  increase – often referred to as a “Gregory plot” (Gregory et al., 2004). The intersect at 

0T   defines the effective radiative forcing, which contains tropospheric and stratospheric adjustments to 
the increased 2CO  concentrations before surface temperatures increase (e.g., Boucher et al., 2013) and is used 
as F in Equations 1 and 3. The intersect at 0N   defines eqT , or specifically ECS in the case of a doubling 
of 2CO . If the 0N   intersect is estimated by extrapolation of a regression, it is often referred to as effective 
climate sensitivity (EffCS). We use the expression “true ECS” and “true eq4xT ” for doubling and quadrupling 

2CO  concentrations, respectively, to indicate the actual – not estimated – equilibrium temperature value. The 
curvature of the gray line illustrates that climates models (here understood as general circulation models 
including a dynamic atmosphere and ocean; GCMs) tend to reduce the magnitude of  with warming.

The equilibrium feedback parameter ( eq eq eq/R T    ) is defined as the global radiative response per de-
gree of surface warming calculated based on anomalies between two equilibrated climate states, notably not 
obtained by a regression. It can be thought of as integrating all processes which brought the climate system 
into the new equilibrium, which is a hypothetical state the real world will probably never experience. Pro-
viding long-enough averaging periods are used, eq  and eqT  are constant values.

The effective feedback parameter ( eff /R T    ) is defined as the global radiative response per degree of 
surface warming calculated based on anomalies between two climate states; most commonly between an 
initial equilibrated climate and a transient perturbation of that climate. It can be thought of as integrating 
all processes which brought the climate system into the new state; its extrapolation to a new equilibrium 
results in a measure of EffCS. This EffCS is sometimes called the “inferred” or “instantaneous” climate 
sensitivity, usually when calculated using observed global energy budget constraints (e.g., Armour, 2017; 
Lewis & Curry, 2015; Otto et al., 2013; Proistosescu & Huybers, 2017). eff  and EffCS are time-dependent 
as long as N , F, and T  change, and only become equal to the values of eqT  and eq  as the equilibrium is 
approached. This results in an inherent problem: There are no commonly agreed or best-practice methods 
of computing values of eff  and EffCS, so care must be taken when comparing values between studies that 
use different periods for analysis.

Finally, and fundamentally different, is the differential feedback parameter, ( /R T   ), calculated based 
on R– T  regression (or N– T  regression in the case the forcing is constant). In a step-forcing GCM ex-
periment, R  and T  can be a few Wm−2 and K, respectively, representing a forced response or a radiative 
feedback in the traditional sense (Andrews et al., 2015; Ceppi & Gregory, 2019; Knutti & Rugenstein, 2015). 
In observations and simulations with continuously changing or constant forcing, R  and T  might cover 
only a few tenth of Wm−2 and K, respectively and referred to as radiative restoration strength (e.g., Colman 
& Hanson, 2017; Donohoe et al., 2014; Lutsko & Takahashi, 2018; Murphy, 2010; Proistosescu et al., 2018).

 represents all the processes causing R  to change with T  for the period over which the calculation is 
performed, as opposed to eq  and eff  representing the integrated nature of R  per T  between two states. 
For example, under transient warming,  quantifies changes in R per T  associated with the regions which 
are warming during that time (Andrews et al., 2015; Armour et al., 2013; Rugenstein, Caldeira, et al., 2016).

Importantly,  does not satisfy the equation N F T   , unless a radical re-definition of the forcing term 
is used such as a “virtual forcing” (Rugenstein, Gregory, et al., 2016; Williams et al., 2008). Thus, while a val-
ue 2 /F   can be readily calculated it should not be interpreted as ECS. However, the regression /R T   
extrapolated to 0N   does result in an EffCS – the use of which we will demonstrate below. Thus, when the 
terminology EffCS is used, care must be taken to determine whether the calculation was performed using 
the effective or differential feedback definition.

Importantly, the different feedback definitions and resulting climate sensitivities can be only meaningful-
ly compared if their differences are understood and accounted for. First attempts of developing relations 
between climate sensitivity estimates or radiative feedbacks driven by different surface warming patterns 
(“transfer functions”) have been made (Armour, 2017; Andrews et al., 2018; Sherwood et al., 2020). Refined 
transfer functions require an improved process understanding, especially on the influence of large spatial 
warming patterns on TOA fluxes in the observed record, climate models, and the paleo record.
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3. Radiative Feedbacks and Their Implications for Estimating ECS in GCMs
The time evolution of the effective and differential feedbacks differs substantially in simulations with an 
idealized step-forcing and simulations with slowly or realistically increases of 2CO  concentrations. For il-
lustrative purposes, we use simulations of one model, CESM 1.0.4, forced with a step-forcing of quadrupling 
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Figure 1. Flavors of feedback parameters in the model CESM 1.0.4: Gregory plots for a 2CO  step-forcing simulation 
(a) and an ensemble of 10 simulations with slowly increasing 2CO  concentrations (b), their evolution of effective and 
differential feedback parameters (c and d), and the implied estimate of the equilibrium temperature eq4xT  (e and f). In 
panel (a), the gray dots around (0,0) indicate annual means of the 1000-year long control simulation; the colored lines 
indicate, for illustrative purposes, the regressions that determine the feedback parameters shown in panel c around year 
1,000. Years 900–1,100 are indicated in lighter gray and the temperature ranges for the regressions of the differential 
feedback parameters in green and blue. In panel (b), black dots indicate the ensemble average and light gray dots year 
130–150 values to highlight the time of 2CO  quadrupling. The feedback parameters shown in panel d are calculated 
according to the equations in the text (in time and not temperature space) and thus not indicated in panel b. In panel 
d and f, each ensemble member is depicted as thin and the ensemble average as darker thick line. In panel c and d the 
uncertainty bars for ctl  (also shown in panel a) indicate the 2.5%–97.5% confidence interval. M values in brackets refer 
to methods in Table 2.
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2CO  concentrations (“abrupt4x”) and with an annually increasing 2CO  concentration of 1% (“1pct”). Here 
and later, N  and T  are the global and annual mean anomalies of these simulations relative to a stable 
control simulation averaged over 1,000 years. In a step-forcing simulation (Figure 1a), the equilibrium feed-
back parameter is calculated as eq4x fixedSST4x eq4x/F T    , where fixedSST4xF  is obtained from a dedicated 
simulation of quadrupling 2CO  concentrations while holding the sea surface temperatures and sea ice (but 
not the land temperatures) fixed at pre-industrial values (7.25  2Wm ). eqT  is the average temperature over 
several centuries at the end of the 5,300 years long simulation. The effective feedback parameter is calculated 
as eff 4x fixedSST4x( ( )) / ( )F N t T t     , where ( )N t  and ( )T t  are the 30-year moving averages of the respec-
tive terms. eff 4x  changes most initially and then slowly approaches eq4x . We calculate two differential feed-
back parameters: 4x A  is the regression of all N  on T  values within a temperature bin of 1.5 K which is slid 
through the entire T  range of 1–6.8 K covered by the simulation. 4x B  is the slope of the regression of all 
N  and T  values prior to each time step, e.g., at year 100 regressing years 1–100, at year 101 regressing years 
1–101, etc.. It changes more slowly than 4x A  over the course of several thousand years (Figure 1c). Finally, 

ctl  is the radiative restoration strength of an unperturbed, 1,000 years long control climate (Figure 1a), ob-
tained by regressing annual deviations (spanning 2.5  2Wm ) of the mean N  onto the deviations (spanning 
0.87 K), and is influenced by correlated noise (Gregory et al., 2020; Proistosescu et al., 2018).

In a simulation with slowly increasing forcing (Figure 1b), the effective feedback parameter, eff1pct  is calcu-
lated as 1pct( ( ) ( )) / ( )F t N t T t  , with ( )N t  and ( )T t  being the 30-year moving averages of the respective 
time series. 1pct fixedSST4x( ) t / 140F t F , with t referring to time in years, is the radiative forcing assuming 
linearity with the logarithm of 2CO  concentration. The differential feedback parameter ( 1pct ) is calculated 
as the linear regression of 1pct ( ) ( )F t N t  onto ( )T t  for 30-year bins slid through the time series (as opposed 
to using bins defined in temperature space as for the abrupt4x simulation). With stronger forcing and more 
warming, internal variability – illustrated by 10 ensemble members branched-off different years of the con-
trol simulations – becomes negligible after 120 years for eff1pct , but not for 1pct  (Figure 1d).

The choices of feedback definitions imply different estimates of eq4xT  (Figure 1e and 1f): In a step forcing 
simulation, on the one hand, eq4x fixedSST4x eff 4x/ ( )T F t    or extrapolating the regression used to define 

4xB( )t  to 0N   results in a similar time-evolving eq4xT  estimate which approaches the true eq4xT  with-
in several millennia. On the other hand, extrapolating the regression used to define 4xA( )t  to 0N   re-
sults in a close estimate of eq4xT  within 200 years. In the simulations with slower changing forcing, using 

eq4x fixedSST4x eff1pct/ ( )T F t    or eq4x fixedSST4x 1pct/ ( )T F t     leads to arbitrary, unreasonable estimates 
of eq4xT . eff1pct ( )t  underestimates eq4xT  when it passes the equivalent forcing value around year 140, and 
hits the correct eq4xT  value coincidentally after 240 years at a forcing of 12  2Wm . 1pct ( )t  is influenced 
by internal variability throughout the simulation but passes eq4x 6.8T  K at the correct forcing values 
around year 140 (see discussion in Gregory et al., 2015). The values of eff1pct  and 1pct  strongly depend on 
the formulation of 1pct ( )F t  for high forcing levels (e.g., Bloch-Johnson et al., 2020; Byrne & Goldblatt, 2014; 
Gregory et al., 2015).

4. Estimating Climate Sensitivities From Climate Models
Since the wide recognition of the inconstancy of radiative feedbacks many methods have been proposed to 
estimate the true ECS (labeled M1 to M11 in Table 2). Recently, a large number of GCMs were integrated to 
near or full equilibrium (1,000–6,000 years simulation time; LongRunMIP, Rugenstein et al., 2019) which 
is computationally expensive, and thus not frequently done. Rugenstein et al. (2020) showed that across 14 
models the most commonly used extrapolation methods (M1, M2, and M7) underestimate the true eq4xT  or 
true ECS (or where not available, the estimate using M5) by 5%–20%. Dunne et al. (2020) showed that M10 
underestimates a “long ECS” (defined by a variation of M6) by 6%  7% in 13 models and suggested anoth-
er variation of M6 – regressing 5-year averages between year 50 and 150 – to most closely estimate “long 
ECS.” The general underestimation of the true ECS has been also shown for single models and estimation 
methods (e.g., Danabasoglu & Gent, 2009; Li et al., 2013; Paynter et al., 2018; Saint-Martin et al., 2019; Sen-
ior & Mitchell, 2000; Winton et al., 2020).
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Figure 2 summarizes and expands these analyses in that it compares estimates of eq4xT  using (variations 
of) methods M1–M8. The computation of M1–M5 follows the description in Table 2. For M6, we show two 
versions of linearly regressing N  against T : of the averages of years 50–100, 101–150, 151–200, 201–250, 
and 251–300 (Winton et al., 2020) and of the 5-year averages of year 50–150 (Dunne et al., 2020). For M7, 
the energy balance model formulation of Geoffroy et al. (2013) is fitted to T  and N  of years 1–150 and years 
1–1,000. Likewise, for M8 the Bayesian framework of Proistosescu and Huybers (2017) is used to fit expo-
nential functions with three exponents to years 1–150 and years 1–1,000 of the T  and N  timeseries. Using 
1,000 years for method M7 and M8 somewhat defeats the purpose of estimating eq4xT  as the simulation is 
close to the new equilibrium then. We cannot evaluate M9–M11 because these methods require dedicated 
climate model simulations not done routinely and not available in the LongRunMIP archive.

Figure 2 shows that different methods to estimate eq4xT  or ECS qualitatively measure the overall sensitivity 
of a model in that more sensitive models appear more sensitive and less sensitive models appear less sensi-
tive, independent on the exact method. However, the relative rank of the models does not stay the same for 
different methods, especially if the overall sensitivity is similar or the sensitivity is very high. Furthermore – 
in our set of models – more sensitive models have a higher spread in sensitivity measures than less sensitive 
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Method # Explanation Example references

M1* linearly regressing year 1–150 of N against T Andrews et al. (2012); Gregory 
et al. (2004); Sherwood et al. (2020)

M2* linearly regressing year 20 or 21–150 of N against T Armour (2017); Andrews et al. (2015); 
Forster (2016)

M3* local tangent, /N T  , to the N T   point cloud using a sliding window of T  large enough to 
capture the warming response

Ceppi and Gregory (2019); Knutti and 
Rugenstein (2015); Rugenstein, 
Gregory, et al. (2016)

M4 differencing either ( ( )) / ( )F N t T t   for an increasing number of years or 2 1 2 1( ) / ( )N N T T     
for two time periods

Dong et al. (2019); Rugenstein 
et al. (2020); Senior and 
Mitchell (2000)

M5* linearly regression all years of N against T  within the last 15% of warming of a simulation which 
is at least 1,000 years long

Rugenstein et al. (2020) and this 
section; For equilibrated simulations 
this is equivalent to averaging the 
temperature over the final decades.

M6* linearly regressing five, ten, …, 50-year averages of N against T Dunne et al. (2020); Gregory 
et al. (2004); Winton et al. (2020)

M7 fitting an energy balance model including ocean heat uptake efficacy, EBM- , to a number of years 
in N against T

Dai et al. (2020); Geoffroy et al. (2013); 
Held et al. (2010); Rohrschneider 
et al. (2019)

M8* eigenmode decomposition, fitting exponential functions through time series of T  (and N) with 
conditions about their common timescales or axes intersects

Caldeira and Myhrvold (2013); 
Mauritsen et al. (2018); 
Proistosescu and Huybers (2017); 
Sanderson (2019)

M9 Cess-sensitivity: differencing two equilibrated atmospheric states forced with different SST 
( /N T  ), F assumptions come from other simulations

Becker and Wing (2020); Cess 
and Potter (1988); Gettelman 
et al. (2012); Ringer et al. (2014)

M10 slab ocean simulations, which prescribe a spatially varying ocean mixed layer depth and heat 
uptake distribution

Danabasoglu and Gent (2009); Dunne 
et al. (2020)

M11 a series of specific, short, coupled GCM simulations with different forcing levels Saint-Martin et al. (2019)

Note. In the first column, methods implying a differential versus an effective feedback parameter definition are indicated with versus without an asterisk.
Abbreviations: GCM, general circulation model; SST, sea surface temperature.

Table 2 
ECS Estimation Methods, all are Variants of Effective Climate Sensitivity
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models. Feedback temperature dependence would increase that tendency. Finally, the different methods 
explain the evolution of the surface temperature across models differently well through time (Figure S1).

We quantify how many years of a transient simulation are necessary to predict the true eq4xT  correctly 
using the differential feedback definition and extrapolating the linear regression to equilibrium (M1–M5). 
Figure 3 shows the model-mean fraction of eq4xT  depending on first and last year of a linear regression 
of N  on T  and reveals three insights: (a) Solely increasing the number of years in the linear regression 
(M4) requires many years to approach the true eq4xT  (zoom-in panel). Thus, skipping several decades in 
the beginning of the simulation (as in M2, M3, M6) is necessary to gain predictive skill. (b) Regressing too 
few years too far into the simulation will mostly sample internal variability and randomly predict eq4xT  
values more than 20% too high or too low. (c) The standard deviation between the 10 models is large and 
only reduces on the centennial timescale. We suggest to linearly regress years 100–400 to estimate eq4xT  
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Figure 2. Values of eq4xT  estimates using variations of method M1–M8 for 10 general circulation models (GCMs) 
abrupt4x simulations. The correlation coefficient between each method and the true eq4xT  quantified by M5 is 
indicated as a bold number in brackets in the legend. The simulation length and N averaged over the last 50 years are 
mentioned beneath the model’s name. “Range of local tangents” span the minimum to maximum estimates of eq4xT  
based on the differential feedback parameter calculated by regressing N onto T values.
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within a 5% error (see also Figure 2). For single models, regressing fewer years results in the same accuracy, 
however, for generally more sensitive models even more years might be necessary, which is likely also true 
for other CMIP6 models (e.g., Forster et al., 2019; Tokarska et al., 2020; Zelinka et al., 2020). Supporting 
Information S1 and Figures S2 and S3 discuss the equilibration pace for the subset of five models for which 
abrupt2x and abrupt4x simulations are available.

5. Conclusions
We have shown that the equilibrium, effective, and differential feedback parameter definitions are phys-
ically meaningful (Table  1), however, they represent different properties of the climate system, are not 
easily translatable, and differ in value and implications for estimating ECS (Figure 1). The realization that 
feedbacks change in response to surface warming patterns and global mean temperature has led to a devel-
opment of many methods to estimate ECS (Table 2), relying on different feedback definitions. All methods 
capture the overall sensitivity of the models but can result in ECS or eq4xT  estimates that differ more than 
1 K and do not necessarily record the equilibrated state (Figure 2).

If the goal is to predict ECS or eq4xT  from a transient simulation as quickly and precisely as possible, the 
first couple of decades must be discarded when applying regression methods (Figure 3; Dai et al., 2020; 
Dunne et al., 2020; Rugenstein et al., 2020; Winton et al., 2020). Using the differential feedback definition 
and extrapolating the linear regression of annual averages of N  against T  of years 100–400 of an abrupt4x 
simulation results in a eq4xT  estimate with less than 5% error across the 10 climate models for which 
true equilibrium values are available. Thus, we suggest an extension of the CMIP6 step-forcing simulations 
of abrupt4x and/or abrupt2x in the CMIP6 protocols of DECK and nonlinMIP (Eyring et al., 2016; Good 
et al., 2016) from their typical length of 150 years to a length of 400 years.
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Figure 3. Model-mean fraction of eq4xT  quantified by M5 depending on first and last year of a linear regression 
of N on T  (color shading) for the same ten abrupt4x simulations as in Figure 2. The standard deviation across the 
simulations is shown in hashed patterns; for example, a regression of years 100–220 results in a 5% error for the model 
mean (gray shading), but the standard deviation across the 10 models is still 10% (line hashing). The white dot indicates 
the suggested method of regressing years 100–400. The axes of the inset are first and last year of the regression as in the 
larger plot.
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While the use of ECS has some distinct advantages over effective or inferred climate sensitivities because 
no adjustment for the degree of equilibration or the surface warming patterns is necessary, characterizing 
instead feedbacks and their uncertainty for a specific climate state might be methodologically preferred 
(Dunne et al., 2020; Klein et al., 2017; Roe, 2009). The most pressing open questions are (a) how to relate 
feedback estimates from different states of surface warming patterns or global mean temperatures, thus, 
developing feedback transfer functions based on physical processes; (b) how to apply the global energy 
balance framework to short observations and short and limited-domain very high resolution model simula-
tions which are dominated by internal variability or representing one specific state which may or may not 
relate to anticipated future warming; (c) how to re-phrase the global energy balance model to include the 
pattern effect; (d) how to treat non-Charney feedbacks present in Earth System Models and the real world 
on decadal to millennial timescales in the energy balance perspective.

We conclude that the quests to understand the pattern effect, to estimate ECS from observations, and to 
narrow the overall uncertainty in ECS with process studies and paleo climate estimates should be accom-
panied by a community-wide agreement on the interpretation of the different feedback definitions and the 
methods to compute them.

Data Availability Statement
All data behind Figures 1–3 are available under: http://dx.doi.org/10.25675/10217/232176.
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