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Abstract
Recent experiments with Bose–Einstein condensates have entered a regime in which thousands of
ground-state condensate atoms fill the Rydberg-electron orbit. After the excitation of a single atom
into a highly excited Rydberg state, scattering off the Rydberg electron sets ground-state atoms into
motion, such that one can study the quantum-many-body dynamics of atoms moving within the
Rydberg atom. Here we study this many-body dynamics using Gross–Pitaevskii and truncated
Wigner theory. Our simulations focus in particular on the scenario of multiple sequential Rydberg
excitations on the same rubidium condensate which has become the standard tool to observe
quantum impurity dynamics in Rydberg experiments. We investigate to what extent such
experiments can be sensitive to details in the electron–atom interaction potential, such as the rapid
radial modulation of the Rydberg molecular potential, or p-wave shape resonance. We
demonstrate that both effects are crucial for the initial condensate response within the Rydberg
orbit, but become less relevant for the density waves emerging outside the Rydberg excitation
region at later times. Finally we explore the local dynamics of condensate heating. We find that it
provides only minor corrections to the mean-field dynamics. Combining all these insights, our
results suggest Bose–Einstein condensates as a viable platform for the in situ and real time
interrogation of ultra-cold chemistry dynamics involving Rydberg states.

1. Introduction

The study of quantum impurities has become an important branch of ultra-cold atomic physics, allowing
explorations of condensed matter phenomena ranging from the Kondo effect [1, 2] over polaron formation
[3–7] to the Anderson orthogonality catastrophe [8]. A unique impurity object in this context is a Rydberg
atom in a Bose–Einstein condensate (BEC) [4, 9–13]. Due to the extreme radius of the Rydberg electron
density distribution rorb ≈ 2a0n2, which can reach rorb ≈ 1.8 μm at n = 133, one can enter the realm where
tens of thousands of ground-state atoms are located inside the Rydberg orbit and can be set into motion by
collisions with the Rydberg electron during the life-time of the latter.

The Rydberg electron affects the BEC by imprinting a phase on its mean field wave function at short
times, which evolves into density waves at later times. It has been suggested to use these features for tracking
the motion, detecting the position and deducing or decohering the quantum state of isolated Rydberg
impurities [14–18]. However, for these proposals a detailed understanding of the joint BEC and Rydberg
impurity dynamics is required. Experiments probing both to date rely on the repeated excitation of a
Rydberg atom at roughly the same location within the laser beam waist [9] and then observe the cumulative
effect of these excitations.
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In this work we numerically analyse how Rydberg atoms excited within a BEC affect the latter, discussing
multiple effects that go beyond earlier studies [13, 16, 19]. Most importantly we segregate the different
condensate dynamics induced by the small, highly-oscillatory radial features of the Rydberg-ground-state
potential, from the slower dynamics due to the classically averaged potential on larger scales. We also assess
the importance of details of the Rydberg-condensate interaction that only occur very close to the ion core,
and thus only affect a relatively small fraction of the interaction volume, such as the p-wave shape
resonance. Finally, we simulate the local Rydberg induced scattering of atoms from the condensate into the
thermal cloud using truncated Wigner theory which allows a separation of condensed and uncondensed
components.

Earlier studies have shown that a Rydberg impurity excited in a BEC will result in condensate heating
[9, 15, 16] that increases with the number of repeated excitations. Since the Rydberg electron interacts only
with the condensate atoms present in its orbit, this effect is, on short time-scales, localized within the orbit,
and, as we show here, not strong enough to invalidate mean-field theory. The small scale oscillations of the
radial part of the interaction potential between Rydberg electron and condensate lead to fast but weak
condensate dynamics within each radial well, concomitant with a slower, much more significant directed
inwards motion governed by the potential envelope. Fast dynamics significantly contributes to the envelope
of the density for repeated excitations, which makes it important to accurately model the radial part of the
impurity potential. Our assessment of the impact of details in the Rydberg-condensate interaction potential
is important for future numerical simulations of this problem since those are challenging: the highly
oscillatory potential inherited from the Rydberg wavefunction necessitates fine spatial computational grids,
while the outwards travelling condensate excitations at later times require a large spatial range.

Information on all the above is require to assess whether the ambient BEC can form a ‘bubble-chamber’
[20] for ultra-cold atomic physics, through the interaction with which the dynamics of more exotic species,
involving Rydberg states, might be observed [9, 15, 16].

This article is organized as follows. We introduce our model of a BEC interacting with a Rydberg
impurity via different interaction potentials in section 2, and discuss the scheme for the temporal sequence
of exciting Rydberg impurities. We then show in section 3.1 that for a single Rydberg impurity, the
condensate displays fast dynamics in the small wells of the s-wave impurity potential and a slow average
contraction of the condensate particles towards the excitation region. We further compare in section 3.2 the
condensate perturbation caused by different interaction potentials and show that the qualitative signal of
the condensate is largely insensitive to these details. Out of three potentials used, we justify the use of a
cutoff for the full s + p-wave interaction potential in section 3.3, which has a deep central dip near the ionic
core of the Rydberg atom. In section 3.4, we show how the contrast in the condensate response increases
through a sequence of multiple Rydberg excitations. We go beyond the mean-field approach in section 4
and show that Rydberg excitations only lead to local heating of the BEC, which, even there, only result
minor corrections to mean-field theory. We finally summarize our results in section 5 and give an outlook
to future directions.

2. Interactions between Rydberg atom and BEC

We consider a gas of N Rb87 atoms with mass m forming a BEC. Among the N atoms at most one atom at a
time may be excited to a Rydberg state |ψ〉 = |νs〉, with principal quantum number ν and angular
momentum l = 0. In this article, we focus exclusively on |ψ〉 = |133s〉. This and other parameter choices
later are quite closely constrained by our objective to study a response of the BEC that can be optically
resolved in situ, using phase-contrast imaging [21]. This necessitates large ν, while remaining low enough to
avoid too fast inelastic processes [22]. The Rydberg excitation shall be quite localized near the origin, as
sketched in figure 1(a). This can be achieved by using a tightly focussed excitation laser, additionally
exploiting the background density dependent energy shift [9], both of which, however, leave a residual
uncertainty σ of the impurity position x, which we explicitly take in account in our model. Similar to
experiments [9], we shall also consider temporal sequences of single Rydberg excitations with subsequent
removal by controlled field ionization. The excitation, short presence and then removal of the Rydberg atom
are repeated Nexc times (see in figure 1(b)). While the Rydberg atom is present, it remains at the location xn,
where n is the index of the excitation segment.

2.1. Electron–atom scattering
The interaction of the Rydberg impurities with condensate atoms inside their orbit can be well described by
the Fermi pseudopotential [23, 24], see appendix B. This leads to an effective potential for a given Rydberg
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Figure 1. (a) Sketch of localized excitation of a single Rydberg impurity in the BEC. We assume a Rydberg atom of orbital radius
rorb, with its ionic core (dark blue ball) excited in an excitation region (blue shade) within a cigar-shaped BEC (large ellipsoid),
where the red vertical surface represents an equal intensity contour of the laser used to excite the Rydberg atom. The spatial
uncertainties of the ion location along the Cartesian directions are σx, σy and σz. (b) Temporal excitation sequence: we assume it
takes a time texc (grey shade) for the Rydberg atom to be excited, it then remains in the BEC for a time timp (green shade) and
disappears at the beginning of the field ionization pulse of duration tion (red shade). We encode this in the function η(t) (blue
line), discussed in section 2.1, which parametrises presence or absence of a Rydberg atom. (c) We compare three different levels
of detail for the calculation of the interaction potential between Rydberg and ground-state atoms. (i) The s-wave interaction
potential Vryd,S (black line) between the condensate and Rydberg impurity, with the nucleus of the latter at x = 0. (ii) The CASW
Vc (blue lines), based on the classical electron probability distribution and (iii) the most complete s + p-wave potential Vryd,S+P

(red lines), which we cut off at Vcut (dotted purple lines). The radial axis is divided into two region (I and II) at Rmin with a
vertical green line, for the subsequent analysis. The S and S + P potentials agree for

√
r � 0.7 μm1/2. For the s + p-wave

potential, we do not adiabatically follow the asymptotic s-state all the way to r = 0, due to the initial presence of perturbers at all
r (see appendix B).

electron wavefunction ψ(R):

Vryd,S(R, t) = η(t)V0(R− xn(t)) ) |ψ(R− xn(t))|2. (1)

Here η(t) = 1 at times where a Rydberg impurity is present and η(t) = 0 otherwise, see figure 1(b). The
shape of the potential is mainly set by the Rydberg electron density |ψ(R)|2, where ψ(R) = 〈R|ψ〉, since the
prefactor V0(R) = 2π�

2as[k(R)]/me only weakly varies as a function of position through the energy
dependence of the electron–atom s-wave scattering length as[k(R)]. The energy dependent s-wave scattering
length is obtained from the phase shift of the electron–atom scattering [25], with zero energy scattering
length as[0] = −16.05a0 [26]. For a given Rydberg electronic state, the electron–atom collision energy is
given by �

2k2(R)/2me = Eν∗ + e2/(4πε0r), where Eν∗ = −RRyd/ν
∗2 is the electronic energy for the effective

principal quantum number ν∗ including quantum defects [27, 28]; r = |R|, RRyd is the Rydberg constant
and me is the mass of the electron.

The potential (1) takes only s−wave collisions between electron and BEC atoms into account, which is a
valid approximation for a low energy electron, sufficiently far away from the core of Rydberg atom.
However, due to a shape resonance for electron–87Rb scattering in the 3P0 channel at 0.02 eV [29], this
approximation does not hold all the way to the core. To account for that the effective potential has to be
extended by incorporating also higher partial waves [30]. The calculation and non-standard choice of the
full interaction potential including p-wave scattering is discussed in appendix B. Essentially, we find energy
surfaces Vryd,S+P(R) from the eigenvalue equation (for the ion at the origin)

Ĥel(R)|ϕ(R)〉 = Vryd,S+P(R)|ϕ(R)〉, (2)
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where Ĥel(R) is the Hamiltonian for the Rydberg electron including a ground-state atom perturber at
location R, and the state |ϕ〉 is the one having the largest overlap with |133s〉 at large R, see reference [31].
This approximate potential is based on a picture of a single perturber and the Rydberg atom, for many
perturbers in the Rydberg orbit we except it to require modifications close to the p-wave shape resonance,
where the electron–atom interaction starts to significantly mix electronic orbitals. Elsewhere it ought to be
additive, based on perturbation theory arguments.

The two potentials, with and without p-wave contribution, are shown in figure 1(c). While not visible in
the plotted range of energies, the s + p-wave potential is vastly stronger at shorter R, reaching to V ≈ −680
MHz. For numerical stability, we cut this divergence off when V = Vcut. To ensure convergent results, we
investigate the dependence on V = Vcut. One of the objectives of this article is to explore to which extent the
detailed shape of the interaction potential and cutoff affects the BEC response. Hence we will compare
simulation results arising from both these potentials and varied cutoffs.

Also the highly oscillatory character that is inherited from the radial part of the Rydberg wavefunction
poses numerical challenges. This can be partly alleviated by replacing the Rydberg-electron wavefunction
with a classical approximation [32], as discussed in [15]. To this end, we consider a third potential, referred
to as ‘classical approximation of s-wave’ (CASW), in which we replace (1) for ion at the origin by

Vc(R, t) = η(t)V0(R)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρQ(R) r < Rmin/2,

ρcl(R) Rmin/2 < r < Rct,

ρQ(R) r � Rct,

(3)

where ρQ(R) = |ψ(R)|2 and ρcl(R) (see appendix B) are the quantum and classical electron probability
densities respectively, as used in reference [15], Rct is the outer classical turning point and Rmin ≈ 0.1 μm
or ≈1900a0. The latter is the distance of the Rydberg nucleus from the shape resonance in electron–87Rb
scattering for the |νl〉 = |133s〉 Rydberg state, as indicated in figure 1(c). The approximation (3) is sketched
in figure 1(c) as a blue line. The rapid oscillations of s-wave and s + p-wave potentials are not all discernible
on the scale of figure 1(c), hence we plotted potentials in an order such that each envelope can clearly
be seen.

2.2. Temporal excitation sequence
The excitation sequence creating a single Rydberg impurity at a time, subsequently removing it by field
ionization, and then repeating the cycle is sketched in figure 1(b). Here texc, timp, and tion are the times taken
to excite the Rydberg state, free imprint time, during which the Rydberg atom resides in the BEC, and the
time for ionization of the Rydberg impurity, respectively. Therefore, the time τ taken for Nexc repeated
excitations to complete before the free evolution time (timag) of the BEC is τ = Nexc(texc + timp + tion).

In our simulations for Nexc > 1, the location of the ionic core of the nth Rydberg atom xn(t) is randomly
drawn from a three-dimensional (3D) Gaussian distribution, with Cartesian standard deviations σx,y,z. For
this we determined parameters σx,y,z corresponding to a given excitation laser beam profile and background
density profile in appendix A. Only for simulations with Nexc = 1, the Rydberg location is at the origin. To
model the sequence shown in figure 1, xn(t) is thus a step-wise continuous vector function, assembled from
the Nexc random 3D positions xn and the integer index n(t) = �t/τ�. Finally, η(t) is given by

η(t) =
∑Nexc−1

n=0 η̄(t − nτ), with η̄(t) =
[

tanh( t−texc
ξ

) + tanh(
timp−t

ξ
)
]
/2, with near instantaneous risetime ξ.

2.3. Condensate response
In order to understand how the excitation sequence of Rydberg impurities affects the BEC, we model the
latter using the Gross–Pitaevskii equation (GPE) and assume an immobile Rydberg atom, thus treating the
impurity potential (1) as external potential [9, 14, 16, 33, 34]. The resulting GPE including the interaction
with the Rydberg impurity is

i�
∂

∂t
φ(R) =

(
− �

2

2m
∇2 + W(R) + U0|φ(R)|2 + Vryd,S,n(R, t) + i�

K3

2
|φ(R)|4

)
φ(R), (4)

where φ(R) is the condensate wave-function, and W(R) = m(ω2
xx2 + ω2

y y2 + ω2
z z2)/2 is the 3D harmonic

trap, using R = [x, y, z]T. The strength of interactions among ground-state 87Rb atoms in the condensate is
set by U0 = 4π�

2ab/m, where ab = 109a0 is the s-wave scattering length. The last term on the right-hand
side of (4) phenomenologically incorporates short-range three-body loss of the BEC. We take a rate
constant K3 = 1.8 × 10−41 m6 s−1 [35–38] assuming a hyperfine state |F, mF〉 = |2, 2〉.

The complex-valued condensate wavefunction can be written as φ(R) =
√
� eiϕ(R), with real density

�(R) and real phase ϕ(R). In the Raman–Nath approximation, the initial effect of the Rydberg impurity is

4
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Figure 2. Condensate response to a Rydberg impurity in the spherically symmetric case. The left y-axis shows the condensate
density relative to the background density ρ0 = 400 μm−3, i.e. Δρ/ρ0 = (ρ− ρ0)/ρ0, and the s-wave interaction potential in
equation (1) is shown on the right y-axis of panels (a)–(d). (a) The condensate density (black solid line) at the imprint time
texc + timp = 2.0 μs in the outer radial well (red line). (b) The condensate density in the outer well before ionizing the Rydberg
impurity at texc + timp = 4.0 μs. The density over the whole range of radii is shown in (c) and (d) in the same style as for panels
(a) and (b), respectively. The density at late time after some evolution with impurity removed is shown at τ + timag = 100 μs in
(e) and τ + timag = 231 μs in (f) as black line. In (e) and (f) the solid blue line using the right axis is a radial cut through the 3D
spatially smoothened density, using a Gaussian kernel with a standard deviation of σ = 0.5 μm; note the different y-axis scale.
The green arrow in (e) and (f) indicates the inward and outward flow of the condensate, respectively.

then to imprint a phase ϕ(R) = −Vryd(R)Δt/� within a short time Δt [14, 39] while leaving the density
relatively unaffected. Only with some delay will phase gradients, corresponding to initially imparted
momentum, be converted into variations of condensate density through motion of the ground-state atoms
[15]. For a numerically and conceptually tractable model, we ignore the backaction on the Rydberg
impurity in the present study.

3. Condensate response in the mean field

3.1. Single spherical excitation
We first consider the case of a single impurity excited to the |νl〉 = |133s〉 Rydberg state at
[x, y, z]T = [0, 0, 0]T in a homogeneous BEC of density ρ0 = 4.0 × 1014 cm−3. All our results also in later
sections pertain to this density. Due to the spherical symmetry of the Rydberg s-state, the entire problem is
spherically symmetric, and we can solve the radial GPE instead of (4), which using φ(R) = u(r)/r for
r = |R| becomes [37]

i�
∂

∂t
u(r, t) = − �

2

2m

∂2u(r, t)

∂r2
+

U0

r2
|u(r, t)|2u(r, t) + Vryd,S,n(r)u(r, t), (5)

where u(r) is a radial condensate wavefunction, normalised such that
∫∞

0 dr|u(r)|2 = N. We discuss in
appendix C how to handle the practical implementation in a homogenous system using the
fast-Fourier-transform (FFT) for derivatives. Equation (5) is finally solved using the high level computing
language XMDS [40, 41], which invokes an adaptive step-size 8/9th order Runge–Kutta method [42] for
time-stepping, and the FFT for calculating the Laplacian.

For now, we do not yet consider three-body loss (K3 = 0) and allow the Rydberg impurity to interact
with the condensate through the s-wave interaction potential (1). We show the resulting dynamics of the
condensate density deviation from the background density Δρ = ρ(r) − ρ0 in figure 2 as function of

√
r.

The condensate particles respond to each radial well of the s-wave interaction potential initially, accelerating
towards its center, shown for the outermost well in the range 1.3 μm1/2 <

√
r < 1.35 μm1/2 at

texc + timp = 2.0 μs in panel (a) of figure 2, where texc = 0.5 μs and timp = 1.5 μs. These intervals were
chosen to ensure continued existence of the Rydberg state in that time, which has an effective lifetime of a
few μs in the medium [22]. While the relative density contrast near the outer well increased by a factor of
about three within an additional imprint time Δt = 2.0 μs towards panel (b), as long as the Rydberg
impurity remains present, the maximal relative density increase reaches only 13% in the outer well.

5



New J. Phys. 24 (2022) 073005 S Tiwari et al

In figures 2(c) and (d), we show the density in the full radial range at the same times as in (a) and (b).
While the condensate response to the outer well of the impurity potential is significant, the response to
most of the inner wells remains disproportionally small. We can understand this from the fact that the
healing length here is ξ = 1/(2

√
2πabρ0) = 0.13 μm for Rb s-wave scattering length as = 109a0, hence only

the outer well is wider than this scale. The response to all other wells would be fast due to their tightness,
but is suppressed by the inability of the mean field to respond on that length scale. This will also be true for
other atomic species and different realistic combinations of densities and principal quantum numbers, since
densities for which the healing length becomes less than any of the middle wells are so extreme that inelastic
processes would significantly affect the BEC and the Rydberg atom [22]. Altogether, the net effect on the
density remains small at the imprint time (texc + timp = 4.0 μs), corresponding to the Raman–Nath regime
[43]. In contrast, on larger time-scales the initial momentum imparted by the Rydberg impurity keeps the
condensate flowing towards the origin, leading to a much increased relative density there. We find
Δρ/ρ0 ≈ 2.5 near the ionic core at τ + timag = 100 μs for the case of figure 2(e), where
τ = texc + timp + tion = 4.8 μs is the time taken to complete one excitation and its subsequent removal
(tion = 0.8 μs) as discussed in section 2.2.

In figure 2(e), we show the spatially smoothened density δρ as a blue line, to demonstrate the net
inwards flow towards the Rydberg ion. We obtain the latter as the spatial average of the 3D condensate
density over a Gaussian kernel, δρ(R) = N

∫
d3R′ exp(−2(|R−R′|2/σ2))|φ(R′)|2, with a standard

deviation of σ = 0.5 μm and normalization constant N . For this task, we solve the 3D GPE (4) using
512 × 512 × 512 grid points and accepting a slightly undersampled Rydberg potential. Through
comparison of the 3D simulations with undersampled potential and radial 1D simulations with resolved
potential, we ensure that all qualitative conclusions presented here are consistent in both simulations.

After piling up in the centre, the excess condensate density then subsequently reduces again as atoms
keep moving with their inertia, resulting in an outward flow of condensate particles at later times, see
figure 2(f). Overall we see that the initial net impact of the excitation is to contract the BEC towards its
location, which seems intuitive given the net attractive character of the s-wave potential in figure 1(c), when
spatially averaged over all the wells. The condensate dynamics described is qualitatively unchanged also at
other principal quantum numbers for the present density (not shown).

3.2. Dependence on potential details
There are two main features of the potentials in figure 1(c) that can be considered at varying levels of
approximation:

(i) The rapid oscillations stemming from the radial Rydberg wavefunction could be removed when
replacing the potential with the CASW variant (3), while leaving the net attractive character intact. This
replacement can help to keep numerical simulations of larger condensates tractable. Since the
characteristic length scale for mean-field condensate dynamics is given by the healing length
ξ = 0.13 μm, which is much larger than the radial oscillation wavelength of the exact potential, one can
except the effect of those oscillations to be somewhat averaged out, as we confirmed in section 3.1.

(ii) While the s-wave and the s + p-wave potentials agree for r > Rmin, they deviate significantly closer to
the nucleus. However, in three dimensions, the corresponding volume is a small fraction of the Rydberg
orbital volume (5% at n = 133), and hence the importance of this difference for the BEC dynamics at
larger distances from the nucleus is not a priory clear.

To understand if and on what length-scales points (i) and (ii) make a difference, we compare the BEC
dynamics for all three potentials in figure 3. For guidance, we divide the radial range into two regions,
defining an inner (I: 0 � r < Rmin), and an outer (II: r � Rmin) region as indicated by the solid vertical
green line as shown in figure 3. As evident from panel (a) the impact on the condensate is the same in the
inner region for the s-wave and CASW potentials because these two potentials are near identical in this
range, while in the outer region the s-wave response matches with that due to the s + p-wave interaction
potential since here these other two potentials largely agree. In comparison to the s-wave potential and
CASW, the s + p-wave potential causes a much stronger perturbation in the condensate density at the end
of the imprint time, leading a relative increase of Δρ/ρ0 ≈ 10 at the location of the ionic core. This is due
the presence of the shape-resonance which provides a large central peak V ≈ −680 MHz, see figure 1(c),
which was cut at |Vcut| = 1 MHz for the simulations in figure 3. Even when cutting off the s + p potential,
it remains much stronger than that using only the s-wave approximation in the central region.

As can be seen in figure 3(b), for all three potentials the initial inward motion of the condensate is
converted to an outward flow due to inertia at later times after the Rydberg impurity was removed, as
discussed in section 3.1. The wave created by the s + p-wave potential at τ + timag = 15.0 μs has reached
the outer region and still has an about five times larger amplitude than that generated by the other two
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Figure 3. Motion of the BEC in different approximations of the Rydberg interaction potentials. The condensate density is shown
relative to the background density as in figure 2. (a) Atom density in interaction potentials, s-wave (solid black line) equation (1),
s + p-wave (dotted red line) equation (2), and CASW (dashed blue line) equation (3) are shown at the imprint time
texc + timp = 4.0 μs. The s-wave potential for the |νl〉 = |133s〉 state is indicated without scale as grey lines for guidance. Green
vertical lines divide the radial coordinate into an inner region (I: 0 � r < Rmin) and an outer region (II: r � Rmin). (b) The large
density perturbations caused by the shape-resonance using the s + p-wave potential becomes more prominent in the outer
region at times τ + timag = 15.0 μs, after the ionization of the Rydberg impurity. Further snap shots of the density after free
evolution are shown in (c) and (d) at τ + timag = 100 μs and τ + timag = 231 μs respectively. The inset of (c) shows the spatially
averaged 3D density at τ + timag = 100 μs. The inset of (d) shows the variation of the averaged density over time at the Rydberg
ion location (x = y = z = 0). For further details see the supplementary movie (https://stacks.iop.org/NJP/24/073005/mmedia).

potentials. Therefore, a signature of the shape resonance should be accessible through very high resolution
in situ density measurements [44, 45] or electron microscopy [46]. While the density waves created near the
position where the Rydberg core has been removed depend on the level of detail used in the potential, we
see that at much later times and larger radii, the waves created by all three potentials nearly agree. This
shows that this part of the wave dynamics is not too sensitive to either fast oscillations or deviations
between s-wave and s + p-wave potential in the inner region, see figures 3(c) and (d). We do, however, find
that the smoothened relative density perturbations Δ(δρ) caused by the s + p-wave potential remain
approximately 1.5 times (2 times) larger than those due to the s-wave potential (CASW potential), in the
region r < 1 μm at τ + timag = 100 μs (see the inset of panel (c)). Moreover, when directly comparing the
average density due to the s-wave and CASW potential in the inset of the panel (c), one finds that the
average maximum density (δρ) with the s-wave potential is about 1.5 times higher than from the CASW
potential in the region r < 1 μm at τ + timag = 100 μs. Thus, further out, the radial wells in the potentials
play a slight quantitative but not a qualitative role in the Rydberg-BEC dynamics. In all cases atoms are first
focussed inwards and only then diffuse outwards, as discussed in section 3.1. This results in the
non-monotonic behaviour of the central density at the ionic core, visible in the inset of figure 3(d).

An important conclusion that we can already draw from this present analysis is that the net condensate
perturbation at large R and late times t is qualitatively insensitive to either of the details (i) and (ii) defined
above. Both features are characterised by length scales much smaller than the healing length of
ξ = 0.13 μm, so that the condensate will only respond according to an averaged effect. This spatial
averaging will make the impact of details even less prominent when the impurity is moving, as we have
shown in [15]. Insensitivity of the condensate response to the detailed inner potential is a particularly
important discovery, given that the true potential for a many-body scenario is not known there. Note, that
the short-range ion-atom polarization potential does not significantly affect the condensate dynamics on
the length scales relevant here, hence we did not explicitly include it in our discussion.

3.3. Dependence on numerical potential cutoff V cut

While the s + p-wave potential agrees with the s-wave potential in the outer region, they significantly
deviate close to the nucleus where the former reaches down to V = −680 MHz. This poses severe challenges
for a wide range of schemes used to numerically propagate the 3D GPE, for which the potential drop
enforces very small time steps. Here we thus separately analyse the importance of a complete inclusion of
the potential step, using the radial GPE (5), cutting the central potential peak at V = −Vcut, as shown in
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Figure 4. Dependence of atom dynamics on potential cutoffs. (a) Relative condensate density variation Δρ = ρ− ρ0 for
ρ0 = 400 μm−3 in the inner region at the imprinting time texc + timp = 4.0 μs. We use Vcut = ∞ (no cut-off, solid black lines),
Vcut = 340 MHz (dotted red lines), Vcut = 170 MHz (dashed blue lines) and Vcut = 85 MHz (dot-dash yellow-sh lines). The
resulting dynamics after removing the Rydberg atom, at later times and larger radii, is shown in (b), for τ + timag = 231.0 μs.
The solid green line at r = Rmin divides the potentials into two regions at the shape resonance.

figure 1(c), and then varying Vcut. Since the condensate response for the outer region at the imprint time
texc + timp = 4.0 μs will obviously still be the same for different cutoff values, we only show the zoom onto
the inner region in figure 4(a).

As expected, the density perturbations of the condensate in the inner region significantly depend on
Vcut. However, counterintuitively, the amplitude of the perturbations does not follow a monotonic trend
with Vcut. For the snapshot shown, the oscillations are largest for Vcut = 85 and 340 MHz while they are
significantly smaller for 160 MHz and ∞ (no cutoff) in the region 0.2 μm1/2 <

√
r < 0.3 μm1/2. Relative

amplitudes then vary in time. However, while the initial density fluctuations in the inner region of the
potential depend strongly on the magnitude of Vcut, we find that the late time dynamics of the condensate
becomes nearly cut-off independent, see figure 4(b).

We can thus conclude that the huge central dip of the s + p-wave does not contribute significantly to the
overall late time dynamics of the BEC. Therefore, we fix the cut-off at |Vcut| = 2 MHz for further
investigation in the coming sections.

3.4. Repeated excitation
In section 3.1 we found that a single Rydberg excitation only causes a minor relative change (a maximum of
about 1%) of the atom density on percent level at τ + timag = 260 μs. As a consequence, experiments will
likely require repeated excitations to measurably affect the bulk density. First steps in this direction have
been recently taken in reference [9]. Here, we model a sequence of Nexc = 10 repeated excitations with a
probabilistic approach. In contrast to the case of single excitation, the Rydberg atoms are no longer located
at the origin, but have random positions with a Gaussian distribution using standard deviations
σx = 1.0 μm, σy = 2.0 μm, and σz = 1.0 μm respectively. This assumes a relatively tight excitation laser
focus as sketched in figure 1(a). We have modelled a specific excitation scenario to obtain the spatial widths
that we describe in appendix A. The uncertainty in excitation location breaks spherical symmetry, so that
we have now to turn the full solutions of the 3D GPE (4). For the temporal sequence we use an excitation
duration of texc = 0.5 μs, imprint time timp = 3.5 μs and ionization time of tion = 0.8 μs. Thus Nexc

repeated excitations will require a total time Nexc × 4.8 μs.
Since we are starting from an already quite dense condensate with ρ0 = 4 × 1014 cm−3, and find a large

increase in condensate density around the core of the Rydberg atom during the time evolution see, e.g.,
figure 3, it is conceivable that three-body losses might become relevant. To investigate this, we have include
the three-body loss term in the simulations for this section, and compare the total loss of atoms with and
without Rydberg excitation. While 500 atoms are lost out of a total of 6.7 × 105 atoms in our simulation
volume, the difference between those two scenarios is negligible. Hence we conclude that Rydberg
excitations do not significantly increase atom losses. This implies that the overdense region are too small to
induce strongly enhanced three-body losses.

We show the results after Nexc = 10 excitations in figure 5(a), using the s + p-wave interaction
potential (2). The figure shows 2D slices of the 3D density at z = 0, as well as column densities
ρc =

∫
dz ρ(R). Each circular feature is due to one Rydberg excitation, see supplementary movie. In contrast

to the case of a single Rydberg atom in the BEC, right after the excitation a significant accumulated impact
(Δ(δρ)/ρ0 ≈ 1%) can be seen in the smoothened condensate column density after 10 repeated excitations
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Figure 5. Relative condensate density after repeated excitations of Rydberg impurities. (a) The 2D slice of the 3D density at
z = 0 after Nexc = 10 repeated excitations at t = τ ′ = 10 × 4.8 = 48 μs. The radius of circular features is that of the Rydberg
orbit, which is about 1.8 μm for |νl〉 = |133S〉. The subsequent time evolution of the density is shown in (b) at
t = τ ′ + timag = 260 μs. The relative column density under the same conditions as in (a) and (b) is shown in (c) and (d). See also
supplementary movie.

Figure 6. Signals using Nexc repeated Rydberg excitations. The column density relative to the background column density
ρ0

c = 4.76 × 103 μm−2, i.e. Δρc = ρc − ρ0
c is shown here. (a) Column density for a single Rydberg excitation (Nexc = 1) at

τ + timag = 260 μs, averaged over 400 samples of Rydberg positions. As the number of repeated excitations is increased from
Nexc = 1 to Nexc = 41, the features in the column density become more pronounced, from (a) to (f).

are completed. The impact becomes even more evident after an additional evolution time of
τ ′ +timag = 260 μs as shown in figure 5(b), where τ ′ = 10 × (texc + timp + tion) = 48 μs is the time taken to
complete 10 repeated excitations with the subsequent removal of the Rydberg excitation.

While Rydberg excitations leave a visible mark in both densities a detailed inspection of the contrast
between maximum and minimum, reveals a higher maximal contrast in the 3D density (8% of the mean)
than the column density (1% of the mean), even though the simulation box is only extended over
Lz = 6 μm in the z-direction. As part of a larger cloud, the column density signal would be even weaker.
Nonetheless, for the case here, the signal appears prominent over a larger spatial region in the column
density, leaving a clear density depression of 1.2% in panel (d) around the central enhancement of the
density. The latter is due to the constructive interference of waves directed towards the centre by each of the
excitations, as discussed in section 3.1.

An experimental density measurement might additionally involve an averaging over Nsamp repeated
measurement. We explore how the expected density profile depends on the number Nexc of repeated
excitations in figure 6. The figure shows the averaged column density at t = 4.8 × Nexc + timag = 260 μs,
subtracted from the background column density at t = 0, and averaged over Nsamp = 400 samples, each
with a different random realisation of the Rydberg atom positions. We show each snapshot at the same
time t, hence the delay timag between the last excitation and the snapshot shown is varying as
timag = (260 − 4.8 × Nexc) μs. We clearly see that by increasing the number of excitations from Nexc = 1 to
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Figure 7. Increase in the smoothened relative column density at the ion location (x = y = 0) for different repeated excitations
comparing in (a) the s-wave potential (1) (black solid and ∗), CASW potential (3) (blue solid and ◦) and the s + p-wave
potential (2) (red solid and �), at a fixed time t = Nexc × 4.8 μs + timag = 260 μs. (b) Evolution of the smoothened column
density for different numbers of repeated excitations at x = y = 0, considering the s + p-wave interaction potential. Smoothing
uses a Gaussian kernel with a standard deviation of σ = 0.5 μm in both panels. Vertical coloured lines indicate at what time a
given number of excitations Nexc is complete.

Nexc = 40, the relative density contrast of the resultant feature improves from about 0.1% to near 11%. As
before, we see that the net effect is a central density increase, surrounded by a density depression. The
feature should be visible through in situ density measurements [44–46]. The late-time dynamics of the
condensate follows the same qualitative trend for all different interaction potentials, with a moderate
quantitative difference at the central location, as shown in the inset of figure 3(c). We map this difference at
x = y = 0 in more detail through multiple repeat excitations, with results shown in figure 7(a), averaged
over Nsamp = 400 samples. The data clearly follows the same pattern for all three potentials, but with
slightly different slopes. While the full s + p-wave potential creates the largest density increase, a difference
is still visible between the signature generated by the s-wave and CASW potentials, which again suggests
that the radial wells do not qualitatively change the picture but have a discernible quantitative effect.

Note, that we have restricted our simulation to 128 × 128 × 128 grid points which allowed us to afford
the average over Nsamp = 400 position realisation. Based on our findings in section 3.1, we expect this to
undersample the interaction potential, but not lead to a qualitatively modified condensate dynamics.
Nonetheless, the net density contrast for the s-wave and s + p-wave potentials will increase by up to a factor
of two for more grid points 512 × 512 × 512. Therefore, due to computational constraints, we report a
lower bound on the density perturbation caused by repeated excitations.

Finally, in figure 7(b) we show the increase in time of the signal contrast, for different numbers of
excitation Nexc. We can see that the largest contrast that is reached at late times scales roughly linear with
Nexc, while the earliest time for which a given fixed contrast is reached no longer reduces with Nexc after a
certain number of excitations. For example, a contrast of 2% is reached at t ≈ 100 μs in figure 7, for all
Nexc � 17 regardless of Nexc. We see that for Nexc > 1, an additional time of Rydberg-free evolution
significantly enhances the signal, and thus might be an important experimental tool for a more visible
effect.

4. Local heating of the condensate

It has been found previously that a Rydberg impurity excited in the BEC causes atom-loss and heating,
increasing with the number of repeated excitations of a Rydberg impurity [9, 32]. In two-dimensions, we
have shown in reference [15] that heating is limited when a small number of impurities is excited in a low
density BEC background within the time span of a few microseconds. Specifically, the number of atoms
entering the uncondensed fraction is not enough to invalidate the GPE. In this section we show that these
conclusions remain unchanged for the scenarios considered in the work, i.e. in 3D and at higher densities.
Importantly, we find that beyond mean field physics also do not significantly affect any of the earlier results
discussed in this article. As we found that the three-body loss is negligible we do not consider its
contribution in this section.

To study heating in the present context, we employ the truncated Wigner approximation (TWA)
[47–53] which extends equation (4) (section 2.3) beyond mean-field theory. This is done by adding
quantum and thermal fluctuations to the initial state through a specific recipe by the inclusion of random
noise. The total atomic density ρt can then be split into the condensed density ρc and the uncondensed one
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Figure 8. Beyond mean-field response of the Bose gas, using the s + p-wave potential (2), and averaging over Ntraj = 5120
trajectories for a single (top row) and ten (bottom row) excitations. The total relative column density, ρc,t, for a single (a) and ten
repeated excitations (b) at texc + timp = 4.0 μs and 10 × (texc + timp) + 9 × tion = 47.2 μs shows a weak impact of the Rydberg
impurities within their respective imprint time, where ρ0

c,t = 4.7 × 103 μm−3 is the initial total column density. A clearer local
signal can be seen in the condensed (d) and uncondensed components (f) of the BEC for ten repeated excitations, and a faint
signal for the single excitation in the condensed (c) and uncondensed component (e), where ρ0

c,c = 4.72 × 103 μm−3 and
ρ0

c,u = 2.61 × 101 μm−3 are the initial condensed and uncondensed column densities. We use a homogeneous mean density of
400.0 μm−3.

ρu, after averaging over an ensemble of Ntraj realisations of the noisy simulations as discussed in appendix
D. For a single excitation with s + p-wave interaction potential (2) and averaging over random impurity
positions as in section 3.4, we find that until texc + timp = 4.0 μs, while the Rydberg impurity is present, it
causes only an additional ≈65 atoms to become uncondensed, compared to their initial number, out of a
total of 6.7 × 105 atoms in our simulation box. Focussing exclusively on the Rydberg excitation volume, a
sphere with radius 2 μm, the uncondensed number thus increases by about 50 out of 13 400 atoms,
corresponding to 0.4%. When adopting the repeated excitation scheme described in section 2.2 under the
conditions of figure 5 (Nexc = 10), we find that about 800 atoms in the box, and roughly 750 (6%) of the
atoms in the Rydberg excitation volume are depleted from the condensate, compared to the initial state, up
to time t = 10 × (texc + timp) + 9 × tion = 47.2 μs. These results suggest that heating is not strong enough
to significantly alter the results of our earlier mean-field simulations, as we indeed shall see shortly.

When moving from bulk-data such as uncondensed atom numbers to local data such as the
uncondensed density ρu(x), we see that the condensate heating is restricted to within the excitation volume.
This is demonstrated in figure 8, for the conditions of the single and ten repeated excitations.

The first row contains the relative change of the total column density, ρc,t, condensed column density,
ρc,c and uncondensed column density ρc,u after a completed single excitation, at texc + timp = 4.0 μs. The
components are extracted from the stochastic field as described in appendix D. The second row shows
snapshots after Nexc = 10 repeated excitations at t = 10 × (texc + timp) + 9 × tion = 47.2 μs. It is evident
from the uncondensed density in panel (e) that heating remains confined to within sphere with radius of
2 μm around x = y = 0 for a single excitation. This in turn leaves a hole of relative depth of about 0.2% in
the same region of the condensed column density, see figure 8(c). However, since overall no atoms are lost,
no features are caused at this time in the total density shown in figure 8(a). The depth of the dip in the
condensed density increases by about 6.0% as one moves from a single to ten repeated excitations, as shown
in figure 8(d). This happens since more atoms transfer to the uncondensed component for ten repeated
excitations in comparison to a single excitation. Comparing the condensate density from TWA as shown in
figure 8(d), see also appendix D, with the condensate density using the GPE (not shown) we find a
qualitatively different behaviour as expected, since the GPE cannot describe local heating. Note, however,
that experiments would only measure the total density as shown in figure 8(b) that appears similar to the
mean field result.

We can see in figure 8(b) that a faint signature is visible already after Nexc = 10 repeated excitations in
the total density directly after the excitation period, despite the added noise due to residual fluctuations in
the mean. The contrast is, however, comparable to the one in the mean-field scenario shown in figure 5(c),
with the difference originating in the different number of realisations in the simulation. By waiting an
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Figure 9. Evolution of the Bose gas following the Rydberg excitation beyond mean-field theory, for the same parameters as in
figure 8. (a) and (b) The total column density for a single and ten repeated excitations at t = τ + timag = 260.0 μs and
t = τ ′ + timag = 260 μs respectively shows a significant impact of the Rydberg impurities. We also show the condensed column
density after a single excitation (c) and after ten repeated excitations (d), as well as the uncondensed column density after a single
excitation (e) and after ten repeated excitations (f). Note the different colorscale compared to figure 8.

Figure 10. The column density averaged over a Gaussian kernel with width σ = 1 μm is compared in (a) at the Rydberg core
between mean-field simulations for Ntraj = 5120 (solid green and o) and Ntraj = 400 (solid red and ♦) and TWA simulations for
Ntraj = 5120 (solid black lines) and Ntraj = 400 (dotted blue lines). The contrast (6) of the same quantities is shown in (b). We
use ten repeated excitations, as in figure 8. The initial background column density for both simulations is ρ0

c = 4.76 × 103 μm−2.

additional time the signal to noise ratio can be further enhanced, as suggested by figure 7(b). We show this
explicitly in figure 9(b) after a free time evolution of t = τ ′ +timag = 260 μs. The detailed time evolution of
the local heating dynamics for single and ten repeated excitations is shown in the last two column of
figure 9, indicating significant motional dynamics also in the uncondensed component at later times. If we
now compare the late-time condensate density in TWA, figure 9(d), with the corresponding one using the
GPE, figure 6(c) shows that these largely agree, as expected based on our earlier observation that only a
small fraction of atoms becomes uncondensed and hence BEC bulk dynamics should be well described by
the GPE simulations.

For a more quantitative comparison between TWA and GPE, we define the image contrast χc as the
difference between the maximum and minimum in the smoothened relative column density according to

χc =
1

2

[(
Δ(δρc)

ρ0
c

)
max

−
(
Δ(δρc)

ρ0
c

)
min

]
, (6)

where δρc is the smoothened column density, and Δδρc thus δρc − ρ0
c . In figure 10 we compare the time

evolution of χc obtained from GPE simulations averaged over Ntraj different realisations of atomic
positions, with TWA simulations of Ntraj trajectories. The latter combines two different averages: in each
trajectory the atomic positions as well as the quantum noise realisation are different. The figure then
compares Ntraj = 400 and 5120 trajectories. For better comparability, all column densities are first
smoothened with a Gaussian kernel of resolution 1.0 μm.

12



New J. Phys. 24 (2022) 073005 S Tiwari et al

Figure 11. Number of atoms accelerated to high-momenta and uncondensed atom number calculated for a homogeneous BEC.
(a) The high-momentum atom number ΔN(t) from a mean-field simulation for the Rydberg impurity in the Rydberg state
|110S〉 at density ρ = 100 μm−3 (solid black lines with �) and the total atom number in those modes from TWA (blue solid line
with ∗) is compared with corresponding data from the experiment [9] (red ◦). The total time required to finish the ten
excitations is τ = 10 × (texc + timp + tion) = 130 μs. For orientation we show the same data for parameters used elsewhere in this
work, using a Rydberg state |133S〉 and density ρ = 400 μm−3 (blue solid lines wit). Here the last excitation is finished at a time
τ = 10 × (texc + timp + tion) = 48 μs. (b) The uncondensed atom number calculated using TWA simulations for Rydberg state
|110S〉 (black solid line with ∗) and |133S〉 (blue solid × lines) for the same regimes as in (a). The simulation is averaged also over
Ntraj = 2560 trajectories for 32 × 32 × 32 Bogoliubov modes, which results in 0.5% standard error on mean 3D densities. Near
all of these are above the momentum cutoff.

We see that the difference between TWA and GPE is very small when averaging over the same number of
impurity positions, as expected from our earlier observation of only a minor impact of condensate heating.
Increasing the sample size maintains the maximum contrast but results in a smoother image. Since this
applies for the GPE simulations as well, we conclude that the average over all spatial realisations is
converged at the chosen number of trajectories Ntraj. For our 3D TWA calculations of a single and ten
repeated excitations, we employed 128 × 128 × 128 spatial grid-points and averaged over Ntraj = 5120
trajectories, which results in about 0.5% standard error on mean 3D densities.

4.1. Comparison with experiments and atom loss versus heating
We can compare our simulations with measurements of atoms lost from the BEC due to Rydberg excitation
therein, reported in [9]. For this we change parameters, only for this section, to a Rydberg state
|νl〉 = |110S〉, density ρ0 = 100 μm−3 and pulse sequence texc = 1 μs, timp = 5 μs, and tion = 7 μs for
excitation, imprint, and ionization intervals, respectively. Atom loss in [9] was measured by a reduction of
the total atom number imaged in a predefined rectangular region after time-of-flight, which can be
translated into atoms being accelerated above a certain momentum cutoff
|qx|/�, |qy|/� > qcut/� = 5.0 × 105 m−1 prior to time-of-flight [54]. We use no cutoff along the imaging
direction (qz). For mean-field calculations based on (4) we define the number of lost atoms as
ΔN(t) =

∫
d3q|qx |,|qy|>qcut |φ̃(q, t)|2, where φ̃(q, t) is the momentum space mean-field. This is shown in

figure 11(a), compared with measurements from [9] (red ◦) and corresponding simulations for our usual
parameters. As we found earlier there is no big difference between mean-field and TWA results regarding
the total number of fast atoms above the momentum cutoff, and both are in decent agreement with
experiment up to a factor of two.

Additionally we show the total number of uncondensed atoms for the same scenarios in panel (b),
sampled at the times indicated by markers. These all have higher momenta than qcut. We thus see that a
significant fraction of high-momentum atoms is uncondensed, while we also see that about half the atoms
that exit the imaging region and thus contribute to the observation of loss have remained in the BEC.

5. Conclusions

We presented an extensive campaign of simulations of BEC dynamics in response to the excitation of
multiple or single Rydberg atoms. We have described the quantum dynamics across all relevant length
scales, ranging from microscopic scales within individual nanometer-sized radial wells of the Rydberg-BEC
interaction potential, out to mesoscopic distances of twice the Rydberg orbital radius. We find that, while
the dynamics within the Rydberg orbit is sensitive to the level of detail used to describe that interaction
potential, density perturbations travelling outwards at later times are well reproduced also when using
approximate interaction potentials, dramatically simplifying simulations.

We explored the shape and contrast of density perturbations as the number of Rydberg insertions is
increased, and found that the typical response is the transient development of a density depression
surrounding a density increase at the centre of the Rydberg excitation volume. The contrast of this feature
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grows linearly with the number of Rydberg insertions. While signal in condensate density created by a single
Rydberg atom remains very weak, it steadily increases if atoms are excited repeatedly. Importantly, we find
that even after cessation of the excitation sequence, the signal increases further for a while as outgoing
density waves combine. This suggests an additional unperturbed evolution interval as a helpful
experimental tool to allow the Rydberg excitations to strongly affect the BEC.

Finally we went beyond mean-field theory, adding quantum fluctuations and the possibility of atoms
being ejected from the condensate, using the TWA [47–53]. We find that a Rydberg impurity excited in the
BEC causes additional uncondensed atoms, largely concentrated in the excitation region. The number of
uncondensed atoms increases during a sequence of repeated excitations of a Rydberg impurity, but does not
become large enough to invalidate the use of mean-field simulations and hence any of the conclusions listed
above.

While we find that small scale details of the Rydberg-BEC potential, such as the p-wave shape resonance
and radial oscillations, do not qualitatively affect the BEC response, larger features such as the anisotropy of
p or d states [16], or transitions to molecules [22] represent a major change of the Rydberg-BEC potential
and should leave a discernible signature after repeated excitations. Also different condensate atom species
might give valuable information, such as Sr for which the shape resonance is absent, and Cs, the different
mass of which will alter kinematics. All these should be subject of further investigations.

Two central conclusions are, that mean-field theory remains applicable to the Rydberg electron in a
BEC, and that the detailed shape of the interaction potential at short distances, which is not too well
known, is not crucial. Together, these findings provide a critical milestone that enables BEC as an
instrument for in situ real time probing of dynamical processes in ultracold atomic physics and chemistry,
ranging from polaron formation dynamics [3–5] over angular momentum changing collisions [15, 22], the
dynamical formation of ultra-long range molecules [22, 24, 55], or localized states [56] and ionisation
[57–60] to phonon mediated Yukawa interactions [61]. In all of these, the initially excited Rydberg atom
can be in an s-state, on which we focus here, while cold scattering processes might then causes state changes
or acceleration of this atom. These would likely leave an optically resolvable mark in the condensate
response, since we show that already the s-state does. The highly excited atom in the BEC medium is
somewhat analogous to exotic particles probed in bubble or fog chambers in the early days of particle
physics [15, 20]. In that sense the present work provides the essential background simulations, by
comparison with which all new discoveries arise, rendering much of the physics above in situ observable.
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Baden-Württemberg-Stiftung for the financial support by the Eliteprogramm for Postdocs. RS and MW
acknowledge support by the Max Planck Society, the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy EXC-2111-390814868 and within the priority
programme ‘Giant interactions in Rydberg systems’, DFG SPP 1929 GiRyd, Grant No. 428462134.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

Appendix A. Rydberg excitation locations

The location of a Rydberg excitation in a dense BEC can be controlled by a combination of a tightly
focussed excitation beam and the Rydberg state energy dependence on background density [9]. To obtain an
experimentally relevant spatial distribution of Rydberg excitations within a harmonically confined BEC, we
model the excitation process taking these two features into account.

We start by generating clouds of point-like particles with a distribution function matching the
Thomas–Fermi profile of the BEC density ρ(R) in a cigar shaped harmonic trap, with long axis along y. In
cylindrical coordinates

ρ(r, y,φ) =
1

U0

(
μ− m

2
(ω2

r r2 + ω2
y y2)

)
×Θ

(
μ− m

2
(ω2

r r2 + ω2
y y2)

)
, (A.1)
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where Θ is a Heaviside step function, r =
√

x2 + z2 (in this appendix only), μ the chemical potential and we
assume trapping frequencies ωr in the radial direction and ωy along the long axis of the BEC. Note, that the
Thomas Fermi profile is used in this appendix only, while the main article assumes a homogenous
background BEC.

From the density distribution we can derive the corresponding cumulative distribution functions
(CDFs) for each coordinate that allow us to randomly draw particle positions matching the probability to
find atoms at a certain position inside the BEC. The extension of the BEC in the long direction is between

ymax = −ymin =
√

2μ/(mω2
y ), and then for each y an upper bound for the radial coordinate is given by

rmax(y) = 1/ωr

√
2μ/m − ω2

y y2. Consequently, the total particle number of the BEC is given by

N =

∫ ymax

ymin

dy

∫ rmax(y)

0
dr

∫ 2π

0
dφ r n(r, y,φ)︸ ︷︷ ︸
=n̄φ(r,y)︸ ︷︷ ︸

=n̄r,φ(y)

, (A.2)

where n̄r,φ(y) dy gives the weight of a disc with thickness dy (i.e. a cross-section of the BEC) and n̄φ(r, y) dy
dr characterizes the weight of a infinitesimal cylinder of radius r for a given value of y. Based on the latter,
the CDF of the y-coordinate is given by

CDFnr,φ(y) =
1

N

∫ y

ymin

dy′ n̄r,φ(y′). (A.3)

It maps the allowed range of y onto the interval [0, 1]. Hence we can use the inverse CDF to draw random
numbers ξ∗y ∈ [0, 1] and assign them to y-coordinates y∗, which are then correctly distributed according to
the Thomas–Fermi profile of the BEC. Analogously, we obtain the CDF of the radial coordinate

CDFn̄φ(r, y)|y=y∗ =
1

N

∫ r

0
dr′ n̄φ(r′, y) |y=y∗ . (A.4)

The inverse of CDFn̄φ(r, y∗) assigns a random variable ξ∗r ∈ [0, 1] to an r-coordinate r∗ under the condition
that the atom is found at the y-coordinate y∗, which has been obtained in the previous step. Finally the
φ-coordinate is drawn uniformly from the interval [0, 2π), as the density profile (A.1) of the BEC is
invariant under rotation around the y-axis. By successively drawing random coordinates as described above,
we obtain 3D atom positions forming a cloud that matches the density distribution of a BEC confined in a
harmonic trap. In the following we describe how to select atoms from this cloud to be excited into a
Rydberg state by a Gaussian laser beam with a Gaussian profile and exploiting the density detuning of the
energy of the Rydberg state.

The overall excitation probability is proportional to the intensity profile of the Gaussian beam which
propagates anti-parallel to the x-axis of our coordinate system, see figure 1(a). To implement this, we
evaluate the laser intensity profile

I(r⊥, x) = I0
ω2

0

ω(x)2
e
−

2r2
⊥

ω(x)2 (A.5)

at each atom within the cloud, where r⊥ =
√

y2 + z2, ω(x) = ω0

√
1 + x/xR and xR = π/λω2

0 [62]. In
accordance with a typical experimental setup, we choose ω0 = 1.8 μm and λ = 1.011 μm. We keep I0

dimensionless and determine it such that the sum of the I = (r⊥, x) at all atom positions is normalized to
one. Assuming the excitation of exactly one Rydberg atom, the function I can then directly be taken as the
excitation probability of an atom at location (r⊥, x). This allows to select atoms to be excited into a Rydberg
state according to the Gaussian intensity profile of the excitation laser.

In addition the dependence on light intensity, the excitation probability of an atom into a Rydberg state
is density selective. This is because the spectral width of the laser only allows for excitations within a certain
energy range ΔE, and interactions between the Rydberg atom and the BEC, as in section 2.1, cause an
energy shift of the Rydberg state. We assume a Gaussian line shape of the excitation laser and hence a
dependence of the excitation probability on energy shift E as

p(E) = N e−
(E−Ē)2

ΔE2 , (A.6)

with ΔE = 1 MHz centered around a detuning Ē = −55 MHz. If the normalisation factor N is chosen such
that p(−55 MHz) = 1, this assigns a probability to each excitation with energy detuning E. For each atom,
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E is found by summing the potential energy shift due to the potential (2) for all other atoms in the cloud:

p(E) =
∑

k

Vryd,S+P(Rk). (A.7)

Here Rk is the location of the kth cloud atom and we set η(t) = 1 and xn(t) to the location of the atom for
which we wish to evaluate the Rydberg excitation probability.

Finally the total Rydberg excitation probability for each atom in the cloud is given by I(r⊥, x) × p(E).
The histogram of excitation positions is well fitted by a three-dimensional Gaussian distribution, with the
widths σx,y,z given in the main text.

Appendix B. Rydberg molecular potentials

Since the interaction potential between the condensate and Rydberg impurity is solely governed by the
electron–atom collision energy, a low energy Rydberg electron interacts with atoms through the Fermi
pseudo potential [23, 24]:

Wryd,s,n(R, r, t) = η(t)
[
V0(R)δ(3)(R− xn(t) − r)

]
, (B.1)

where R is the position of the ground state atom, r is the position of the Rydberg electron relative to the
Rydberg core, and the latter is located at xn(t). As the electron gets closer to the ionic core, it gains more
kinetic energy from the Coulomb potential, that eventually matches with energy of a quasi-bound Rb− state
behind the p-wave centrifugal barrier [29]. This causes a shape resonance in the scattering cross-section
between electrons and 87Rb atoms in the 3P0 scattering channel at 0.02 eV [29]. As a result, the Fermi
pseudo-potential (B.1) needs to be extended to include p-wave scattering terms [30] as in

Wryd,s+p,n(R, r, t) = η(t)

[
V0(R)δ(3)(R− xn(t) − r) +

6π�
2ap[k(R)]

me
δ(3)(R− xn(t) − r)

←−∇r ·
−→∇r

]
.

(B.2)
Gradients act into the direct indicated by arrows. η(t) = 1 encapsulates the presence or absence of a
Rydberg impurity in the BEC, and the first term in the square bracket is the usual s-wave pseudopotential
(B.1), which upon taking the expectation value in the Rydberg state in the absence of the p-wave scattering
term, results in the effective mean-pseudo-potential (1) defined in section 2.1. The last line of (B.2) is the
p-wave scattering term, with p-wave scattering volume ap[k(R)] = −tan(δp[k(R)])/k(R)3, where δp[k(R)]
denotes the triplet p-wave scattering phase shift of e−–Rb87(5S) [25]. In order to calculate the full
Born–Oppenheimer potential energy surfaces of Rydberg electron–atom interaction from (B.2), we apply
degenerate perturbation theory, diagonalising the Rydberg atom Hamiltonian as in (2) including the
interaction (B.2) as a function of distance r = |R| between perturber atom and Rydberg ion. For each
diagonalization, a total of six different ν manifolds and their respective angular momentum states have been
taken into account, where one of them is above the target state and five are below. The angular momentum
states for l � 2 are calculated using Numerov’s algorithm to account for the quantum defect [27, 28],
whereas hydrogenic basis states are utilized for higher angular momentum states. Finally we take an unusual
choice of energy as a function of pertuber-ion distance following diagonalisation: since about Norb = 8000
perturbers already pre-fill the Rydberg electron orbit directly after excitation, the standard approach of
adiabatically following the asymptotic s-state for all r is in-appropriate. Instead we heuristically follow it
across the large energy drop induced by the p-wave coupling, to capture that acceleration, but at even closer
distances return to the diabatic s-state. This is assuming that the high-dimensional Rydberg wavefunction as
a function of the 3Norb -dimensional position of all perturbers is locally projected onto the largest s-state
content through the excitation. We have verified that if the adiabatic potential is used for all radii up to
r = 0 instead, our results e.g. in figures 3(c) and (d) are unchanged, due to the insensitivity to the details of
the short range potential discussed in section 3.2.

The thus extracted potential energy for the surface asymptoting to |νl〉 = |133S〉 is compared in
figure 1(c) with the more basic s-wave scattering potential (1). A complete calculation of the
3Norb -dimensional surfaces for the Norb = 8000 perturbers in the orbit is not numerically feasible, and
incompatible with mean-field theory. Since we expect a genuine many-body treatment to only differ
sufficiently close to the p-wave resonance, and most of our results are not sensitive to even large potential
variations in that range, the approach described should furnish a sufficient approximation.
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As discussed in (3), for a simpler Rydberg-ground-state potential, we also make use of the classical
electron probability distribution [32] given by

ρcl(R) =
1

8π2r

1√
ε2b2 − (r − b)2

, (B.3)

where r = |R|, b = −k/2E is the semi-major axis for the elliptical electron orbit in a Coulomb field
U(R) = −k/r with E the energy of the νth level and ε =

√
1 + 2EL2/mek2 the eccentricity. Here L is the

angular momentum of the Rydberg state and me is the mass of the electron.

Appendix C. Radial Gross–Pitaevskii equation in a homogeneous system

In section 3.1 we need to solve the radial GPE (5) to fully resolve the many small scale oscillations of the
Rydberg-molecular potential. We wish to evaluate the derivatives in the GPE using the FFT algorithm,
which implicitly enforces spatial periodicity. This is not straightforwardly possibly for a radial coordinate
r ∈ [0, Rmax] and a homogenous BEC background. A radial wavefunction u(r) that vanishes at Rmax can be
propagated by anti-symmetrically extending it into [−Rmax, 0]. Since u(r) does not vanish there for us, we
work with a shifted radial wavefunction

ũ(r, t) = u(r, t) − r
√
ρ e−iμt/� (C.1)

that is designed such that ũ(r, t) = 0 at large r, where the background is unperturbed. In the above,
μ = U0ρ0 is the chemical potential.

The new radial GPE for the variable ũ(r, t) is then:

i�
∂

∂t
ũ(r, t) =− �

2

2m

∂2

∂r2
(ũ(r, t))

+

(
U0

r2
|ũ(r, t) + r

√
ρ e−iμt/�|2 + VRyd,S,n(r)

)
ũ(r, t)

+

(
U0

r2
|ũ(r, t) + r

√
ρ e−iμt/�|2

+ VRyd,S,n(r)

)
r
√
ρ e−iμt/� − rμ

√
ρ e−iμt/�, (C.2)

where we have used that the actual 3D density is ρ(r, t) = | u(r,t)
r |2 = | ũ(r,t)+r

√
ρ e−iμt/�

r |2.
Working with an asymptotically vanishing ũ(r, t) was required for the final step, which is to

anti-symmetrically expand ũ(r, t) to negative r, such that ũ(−r) = −ũ(r). This enforces ∂2

∂r2 |r=0 = 0, thus
preventing any cross-talk between the physical positive r > 0 and the unphysical negative range.

We verified the above transformations by a direct comparison of its results with complete 3D
simulations for a Gaussian potential,

V(R,xn, t) = V0 e−
|R−xn(t)|2

2σ̃2 , (C.3)

where V0 and σ̃ are potential strength and width, finding good agreement as in figures C1(a) and (b). We
then used these simulations to assess the impact of (unavoidable) undersampling of the Rydberg potential
for 3D simulations in the main article in figures C1(c) and (d). While differences at early times
texc + timp = 4.0 μs in panel (c) can be significant, this is no longer the case for the net impact at large
distances and late times τ + timag = 231 μs, which is our main focus.

Appendix D. Truncated Wigner method

The truncated Wigner method allows to investigate the dynamics of quantum depletion or thermal
fluctuation, as long as these are small corrections to a strong mean-field. After the method’s introduction to
BEC [47–49] the TWA in that context is described in many articles including the review [63]. The central
ingredient of the method is adding random noise to the initial state of the GPE (4). We thus use the initial
stochastic field

α(R, 0) = φ0 +
∑

k

[ηkuk(R) − η∗kv
∗
k (R)]/

√
2 (D.1)
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Figure C1. A direct comparison of solutions of the radial GPE (5) (blue lines) with the 3D GPE (4) (black lines). (a) and (b)
Different time samples of the relative density of radial simulations and a 1D cut of the 3D simulation along the x-direction at
y = z = 0, for the Gaussian potential in (C.3). (c) The relative density of the two simulations as in (a) and (b), with Rydberg
s-wave potential (1) at texc + timp + tion = 4.0 μs. 60 000 grid points are used for the radial GPE simulation, whereas the 3D GPE
simulation uses 512 × 512 × 512 grid points along x, y, and z-directions, respectively. (d) Late time evolution of the relative
density of the two simulations as in (c) at τ + timag = 231 μs.

with random complex Gaussian noises ηk fulfilling ηkηl = 0 and ηkη∗l = δnl, where . . . is a stochastic
average. uk(R) and vk(R) are the usual (3D) Bogoliubov modes in a homogeneous BEC with homogenous
density ρ = |φ0|2 [64].

A different symbol α(R) has been chosen for the stochastic field compared to the mean field φ(R), to
emphasise the difference in physical interpretation due to the presence of noise: the stochastic field now
allows the approximate extraction of quantum correlations using the prescription

1

2

(
〈Ψ̂†(R′)Ψ̂(R)〉+ 〈Ψ̂(R)Ψ̂†(R′)〉

)
→ α∗(R′)α(R), (D.2)

in which spatial correlations of the stochastic fields provide information on symmetrically ordered quantum
expectation values. In (D.2) Ψ̂(R) is the atomic field operator that destroys an atom at location R [64].

Using restricted basis commutators δc [65, 66], we can then extract the total atom density

ρt(R) = |α(R)|2 − δc

2
, (D.3)

condensate density ρc(R) = |α(R) |2 and from these both the uncondensed density
ρu(R) = ρt(R) − ρc(R), see also [50–52]. Uncondensed atom numbers as a measure of non-equilibrium
‘heating’ referred to in the main article are finally Nu =

∫
d3R ρu(R).
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