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Statistical learning
- Word learning relies on statistical regularities in speech

- These regularities are shaped by transitional probabilities
(TPs) between syllables

- The extraction of TPs enables chunking and learning

- Prosodic marking at chunk boundaries facilitates learning

RQ: Do brain oscillations support statistical learning?

- Distinct MEG-source reconstructed neural circuits should
exhibit periodic activity at the chunk rate when TPs and
prosodic cues are regularly presented in a syllable stream

- Neural tracking of coherent statistical and prosodic cues
is expected to be associated with learning enhancement

- Evoked responses (e.g., M400) to test chunks should be
larger for non-words compared to words (− familiarity)

- Neural tracking at the chunk rate in cortical regions that
are sensitive to TP should correlate with neural (evoked)
responses and behavioral performance (learning)

- Connectivity from high-order regions (e.g., sensorimotor
network) feedbacks temporal predictions to sensory areas
and top-down modulate neural tracking at the chunk rate

- Acoustic and prosodic cues might instead be processed
bottom-up, thus showing a reversed connectivity profile
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- Neural oscillations = rhythmic cycles of neural activity

- Neural oscillations support language processing by phase
alignment to:

1. Exogenous acoustic units in speech (syllables)
2. Higher order acoustic marking (prosody)
3. Endogenous abstract cues (TP patterns)

RQ: Are TPs and prosodic cues concurrently tracked
by distinct neural circuits for learning and chunking?

RQ: Does statistical learning of artificial words rely on
top-down modulations from high-order cortical areas?

Methods

Stimuli
- Controlled for frequency of use of syllables (L1: German)
- Controlled for overlap and periodicity of phonetic features

Magnetoencephalography:
Neural frequency tagging (NFT)
Inter-trial phase coherence
Event related fields (ERFs)

Expected ResultsConditions

2-AFC word 
recognition task:

a) Word vs. 
Non-word

b) Part-word     
vs. Non-word

c) Word vs. 
Part-word

Confidence 
rating task:

Likert scale 
(1 to 4)

3

2 Expected Results
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Conditions

Data acquisition & analyses
Behavioral performance:
Explicit learning:
- Word Recognition
- Confidence Rating

Syllable rate 
= 4 Hz

Chunk rate 
= 1.33 Hz

Chunk rate 
= 1.33 Hz

Chunk rate 
= 1.33 Hz

- Our study could show that rhythmic processing of TPs
and prosodic cues embedded in a syllable stream:

1. Is neurally dissociable
2. Relies on feedback and feedforward connectivity
3. Jointly impacts statistical learning of artificial words

Conclusion

Statistical 
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ERFs Behavior

- Learning effect:

Ø Preference for words and part-
words vs. non-words

Ø Behavioral performance in both
tasks signals explicit learning

Ø Learning should correlate with
the NFT and ERF effects

- Words à extracted from artificial lexicon inventory
- Part-words à one syllable deviates from a learned word
- Non-words à syllable constructions never heard before

- M400 effect:

Ø M400 amplitude ↑ in response
to non-words vs. part-words vs.
words in TP-structured streams

Ø Tracking of TPs correlates with
this effect

NFT effect Connectivity


