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The quantum simulation of fermionic gauge field theories is one of the anticipated uses of quantum
computers in the NISQ era. Recently work has been done to simulate properties of the fermionic
Zs gauge field theory in (1+1)D and the pure gauge theory in (241) D. In this work, we investigate
various options for simulating the fermionic Z2 gauge field theory in (241) D. To simulate the
theory on a NISQ device it is vital to minimize both the number of qubits used and the circuit
depth. In this work we propose ways to optimize both criteria for simulating time dynamics. In
particular, we develop a new way to simulate this theory on a quantum computer, with minimal
qubit requirements. We provide a quantum circuit, simulating a single first order Trotter step, that
minimizes the number of 2-qubit gates needed and gives comparable results to methods requiring

more qubits.
further decrease the circuit depth.

I. INTRODUCTION

Simulating the dynamics of physical quantum systems
is one of the most anticipated applications of quantum
computing and a good candidate to show useful quan-
tum advantage for a NISQ device [I]. Physical systems
of interest include quantum chemistry models, material
simulations, and high energy physics problems via lat-
tice gauge theories, as the one considered here [2H4]. To
simulate the quantum dynamics on a near-term quantum
device, the resources used need to be optimized. NISQ
devices offer only a limited number of qubits, and have
limited coherence times, as well as considerable 2-qubit
gate errors [B]. Thus, to simulate a given problem it
is necessary to optimize the number of qubits used and
their architecture, as well as the depth (and the number
of 2-qubit gates) of the quantum circuit.

In this work, we focus on the simulation of the
fermionic Zs lattice gauge theory in 2-+1D with min-
imal resources. In particular, we use as benchmarks
the number of qubits and of 2-qubit quantum gates
needed to implement a single first-order Trotter step.
The latter can be used to probe the dynamics of the
system either directly, via a Trotterised time evolution,
or by using it as a single step for an ansatz to perform
variational quantum algorithms for time evolution, like
parametrised variational quantum dynamics (pVQD) [6-
8]. The same ansatz can also be applied for other al-
gorithms like QAOA or variational quantum eigensolver
(VQE) to probe the ground state properties. In minimiz-
ing the resources needed, we exploit the fermion mapping
introduced in [9, [10], which allows the fermionic Zy the-
ory to be encoded with the same number of qubits as the
pure gauge theory without the fermions. This is the first
practical proposal that evaluates the resources needed for
simulating such fermionic (241) D physical system on
a quantum computer We compare the circuit depth

1 While completing this manuscript, an independent proposal has

Furthermore, variational Trotterization approaches are investigated that allow to

obtained via fermion elimination method with that if a
standard approach like Verstraete-Cirac (VC) [12] trans-
formation was used to encode the fermionic degrees of
freedom. The new method offers similar circuit depth
requirements (18 to 14 CX gates per link), while only
using half of the qubits compared to the VC encoding.
Furthermore, the use of variational pVQD algorithm is
explored to further reduce the requirements for the cir-
cuit depth to perform time evolution of the system.
High energy physics models have been simulated with
great success by discretizing the theory on a lattice
[13, 14]. In this work, the Zy lattice gauge theory with
fermions was picked due to its simplicity and for the ease
of encoding the gauge field in qubits, nevertheless the the-
ory is also of practical interest. In high energy physics,
SU(N) theories are of particular importance, since the
strong force, responsible for quark binding and their in-
teractions is mediated via SU(3) gauge field. The exact
mechanism of the quark confinement is poorly under-
stood and many insights have been obtained from nu-
merical simulations. In particular, it is believed that
the centre of the SU(N) theory - Z(N) is responsible
for the confinement [I5]. However, classical simulations
using Monte-Carlo methods suffer from a sign problem
and scale exponentially in the resources with the system
size. By using quantum computers it could be possible to
avoid this problem by working in the Hamiltonian formal-
ism. We show that the circuit depth needed to simulate
a single Trotter step is independent of the system size,
allowing the simulation to be scaled. As the quantum
technologies continue to advance, it is important to ex-
plore the optimal ways to simulate this theory in a sign
problem free way to better understand its properties, and
eventually the process of quark confinement. This work
only considers the Zy theory, but the methods used here

appeared that explored the use of the same fermion elimination
method and also considered the fermionic Zo theory in (24+1) D
in their work [11]



can be altered to probe other Zy theories, which are left
for future work.

Previous work in [T6HI8] covered the simulation of a
pure Zsy theory in (24+1) D. Very recently, [19] simulated
the fermionic Zs theory in 141D, with an implementation
on the Google Sycamore quantum device, and particu-
lar emphasis on probing the confinement. The authors
were able to perform the simulation of time dynamics via
Trotterization, with a much greater accuracy than one
naively would expect from the 2-qubit gate error rate of
the device. These works point out the current interest of
simulating the full fermionic Zs theory in (2+1) D, which
we tackle in this paper.

In the first part of this article we consider the pure
gauge and fermionic Zs theory in (241)D along with the
work that has been done so far. Next we introduce the
mechanism to encode the fermions in the gauge-field, as
proposed in [9, [I0], and how it can be applied to the Z
theory. In section [[TI} we show how this model can be
mapped to a quantum circuit and evaluate the necessary
number of 2-qubit gates needed for a single step of a first
order Trotter circuit, which is compared with the VC
method. Section [[V] explores the use of the variational
methods, including numerical results. Finally, section [V]
summarizes our conclusions.

II. Z, LATTICE GAUGE THEORY

In the lattice gauge theory Hamiltonian formalism,
the space is discretized, but the time is left continu-
ous. On the lattice, matter fields are located on the
vertices (labelled by vectors ) and the gauge fields on
the links (labelled ) connecting them. When consider-
ing the fermionic Z, lattice gauge theory in two spatial
dimensions, the fermions can be staggered as shown in
figure [T} -on even sites (red) we have particles and on
the odd sites (blue)—antiparticles with charges +1 and
-1. The parity of the site is given by (—1)%®) = (—1)*+V
with 1 (-1) indicating an even (odd) site [20]. The green
sites on the links denote the gauge fields. We will con-
sider two-dimensional rectangular lattices with periodic
boundary conditions and dimension M X N, where M, N
are even, to accommodate fermion staggering. Note that
on a lattice of size M X N, there are L = 2 X M X N
gauge field links and M X N fermion vertices (Fig .
The gauge field in Zx theories has a finite-sized Hilbert
space of dim = N, thus allowing it to be encoded on each
link.

A. Pure Z; lattice gauge theory

The Kogut-Susskind Hamiltonian of the pure gauge Zs
theory is given by Hgg [21]
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FIG. 1: The top figure shows the labelling for the pure
gauge theory on a lattice. The bottom figure shows the
labelling for the full fermionic theory with staggered
fermionic matter. Matter sites are located on vertices
while gauge fields are on the links.

Hygs=Hgp+ Hp (1)
=g [2— (P +P)) (2)

l
+ A5 Y _[2— (Up Up,ULUL + He)l.  (3)
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p

For the electric field term Hpg the sum is over all links
and for the magnetic field term Hp over all plaquettes
p, as indicated in the Fig[I] The coupling constants are
connected through the relations Ag = ¢%/2, Ag = 2/¢?
[21I]. An additional constraint that the theory obeys is
the Gauss law:

G(z) = P,P.PiP/ (4)
= exp(iﬂ'[Eu + FE, — Ej — El])
=exp(irQ(x)) =1

where Q(x) is the charge on vertex x. or the pure
gauge theory with no static charges Q(x) = 0 on all
sites. The sign convention for the electric fields is given
in Fig. [I]

In the pure Z, lattice gauge theory the electric field can
take two values: 0 and 1. The theory can be defined using



two generators U;, P; per link [, satisfying the relations

=Uf =1 (5)
PP =U/U =1 (6)
PlUP, = exp(inlh) (7)

The gauge field on a given link can be encoded into
qubit states |0),|1) corresponding to the electric field
values such that U |E) = |(F + 1) mod 2) and P, |E) =
exp(imE) |E). Thus, U; is the raising operator for the
gauge field and P, is a diagonal operator in this basis,
describing the electric field strength.

This Hamiltonian can be implemented on a quantum
computer by mapping:

Ul — Xl (8)
Pl — Zl7 (9)

where (X,Y], Z;) are Pauli matrices acting on link [. The
Kogut-Susskind Hamiltonian is expressed as:

Hxs=Hg+ Hp (10)
=25 Z1— 22 Y _ Xp, Xp, X, Xp,,  (11)
p

and the Gauss law (in the absence of external charges) is
given by

ZuZpZaZ) =1 (12)

for every vertex. The quantum circuit to simulate this
model will be explicitly shown in the next section.

B. Fermionic Z, lattice gauge theory

In the full theory, when the gauge field interacts with
matter, the Hamiltonian acquires two extra terms, the
mass term of the dynamical fermions and the interac-
tion term between the fermions and the gauge field. The
matter field part of the Hamiltonian is given by:

Hy=Hy + Hing (13)
— Z (=1)*® Maf a, (14)
+eZa(“] T)a(pq1,y) + H.c. (15)
+€ZCL(IU u(T)a(gy41) + H.oc. (16)

with a;, a; satisfying the canonical anticommutation re-
lations (CAR). Note that the interaction term has been
split into horizontal and vertical parts for future conve-
nience. To accommodate both particles and antiparticles
on the lattice, the staggered fermion approach is used.
Here on even (odd) sites we have particles (antiparticles)
with charge +1 (-1). The parity of the site z = (z,y)

is given by (—1)*®) = (=1)**¥ with 1 (-1) indicating an
even (odd) site. In this approach, in the computational
basis,

h
on even site 0) = vacuumn (no charge) (17)
[1) — particle (charge +1)
i-particle (charge -1
on odd site |0) — anti-particle (charge -1)
[1) — vacuum (no charge)
The number operator on the vertex is given by:
1—(=1)s= 7,
n(x) = % (18)

While the number operator can be easily expressed, get-
ting the fermionic creation/annihilation operators is non-
trivial, as they obey the non-local CARs. In the method
from [9} [10], introduced in the next section, the fermionic
statistics is absorbed into the gauge field, at the ex-
pense of increasing the Pauli weight of the Hamiltonian
terms (i.e. the number of qubits on which the term acts
non-trivially). The transformed Hamiltonian consists of
hard-core bosonic matter for which creation/annihilation
operators can be implemented with simple spin rais-
ing/lowering ones. Furthermore, these hard-core bosonic
degrees of freedom can be eliminated by the use of Gauss
law, which uniquely determines the charge distribution
on the vertices. This allows the full fermionic Zy the-
ory to be simulated with the same number of qubits as
needed for the pure gauge one, minimizing the spatial
resources of the quantum computation.

C. Fermion encoding via elimination

In [9] a method is introduced that allows one to
perform a unitary transformation that converts the
fermionic degrees of freedom to hard core bosonic de-
grees of freedom, if the gauge group has Z, as a normal
subgroup. As a result, the theory acquires phase factors £
of the gauge field to keep track of the fermionic exchange
antisymmetry. The transformed Hamiltonian is

Hy =Y (=1)*® Mpin, (19)

x

Hgs=-Ap Yy (P +P)) -
!

p
(20)
- 7“25’1 77(95 ) Ur(@)N(zt1,y) + Hec. (21)
- ZEZ&’ T’(m ) Uu(@) Nz y41) + Hec. (22)

A Y (&Up, Up, U US + H.c.)



where 7(x) is a staggered hard-core boson annihilation
operator and the £ phase factors are given by:

En(z,y) = (_1)Eu($7y)+Ez($7y)+Ed(%Zl)+Ed($+17U) (23)
6ulay) = (()FEIELD (o)
& = (_1)EP1 +Epy+Eps+Epg (25)

and the ordering is shown in the Fig[l] Under this trans-
formation, the Gauss’ law remains unchanged. This is
important, as the Gauss’ law fully defines the charge con-
figuration on the vertex and thus can be used to eliminate
the matter fields [10].

For an occupied (unoccupied) site (n(z) = 1(0))
Q(z) = £1(0) and the Gauss’ law gives PuPTPdTPlJr =
—1 (1). This allows us to define projection operators
IT,(z,y) that project the Hilbert space to the subspace
with G(z) = p, with p = 1 indicating that the site is
empty and p = —1 that the site is full.

Elimination of the matter fields via Gauss law leads to
the H; terms to acquire projection operators as follows:

Hy = Hpy + Hipy
= MII_(x)
T

—ie 3 (~1)* @, (@)1 (2, y)U (@, ) (« + 1,y) + Hee.

(28)
—ie 3 (—1)" @, (@)1 (v, y) U, )L (2, + 1) + Hee.

x

(29)

where the factors of (—1)*(®) arise from fermion stagger-
ing. Thus, the full fermionic Zs theory can be simulated
only by encoding the gauge field values. Once again, it
is worth re-emphasizing that the matter fields have been
eliminated at the expense of the Gauss’ law, thus leaving
the new theory without this constraint.

To perform such a simulation on a quantum computer,
one has to implement the non-trivial projection opera-
tors. In further sections it will be shown how each of
these terms can be encoded on a digital quantum com-
puter.

D. Full Z; theory as a spin system

The Hamiltonian without the matter sites can be
mapped to operators on a quantum computer. We will
assume access to Pauli gates (X, Y, Z) and their rotations
R.(0), Ry(0), R.(0) as well as controlled Pauli gates and
their rotations as the 2 qubit gates. To implement this
model, it is necessary to have an architecture of qubits
with a possibility to perform a 2 qubit gate with next-
to-nearest neighbours.

In order to perform the simulation, in addition to the
mapping of Uy — X; and P, — Z; introduced previ-
ously, we need to map the projection operators II, and

the phase factors £&. The mapping of the phase factors
is straight forward since (—1)®" = P,. The projection
operator II, can be implemented as follows:

Wi (2,9) = 5 (1 + 2321247, (2.)) = (1% Glay)

(30)
The Hamiltonian mass term Hj; is thus given by:
Hy = %(1 — ZuZvZ4Z)) (31)
2

x

Since we know how to implement each operator in the
interaction Hamiltonian H,,;, it can be mapped to a
quantum device. While the structure of it looks com-
plicated, it is possible to simplify it quite a lot. Consider
the horizontal part of the interaction Hamiltonian and
note that U = Ut = X

Hp = —ie Y (—1)*@¢&,(a)_;(z,y)Up(z,y)Ii (z + 1,y) + H.c.

x

= —ie Y (~1)*@U, (2, y)én (@) (2, )T ( + 1,y) + H.c.

x

= _iEZ(_l)S(m)UT(xvy)fh(w)(zr(x7y))2nl(xa y)Hl(x + 17y)

x

+ H.c.
= —ieZ(—I)S(Z)U,.(x,y)G(:c)Zd(x + 17y)ZT'(x7y)

X My (2, y)Il(z + 1,y) + H.c.

==Y (—1)*®Yo(2,9) Za(z + 1, y) T (2, )T (2 + 1, y) + Hec.

x

— Y ()@Y (2, 9) Za(w + 1,9)T (2, )T (z + 1, y)

x

— e S~ ®Y, (2, y) Zalw + 1,y) o, y) o + 1,y)

x

—€ Z(il)S(m)Yr(x7 y)Zd(x + ]-7 y)
x

1
X 5(1 + ZuZlZd(xvy) X ZdZ’rZu(x =+ 17y))
In the step 1, the projection operators are collected, fol-
lowed by insertion of (Z,(z,y))? and simplification from
the Gauss law constraint. In the last 3 steps, both terms
are collected and 11, values are inserted to give the final
result.

Similarly the vertical interaction terms can be simpli-
fied as

Hy = —ie Z(—l)s(w)&,(m)ﬂ,l(%y)Uu(w,y)Hl(x,y +1)+ He.

x

= —¢€ Z(_l)s(m)yu(xv y)ZT(xV y)

x

1
X 5(1 + ZerZd(.Z‘,y) X ZIZTZH(SC, Y+ 1))

The interpretation of these terms is that, we will have
an interaction term of form Y ® Z acting when both



sites at the end of the links are empty or occupied. This
corresponds to either particle-antiparticle pair creation
or annihilation.

The pure gauge part of the Hamiltonian gets slightly
altered, with the plaquette term becoming 6-local:

Higs=Hp+ Hp (32)
= _2/\E Z Zl - 2)\3 Z Yp1 Y172X;03Xp4 Zps ZP6
l P
(33)

In this matter-eliminated formalism, the most com-
plicated terms to implement are the interaction ones.
They feature a controlled operation that is non-trivial
only when both sites are empty or occupied. In the fur-
ther sections we will show how these terms can be imple-
mented with a better than expected circuit depth with
re-using some of the occupation calculations. Despite the
complications introduced by the projectors, the final gate
complexity to perform time evolution is similar to using a
fermion encoding method like Verstraete-Cirac encoding.

The same model was also considered in [IT] where the
authors arrived at the same result. In this work more
emphasis is put towards optimization for circuit depth
and comparison with other methods

E. Fermion encoding via VC transformation

Many other methods exist to deal with the fermion
statistics in simulations. The simplest strategy that
works well when working with 1D (or small 2D) systems
is to encode the fermions via Jordan-Wigner transfor-
mation [22]. In this transformation, a particular order-
ing of fermions is assumed that allows to keep track of
their CAR. However, in 2D there is no way to order the
fermions in a way that would keep the interaction terms
between neighbouring fermions of constant Pauli weight
and in general the interaction terms will scale as O(L)
where L is the linear size of the 2D system.

Alternatively, one of the fermion encoding methods
that map a local fermion Hamiltonian to a local spin
system [12] 23] 24] can be used. However, in all of these
methods extra spins (qubits) are introduced to enforce
the fermion CARs, thus making them unfavourable in
terms of the spacial quantum computation requirements
when compared to the fermion elimination method. The
Verstraete-Cirac (VC) transformation [12] is a way how
to encode fermions as spins by introducing ancillary
qubits and encoding the fermionic statistics into this
multi qubit increased Hilbert space via the mechanism
of stabiliser codes. Despite the fact that this method has
been around for nearly 2 decades it is still one of the
lowest-weight encodings, and a gold standard for bench-
marking [24].

In the VC approach, the pure gauge part of the
Hamiltonian remains unchanged, with the matter part
of Hamiltonian increasing in weight. To accommodate

for fermion statistics, an extra qubit is introduced per
each fermion site and they will be denoted by A. Under
this mapping, the matter Hamiltonian becomes:

Hy = Hpy + Hypy
s(w)M

= Z Z(x)+
Zeh(:c)X

+Y (z, y)Y(x +1,9)Z(z)
—I—Zev x) (XY (z,9)Y X (x,y + 1)

— YY(x, y)XX(l”, y+1))

o) (X (z,y) X (z +1,y)

Each of the horizontal terms have 2 components, each of
weight 4 while the vertical components have weight 5.

ITIT. QUANTUM CIRCUIT METHODS
A. Simulating time dynamics via Trotterization

Suzuki-Trotter method is a common way of simulating
time dynamics. In this method the entire time evolution
gets divided into n = t/J steps of fixed size 0, as

U(t) = exp(—iHt) = (exp(—iH&))!/?. (34)
In general the Hamiltonian H contains multiple terms

that do not commute. Such Hamiltonian can be written
as H = Zf\il H; where each H; does not commute with

the others, but all terms within each of them do. This
allows one to approximate each step U(d) as V(d):
M
U(6) = V(8) = [ [ exp(—isH;) (35)

i=1
In general a single Trotter step can be expressed as:

1

[T viri6))va (36)

=M

V(8) =

where V; is a general unitary operator and R;(4) is a
Pauli operator rotation (in this case it can be controlled)
that depends on the time step size 6. In further sections
the exact form of each of the terms R;, V; will be given.

The entire error for the time evolution with Trotteri-
zation can be bound by [25]

M || M

NS )

i=1 |[j=i+1

U@ —Vv®)| <

and the accuracy depends on the number of steps n. Fur-
thermore, it has been observed that in practice these



bounds are loose and the Trotter error tends to be much
smaller [25].

Recent studies [26], 27] that explored the chaos-regular
transition in Trotterized quantum dynamics showed that
even for large values of ¢ the systems still obey controlled
behavior. Furthermore, the threshold for this transition
is largely independent of the system size considered. This
is an important result as it illustrates that one can faith-
fully probe time dynamics with large § values, thus mini-
mizing the number of steps and the circuit depth needed
to perform a simulation of a given time. This strategy
was already used to probe the fermionic Z, theory in
141D in [19]. Here even values of § X € = 0.3 were consid-
ered (where € is the gauge-matter interaction strength).

B. Quantum Circuit for pure gauge Z»

In the pure Zs case there are 2 non-commuting parts
Hpg and Hp. To perform time evolution we want to im-
plement both exp(—id Hg) and exp(—idH ). Implement-
ing the exp(—i6Hp) is trivial in the chosen basis as it is
just a Z rotation of the qubit exp(—i6Z2):

R.(20)

Implementing the terms in Hpg is more difficult. Note
that a weight K Pauli term can be implemented with
(2K — 2) CX gates. For the terms appearing in Hg of
form exp(iX®*), the identity X, X, = CXpXaCXap
can be used to yield:

D1 R, (26)

Pz — D
ps S S

P+ —D D

Thus, a single Trotter step of the pure theory can
be implemented with 6 X 1/2 X L = (3 X L) 2-qubit
CX gates for a system with L links. A further simpli-
fication can be done if the middle 2 C'X gates and the
RX gate is combined into a CRX gate (CRX,(0) =
CXuwRX,(0)CXap).

C. Quantum Circuit for fermionic Z»

In the fermionic Zs theory, we need to implement all 5
terms - HE, ,E[B7 I‘I]w7 It[H7 Hv.

1. The implementation of the exp(—id Hg) is the same
as in the pure case, it consists of exp(—ifZ) rota-
tions that can be done in parallel:

R.(26)

2. The implementation of exp(—idHpg) is slightly
more complicated than in the pure case as
it is 6-local. Each term is of the form
exp(—i0X, XY, YqZ.Z¢) and can be implemented
as VzTRXC(Qa)‘/Q where the circuit V5 is given by:

a — R.(—7/2)

b R.(—m/2) 4

A\
Fan)
\ %

C

d o

e ® H &
f

3. The evolution of the mass term exp(—idHy) is
simply exp(—i0Z®4) and can be implemented as
exp(—i0Z%*) = Vj RZ,(20)V3 where V3 is given
by:

FIG. 2: The V3 circuit can be interpreted as calculating
the parity of the give vertex on link u

4. The horizontal interaction term evolution
exp(—i0Hpg), contains difficulties due to
parity calculation and the fact the rota-

tion that will be implemented is controlled.
exp(—idHy) = VJORZ(.1)(20)Vy with Vj given

as:



|
u, (X7y) () C) [
|
L (xy) :
d, (x,y) ;
|

L = link — R.(—7/2) — 0 H va
|
|

¢ = u, (x+Ly) P S~

|
r, (x+1,y) :
d, (x+1y) I

FIG. 3: Before the red line circuit calculates the relevant
parity of each site and rotates the qubit L into Z basis,
after the line we calculate the parity of both sites and
perform the controlled rotation on L by ¢

5. The vertical interaction term is similar to the hor-
izontal, making the structure of the circuit simi-
lar. Once again, exp(—idHy ) = V;C’RZ(C’L)(QH)%
with V5 given as:

|
17 (Xv}’) () () [
|
r, (x,y) :
d, (x,y) :
|

L = link —| R.(—7/2) — 0 H va
|
|

c=1 (x,y+1) D P—D— X

|
d, (x, y+1) :

FIG. 4: Before the red line circuit calculates the relevant
parity of each site and rotates the qubit L into Z basis,
after the line we calculate the parity of both sites and
perform the controlled rotation on L by ¢

Note that in all of the circuits the control gates act only
between qubits that are nearest or next to nearest neigh-
bours on the lattice.

If the ordering of the terms is chosen in an optimal
way, it is possible to simplify the unitaries by contracting
some of the C'X gates into identities. Trivially, to apply
all these terms one would need 10 X 1/2L 46 X 1/2L +
12 X L = 20L of CX gates and 1L of CR gate (Table I).
By choosing this order optimally it can be brought down
to 15L of CX and 1.5L of CR gates for L links.

This decomposition and simplification of the Hamilto-
nian is one of the main result in this work. A more de-

The H term |Number of terms|Single cost Total cost
Hg L 0 0
Hp L/2 10 5L
Hy L/2 6 3L
Hpyg L/2 12+1CRZ |6L + 0.5L CRZ
Hy L/2 124+1CRZ |6L + 0.5L CRZ
Total 20 + 1CRZ

TABLE I: Table shows the cost of implementing each
term of the Hamiltonian in terms of 2-qubit gates

tailed description of the optimal ordering to obtain this
simplified result is given in the Appendix [B]

Even though this fermion eliminated Hamiltonian has
a complicated structure, the necessary number of 2 qubit
gates is quite modest. In comparison, the Verstraecte-
Cirac method needs 10L CX and 2L CR gates. While
the V-C method provides slightly lower circuit depth
than the fermion elimination method, it require 2 times
as many qubits to be implemented.

D. Approaches for circuit depth minimization

One possible way to decrease the circuit depth of a
particular time dynamics simulation is to use variational
methods, such as parametrized variational quantum dy-
namics (pVQD) [6]. The variational approaches allow
one to decrease the circuit depth at the expense of ex-
ecuting the quantum circuit multiple times in the opti-
mization subroutine.

In the pure Zs theory, a Trotter step is given by

U(9) = exp(—iHpd) exp(—iHE0). (37)

The full time evolution for time ¢ can either be imple-
mented by applying n Trotter steps such that nd =t, or
approximated by a variational circuit. A good candidate
for the variational circuit is to simply take k Trotter steps
and variationally optimize the evolution parameters 6;:

k
Upar(8) = H(exp(—iHBHQj)exp(—iHE92j+1)). (38)

The optimization proceeds as follows:

1. Start with an easily preperable state |¥) to be
evolved

2. For the first step maximize the overlap
(w|UT(6")U(6) [¥) (39)

3. Denote the optimization parameters at step i as
0. Proceed to variationally maximize the overlap:

C(0) = (P U@ DU EU@) ) (40)



by changing the parameters g° and using the

already optimized parameters from the previous

timestep.

By saving the variational parameters 09 it is possible
to implement the entire time evolution with the constant

circuit depth of 2k + 1 (Trotter timesteps).

For the full fermionic theory, the ansatz can be con-

structed in a similar way:

k
Uyar(0) = H exp(—ibots;Hp) exp(—ibi45;HE))
j=1
exp( i( “’924_5]]{‘/) exp(—i6s4s5;Hnr)
(41)
eXp(—i(—l)I+y94+5jHH)).

Even though here we only explore the application of

the ansatz for simulating the time dynamics, it can also
be used in variational algorithms like QAOA and VQE
to probe the ground state properties of the system.

IV. NUMERICAL RESULTS

In this section we present the numerical results ob-
tained using the methods introduced previously. Probing
the time dynamics via Trotterization requires to repeat
the single Trotter step circuit many times, which results
in a large circuit depth and thus makes it hard to execute
such simulations on NISQ. But the depth can be kept
small and constant with the use of variational methods
as pVQD, introduced in section [ITD] Here we explore
this method when applied to both the pure gauge and
the fermionic Zs theories, focusing on a 2 X 2 lattice. We
will explore how the accuracy depends on the number of
Trotter layers used in ansatz . In all simulations we
ignore the quantum noise that arises from measurements.
We consider the evolution from the initial state

L
o) = [T10)

and measure the accuracy of the evolution by the fidelity
of the pVQD approximation F,

(42)

() = [ (o VI (O)Uvar (9) [0) .

The error of the approximation is 1 — F(t).

(43)

A. Pure Gauge results

For the pure gauge theory with g = 1, figure [5| shows
that the Trotterized evolution can be already very well
approximated with an ansatz of depth k = 2, and this
throughout the whole evolution considered. By using this
method, it is possible to reduce circuit depth required
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FIG. 5: The upper figure shows the time evolution of
(Z) on a site, approximated with pVQD of depth
k=1, 2, 3 (crosses). For reference we show the results
from the exact dynamics (dashed line) as well as the
Trotterized one (circles). The bottom figure shows the
errors associated with the evolution for each depth.

from 20 to 5 Trotter steps. Furthermore, we find that
the same value k = 2 can be used to probe the theory for
other values of coupling constant g with similar success
(Fig. @ The agreement of the Trotterized and the exact

results can be improved by decreasing the Trotter step
size 0.

B. Full Fermionic results

The variational ansatz for the full fermionic theory
consists of 5 terms compared to the 2 for the pure gauge
case. This leads to the optimization process being slower
and makes it more difficult to reach the global minimum.
In this case we compare the results for depth values of
k = 1,2 along with their associated errors for the Hamil-
tonian with (g,e, M) = (1,0.2,1) (Fig[7). In this case,
the variational ansatz of depth & = 2 does not perform
as well as in the pure gauge case, but still shows an im-
provement in the accuracy with respect to £ = 1 for
short times. The ansatz is able to perform the approxi-
mation just as well also in the stronger interaction case
with (g,€, M) = (1,0.4,1) (Fig. [§). Further increases in

the ansatz depth should give more accurate results for
longer time simulations.
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FIG. 6: The figure shows the pVQD results for
g =0.85, 1, 1.5. In this case the depth of k = 2 was
used, leading to a 5-fold improvement in circuit depth
when compared with the Trotterized evolution. As in
figure [5| dashed lines and circles show, respectively, the
results from the exact and Trotterized dynamics.
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FIG. 7: The upper figure shows the results for the full
fermionic theory for depth of £k = 1,2. The observable
measured is the occupation of a site n(0,0). The lower
plot shows the error values 1 — F(t) associated with the
evolutions for both depths.
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FIG. 8: The upper figure shows the results for the full
fermionic theory for depth of k = 1,2. The observable
measured is the occupation of a site n(0,0). The lower
plot shows the error values 1 — F(t) associated with the
evolutions for both depths. The agreement of the
parametrized evolution is slightly worse than in the
weaker interacting case (Fig 7))

V. CONCLUSION

Here we have presented a new method to simulate the
full fermionic Zs theory in (24+1) D with minimal re-
sources, in particular, with minimal number of qubits.
This was achieved by eliminating the fermionic degrees
of freedom and absorbing them into the gauge field. For
a lattice of size M X N one needs L = 2 X M X N
qubits (i.e. one per link) to simulate the model. In meth-
ods that involve encoding the fermions with the help of
ancillary qubits, like the Verstraete-Cirac encoding [12],
one needs twice as many qubits. Furthermore, the cir-
cuit depth was shown to be only slightly larger than for
the alternative method (18 to 14 C'X gates per link) and
a variational Trotterization strategy (pVQD) was pre-
sented to further minimize it. Numerical results of the
2 x 2 lattice simulation suggest that the time dynam-
ics of both the pure gauge and fermionic Zy theory can
be reasonably well approximated with Trotterized time
dynamics. For the pure gauge theory, the pVQD per-
formed exceptionally, by allowing to approximate n = 20
Trotter steps with only k& = 2 steps in the variational
ansatz. For the full fermionic case, the evolution can still
be approximated by the variational ansatz, but the depth
should be increased beyond k = 2 to obtain reliable re-



sults for longer times. This work shows that the fermion
elimination method is an optimal approach for simulat-
ing the Zy theory on a quantum computer, due to the
minimal qubit requirements, and further improvements
in the circuit depth that can be achieved by exploring
the variational Trotterization methods. Further work in-
volves developing similar methods for higher Zy theories
and extending them to (3+1) D.

While completing this manuscript, an independent pro-
posal appeared that also explored the use of fermion elim-
ination method for simulating the lattice gauge theories,
including for the simulation of the fermionic Zs in (241)
D [11].
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Appendix A: Quantum Circuit using the Verstraete
Cirac encoding

The VC encoded Hamiltonian has 2L qubits as there
are L qubits for the gauge field, L/2 fermions and L/2
extra ancillas. The Hamiltonian to simulate is H = Hx g+
H; where we know that the terms in the pure gauge
Hamiltonian Hg g can be simulated with 3L of C'X gates
per link. The Hy term is given as:

Hj; = Hy + Hing (A1)
- Z DM 2 ) (A2)
> (@)X (@) (X (2, 9) X (z + Ly) (A3)
:Y(fc y)Y( +1,y))Z(x) (A4)
+ Z eo(®) Xy (2) (XY (2,9)Y X (z,y + 1)  (A5)
- YY(x, Y)XX (z,y+1)) (A6)

10

The mass term Hj; can be implemented trivially since it
is only an RZ gate.

The horizontal interaction term for each link has 2
weight-4 terms. For each of the terms we want to im-
plement a rotation of type:

exp(i9X1X2X324) exp(i@XlYngZ4)

Again, by using similar methods as before, this can be
decomposed as:

6Xp(i6X1X2X324) exp(zOXlYng,Z4)
= H4 eXp(i0X1X2X3X4)RZ2(—7T/2)RZ3(—7T/2)
X eXp(i9X1X2X3X4)RZQ (W/Q)RZg(ﬂ'/Q)H4

which can be implemented with 6 CX gates and 2 CR
gates. Similarly, the vertical interaction terms can be
implemented with 8 CX and 2 C'R gates.

Thus, the total cost for implementing a single step of
Trotterized time evolution is (3L + (6 +8) x L/2 = 10L)
CX gates and 2L CR gates or 14L C'X gates.

Appendix B: Ordering of the terms

The optimal way of ordering the terms, to reduce the
2 qubit gate count is given here.

1. Perform the evolution of Hg on all links

2. Perform the evolution of Hp first on (x,y) =
(even,even), followed by (odd,even). The plaque-
ttes location is described by the vertex where all 4
surrounding links are involved

3. Perform the Hy on (x,y) = (even,even)

4. Perform Hjps on (x,y) = (all,even)

5. Perform Hy on (x,y) = (odd,even)

6. Perform Hy on (x,y) = (even,even) followed by
(even,odd)

7. Perform Hy on (x,y) = (odd,odd) followed by
(odd,even)

8. Perform Hy on (x,y) = (even,odd)
(all,odd)
10. Perform Hy on (x,y) = (odd,odd)

9. Perform Hys on (x,y) =

11. Perform Hp on (x,y) = (even,odd) followed by
(odd,odd)

The possible simplification that can be done here are not
fully uncomputing/computing the parity of the vertex
between different interaction/mass terms and altering the
unitary V5 to allow calculating the parity of the vertex
as the Hp term is being uncomputed /computed.
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