

The GUT-BRAIN study: short-term effect of a high-fiber diet on gut-brain communication

@RonjaThieleking @AgingObesity

¹ Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany ² Berlin School of Mind and Brain, Humboldt-Universtität zu Berlin, Germany ³ Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany

Background

- Communication pathways linking the gut microbiome with brain function.
- Rogers, G. B., et al. (2016). From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Mol. Psychiatry; 21(6): 738.

- thieleking@cbs.mpg.de
 - gut-brain axis: bidirectional signaling between the gastrointestinal tract and the brain²
 - high-fiber diets, rich in naturally occurring **prebiotics** such as soluble fibers, increase blood levels of circulating short-chain fatty acids (SCFAs) which are produced by bacteria in the **gut** microbiome^{2,6}
 - high-fiber diets are reported to have **beneficial health effects** and might affect brain structure⁵ and **cognitive functions**^{1,4} through changes in the gut microbiome³
 - lack of evidence from randocontrolled trials in mized humans: Do fibers affect the "bottom-up" metabolic mechanisms via the gut-brain axis?
- 1 Bagga D, et al. (2018). Probiotics drive gut microbiome triggering emotional brain signatures. Gut Microbes; 9: 486–496. 2 Cryan JF, O'Mahony SM (2011). The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterol Motil; 23: 187–
- 3 David, LA, et al. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature; 505(7484): 559–563. 4 Mahmoudian Dehkordi S, et al. (2019). Altered bile acid profile associates with cognitive impairment in Alzheimer's disease - An emerging role for gut microbiome. Alzheimer's Dement; 15: 76–92.
- 5 Ong, IM, et al. (2018). Gut microbiome populations are associated with structure-specific changes in white matter architecture." Transl. Psychiatry; 8(1): 6.
- 6 Zimmer, J., et al. (2012). A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. European Journal of Clinical Nutrition; 66(1): 53–60.

Research Question

Is there a causal link between diet, gut microbial signalling and the brain?

Hypotheses

- 1.Changes in the
- a)gut microbial composition (e.g. higher α - and β -diversity) and in
- carbohydrate-specific metabolic path-ways (e.g. short-chain fatty acid synthesis)
- may mediate potential effects of the high-fiber diet.
- 2. Supplementary high-fiber complacebo intake pared modulates food wanting and memory performance and its neuronal correlates.
- 3. A high-fiber diet induces higher well-being and higher satiety.

Study Design

Double-blind within subject cross-over design BL: baseline FU: follow-up BL1 14d N = 30wash-out placebo fiber N = 30placebo wash-out

Food stimulus

How much do you want this now?

18-45 years of age

Neuroimaging

T1 (MPRAGE).

ADNI protocol:

flip angle 9°;

resolution 1.0mm³

Diffusion-weighted

distortion correction;

TR 5200ms; TE 75ms;

resolution (1.7mm)³;

partial Fourier 7/8;

FOV 220x220x150mm³;

multi-band 2; GRAPPA 2

imaging (DWI).

ap/pa-encoded

flip angle 90°;

6 b0-images;

b0-images for

Structural scans

TR 2300ms; TE 2.98ms;

FOV 240x256x176mm³;

- body-mass-index: 25-30 kg/m² • omnivorous diet
- females: on hormonal contraception

Response

How much do you want this now?

at | very | very

Brain activation

- restrictive eating (vegan, vegetarian, gluten-free, lactose-free, allergies, eating disorder, ...)
 - antibiotics in the last 3 months

Inter-trial interval

500 - 4000ms

fMRI tasks

EPI BOLD sequence. TR 2000ms; TE 23.6ms; flip angle 80°; FOV 204x204x136mm²; (2.0mm)³; gap 0.26mm; multi-band 3

160 stimuli

200ms

post-scan

reward

food with

highest

ratings

0 - 3800ms

(80 food, 80 artistic

non-food images)

Non-food

stimulus

How much do you want this now?

ventral

scores);

striatum

(modulated by

pilot participant;

food wanting

 $p_{uncor} < .001$

80 stimuli

Food Wanting

Memory performance

OLD

OLD NEW

0 - 4000ms

160 stimuli

images)

(80 old, 80 new

NEW

500ms

Pilot study Groups Inulin | Placebo Supplement tolerance Soluble & insoluble Fibers Bayes Factor anova: GIQLI sum score \sim Group, BF = 0.32

Taste rating

Bayes Factor anova: Taste rating \sim supplement*subject, BF = 0.49

Anthropometry

Body-mass-index (BMI) [kg/m²] Percentage body fat measured by bioimpedance analysis

Waist-to-hip ratio Blood pressure

Blood sample

Glucose metabolism Lipid metabolism Hormones Inflammation Dietary markers Amino Acid Profile General health markers

500 - 4000ms

Brain activation

Attention Network Test

b=1000s/mm²; 60 directions;

executive control

alerting

2 [4

L [-126] R [168

orienting

- 3 blocks x 5min computer-based task • subjects' reaction time and error rate
- Assessment of three different types of attention
 - Fan et al., J Cog Neur (2002)

Questionnaires

Trait (T0)

Personality traits Anxiety Art knowledge Physical activity Eating disorders Sleep Eating habits Well-being Impulsivity

State (BL1, FU1, BL2, FU2)

hippocampus

(memory recal

pilot participant;

vs. manua

response);

 $p_{FWE} < .05$

160 stimuli

Anxiety Physical activity Positive and Negative Depression Affect Scale Food Frequency Questionnaire Profile of Mood States Sleep Gastrointestinal Quality of Life Well-being Personality states

Stool sample

16S rRNA gene sequencing: α and β microbial diversity

Metabolomics:

i.a. short-chain fatty acids (SCFAs)

analyses in cooperation with ENVIRONMENTAL Ulrike Rolle-Kampczyk and RESEARCH - UFZ Sven-Bastiaan Haange

