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In‑vivo data‑driven parcellation 
of Heschl’s gyrus using structural 
connectivity
Hyebin Lee1,2,7, Kyoungseob Byeon1,2,7, Bo‑yong Park2,3, Sean H. Lee4,5* & Hyunjin Park2,6*

The human auditory cortex around Heschl’s gyrus (HG) exhibits diverging patterns across individuals 
owing to the heterogeneity of its substructures. In this study, we investigated the subregions of the 
human auditory cortex using data-driven machine-learning techniques at the individual level and 
assessed their structural and functional profiles. We studied an openly accessible large dataset of the 
Human Connectome Project and identified the subregions of the HG in humans using data-driven 
clustering techniques with individually calculated imaging features of cortical folding and structural 
connectivity information obtained via diffusion magnetic resonance imaging tractography. We 
characterized the structural and functional profiles of each HG subregion according to the cortical 
morphology, microstructure, and functional connectivity at rest. We found three subregions. The first 
subregion (HG1) occupied the central portion of HG, the second subregion (HG2) occupied the medial-
posterior-superior part of HG, and the third subregion (HG3) occupied the lateral-anterior-inferior 
part of HG. The HG3 exhibited strong structural and functional connectivity to the association and 
paralimbic areas, and the HG1 exhibited a higher myelin density and larger cortical thickness than 
other subregions. A functional gradient analysis revealed a gradual axis expanding from the HG2 to the 
HG3. Our findings clarify the individually varying structural and functional organization of human HG 
subregions and provide insights into the substructures of the human auditory cortex.

The auditory cortex handles both sensory processing of hearing and language-related tasks in the auditory 
systems of many vertebrates1. The structure of the auditory cortex in nonhuman primates is well established 
and is divided into several substructures (i.e., core, belt, and parabelt) based on microstructural and functional 
information2. In humans, the Heschl’s gyrus (HG) is comparable and it contains the primary auditory cortex 
located on the inferior surface of the lateral fissure3,4. HG structure and underlying auditory processing mecha-
nism are more complex than those of nonhuman primates5. This is due to the differences in the HG structure 
among individuals induced by neural plasticity or innate factors6–8. Except for the single HG, the most common 
subtypes in the individual gyrification pattern of HG are related to the bifurcations such as common stem duplica-
tions (partially separated) and full posterior duplications (fully separated). These factors lead to increased inter-
individual variability in anatomy and function in HG4. This heterogeneity makes it difficult to have a group-level 
parcellation in the human HG and made it hard to intuitively compare the structural and functional properties 
of the auditory cortex between nonhuman primates and humans. Thus, an individualized parcellation of the 
human auditory cortex is needed to assess its structural and functional profiles across individuals.

Neuroimaging tools particularly magnetic resonance imaging (MRI), together with machine-learning tech-
niques, allow the subregions of the auditory cortex to be investigated in vivo including a detailed description of 
the medial portion of HG among others4,9. Especially, one study proposed an automatic method to segment the 
HG accounting for the ambiguity of the HG using structural MRI enabling accurate downstream analysis8. Brain 
parcellation is a technique that divides a given region of interest (ROI) into subregions (i.e., clusters) with similar 
spatial, temporal, or geometric patterns. In previous studies, the parcellation approach was applied to the human 
brain to identify distinct subregions of the thalamus, frontal cortex, and motor area, along with other regions10–12. 
Majority of studies subdivided human HG using its morphology, MRI informed microstructure (e.g., myelin den-
sity, cortical thickness), and functional responses. Using cortical morphology based on MRI, the human auditory 
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cortex was divided into several distinct parcels, including the planum polare, transverse temporal gyrus or HG, 
and planum temporale13. Furthermore, some studies showed evidence that the medial portion of HG includes 
the human primary auditory cortex, which corresponds to the core area of nonhuman primates14,15. However, 
the results from frequency response from tonotopic study indicated that there may be several subregions that 
cannot be divided by the cortical morphology along3. The studies indicated that their spatial patterns have low 
reproducibility owing to the heterogeneity of the brain structure and sensitivity to the frequency response across 
individuals from tonotopic maps3. Based on these points, we suggest that individualized HG parcellation may 
require additional information other than morphology or functional response. One study estimated intrinsic 
connectivity in the human HG and reported that there are several parts inside HG having distinct connection 
patterns to each other16. Further, a recent surgical study reported that HG is a hub region containing intersecting 
fiber tracts connected to many different adjacent regions17. Thus, we hypothesized that fiber information derived 
from diffusion-weighted MRI tractography can be used to study individual-level HG subregions and the result 
may contain several distinct subregions beyond the core-like area of nonhuman primates.

In this study, we investigated the subregions of the HG in humans via data-driven machine-learning tech-
niques without any bias towards the number of subregions at the individual level, using imaging features of 
cortical folding and structural connectivity derived from diffusion MRI tractography18. Additionally, we charac-
terized the structural and functional profiles of the subregions of the HG according to the cortical morphology 
and microstructure, as well as the functional connectivity at rest. A flowchart of the study is presented in Fig. 1.

Methods
Participants and imaging data.  We studied 207 young healthy adults from the Human Connectome 
Project (HCP) database19, which provided full demographic information as well as multimodal imaging data of 
T1-weighted structural MRI, diffusion-weighted imaging (DWI), and resting-state functional MRI (rs-fMRI) 
with sufficient data quality. We visually inspected the data quality, with a focus on whether the data showed 
a clear boundary of the cortical surface in the temporal lobe in all the imaging modalities. This retrospective 
study was approved by the Institutional Review Board (IRB) of Sungkyunkwan University and performed in full 
accordance with the local IRB guidelines. All the participants provided informed consent.

Figure 1.   Flowchart of the study. (A) Individual-level parcellation was performed using T1-weighted MRI to 
define the HG. Subregions were identified via clustering approaches using seed-based structural connectivity 
information with the seed of the individual HG. (B) We characterized anatomical (i.e., myelin contents and 
cortical thickness) and functional properties (i.e., functional connectivity and gradient) of the HG subregions.
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All imaging data were obtained using a Siemens 3 T Skyra scanner. T1-weighted structural data were scanned 
using a magnetization-prepared rapid gradient-echo (MPRAGE) sequence (repetition time [TR] = 2400 ms, 
echo time [TE] = 2.14 ms, inversion time [TI] = 1000 ms, flip angle = 8°, field-of-view [FOV] = 224 × 224 mm2, 
voxel resolution = 0.7 mm3, 176 slices). The DWI was performed using a spin-echo echo planar imaging (EPI) 
sequence (TR = 5520 ms, TE = 89.5 ms, flip angle = 78°, FOV = 210 × 180 mm2, voxel resolution = 1.25 mm3, 111 
slices, number of diffusion directions = 270, b-values = 1000, 2000, and 3000 s/mm2). The rs-fMRI was performed 
using a gradient-echo EPI sequence (TR = 720 ms, TE = 33.1 ms, flip angle = 52°, FOV = 208 × 180 mm2, voxel 
resolution = 2 mm3, 72 slices, and 1400 volumes).

Data preprocessing.  The multimodal MRI data were subjected to the HCP minimal preprocessing 
pipelines20–23. In brief, the gradient nonlinearity distortion, intensity inhomogeneity, and readout distortion 
were corrected for the structural MRI data. T1-weighted and T2-weighted data were co-registered, and the 
inverse intensities from T1- and T2-weighting were used for bias field correction. The processed data were 
registered onto the MNI152 standard space, and white and pial surfaces were generated24–26. The mid-thickness 
surface was generated by averaging the white and pial surfaces and was used to generate a spherical surface, 
which was registered onto the Conte69 template. For diffusion MRI, after b0 intensity normalization, the eddy 
current-induced field inhomogeneities and head motion were corrected. The corrected data were resampled 
onto a 1.25-mm native space. The rs-fMRI data underwent gradient distortions and head motion correction, 
registration to T1-weighted structural data, subsequent registration onto the MNI152 standard space, magnetic 
field bias correction, skull removal, and intensity normalization across the 4D volumes. Nuisance components 
were removed using FIX27, and the preprocessed volume data were mapped to the standard grayordinate space 
using a cortical ribbon-constrained volume-to-surface mapping algorithm.

HG subregion identification.  To identify the subregions within the HG, we utilized the structural con-
nectivity derived from diffusion MRI tractography. Specifically, we performed tractography using diffusion 
MRI data preprocessed via MRtrix328. For anatomically constrained tractography29, different tissue types of the 
cortical and subcortical gray matter, white matter, and cerebrospinal fluid were segmented from the preproc-
essed T1-weighted image. The multi-shell and multi-tissue response functions were estimated30 and constrained 
spherical deconvolution was performed to estimate the fiber orientation distributions31. Streamline tractography 
was performed using the iFOD2 algorithm32 by randomly placing 10,000 seeds per voxel within an individu-
ally defined HG region, according to the Desikan–Killiany atlas33. To mitigate the ambiguity of the boundary 
of the HG, we dilated the initial HG region 2.1 mm in the direction of the STG and insula. We estimated the 
seed-to-whole brain structural connectivity by mapping the intrahemispheric streamlines between the voxels in 
the dilated HG region and the rest of the ROIs defined in the Desikan–Killiany atlas. To identify the subregions 
of the HG, we then applied K-means clustering, whereby the subregion boundaries were determined using the 
Euclidean distance-based spatial proximity. We determined the optimal number of clusters by a data-driven 
measure of inertia, i.e., the sum of squared distances of samples to their closest cluster center, varying K from 2 
to 10 for all the participants. According to the Kneedle method38, we selected the K that exhibited the steepest 
inertia reduction as the optimal number of clusters. A step-by-step protocol to identify subregions is given in the 
supplement (Supplementary Fig. 1).

Structural properties of HG subregions.  To characterize the structure of the identified subregions 
within the HG, we assessed the intracortical microstructure measured by the T1-/T2-weighted imaging contrast 
ratio, which is a proxy for intracortical myelin39,40, and the cortical thickness calculated using MRI. We averaged 
the myelin and thickness values within each subregion and conducted paired t-tests for each pair of subregions. 
Multiple comparisons were corrected using the false-discovery rate (FDR < 0.05)39.

Functional connectivity profiles of HG subregions.  Next, we investigated whether these subregions 
exhibited distinct functional connectivity profiles. Using rs-fMRI data, we constructed a functional connectivity 
matrix by computing the Pearson’s correlation of the time series between seed voxels within each subregion and 
the rest of the ROIs defined in the Desikan–Killiany atlas. To obtain a scale-free topology34–36, we applied soft 
thresholding to the correlation coefficients using the following formula: 

(

r+1

2

)β , where r is the correlation coef-
ficient and β is the scale-free index, which was set as six37,38. For each target region, we performed paired t-tests 
to compare the seed-to-whole brain functional connectivity between each pair of HG subregions and corrected 
multiple comparisons using the FDR39.

Functional gradient within HG.  We investigated the gradually changing functional connectivity patterns 
along the cortex within the HG using manifold learning techniques to determine whether a hierarchical axis 
existed within the HG. Following a recently proposed method41, we first prepared the (i) vertex within HG-by-
time and (ii) vertex outside HG-by-time matrices. We normalized the time series for each vertex and applied 
singular value decomposition (SVD) to the vertex outside the HG-by-time matrix to reduce the dimensionality 
of the spatial axis. We calculated the Pearson’s correlation between vertices within the HG-by-time matrix and 
SVD-transformed matrix and then computed the cosine similarity, yielding a square similarity matrix whose 
size was the number of vertices within the seed region (i.e., HG). We then conducted a principal component 
analysis to obtain low-dimensional components (hereinafter referred to as “gradients”). Using Procrustes align-
ment, individual gradients were aligned onto the reference gradient calculated by applying principal component 
analysis to the stacked gradients of all subjects42–44. We compared the first functional gradient that explained 
most of the variance in the input similarity matrix across the subregions.
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Results
Parcellation of HG subregions.  The optimal number of clusters by computing the inertia was three from 
the inertia profile (Supplementary Fig. 2). By leveraging unsupervised machine learning, we identified three 
subregions within the HG for both hemispheres: (i) the first subregion (HG1) occupied the central portion of 
HG, (ii) the second subregion (HG2) occupied the medial-posterior-superior part of HG, and iii) the third sub-
region (HG3) occupied the lateral-anterior-inferior part of HG (Fig. 2A, Supplementary Fig. 3). The HG1 was 
the largest subregion of the HG (left hemisphere: 46.3% ± 10.8%; right hemisphere: 44.6% ± 10.0%), followed by 
the HG3 and then the HG2 (Supplementary Fig. 4). Comparing the seed-based structural connectivity strengths 
among the subregions revealed significant differences in the superior parietal gyrus (SPG), STG, supramarginal 
gyrus (SMG), and insula (IN) (pFWE < 0.05; FWE, familywise error; Fig. 2B). Among the three subregions, the 
HG3 exhibited the strongest connectivity with the STG and HG2, which were located in the opposite direction, 
and had the strongest connectivity with the IN and SMG (only in the right hemisphere), and the HG1 exhibited 

Figure 2.   Subregions of the HG. (A) We identified three subregions within the HG: the HG1 (green), HG2 (red), 
and HG3 (black). The results of six randomly selected participants were visualized. (B) Seed-based structural 
connectivity profiles of each subregion to the SPG, STG, SMG, and insula (IN) are shown in box plots. The 
error bar indicates the standard deviation across individuals. (C) Intracortical microstructure and cortical 
thickness were plotted for each subregion, and significant differences between subregion pairs were marked with 
inequality signs ( pFWE < 0.05) . HG, Heschl’s gyrus; FWE; family-wise error.
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moderate connection strengths with these regions. These findings suggest distinct structural connectivity pro-
files among the subregions, which necessitate the investigation of HG subregions.

Microstructural and morphological profiles of subregions.  To determine the macroscopic and 
microscopic properties of the HG subregions, we assessed the intracortical microstructure using the T1w/T2w 
ratio and cortical thickness of the subregions. The myelin density was higher in the HG1 than in the other sub-
regions (Fig. 2C), indicating stronger laminar differentiation in the HG1, whereas the HG3 and HG2 exhibited 
relatively unclear lamination and agranular cortical profiles. The cortical thickness exhibited consistent patterns, 
supporting our finding that the HG1 may have higher cell densities.

Seed‑based functional connectivity of subregions.  Furthermore, we assessed the seed-based func-
tional connectivity of each subregion to the whole brain to investigate the functional profiles of the HG subre-
gions. The whole-brain seed-based functional connectivity for the three subregions was reported in the sup-
plement (Supplement Fig. 5). Compared with the HG1 and HG2, we found stronger connections between the 
HG3 and the insular cortex, precuneus, and cingulate regions, as well as the amygdala and cerebellum, whereas 
weaker connections were observed with the superior parietal and orbitofrontal cortices (Fig. 3). The HG1 and 
HG2 groups did not exhibit any statistically significant differences in connectivity. These results indicate that the 
HG3 is more strongly connected to higher-order heteromodal association and paralimbic areas.

Functional gradients within HG.  We used manifold learning to assess whether the HG has a principal 
axis with gradually changing spatial patterns of functional connectivity. The first functional principal gradient of 
the HG explained 47.79 ± 10.41% and 46.14 ± 10.75% of the variance of the similarity matrix for left and right 
hemispheres respectively and exhibited a continual axis expanding from the HG2 to the HG3 (Fig. 4A). This axis 
is consistent with the relative position of the HG subregions generated using structural connectivity, indicating 
a correspondence between brain structure and function within the HG. The largest gradient value was observed 
for the HG3, followed by the HG1 and then the HG2 (pFWE < 0.05), and there was a similar trend between the HG1 
and HG2 in the right hemisphere (pFWE = 0.056; Fig. 4B).

Discussion
The human auditory cortex is a complex structure consisting of various subregions with distinct functional 
profiles. By leveraging unsupervised machine learning, we identified three subregions within the HG using 
diffusion MRI tractography. The subregions exhibited distinct structural and functional connectivity patterns, 
microstructures, and cortical thickness profiles. Our findings suggest that the human HG can be divided into 
several subregions, including a highly myelinated central region and less-myelinated lateral and medial areas.

Parcellation is a technique that divides a given brain region into subregions with similar characteristics. 
Structural connectivity has been used for brain parcellation owing to its robustness and reliability for small 
structures compared with functional information12; thus, we used the structural connectivity derived from 
diffusion tractography for human auditory cortex parcellation. We found three subregions within the human 
HG with distinct microstructural and cortical thickness profiles. The central area exhibited a higher degree of 
myelination and a larger cortical thickness than the other subregions. In previous cytoarchitectural and myelo-
architectural studies, a cortex-wide sensory-fugal gradient was postulatd45,46. Additionally, in a recent study on 
in vivo myelin-sensitive MRI, sensorimotor areas exhibited strong laminar differentiation and high myelination, 
whereas heteromodal association and paralimbic regions exhibited lower myelin contents and more agranular 

Figure 3.   Differences in seed-based functional connectivity between subregion pairs. We visualized t-values 
that indicated significant differences in functional connectivity between the HG3 and the HG1/HG2 in the intra-
hemispheric cortical and subcortical regions. We did not report the differences between the HG1 and HG2, as 
there were no significant differences in functional connectivity. ROI, region-of-interest.
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properties47. These findings support our results suggesting that a HG1 with a higher myelin content and larger 
cortical thickness indicates that the central portion of the human auditory cortex is more similar to the brain 
structures of the primary sensory and motor areas. Thus, the HG3 and HG2, which exhibited less myelination 
and a smaller cortical thickness, may be related to higher-order paralimbic regions.

The seed-based functional connectivity analysis complemented our microstructural profile findings, indicat-
ing stronger connectivity between the HG3 and higher-order cortical areas of the insula, the default mode, and 
limbic regions than other two subregions. Similarly, the structural connectivity of the HG3 with the superior 
temporal regions was strong. Our findings indicate that the surrounding regions of the HG (not the core area) are 
involved in the links connected to the heteromodal association and limbic cortices and construct higher-order 
networks of the brain. In nonhuman primate studies, the belt area situated around the core region exhibited 
similar properties (less granular structures than the core), and the lateral belt was bordered by the parabelt 
region, which was located in the STG3,5. The core of nonhuman primates partially corresponds to Te1.0 and 
Te1.1, the lateral belt corresponds to Te1.2 and Te2, and the medial belt corresponds to TI14,48; the regions can 
be distinguished according to the degree of myelination. These studies collectively suggest that subregions of 
the human HG (i.e., HG1, HG3, and HG2) exhibit structural and functional correspondence to the core, lateral 
belt, and medial belt regions in nonhuman primates. The subregions of our study were partially consistent with 
the Te1.0–1.2 in terms of relative positions along the medial-to-lateral direction (Te1.1⟶Te1.0⟶Te1.2 and 
HG2⟶HG1⟶HG3) and we reported the detailed cluster positions in supplement (Supplementary Fig. 3). In 
addition, subregions of both hemispheres showed a similar cytoarchitectural pattern including its gradient and 
lateralization. Cytoarchitectonic studies reported higher cell density in Te1.1 compared to Te1.2 in the left but not 
in the right hemisphere14. Using cortical thickness as a surrogate for cytoarchitectonic feature, we also observed 
higher cortical thickness of HG2 comprared to HG3 in the left and vice versa in the right hemisphere. However, 
we cannot claim correspondence between two sets of subregions because the link between cortical thickness 
and cytoarchitecture is only demonstrated at the global level but missing at the regional level49. Although the 
superior parietal and orbitofrontal cortices are involved in the default mode and limbic networks, these regions 
exhibited stronger connections with the HG1 and HG2 regions than with the HG3. This may be because the low 

Figure 4.   Functional gradient within the HG. (A) We assessed the principal gradient within the HG for six 
randomly selected participants. (B) We stratified the gradient value of each subregion, and the significant 
differences between subregion pairs are indicated by inequality signs.
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temporal signal-to-noise ratios of these regions (Supplementary Fig. 6) led to a low sensitivity and specificity of 
functional connectivity. To better assess the functional organization and accurately define the boundaries of the 
subregions, further research using higher-quality 7-T MRI is required.

We used seed-to-whole brain connectivity as the feature to perform clustering for each vertex in the initial 
ROI. This means we have a 42-element feature that is subject to clustering using the Deskian-Killiany atlas. Using 
the more modern Destrieux atlas, we need to cluster the 84-element vector because the Destrieux is more fine-
grained. The dimension of the feature space is an important parameter in machine learning. With the increased 
feature dimension (i.e., from the Destrieux atlas), the clustering outcome could become unstable, especially for 
limited samples (Supplementary Fig. 7). In addition, tractography algorithms could become unstable for small 
brain regions50,51. Due to these two factors, limited feature dimension and instability of tractography, we chose 
to define the initial ROI based on the relatively coarse-grained Deskian-Killiany atlas.

The most widely used approach for defining the primary auditory cortex in humans is tonotopy, which 
assesses functional responses to external sounds with different frequencies52–54. The group-level tonotopy map 
revealed that the cell population in the auditory cortex changed according to the frequency range. However, 
owing to the inter-individual variability of the frequency response, the definitions of the major axes of the human 
auditory cortex remain under debate (e.g., classical, orthogonal, or with additional regions)3. Instead of using 
tonotopy, we defined a principal axis within the auditory cortex by applying manifold learning techniques to 
the resting-state functional connectivity, which ran from the HG1 to the HG3 and HG2, consistent with the clas-
sical interpretation of tonotopic maps55,56. Thus, our gradient approach complements prior works and extends 
the finding that task-free functional connectivity can be used to identify tonotopy-like spatial patterns within 
the human HG.

In this study, we divided the human HG into subregions using high-quality structural connectivity informa-
tion obtained from the HCP database. Unsupervised machine learning revealed structurally and functionally 
plausible subregions within the HG in humans and their microstructures and tonotopy-like functional gradients 
provided insights into their underlying topographical properties of the subregions. Further investigations based 
on high angular resolution diffusion imaging, which allows more accurate modeling of the orientation distribu-
tion function in neural fibers than regular diffusion MRI57, and multimodal imaging (including tonotopy) may 
validate our findings.

Data availability
The data used in this study were obtained from the HCP database (https://​www.​human​conne​ctome.​org/) with 
approval.

Code availability
The codes used for the analyses, including the HG parcellation and characterization of structural and functional 
profiles, are available at https://​github.​com/​hebin​alee/​human_​PAC_​parce​llati​on.
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