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“... the sciences do not try to explain, they hardly even try to interpret, they mainly make
models. By a model is meant a mathematical construct which, with the addition of certain
verbal interpretations, describes observed phenomena. The justification of such a mathemat-
ical construct is solely and precisely that it is expected to work—that is, correctly to describe
phenomena from a reasonably wide area.”

John von Neumann
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Abstract

Molecular processes can be studied at various levels of resolution that range from
the fundamental, quantum mechanical description of electronic degrees of freedom
up to the classical thermodynamic description of macroscopic quantities. For many
systems, and in particular for those incorporating macromolecules, a single model
is not able to capture all the relevant length- and timescales to thoroughly study a
phenomena of interest. Multiscale modeling (MM) offers a solution by combining
molecular models at different resolutions to address phenomena at multiple scales.
On the low-resolution end, coarse-grained (CG) models are deployed to study the
large-scale behavior of the system. These CG models are constructed by averaging
over atomistic degrees of freedom. Their low resolution reduces the computational
effort of the simulation and enables a faster exploration of configuration space. In
addition to coarse-graining, a tight and consistent link between models of different
resolutions calls for a reverse-mapping capable of reintroducing degrees of freedom
as well. Reverse-mapping is routinely applied in the MM community, for exam-
ple to compare simulation results with experimental data, to rigorously analyze the
simulation results on a local scale, or to assess the stability and accuracy of the ob-
tained CG structures. At the heart of this work is the development of deepbackmap
(DBM), an approach for the reverse-mapping of condensed-phase molecular struc-
tures. The new method is based on machine learning (ML), a study of computer
algorithms that use data to construct statistical models. Traditional schemes start
from a rough coarse-to-fine mapping, which requires further energy minimization
and subsequent molecular dynamics simulations to equilibrate the system. DBM di-
rectly predicts equilibrated molecular configurations that agree with the Boltzmann
distribution. Moreover, DBM requires little human intervention, as the reintroduc-
tion of details is learned from training examples. During the course of this thesis,
DBM is applied to various tasks involving reverse-mapping: The general perfor-
mance and transferability of DBM is evaluated at the example of a polymeric sys-
tem consisting of polystyrene molecules. Beside an excellent accuracy of structural
properties for reverse-mapped configurations, DBM displays a remarkable transfer-
ability across different state points and chemical space. Moreover, reverse-mapping
with DBM is performed to assess the quality of CG models at the atomistic resolu-
tion. In addition, DBM is applied to adjust local structural properties, such as bond
lengths and angles, of configurations obtained with top-down molecular models in
order to resemble target distributions obtained with structure-based models more
closely. Finally, a ML-based scheme inspired by DBM is applied for temporal coher-
ent reverse-mapping of molecular trajectories. Overall, this thesis demonstrates the
advantages of integrating generative ML methods into the framework of MM, espe-
cially for problems that are difficult to solve from a pure physics-based perspective.
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Zusammenfassung

Molekulare Prozesse können auf unterschiedlichen Auflösungsstufen untersucht
werden, die von der quantenmechanischen Beschreibung elektronischer Zustände
bis hin zu der klassischen Beschreibung makroskopischer Eigenschaften reichen.
In einigen Fällen, insbesondere wenn Makromoleküle untersucht werden, ist ein
einzelnes Modell jedoch nicht ausreichend, um alle relevanten Längen- und Zeit-
skalen eines Phänomens zu erfassen. Multiskalen Modellierung (MM) bietet hierfür
eine Lösung, indem mehrere molekulare Modelle mit unterschiedlicher Auflösung
kombiniert werden. Coarse-grained (CG) Modelle mit einer geringen Auflösung
werden genutzt, um das Verhalten des Systems auf großen Skalen zu erfassen.
Die geringere Auflösung reduziert den notwendigen Rechenaufwand der Simu-
lation und ermöglicht eine schnellere Untersuchung des Konfigurationsraumes.
Zusätzlich sind umgekehrte Abbildung, die es erlauben Freiheitsgrade zurück zu
gewinnen, ebenfalls wichtig im Bereich von MM. Eine Erhöhung der Auflösung
ist beispielsweise häufig notwendig, um einen direkten Vergleich von Simula-
tionsdaten mit experimentellen Ergebnissen anzustellen oder um einen Startpunkt
für weitere hochaufgelöste Simulationen zu erhalten. Im Zentrum dieser Dok-
torarbeit steht die Entwicklung von Deepbackmap (DBM), eine Methode für die
Erhöhung der Auflösung von molekularen Systemen in der kondensierten Phase.
Die Methode stützt sich auf maschinelles Lernen (ML), eine Wissenschaft von
Computeralgorithmen, die statistische Modelle von Daten ableiten. Traditionelle
Ansätze starten von ungenauen Anfangskonfigurationen, die Energie Minimierung
und anschliessende Equilibrierung erfordern. DBM hingegeben ermöglicht es,
direkt equilibrierte molekulare Strukturen zu erzeugen, die sich im Einklang
mit der Boltzmannverteilung befinden. Des Weiteren benötigt DBM nur wenig
menschliches Eingreifen, da die Zurückgewinnung von Freiheitsgraden anhand
von Beispielen gelernt wird. Zunächst wird DBM an einem polymerischen System
aus Polystyren getestet. Es wird demonstriert, dass DBM nicht nur molekulare
Strukturen von hoher Qualität generieren kann, sondern auch, dass DBM eine
erstaunliche Generalisierbarkeit bezüglich unterschiedlicher Phasen und chemis-
cher Systeme aufzuweisen hat. Anschliessend wird gezeigt, dass DBM für eine
Qualitätsbewertung von CG Modellen auf atomistischer Auflösung benutzt werden
kann. Des Weiteren wird DBM angewendet, um lokale strukturelle Eigenschaften
von molekularen Strukturen zu adjustieren, um eine gegebene Verteilung eines top-
down Modelles näher an eine Zielverteilung eines strukturbasierten CG Modelles
anzugleichen. Zum Schluss wird eine von DBM inspirierte Methode eingeführt,
die eine zeitlich koherente Erhöhung der Auflösung von molekularen Trajektorien
ermöglicht. Zusammengefasst demonstriert diese Arbeit, wie generatives ML im
Bereich von MM erfolgreich eingesetzt werden kann.
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Chapter 1

Introduction

The exploration of molecular processes is fundamental to a wide range of modern
research areas, such as polymer science [1], drug design [2] or folding dynamics of
proteins [3]. Novel algorithms and high-performance computing have made com-
putational chemistry an important tool to gain further insights into the molecular
nature of matter [4]. In particular, the significance of physics-based models has to
be highlighted, which are purposeful simplifications of molecular systems that are
too complex to be solved analytically. Molecular modeling facilitates calculations
and predictions about the structure, thermodynamics and dynamics of molecular
systems [5].

On the other hand, processing of complex and high-dimensional data has be-
come a hallmark of modern machine learning (ML). In the past decades, ML has
emerged as a prominent research field that has a transformative impact on many
domains, such as computer vision [6], speech recognition [7] or medical image anal-
ysis [8]. At its core, ML algorithms construct statistical models from data without
relying on explicit program instructions. As such, the recent success of ML models
is further fueled by the availability of large data sets. Recently, ML is gaining signif-
icant attention in many fields of modern science as well, especially particle physics
and computational chemistry [9, 10, 11].

This thesis explores the advantages of integrating ML methods into molecular
simulation frameworks, especially for problems that are difficult to solve from a
pure physics-based perspective. ML is already applied in the computational chem-
istry community frequently, for example to construct molecular potentials [12] or
for the analysis of simulation data [13]. Here, the emphasis is on generative tasks,
i.e. deploying ML models to learn the complex dependencies between particles in
order to synthesize realistic molecular structures. In particular, generative ML algo-
rithms originally designed for computer vision are applied to increase the resolution
of coarse-grained molecular systems. However, before the concept and goal of this
thesis are outlined in more detail, the scientific context of this work has to be estab-
lished first.

The theoretical underpinning for molecular models is given by statistical me-
chanics, which successfully explains macroscopic properties of matter in terms of
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microscopic degrees of freedom. However, while the fundamental principles to de-
scribe the motions of microscopic particles are well known, i.e. quantum-mechanics
or Newton’s equation of motion, the enormous number of microscopic degrees of
freedom makes analytical solutions for most molecular systems intractable. In addi-
tion, resolving the microscopic state of a molecular system experimentally displays
resolution limits: Modern microscopy techniques, such as cryo-EM [14, 15] or X-
ray crystallography [16], achieve a spatial resolution of a few angstrom. However,
a thorough understanding of molecular processes, such as protein folding, addi-
tionally requires a high temporal resolution [17]. Microscopy techniques with high
temporal resolution, like PALM [18] or LLSM [19], typically yield a lower spatial
resolution. While longer exposure times or shorter wavelengths could be used to
increase the spatiotemporal resolution in the diffraction experiments, the induced
radiation damage prevents applications to biological systems [20].

A possible remedy is offered by computer models based on experimental obser-
vations and/or analytical approximations. Simulations of the model can be used to
study the behavior of the system and to predict its properties. The resolution limit
of such computer models is theoretically only bound by computational effort. The
most fundamental description of matter is the quantum-mechanical description that
includes electronic degrees of freedom. However, models at this level of detail are
computationally very demanding. As an example, a popular method is density func-
tional theory deploying B3LYP functionals [21, 22], which scales as O(N3), where N
is the number of atoms in the model system [23]. The computational cost can be
reduced significantly, when the molecular resolution is reduced to the level of single
atoms that are treated as hard spheres. In this approximation, the effect of electrons
is modeled as a potential energy surface representing the quantum ground-state.
Such models are routinely implemented by molecular dynamics (MD) simulations
that numerically integrate Newton’s equation of motion. The deployed atomic inter-
actions are often empirical and aim at correctly modeling structural, thermodynamic
and/or dynamic properties of a target system [24]. The computational effort of such
classical models is dominated by long-range interactions, such as van der Waals and
electrostatic interactions. Typically particle mesh Ewald summation is used to re-
duce the computational cost to O

(
Nlog(N)

)
[25].

Rapid fluctuations of the atoms typically require an integration time step in the
range of femtoseconds [26]. However, timescales of relevant biological processes,
such as protein folding or binding, can be in the order of microseconds up to seconds
[27, 28]. Therefore, an extremely large number of integration steps is required, such
that even dedicated hardware and specialized software reach their limits: Current
state-of-the-art integration systems achieve hundreds of nanoseconds up to tens of
microseconds of simulation data per day for molecular systems that contain a few
thousands of atoms [29, 30].

To push the limits of accessible length- and timescales in the computer simu-
lation, a coarser description of matter is routinely used. To this end, coarse-grained
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(CG) variables are deployed that represent an average over atomistic degrees of free-
dom. The lower resolution of CG systems reduces the computational effort of the
simulation and enables larger integration time steps [31, 32]. In addition, dynamics
of the CG system are typically accelerated due to "softer" interactions between CG
sites [33, 34]. As such, CG models enable a faster exploration of configuration space.

The particular resolution of a molecular model depends on the length- and
timescales of the phenomena of interest. However, some phenomena display
a wide range of relevant scales and therefore can not be captured by a single
model. This is especially true for soft matter systems, such as polymers, where
processes on multiple scales can be linked and interwoven [35, 36, 37]. In particular,
local interactions can impact large-scale conformational changes. Consequently,
molecular modeling of soft matter systems requires a methodology that can capture
the interplay of processes that are potentially linked to various different scales.

A solution is offered by multiscale modeling (MM), where models of different
resolutions are combined to address phenomena at multiple scales [38, 39, 36]. At
the lower end, CG molecular models are deployed to study the large-scale behav-
ior of the system. However, a tight and consistent link between models of different
resolutions requires to accomplish both mapping directions. In particular, a reverse-
mapping to reintroduce details is required for the following reasons: (1) To rigor-
ously analyze the simulation results on a local scale [40, 41, 42, 43], (2) to enable
a direct comparison to experimental data, for example obtained with spectroscopic
methods [44], (3) to serve as starting point for further high-resolution simulations
[45, 41], or (4) to assess the stability and accuracy of the obtained CG structures [45].

The fine-to-coarse mapping of molecular configurations is typically a straight-
forward computation, such as the center-of-mass calculation for a set of atoms.
However, reverse-mapping is more challenging, as new degrees of freedom have
to be generated taking all their dependencies into account. In particular, a reverse-
mapping scheme has to fulfill the following requirements: (1) The reintroduced
details have to be consistent with the CG conformation, i.e. coarse-graining of the
reverse-mapped structure has to yield the original CG structure. (2) The gener-
ated microstates must have high statistical weight and should ideally follow the
Boltzmann distribution. (3) In addition, the mapping should not be unique, as the
reduced resolution implies that a single CG structure corresponds to an ensemble of
atomistic microstates.

Reverse-mapping is widely used in the molecular modeling community and sev-
eral approaches to reintroduce details exist. Most reverse-mapping schemes follow
the same strategy: At first, an initial atomistic structure is generated that is con-
sistent with the given CG structure. Two major approaches exist for this step: (1)
Generic approaches place atoms close to their corresponding CG site, either ran-
domly or based on geometric rules [46, 47]. (2) Fragment-based schemes rely on a
presampled library of atomistic fragments that are projected onto the CG conforma-
tion [37, 48, 44, 49]. In both cases, energy minimization to relax the initial structure
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is required. Subsequently, MD simulations are performed to recover the correct sta-
tistical weights of the reinserted degrees of freedom.

The computational effort for the subsequent energy minimization and equilibra-
tion procedures of such reverse-mapping schemes can become significant. As such,
applications to large systems or high-throughput simulations are still limited. In ad-
dition, poorly initialized structures can get trapped into local minima with high en-
ergy barriers. Therefore, human intervention is frequently required for the reverse-
mapping of more complex molecular structures and hence, hinder the automation
of such processes.

ML has shown its ability to detect and reproduce complex dependencies in a
wide range of different domains. In particular, deep neural networks (DNNs) have
received considerable attention in the field of computer vision [6]. For example, gen-
erative models based on DNNs are able to synthesize photorealistic images of com-
plex objects, such as human faces or animals [50, 51, 52]. At its core, the great success
of DNNs can be linked to a multiscale approach: Multiple layers are arranged sub-
sequently and each layer transforms its input into a more abstract and composite
representation. As such, DNNs represent data with multiple levels of abstraction.

Recently, generative DNNs have been deployed in a conditional framework [53].
In particular, labels or cartoons of objects have been used as a conditional variable for
the model in order to generate a corresponding high-resolution image. Generating
a high-resolution image from a low-resolution representation has striking similarity
to the reverse-mapping task of molecular structures. Is it therefore possible to take
advantage of DNNs for MM?

This thesis answers this question with a resounding yes and demonstrates
ML-based reverse-mapping. However, many challenges have to be solved to
successfully accomplish this task. For example, how to define a training objective
for the reverse-mapping? How can molecular structures be represented? How
to avoid memory issues for large, high-dimensional configurations? All of these
questions will be addressed in this work ultimately leading to the development
of deepbackmap (DBM), a DNN-based approach for the reverse-mapping of
condensed-phase molecular structures. In order to fulfill the consistency criteria,
the CG variables are used as a conditional input for the ML model. Unlike other
backmapping schemes, DBM aims at directly predicting equilibrated molecular
structures resembling the Boltzmann distribution. Therefore, no further energy
minimization or MD simulations are required. In addition, DBM requires little
human intervention, since the reinsertion of local details is learned from training
data.

A flowchart for the structure of this thesis can be found in Fig. 1.1. The first
two main chapters establish the theoretical foundation for this work. In particular,
chapter 2 reviews the multiscale modeling approach, including statistical mechan-
ics, molecular dynamics, coarse-graining and the challenges of reverse-mapping.
Chapter 3 gives an introduction to ML with an emphasis on DNNs and generative



Chapter 1. Introduction
5

chapter 2
Multiscale Modeling

chapter 3
 Machine Learning

chapter 1
Introduction

chapter 4
Deepbackmap

chapter 6
Backmapping 

as a Quality Measure 
for CG Models

chapter 8
Temporal Coherent 

Backmapping

chapter 7
Morphing

 of
Local Statistics

chapter 5
Performance 

and 
Transferability

chapter 9
Conclusion

FIGURE 1.1: Flowchart of this thesis’ chapters. The theoretical foun-
dation of this work is given by chapter 2 and 3. The core of this thesis
is formed by chapter 4, where the methodology of deepbackmap is
introduced. Applications of DBM and its variants can be found in

chapters 5-8.

models. The core of this thesis forms chapter 4, where the methodology of DBM
is introduced and important concepts for the ML-based reverse-mapping task are
outlined. In subsequent chapters, DBM and other ML-based techniques are applied
to multiscale simulations: The general performance and transferability of DBM is
evaluated in chapter 5 at the example of a challenging condensed-phase polymeric
system that consists of polystyrene molecules. Moreover, chapter 6 deploys reverse-
mapping with DBM to assess the quality of CG models at the atomistic resolution. In
chapter 7, DBM is applied to adjust local structural properties, such as bond length
and angles, of structures obtained with top-down molecular models in order to re-
semble a target distribution obtained with structure-based models more closely. In
chapter 8, a ML-based scheme inspired by DBM is applied to the reverse-mapping
of molecular trajectories aiming at temporal coherence between subsequent frames.
Finally, the thesis is concluded in chapter 9, where the highlights of this work are
reviewed and future research questions are posed.
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Chapter 2

Multiscale Modeling

Phenomena of condensed matter can be studied at various levels of resolution that
range from the fundamental, quantum mechanical description of electronic degrees
of freedom up to the classical thermodynamic description of macroscopic quantities.
Ideally, all emergent phenomena of matter should be treated by ab initio methods,
i.e. methods based on first principles. However, even performed on modern su-
percomputers, ab initio molecular dynamics simulations quickly reach their limits
and are currently restricted to systems involving a few thousands of atoms [54, 55].
Therefore, it is often necessary to deploy a coarser description of matter in order to
push the limits of accessible length- and timsescales.

The choice of resolution depends on the length- and timsescales of the phenom-
ena of interest. Ideally, the applied model is able to capture all length- and tim-
sescales that are relevant for the emergent phenomena. However, in some cases the
relevant scales are too far apart from each other and can not be captured in a sin-
gle model. This is especially true for soft matter systems, where processes linked
to atomistic length- and timsescales can lead to mesoscopic or even macroscopic
changes. Whether a spontaneous change of the system is favorable or forbidden is
indicated by the sign of the change in free energy F = U − TS, where U is the in-
ternal energy, T the temperature and S the entropy. The rather low characteristic
energy scale of soft matter systems is in the order of magnitude of the thermal en-
ergy, kbT[35, 36, 37]. Therefore, entropic contributions to the free energy due to large
scale conformational and structural changes can be in the same order of magnitude
as local interactions. Thus, soft matter systems are characterized by large thermal
fluctuations. Consequently, a thorough exploration of soft matter systems demands
for methods that capture the interplay of processes that are potentially linked to
various different scales.

A solution is offered by Multiscale Modeling (MM), which is illustrated in Fig. 2.1.
MM is a method that combines models at different resolutions in order to address
phenomena at different length- and timsescales [38, 39, 36]. At the lower end, a
coarse-grained (CG) model is deployed that eliminates degrees of freedom, while
aiming at reproducing specific features of a target system, such as structural or ther-
modynamic properties. The reduced representation decreases molecular friction,
smooths the energy landscape, and thereby effectively accelerates sampling of the
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FIGURE 2.1: Multiscale Modeling of soft matter at the example of
polystyrene. Various levels of resolution are shown: From a quantum
mechanical description of the electronic structure up to a macroscopic

scale. Illustration at the mesoscale is taken from [56].

conformational space. However, the MM approach also includes the other direction
and deploys strategies to switch back to a higher resolution model when required.
In order to establish a tight and consistent link between models at different reso-
lutions, various strategies can be used: (1) In the sequential approach models are
treated separately and information is passed between them without directly influ-
encing each other [57, 58], whereas (2) hybrid methods provide a direct interaction
between models allowing to use different resolutions simultaneously [59, 60, 61]. (3)
Alternatively, the resolution of single molecules can be changed adaptively during
the course of the simulation [62, 63]. In this thesis, the focus is set to sequential MM.

This chapter is an introduction to MM and is organized as follows: At first, ba-
sics of thermodynamics and statistical mechanics are recalled followed by a review
of molecular dynamics simulations. Afterwards, a section about coarse-graining
outlines strategies to reduce the resolution in order to extend accessible length- and
timsescales. Finally, the inverse problem, i.e. increasing the resolution, is introduced
to motivate the main theme of this thesis.

2.1 Thermodynamics and Statistical Mechanics

Classical thermodynamics describes the behavior of bulk, macroscopic systems in
terms of a few macroscopic quantities, such as the total internal energy E, the total
volume V, and the number of particles N. Typically, the system is considered at
thermodynamic equilibrium, where average properties become time-invariant. In
particular, the actual state of a system at thermodynamic equilibrium is history-
independent, i.e. properties of the system only depend on the current conditions of
state and not on its preparation.
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The basic concepts of classical thermodynamics were developed before the
molecular nature of matter was generally accepted. In fact, the laws of classical
thermodynamics are based only on a few postulates without referencing to a more
fundamental description on the molecular level [64]. As such, it is not surprising
that classical thermodynamics is concerned with laws and relationships exclusively
for macroscopic quantities.

The molecular underpinning of thermodynamics was developed in the field of
statistical mechanics, where all the microscopic details of individual molecules are
taken into account. For example, in the classical picture, a list of positions r ∈ R3N

and momenta p ∈ R3N of N atoms are considered, whereas a quantum mechanical
description uses quantum states. In the following, the classical picture is used for
simplicity and a microscopic state m = (r, p) is characterized by its 6N degrees of
freedom, i.e. a point in the 6N dimensional phase space.

The following introduction to thermodynamics and statistical mechanics is
largely based on the textbook [64] by Shell.

2.1.1 The Mircrocanonical Ensemble

In statistical mechanics, macroscopic quantities measured at equilibrium are de-
scribed as the average behavior of many particles. For an isolated system, i.e. a sys-
tem that can not exchange energy or particles with its surrounding at fixed volume,
a macrostate is completely specified by (E, V, N), which remains constant through-
out molecular motion [64]. For each macrostate (E, V, N), a collection of possible
microstates can be found, i.e. a surface in the phase space of N atoms with con-
stant total energy E at a volume V. This collection of microstates together with their
associated probabilities is called the microcanonical ensemble.

The positions and velocities of the atoms constantly vary under the influence of
their mutual interactions. Therefore, the microstate changes constantly even if the
macrostate stays fixed. The likelihood that a microstate will be visited by the system
is denoted with pm. Note that the microstate probabilities do not change with time at
equilibrium. A cornerstone of statistical mechanics is the statement that the system
has no preference for a certain microstate and hence, each microstate is equally likely
[64]. This fundamental rule is called the principle of equal a priori probabilities. It allows
to write the likelihood in the canonical ensemble as

pm =

 1
Ω(E,V,N)

if Em 6= E

0 if Em 6= E
, (2.1)

where Ω(E, V, N), called the density of states, is a function describing the number of
accessible microstates for a particular macrostate (E, N, V) [64].
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2.1.2 Entropy and the Second Law of Thermodynamics

A central theme common for thermodynamics, statistical mechanics as well as infor-
mation theory is the concept of entropy. In classical thermodynamics, the entropy S
is regarded as a non-conserved state-function that emerges naturally for systems in
equilibrium [64]. It is a function

S = S(E, V, N) (2.2)

dependent on the macroscopic quantities E, V and N. Allowing for heat, volume
or mass transfer, the system can change its equilibrium macrostate to another
macrostate. This is called a thermodynamic process. Historically, entropy was
introduced to explain why some thermodynamic processes are irreversible, i.e.
the process occurs spontaneously in one direction, whereas the reverse does not,
although both directions obey the conversation of energy [65]. The reason for this is
the tendency of thermodynamic systems to progress towards states with increasing
entropy. This is stated in the second law of thermodynamics: The entropy of an
isolated system can not decrease as it always evolves to an equilibrium state where
the entropy is highest [64].

While the specific form of the entropy function is different for every system, all
entropy functions have some shared properties. One of the most important is the
total differential

dS =
1
T

dE +
P
T

dV − µ

T
dN, (2.3)

which relates the temperature T, the pressure P and the chemical potential µ to
derivatives of the same function. As such, T,P and µ are not independent in the
entropy function and can be derived from (E, V, N) [64].

The above definition for the entropy S is exclusively based on macroscopic prop-
erties. Boltzmann was the first who gave a definition for the entropy based on mi-
croscopic considerations and therefore introduced a connection of thermodynamics
to the molecular nature of matter [64]. His famous formula reads

S = kBln(Ω(E, V, N)), (2.4)

where kB is a proportionality constant, called Boltzmann’s constant. Eq. 2.4 links the
entropy S to the number of accessible microstates for a given macrostate. Therefore,
the second law of thermodynamics can be interpreted as the tendency of a system to
evolve to a state that maximizes the number of accessible microstates.

Based on Boltzmann’s equation, Gibbs introduced a more general form of the
entropy

S = −kB ∑
m

pmln(pm). (2.5)

Note that upon application of the principle of equal a priori probabilities, i.e. pm =
1

Ω(E,V,N)
, the entropy is maximized and Gibbs formulation of the entropy recovers
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Boltzmann’s equation.

2.1.3 The Canonical Ensemble

Central to the previous considerations was the ensemble for a system in isolation,
i.e. the microcanonical ensemble for fixed (E, V, N). In the following, the canonical
ensemble is introduced, which describes a system that is not isolated but at constant
temperature. To this end, the system is considered to be in thermal contact with an
infinitely large heat bath with a fixed temperature T. Therefore, the fixed macro-
scopic quantities of the system are (T, V, N), while the total energy E is allowed to
fluctuate. The composite of the system and the heat bath is again considered to be
an isolated system. Summing over the microstates of the heat bath allows to derive
the probabilities for the microstates m of the system of interest. Importantly, the mi-
crostate probabilities are no longer equal but depend on their total energy Em. More
specifically, the microstate probabilities can be written as

pm =
e−

Em
kBT

Z
, (2.6)

where the normalization constant

Z = ∑
m

e−
Em
kBT (2.7)

is called the canonical partition function and the probability distribution in Eq. 2.6 is
referred to as Boltzmann distribution [64]. Similarly to the microcanonical distribu-
tion, the Boltzmann distribution is the distribution that maximizes the entropy for a
given macroscopic state (T, V, N). In general, the canonical ensemble is used more
frequently as the microcanonical ensemble, since in most cases systems are consid-
ered that are in thermal equilibrium with their surroundings.

2.1.4 Thermodynamic Limit and Statistical Equivalence of Ensembles

The canonical approach provides an alternative, in addition to the microcanonical
approach, to determine the behavior of a system at a microscopic level. While there
are rigorously no fluctuations in the energy in the microcanonical ensemble, en-
ergy fluctuates in the canonical ensemble but the temperature is rigorously constant.
However, in the thermodynamic limit, i.e. when the number of particles and the vol-
ume of the system go to infinity N → ∞, V → ∞ while the particle density is held
fixed N

V = constant, the differences in macroscopic properties for both ensembles
vanish [64].

This can be seen clearly when the distribution of the energy in the canonical
ensemble is considered. Using Eq. 2.6 and 2.4 the probability for a specific energy E
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can be written as

p(E) ∝ Ω(E, V, N)e−
Em
kBT = e

1
kB

(S(E,V,N)− Em
T ). (2.8)

This equation indicates that two competing terms have to be taken into account for
the probability of a specific energy level: The first term is the entropy S, which is
a concave, increasing function of E [64]. The second term − E

T decreases linearly
with the energy E. Therefore, the probability distribution for the energy levels has a
maximum at an intermediate energy E∗. Both terms, S and E, are extensive quanti-
ties, i.e. they scale as N. Since the competing terms are within the exponential, the
probability distribution becomes sharply peaked at the maximum p(E∗). Therefore,
p(E∗) becomes the most dominant term and the impact of microstates with different
energies E 6= E∗ vanishes [64].

Moreover, fluctuations of the total energy E become extremely small in the ther-
modynamic limit. The variance of the total energy σ2

E = 〈E2〉 − 〈E〉2 can be linked to
the heat capacity, which is an extensive quantity. Therefore, the relative magnitude
of energy fluctuations scales as

√
σ2

E

E
∝ N−1/2. (2.9)

As a consequence, a macroscopic system appears to have constant total energy
[64].

2.1.5 Information-theoretic View on Statistical Mechanics

Information theory is the mathematical study of the coding, transmission, storage
and quantification of information [66]. A central concept in information theory is the
quantification of the amount of uncertainty for the outcome of a random process. In
1948, Shannon introduced the information entropy SShannon for a random variable X

SShannon = −
n

∑
i=1

xiln(xi), (2.10)

where x1, . . . , xn are possible outcomes of X [67]. In particular, Shannon has shown
that SShannon is a quantity that increases with increasing uncertainty [67]. In 1957,
Jaynes published two papers emphasizing the correspondence between information
theory and statistical mechanics [68, 69]. Jaynes stated that Gibbs’ entropy (Eq. 2.5)
in statistical mechanics and Shannon’s information entropy were identical except for
the Boltzmann constant [68]. Moreover, statistical mechanics could be viewed from
the perspective of information theory, such that deriving microscopic distributions
could be treated as an inference problem [68].

Jaynes treated the testable information, i.e. the macroscopic observables, as prior
information [68]. However, information is missing required to determine the specific
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microstate of a system due to a description of the system solely in terms of macro-
scopic quantities, i.e. a description that is too coarse. Consequently, when prob-
abilities are assigned to microstates two requirements have to be fulfilled: (1) The
microscopic probability distribution has to be consistent with the observed macro-
scopic quantities, i.e. the correct average behavior has to be captured [68]. (2) The
ignorance of the specific microstate the system resides has to be taken into account
without introducing arbitrary assumptions [68]. If only macroscopic properties of
the system are known, a microscopic distribution has to be assumed that is the least-
informative in order to express the uncertainty of the actual microstate. From this
point of view, the principle of equal a priori probabilities is a consequence of the
ignorance about the microscopic details of the system.

Jaynes states that the microscopic distribution can be found by variational princi-
ples [68]: A microscopic distribution has to be found that maximizes the information
entropy under the constraints of the observed macroscopic properties. In practice,
the problem is solved using Lagrange multiplier to impose the constraints. For the
microcanonical ensemble, a constraint has to be applied that assigns zero probability
to microstates with total energies that differ from the observed total energy [68]. In
the canonical ensemble, the constraint is a fixed expectation value for the energy [68].
In both cases, the well known results from statistical mechanics are reproduced, i.e.
the uniform distribution for the microcanonical ensemble and the Boltzmann distri-
bution for the canonical ensemble.

2.2 Molecular Dynamics Simulation

Physicists aim at expressing the basic laws of nature in terms of relatively simple
equations. However, solving such equations analytically, like the equations of mo-
tion for more than two interacting bodies, becomes intractable in most cases. This is
unfortunate, as it is central to the statistical mechanics view on thermodynamics to
consider systems with an extremely large number of interacting particles. Computer
simulations can circumvent these issues by numerically predicting the behavior of a
model system. Two main branches of computer simulation techniques for molecu-
lar systems are molecular dynamics (MD) and Monte Carlo (MC). While MD simu-
lations mimic molecular movements by numerically integrating Newton’s equation
of motion for the molecules, MC simulations are based on random sampling and
statistical probabilities of acceptance/rejection of moves. In the following, the focus
is set on MD simulations.

MD is a simulation technique to evolve the system for a fixed period of time in
order to sample the conformational space representatively. In particular, the time
evolution of the system is discretized by small time steps δt. After the system is
initialized with prespecified positions r and momenta p, it is propagated forward in
time. To this end, the microstate is updated at every step based on the forces f = dp

dt

acting on the particles.
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MD is widely used to study equilibrium and dynamic properties of a system.
To this end, the system is brought to equilibrium, i.e. it is evolved for a sufficient
amount of time, such that macroscopic properties do not change anymore. After-
wards, snapshots or whole trajectories of the system can be extracted and the actual
measurement of the observable quantity of interest can be performed. In this regard,
MD simulation builds a bridge between theory and experiment, as it enables to test
a model and compare it with experimental results [70].

The following introduction to MD is based on the book [71] by Frenkel and Smit
and the lecture notes [72] of Shell, which are excellent sources providing the inter-
ested reader with more detailed explanations on this topic.

2.2.1 Numerical Integration

Consider a molecular system that consists of N particles with positions r ∈ R3N ,
momenta p ∈ R3N and masses m ∈ RN . The Hamiltonian H of the system is the
function that gives the total energy of a microstate,

H(p, r) = K(p) + U(r), (2.11)

where K(p) = ∑i
|pi |2
2mi

is the kinetic energy and U(r) the potential energy. The time
evolution of the system is described by Newton’s equation of motion

dpi

dt
= −dU(r)

dri
. (2.12)

Eq. 2.12 is a set of 3N second-order, nonlinear, coupled partial differential equations,
which is intractable to be solved analytically [72]. Therefore, numerical integration
is used to evolve the system in time. The basic idea is to introduce a small time step
δt and update the positions of the atoms at consecutive time steps, i.e.

r(0), r(δt), r(2δt), .. (2.13)

Many different algorithms exist to propagate the system forward in time. As an
example, the Verlet algorithm is explained in the following.

Using a Taylor expansion, the position at time t + δt can be written as

r(t + δt) = r(t) +
dr(t)

dt
δt +

d2r(t)
dt2

δt2

2
+

d3r(t)
dt3

δt3

6
+O(δt4). (2.14)

Similarly, the position at the previous time step can be written as

r(t− δt) = r(t)− dr(t)
dt

δt +
d2r(t)

dt2
δt2

2
− d3r(t)

dt3
δt3

6
+O(δt4). (2.15)
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Adding Eq. 2.14 and 2.15 and rearranging leads to

r(t + δt) = 2r(t)− r(t− δt) +
d2r(t)

dt2
δt2

2
+O(δt4). (2.16)

Eq. 2.16 enables to compute the positions at the next time step from the positions at
the two previous time steps and the forces, which can be calculated using Eq. 2.12.
Starting from initial positions and velocities, the time-evolution of the system traces
a path in phase space, called trajectory. For classical systems, the phase space trajec-
tory lies on a surface of constant energy, as Newton’s equations conserve energy [72].
For ergodic systems, the trajectory will eventually visit all points in phase space that
are in agreement with the given total energy, whereas systems that are non-ergodic
have areas in phase space that are inaccessible. While it is not possible to sample all
states of the trajectory, MD simulations aim at sampling the accessible phase space
representatively. In particular, the averages of MD simulations for ergodic systems
can represent the thermodynamic properties at the macroscopic scale.

Note that the Verlet algorithm has two important features: It is time-reversible
and symplectic, i.e. volume in phase space is preserved [70]. Those features are cru-
cial to maintain correct statistical sampling and stability, as those are properties of
the true Hamiltonian dynamics [72]. Algorithms that do not preserve the volume
in phase space can dramatically expand the initial volume, such that it eventually
covers areas of phase space that are not compatible with the starting condition and
might violate energy conservation. Although reversibility and the conservation of
phase space volume does not automatically guarantee that there is no drift of the to-
tal energy on a long timescale, it is at least a reasonable requirement [71]. In practice,
the Verlet algorithm does not exactly conserve the total energy, but it exhibits only
small long energy drifts [71]. Note, that there are many different algorithms that can
be derived from the Verlet algorithm yielding identical trajectories, such as the leap
frog or the velocity Verlet algorithm [71].

2.2.2 Molecular Force Fields

The physical accuracy of a MD simulation relies largely on the method by which
the forces are specified, i.e. on the potential energy function U(r) that defines the
interaction between the particles. Typically, U(r) is referred to as molecular force
field. Depending on the representation of the system, U(r) can be defined on var-
ious different levels of resolution. At the most fundamental level, a quantum de-
scription of the system is deployed that includes electronic degrees of freedom [73,
74]. In the following, the classical description is used, which ignores the motion of
the electrons and focuses solely on the motion of the nuclei. More specifically, the
classical description approximates the effect of electrons as a potential energy sur-
face representing the quantum ground-state [72]. This description is based on two
major approximations: (1) The nuclei are treated as point particles that follow clas-
sical Newtonian dynamics. This is reasonable because they are much heavier than
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electrons [72]. (2) The Born-Oppenheim approximation is applied, which states that
electrons and nuclei can be treated separately, because the dynamics of the electrons
are so fast that they can be considered to react instantaneously to the motion of their
nuclei [72].

Most of the force fields used in classic MD are empirical and aim at correctly
modeling structural, thermodynamic and/or dynamic properties of the system [24].
The potential U(r; P) usually consists of simple analytic functions with a set of pa-
rameters P, which are specified by fitting U(r; P) to experimental data or detailed
electronic calculations [75, 76, 77]. Typically, the potential is divided into two terms

U = Ubonded + Unonbonded, (2.17)

one term representing bonded interactions, i.e. interactions associated with covalent
bonds, and one term representing non-bonded interactions [72]. This distinction
arises due to different interpretations of the solution of the Schrödinger equation,
which is the fundamental differential equation that describes the wave function of a
quantum-mechanical system.

Bonded Interactions

When atoms approach at close range they can share pairs of electrons and form a
stable electron configuration. As a result, a covalent bond is formed, i.e. a bal-
ance of attractive and repulsive forces occurs between both atoms that binds them
to each other. In order to mimic covalent interactions in a simulation, the following
potentials are typically applied: (1) Bond stretching accounts for deviations from
the equilibrium distance between two bonded atoms, (2) bond angle bending ac-
counts for deviations from the preferred hybridization geometry and (3) bond tor-
sion/dihedral accounts for rotations along bonds. The high energy scales associated
with bond stretching and bending only allows for small deviations from the equilib-
rium bond length and bond angle. As such, Taylor expansions around the minimum
can be applied yielding harmonic potentials. Note that such harmonic potentials do
not account for bond breaking/forming [72]. Torsional interactions are typically
associated with energy scales lower than bond stretching or bending and are ap-
proximated by a cosine expansion. In summary, a frequently used analytical form to
model bonded interactions is

Ubonded = ∑
bonds

a(d− d0)
2 + ∑

angles
b(Φ−Φ0)

2 + ∑
dihedrals

(
∑
n

cncos(ω)n
)

, (2.18)

where d is the bond length, Φ the bond angle and ω the dihedral angle [72]. Sim-
ilarly, d0 is the equilibrium bond length and Φ0 the equilibrium bond angle. The
parameters a, b and cn are the strength for the harmonic and the cosine series poten-
tial, respectively.
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Non-bonded Interactions

The non-bonded potential is associated with van der Waals attraction, Pauli repul-
sion and electrostatic interactions [72]. The van der Waals attraction arises due to
correlations between instantaneous dipoles of the electron clouds of the atoms. The
Pauli repulsion stems from overlapping electron clouds and is a consequence of the
Pauli principle, which forbids any two electrons from having the same quantum
numbers. Both, the van der Waals attraction and the Pauli repulsion, are often com-
bined into a single expression, such as the Lennard-Jones potential. The electrostatic
forces arise due to partial or formal charges of the atoms and are taken into account
through Coulomb’s law. In combination, a typical non-bonded potential is modeled
as

Unonbonded = ∑
pairs

(
4ε

[( rij

σ

)−12 −
( rij

σ

)−6
]

︸ ︷︷ ︸
Lennard-Jones

+
qiqj

4πε0rij︸ ︷︷ ︸
Coulomb

)
, (2.19)

where rij is the pairwise distance, qi and qj are the net (partial) charges, ε0 is the elec-
tric permittivity in vacuum, σ is the distance at which the Lennard-Jones potential
reaches its minimum value −ε [72]. Note that the Lennard-Jones parameters σ and
ε depend on the particular atom types [72].

Eq. 2.19 is an effective pair potential that approximates many-body interactions
by renormalizing the pairwise interactions in order to limit the computational ex-
pense. However, calculating non-bonded interactions is computationally more ex-
pensive compared to bonded interactions, since the number of terms in the pair-
wise atomic sum scales as N2, while the other scale as N. To reduce the computa-
tional overhead, i.e. to avoid quadratic scaling of the non-bonded interactions, the
Lennard-Jones potential is often truncated as its contribution becomes minimal for
large distances. To this end, a cutoff distance of rc ≈ 2.5σ is typically used where
the energy is only a few percent of the minimum energy (ULJ(rc) ≈ −0.016ε) [72]. In
addition, it is common practice to shift the potential to avoid discontinuities, i.e. sub-
tracting the value of the potential at the cutoff. However, the truncated contributions
can become significant for the total energy and pressure of the system. To this end,
a correction to the total potential can be introduced, which is derived analytically
for isotropic systems [72, 71]. On the other hand, the long-range Coulomb interac-
tion requires a special treatment, as a tail correction can not be derived directly [72].
To this end, particle mesh Ewald summation is typically used to reduce the com-
putational effort to the order of Nlog(N)[25]. In this case, the potential is split into
short-range and long-range contributions. Short-range contributions are computed
in real space, while long-range contributions are computed in Fourier space.

2.2.3 Controlling Temperature and Pressure

The numerical integration scheme described in Sec. 2.2.1 enables sampling from the
microcanonical ensemble, i.e. maintain a constant total energy. However, it is often
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desirable to sample from different ensembles, such as the canonical ensemble (NVT)
or the isothermal-isobaric ensemble (NPT). Modifications on the MD algorithm to
control the temperature or pressure are called thermostat or barostat algorithms,
respectively. They are used to match experimental conditions, study temperature
dependent processes or enhance the efficiency of conformational search [78]. Several
methods exist to control temperature and pressure during the simulation. In the
following, some popular techniques are introduced.

Thermostats

The simplest approach to control the temperature is the velocity rescaling algorithm.
The temperature is related to the kinetic energy and can be estimated as

T =
2〈K〉

kBnDOF
, (2.20)

where K is the kinetic energy and nDOF are the degrees of freedom [72]. Therefore,
the velocities can be rescaled at each time step to fix the temperature to a desired
value. Despite its simplicity, this algorithm does not reproduce the correct thermo-
dynamic properties of the canonical ensemble, which allows the kinetic energy to
fluctuate. However, deploying velocity rescaling at every step will fix the kinetic
energy, i.e. fluctuations in the kinetic energy are not captured [72].

Anderson introduced random collisions of the molecules with an imaginary heat
bath at the desired temperature. To this end, particles are chosen at random and their
velocities v are sampled randomly from the Maxwell-Boltzmann distribution

p(v) =
( m

2πkBT

)3/2
exp

[
− m|v|2

2kBT

]
. (2.21)

Although this approach generates the correct canonical ensemble probabilities,
the molecular kinetics are not reproduced correctly, because the random collisions
decorrelate the system [72].

Nosé augmented the Hamiltonian with two extra degrees of freedom represent-
ing an imaginary heat bath:

HNosé =
N

∑
i

( p2
i

2mis2

)
+ U(r) +

p2
s

2Q
+ (3N + 1)

ln(s)
kbT

(2.22)

Here, s is the position and ps is the momentum of the heat bath [71]. The parameter
Q is an effective mass associated with s, i.e. ps = Q ds

dt and its magnitude determines
the coupling between the heat bath and the original system. It has to be chosen
carefully by the user, as it influences the temperature fluctuations [78]. Using the
Lagrangian, it can be shown that the particles are coupled to the heat bath by scaling
the momenta:

pi = mivi · s (2.23)
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The Hamiltonian in Eq. 2.22 can then be used to derive the equations of motions for
the extended system, i.e. for both, the heat bath and the original system. Note that
this approach is deterministic, as no stochastic element is present.

While the Nosé thermostat generates the correct thermodynamics for the canon-
ical ensemble, scaling of the particle momenta using the position of the imaginary
heat bath also implies scaling of the timescale in the extended system [72]. Since
the position s is variable, the implied timescale also changes making it difficult to
implement the Nosé thermostat. To solve this issue, Hoover proposed an alternative
by replacing the heat bath momentum ps with a friction coefficient ξ = dln(s)

dt :

HNosé-Hoover =
N

∑
i

( p2
i

2mis2

)
+ U(r) +

ξ2Q
2

+ 3NkBTln(s) (2.24)

This approach is known as the Nosé-Hoover thermostat and the modified Hamil-
tonian yields equations of motion that no longer require a scaling of the time step
but still enables correct sampling of the canonical ensemble through MD simulation
[72].

Barostats

Similarly to thermostats, barostats are used to maintain constant pressure during
the simulation. In the following, the frequently used Parinello-Rahman barostat is
introduced as an example.

At its core, the Parinello-Rahman barostat is similar to the Nose-Hoover thermo-
stat, but this time an imaginary pressure bath couples to the original system instead
of a heat bath. The resulting Hamiltonian is

HParinello-Rahman =
N

∑
i

( p2
i

2mi

)
+ U(r) + ∑

j
Pj jV + ∑

j,k

1
2

Wjk

(dbjk

dt

)
. (2.25)

Here, b is a matrix containing the box vectors and V is the volume of the simulation
box, P is the instantaneous pressure tensor and W is the mass parameter matrix [79].
The vector of the simulation box b is coupled to the pressure bath via the relation-
ships

db2

dt2 = VW−1b
′−1(P− Pre f ), (2.26)

where Pre f is the reference pressure [79].

2.3 Coarse-graining

Coarse-graining is the process of building a simplified model of a complex system.
In particular, a target system is modeled at a low level of resolution, i.e. not all
degrees of freedom of the system are treated explicitly. The goal is to keep essen-
tial features, while less important details are ignored or averaged over. In other
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words, the simplified model still has to maintain the correct physical behavior. The
benefits of CG models are twofold: (1) Coarse-graining helps to put the essential
features driving the emergent phenomena of interest into the spot light, as disturb-
ing and unnecessary details are removed [80, 81]. (2) The reduced representation
effectively accelerates the computer simulation of the system: Reducing the number
of particles in a simulation reduces the number of required force calculations per
simulation time step, i.e. a reduction of computational cost. Moreover, the CG con-
figuration represents an average over an ensemble of microstates. As such, coarse-
graining smoothens the energy landscape yielding "softer" interactions between the
particles. Therefore, the time step applied in the numerical integration scheme can
be increased [31, 32]. In addition, the smoothed energy landscape typically dis-
plays lower energy barriers along transition paths of metastable states and therefore
accelerates dynamical processes [33, 34]. In conclusion, coarse-graining enables a
faster exploration of configuration space and makes it possible to access length- and
timescales that are not reachable with AA simulations.

At its core, coarse-graining consists of two steps: (1) Choose a low-resolution
representation of the system and (2) build a CG force field in order to perform a
computer simulation of the model. For the latter task, a wide range of different
schemes have been developed and two schools of thoughts have been established,
referred to as bottom-up and top-down approaches.

2.3.1 Representation

The basis of a CG model is the representation of the particles captured in the sys-
tem. The most fundamental model relies on a quantum mechanical description.
In this regard, a classical atomistic description is already a CG model based on ab
initio considerations. However, coarse-graining typically refers to an even lower
resolution description, where the CG sites, often called beads, represent multiple
atoms. An illustrated of such a CG representation can be found in Fig. 2.2. Typically,
beads are associated with specific types reflecting the physiochemical properties of
the corresponding groups of atoms. Similar to AA representations, bonds between
CG beads are introduced to capture the molecular topology. The representation of
the CG system is crucial for the accuracy of the CG model, as it has to preserve essen-
tial features that are required to describe the phenomena of interest and to capture
important slow and large amplitude motions of the system [82]. However, in many
cases the mapping is based on the chemical intuition of the user, but more systematic
methods have been developed recently [83, 84].

It is often required to not only specify the representation but also define a con-
crete mapping for the coordinates, i.e. a function M of the atomistic coordinates r to
the coordinates of the CG beads R. Typically, a linear mapping is chosen,

RI = MI(r) = ∑
i∈ψI

biIri (2.27)
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FIGURE 2.2: Illustration of a CG representation at the example of Tris-
Meta-Biphenyl-Triazine. Atomistic representation (left) and CG rep-
resentation (right). CG beads represent groups of atoms and are po-

sitioned at their center-of-mass.

where I and i are the indices of CG beads and atoms respectively, ψI is the set of atom
indices that are associated with the CG bead I and biI are coefficients of the mapping.
In many cases, the coordinate mapping reflects the center of mass geometry of the
corresponding group of atoms, i.e. biI = mi/MI , where mi is the mass of atom i and
MI is the total mass of all atoms associated with bead I.

2.3.2 Bottom-up Approach

Once the CG representation is chosen, the interactions between the beads have to
be defined. The bottom-up strategy is an inductive approach that constructs a CG
force field based on a more detailed model. In particular, bottom-up coarse-graining
aims at reproducing energetic, thermodynamic or structural properties of the higher
resolution system as closely as possible [85, 86, 87]. In general, the choice of the
underlying fine-grained model is not bound to a specific resolution. A common
choice is to use a classical atomistic model as a basis. In this case, the accuracy of the
CG model depends on the quality of the fine-grained model, as the atomistic model
itself is an approximation of the quantum mechanical description. Given a high-
resolution model, statistical mechanics provides a framework to rigorously derive
the force field for the CG system.

Consistency Criteria and the Many-Body Potential of Mean Force

Central to the bottom-up approach is the many-body potential of mean force (PMF).
The PMF is an effective CG potential that includes energetic and entropic contri-
butions [82]. The PMF can theoretically be derived exactly from the fine-grained
potential UAA(r) and the mapping M(r). The underlying criteria for the derivation
is called consistency criteria and states that the equilibrium joint probability density
pCG(R, P) in phase space of the CG coordinates R and momenta P have to match
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the implied atomistic probability density pAA(R, P) [88]. For simplicity, the follow-
ing considerations are restricted to the configuration space, i.e. excluding momenta,
such that the consistency criteria can be written as

pCG(R) = pAA(R), (2.28)

where pCG(R) is is the equilibrium probability density for a configuration R in the
canonical ensemble of the CG model

pCG(R) ∝ exp
[
− UCG(R)

kBT

]
(2.29)

and pAA(R) is the equilibrium probability density for a CG configuration R implied
by the mapping M(r) expressed in terms of the fine-grained model

pAA(R) ∝ Z(R) :=
∫

exp
[
− UAA(r)

kBT

]
δ(M(r)− R)dr, (2.30)

where δ is the Dirac delta distribution. Plugging Eq. 2.29 and 2.30 into 2.28 and
reordering yields

U(R) = −kBT ln(Z(R)) + const. (2.31)

Eq. 2.31 reveals that the many-body PMF is a projection of the free energy function
onto the CG degrees of freedom. It assigns a weight to each CG configuration as-
sociated with the sum of all the Boltzmann weights for the corresponding atomistic
configurations. Turning to the definition of the free energy F

F = U − TS = −kBT ln(Z), (2.32)

where U is the internal energy, makes it clear that the many-body PMF is not a
regular potential, as it contains both, energetic as well as entropic contributions [88].
Moreover, as the name suggests, this potential generates the average atomistic forces
associated with the atomistic configurations that map to the specific CG configura-
tion [82].

Calculating the PMF provides significant challenges for most systems, since com-
puting the free energy as a function of CG variables is computationally demanding
and often unfeasible [89]. Typically, the PMF is approximated using molecular me-
chanics potentials as outlined in Sec. 2.2.2. However, the simple functional form of
the interaction potentials might not provide an adequate basis set to approximate the
PMF of CG systems [90]. While many-body interactions at the AA level can be cap-
tured approximately by renormalized pairwise terms, CG interactions often require
more complex potential terms to correctly capture the effects of degrees of freedom
that are averaged over [82]. A wide range of techniques have been developed to ob-
tain tractable approximations of the many-body PMF that are still accurate enough
to describe particular phenomena of interest and to perform simulations of the CG
system.
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Review of Bottom-Up Strategies

In this section, some popular bottom-up approaches to determine the CG potential
are reviewed. Those approaches include structure based techniques, such as direct
Boltzmann inversion (DBI) and iterative Boltzmann inversion (IBI), as well as vari-
ational approaches, like the multiscale coarse-graining approach (MS-CG) and the
relative entropy (RE) framework.

Direct Boltzmann Inversion
The most simple approach to obtain an approximate CG potential is direct Boltz-
mann inversion (DBI) [57]. This approach aims at reproducing certain structural
distributions computed from atomistic reference data that is mapped onto the CG
degrees of freedom. The distribution functions for given interactions ξ are denoted
with pξ(x), where x is a scalar variable, such as pairwise distances, angles or dihe-
drals. The goal is to find the corresponding potential Uξ that yields the desired dis-
tribution. Based on the assumption that the distribution functions for different me-
chanical variables x factorize, the probability distributions can be written as Boltz-
mann factors [57]

pξ(x) ∝ exp
[−Uξ(x)

kBT

]
. (2.33)

In addition, the corresponding volume elements for each distribution have to be
taken into account, i.e. the Jacobian element Jξ(x) [57]. The potential can then di-
rectly be computed as

Uξ(x) = −kbTln
( pξ(x)

Jξ(x)

)
. (2.34)

Note that factorizing the probability distributions is a very severe approximation.
Therefore, this approach yields accurate results only for interactions that can be re-
garded as isolated in the CG model [82]. However, in cases where the coupling
between the interactions can not be ignored, DBI yields inaccurate potentials that do
not correctly reproduce the structural distributions, as important cross-correlations
are not taken into account.

Iterative Boltzmann Inversion
To improve the potentials derived with DBI, an iterative scheme can be applied. This
scheme is called iterative Boltzmann inversion (IBI) and consists of the following
steps [91, 92]: (1) Initial potentials are derived using DBI. (2) Use the derived CG
potentials in a MD simulations to obtain the corresponding structural distributions
pξ(x|U). (3) Update the CG potentials via

Uξ,new(x) = Uξ,old(x)− kBTln
( pξ(x)

pξ(x|U)

)
. (2.35)

Steps (2) and (3) are repeated until the potentials converge. Despite its simplicity,
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IBI has become very popular and is used especially for complex liquids and poly-
mers. While IBI still treads every interaction ξ separately, it implicitly accounts for
correlations between the interactions through the iterative scheme [82]. However,
convergence of the potentials is not guaranteed [82].

Multiscale Coarse-graining
Beside approaches that focus on reproducing certain structural properties, varia-
tional approaches can be applied to approximate the many-body PMF. The multi-
scale coarse-graining (MS-CG) method is a variational approach, which introduces
a force-matching functional [93, 60, 94]

χ2[F] =
1

3N

〈 N

∑
I=1
|FI(M(r))− fI(r)|2

〉
AA

, (2.36)

where FI(M(r)) is the force acting on the CG site I mapped from the atomistic con-
figuration implied by the trial potential of the CG model and fI(r) is the net force
acting the group of atoms associated with site I. The angular brackets with subscript
AA denotes the atomistic canonical ensemble average, which is typically approxi-
mated using trajectories obtained in a simulation. The MS-CG method states that
the CG potential yielding the best approximation of the average net atomistic forces
should be used and therefore χ2[F] has to be minimized. Indeed, the functional χ2[F]
has a unique global minimum given by the actual many-body PMF [82]. In practice,
the CG force F is expressed as a linear combination of basis functions leading to a
coupled system of linear equations that can be solved directly [82]. As such, the
choice of an adequate basis set is crucial for the accuracy of this method.

Relative Entropy
Another variational approach is based on the relative entropy, also known as
Kullback-Leibler divergence, which is widely used as an asymmetric distance met-
ric between probability distributions [95, 96, 97, 98]. Applied to the coarse-graining
problem, the relative entropy can be written

Srel =
∫

pAA(r) ln
( pAA(r)

pCG(M(r))

)
dr + 〈Smap〉AA, (2.37)

where
Smap(R) = ln

∫
δ[M(r)− R]dr (2.38)

is the mapping entropy, which accounts for the degeneracy of the mapping M, i.e.
a single CG configuration corresponds to multiple atomistic configurations. The
relative entropy Srel can be interpreted as a measure for the loss of information when
changing from an atomistic to a CG description [96]. Moreover, it is related to many
different coarse-graining errors and vanishes only if pCG(r) ∝ pAA(r) [97].
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Inserting the distributions known for the canonical ensemble, i.e.

pCG(R) = Z−1
CGexp

[
− UCG(R)

kBT

]
and pAA(r) = Z−1

AAexp
[
− UAA(r)

kBT

]
, (2.39)

into Eq. 2.37 yields

Srel =
〈UCG −UAA〉AA

kBT
− FCG − FAA

kBT
+ 〈Smap〉AA, (2.40)

where F = −kbT ln(Z) is the free energy. In order to optimize the parameters λ of
the CG potential UCG the derivative of the relative entropy can be used

∂Srel

∂λ
=

1
kBT

[〈∂UCG

∂λ

〉
AA
−
〈∂UCG

∂λ

〉
CG

]
, (2.41)

i.e. the derivatives of UCG with respect to its parameters have to average to the
same value for both, the atomistic and the CG ensemble [96]. This approach re-
produces the expectation values for every observable, such as distances or angles,
that are included in the CG potential, i.e. the relative entropy framework can be
used to generate potentials that capture the correct structural distributions [96]. Nu-
merical minimization of the relative entropy is typically achieved using advanced
algorithms, such as the Newton-Raphson method [96].

2.3.3 Top-down Approach

While bottom-up models are build upon higher resolution models, top-down coarse-
graining follows a deductive philosophy: Top-down CG models are designed to
study the consequences upon application of general rules [99, 100, 80]. Such rules
are typically inferred from universal physical principles or constructed to reproduce
specific phenomena that have been observed experimentally [82]. In most cases, sim-
ple potentials are applied that are defined by relatively few parameters, which can
systematically be varied to study the consequences of certain aspects of the model
[101, 102]. In particular, top-down models can be chemically-specific or generic:
Chemically-specific models aim at reproducing certain properties of a target system,
such as density, interfacial tension or partitioning of compounds between aqueous
and hydrophobic environments [103, 104, 105]. On the other hand, generic mod-
els are designed without relating to any particular system [106, 107, 108]. Typically,
generic top-down models address large-scale phenomena at a low resolution. As
such, they lack chemical details and it is not straightforward to relate them to higher
resolution models.

Review of Top-down Models

This section reviews some popular top-down force fields. In particular, the
hydrophobic-polar (HP) protein model, the Kremer-Grest (KG) polymer model and
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the Martini model for biomolecular systems are presented.

Hydrophobic-polar Protein Model
The hydrophobic-polar (HP) protein model is a highly simplified model to study
protein folds [109]. The HP model is a lattice model that represents proteins as two
or three-dimensional self-avoiding walks. It assumes that the hydrophobic interac-
tion between amino acid residues is the driving force for proteins folding into their
native states. In particular, the model represents proteins as sequences of hydropho-
bic (H) and polar (P) residues. The hydrophobic effect is imitated by assigning a
negative weight to interactions between adjacent, non-covalently bound H residues
in order to stabilize the contact. The native structure of a protein is identified as the
conformation that maximizes the number of contacts between hydrophobic residues.
Despite its simplicity, the HP model has been a corner stone for lattice models and
lead to the development of more advanced methods that are able to determine min-
imum energetic states for long protein sequences close to experimentally observed
conformations [110, 111].

Kremer-Grest Polymer Model
The Kremer-Grest (KG) model is a top-down model widely used to study generic
polymer properties [112, 113]. The model represents polymers as chains of beads
connected via non-linear springs. The spring potential is tuned such that crossing
of two polymer chains is avoided in order to correctly simulate the dynamics of
polymer melts, especially entanglement effects of long chains. More specifically, the
potential for bonded beads is given by the finite-extensible-nonlinear spring (FENE)
potential

UFENE(r) = −15kBT
(R

σ

)2
ln
[
1−

( r
R

)2]
, (2.42)

where r is the distance between the two bonded beads, σ is the bead diameter and
R defines the distance where the potential divergences. A typical choice is to set
R = 1.5σ. Additionally, the beads interact through a truncated and shifted Lennard-
Jones potential, which is purely repulsive

UWCA(r) =

4kBT
[(

σ
r

)−12
− σ

r

)−6
+ 1

4

]
, if r < 21/6σ

0 , otherwise
. (2.43)

In order to vary the stiffness of the chains, an additional bending potential can be
introduced

Ubend(Θ) = κkBT(1− cos(Θ)), (2.44)

where Θ is the the bond angle and κ defines the stiffness [114].
While the KG model is a generic model to study universal phenomena of poly-

mer melts, the stiffness of the chains can be used to relate the model to real poly-
mers [115, 116]. To this end, simulated and real polymer melts can be linked via
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their Kuhn length, i.e. the scale indicating the crossover from a chemistry-specific to
a universal random-walk like behavior (see Sec. 7.2.1 for a more detailed explana-
tion).

Martini Force Field
The Martini force field is a generic CG potential for a wide range of soft matter
systems. It was developed with an emphasize on biomolecules and its various
applications include lipid membranes, proteins, sugars and nucleotides [117, 118,
119, 120]. The parameterization of the Martini force field incorporates both coarse-
graining philosophies, a top-down approach for the non-bonded interactions and a
bottom-up approach for the bonded interactions. While the non-bonded parame-
ters of the model are tuned to reproduce experimental partitioning free energies of
water-alkane mixtures, the bonded interactions are optimized to capture the correct
conformational distributions of atomistic reference data [121].

Central to the design of the Martini model is a robust transferability across soft
matter systems. For this reason, the model is based on modular building blocks, i e.
CG beads, and introduces rules for the mapping from groups of atoms to the beads.
On average, four heavy atoms and their associated hydrogens are represented by a
single CG site. The four main building blocks are denoted with charged (Q), polar
(P), nonpolar (N), and apolar (C). Each of the main bead types have further subtypes
distinguishing either their hydrogen bonding capability (Q and N types) or their
degree of polarity (P and C types). The assignment of the specific bead types is
based on the hydrophobicity, i.e. the water/organic partition free energy, of the
corresponding group of atoms.

Despite its wide use and robust transferability, the Martini model also has its
limitations. A major drawback of the Martini model is a less accurate reproduction
of structural features for particular systems, which is reasonable for a force field
parameterized with an emphasis on transferability. For example, the model does
not include size-dependent Lennard-Jones parameters which may lead to artifacts,
such as increased barriers in dimerization profiles [122].

2.4 Reverse-mapping

Reducing the resolution is just one side of the multiscale philosophy. In order to
close the loop, a reverse-mapping to go the other direction is required as well. Such
a reverse-mapping, also referred to as backmapping, can be regarded as a magnifying
glass to zoom into the molecular system.

CG models can be used to study processes on large length- and long timescales
that would have been too costly and time consuming to be reached with higher reso-
lution models. However, while CG models lack the accuracy and details of atomistic
simulations, atomistic details are often required for one or more of the following rea-
sons: (1) To rigorously analyze the simulation results on a local scale [40, 41, 42, 43],
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(2) to enable a direct comparison to experimental data, for example obtained with
spectroscopic methods [44], (3) to serve as starting point for further high-resolution
simulations [45, 41], or (4) to asses the stability and accuracy of the obtained CG
structures [45]. Therefore, reverse-mapping is an integral part of MM. In particular,
details are reintroduced along the CG degrees of freedom, i.e. large-scale charac-
teristics of the system are retained upon backmapping. As such, reverse-mapping
becomes feasible, since the reintroduced degrees of freedom have to be equilibrated
only locally. In summary, combining coarse-graining and reverse-mapping is a pow-
erful tool to obtain well equilibrated molecular trajectories at a high resolution for
processes that require to consider large length- and long timescales.

2.4.1 The Challenges of Reintroducing Degrees of Freedom

While mapping from a higher to a lower resolution is typically straightforward, the
opposite direction is more challenging. Formally, let {AI = (RI , CI)|I = 1, . . . , N}
denote the set of N CG beads. Each bead has position RI and an associated type CI .
The type CI reflects various attributes, such as the bead mass, the connectivity or
associated force field parameters. Similarly, let {aI = (ri, ci)|i = 1, . . . , n} denote the
set of n atoms, with position ri and types ci.

A backmapping function φ takes the CG information A = (A1, . . . , AN) as well
as the target atom types c = (c1, . . . , cn) as input and generates a set of coordinates
r = (r1, . . . , rn),

φ(A, c) = r. (2.45)

Deriving the function φ is not a trivial task, as it is constrained by two important
aspects: (1) The mapping has to be consistent, i.e. the missing degrees of freedom r
have to be reinserted along the CG degrees of freedom R. In other words, applying
the CG mapping M to the backmapped structure φ(A, c) has to yield the original
CG structure,

M(φ(A, c)) = R. (2.46)

(2) The mapping is not unique, since the reduced resolution implies that many atom-
istic structures can map to the same CG configuration. As a consequence, a single CG
structure R will correspond to an ensemble of atomistic microstates {r|M(r) = R}.
Therefore, strictly speaking, the CG mapping is not invertible.

In order to take the aforementioned aspects into account, the backmapping prob-
lem is expressed as a joint conditional probability distribution pφ(r|A, c) that assigns
a statistical weight to each atomistic configuration r given the CG information A as
well as the atomistic attributes c of the target system. Ideally, the CG model yields
the Boltzmann distribution expressed in the CG degrees of freedom, i.e. the many-
body PMF is reproduced perfectly. Consequently, an ideal backmapping scheme
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also reinserts atomistic details with the correct statistical weight, i.e.

pφ(r|A, c) =

∝ exp
(
− U(r)

kBT

)
if M̃(r, c) = A

0 if M̃(r, c) 6= A
, (2.47)

where M̃ is used as an extended coarse-graining mapping function that includes
both, the coordinates as well as the types of the atoms and beads, respectively.

2.4.2 Review of Existing Approaches

Backmapping is widely used in the MM community and several approaches exist.
Traditional methods include fragment-based and generic approaches that follow a
similar strategy: An initial structure is generated using some heuristics and then
refined via energy minimization (EM) and short runs of MD simulations. More re-
cently, approaches based on machine learning (ML) have been used for reconstruc-
tion as well that do not rely on EM and MD.

Fragment-based Approaches

Fragment-based backmapping superimposes several trial atomistic fragments onto
associated CG sites [37, 48, 44, 49]. Typically, rigid rotation and translation is used
to optimize the orientation of the given fragment with respect to some geometric or
energetic properties. The trial fragments are usually drawn from a presampled li-
brary. The result is an initial atomistic structure that is most likely not representative
for the Boltzmann distribution. In particular, a simple projection of fragments onto
the CG sites usually leads to overlaps between reconstructed atoms and distorted
bonded structures. It is therefore necessary to relax the initial structure by means of
energy minimization deploying the atomistic force field. Subsequently, the relaxed
structure has to be equilibrated using MD simulation in order to recover the correct
statistical weights of the new degrees of freedom. When the overall equilibration
and diffusion is rather slow compared to the equilibration of local features, the equi-
libration process is straightforward. In other cases, restraints have to be introduced
to prevent the reconstructed atoms to drift too far away from the center of their as-
sociated CG site [123, 124, 125]. To this end, an additional potential can be applied
that couples the atomistic degrees of freedom to the CG degrees of freedom

Urestr(r, R) = b(M(r)− R)2, (2.48)

where the prefactor b is used to scale the restraining potential.

Generic Approaches

Generic backmapping approaches are similar to fragment-based approaches, but dif-
fer in the way the initial atomistic structure is derived. Generic schemes do not rely
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on presampled fragments but project the atomistic degrees of freedom onto the CG
structure using general rules. In the most basic version, the atoms are randomly
placed close to their associated CG bead, whereas more sophisticated approaches
rely on geometric rules to place the atoms [46, 47]. The resulting initial atomistic
structure is typically even more distorted as in the fragment-based approach. There-
fore, the subsequent energy minimization and equilibration procedures have to be
performed more carefully and typically involve multiple stages, where the interac-
tion potentials are gradually switched on.

Machine Learning Approaches

During the course of this PhD several ML approaches have been published to tackle
the backmapping problem. The increased interest of integrating ML techniques to
the field of MM is encouraging and emphasizes the importance of the present work.

Wang et al. utilized a variational autoencoder (Sec. 3.4.2) and treated the CG
degrees of freedom as latent variables (Sec. 3.2.2) [126]. Their framework unifies
the task of learning the CG variables, parameterizing the CG force field and decod-
ing back to atomistic resolution. In contrast to standard variational autoencoder,
where the latent distribution is regularized to resemble a Gaussian distribution, the
proposed coarse-graining autoencoder utilizes a force-matching functional for reg-
ularization. The approach is tested for gas-phase molecules and bulk simulations of
alkanes. In all cases, the method was able to reproduce a reasonably accurate struc-
tural correlation function for decoded configurations. However, the deterministic
decoder trained with mean-square error as reconstruction loss leads unavoidably to
a loss of mapping entropy. Therefore, the decoder has learned to generate a mean
reconstruction of an ensemble of microstates, which limits structural fidelity, as can
be seen for the distribution of bond lengths. As a remedy, a probabilistic decoder is
suggested to improve the model and to yield higher fidelity reconstructions.

Li et al. utilized a convolutional conditional generative adversarial network
(Sec. 3.4.3) for the reconstruction of cis-1,4-polyisoprene melts from a CG represen-
tation [127]. This approach is similar in spirit to the method proposed in this thesis
(Sec. 4), but is based on an image representation where XYZ components of vectors
are converted into red–green–blue (RGB) values. While being computational
efficient, the method does not fully take the local environment of the polymer
chains into account. As a consequence, steric overlaps are observed and demand
for further relaxation via energy minimization.

An et al. used several ML approaches including artificial neural networks, k-
nearest neighbor, Gaussian process regression and random forest to built regression
models for the backmapping task [128]. The regression was performed for small
molecules in vacuum and the coordinates of the CG and atomistic structures were
directly used as input and output representations for the models. The best perfor-
mance was achieved by an artificial neural network. However, backmapping of the
alkane hexane provided significant challenges for all deployed models.
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Machine Learning

Machine Learning is a prominent subfield of Artificial Intelligence (AI) and is already
used in a wide range of applications, such as computer vision, speech recognition
or medical image analysis [6, 7, 8]. It is a study of computer algorithms that use
data to construct statistical models trained to perform specific tasks. The models
improve their performance automatically by learning from examples, instead of re-
lying on static program instructions. Importantly, learning in this context aims at
extracting patterns or rules from the training data that generalize rather than simply
memorizing specific examples.

Recently, ML is gaining significant attention in many fields of modern science, es-
pecially computational chemistry and particle physics [9, 10, 11]. Beside the massive
increase in computational power, the growing interest for ML algorithms in those
research areas is fueled by the availability of large data sets [129, 130, 131]. The mas-
sive amount of raw data collected in experiments or computer simulations demands
for efficient algorithms to process and analyze it. Self-learning algorithms that im-
prove their performance with increased data set size are therefore very appealing.
This is especially true when the data is high-dimensional, as ML algorithms can be
used to spot complex patterns or to reduce the dimensionality for further processing.

Data analysis is also a hallmark of classical statistics. Indeed, ML and classical
statistics are related and many techniques and concepts used in ML have their origin
in physics, such as variational methods, simulated annealing or Monte-Carlo meth-
ods [132]. A famous example is the Boltzmann Machine, which has a direct analogy
to a spin glass model known from statistical mechanics [133]. However, despite
their similarities, ML and classical statistics differ in their general philosophy: Cen-
tral to most ML approaches is the transferability of the model, i.e. ML algorithms
are typically designed to make predictions for new observations that are not part
of the current data set [132]. On the other hand, methods of classical statistics are
more concerned with estimation problems, i.e. to discover dependencies between
variables of the current data set.

In this thesis, a ML model is used to predict fine-grained states of a molecular
system based on coarse-grained states. This chapter introduces important ML con-
cepts required to build such a ML-based reverse-mapping model. While ML is an
umbrella term for a wide spectrum of algorithms, such as Kernel methods, decision
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trees or deep neural networks (DNNs), it is out of scope of this chapter to cover all
branches in this field. The interested reader is therefore referred to one of the many
excellent books available [134, 135, 136]. Instead, this chapter focuses on generative
modeling using DNNs, which is the main method used in this thesis. The rest of
this chapter is organized as follows: Firstly, basics of ML are introduced and some
important aspects of high-dimensional systems are described. Secondly, DNNs are
explained in detail and finally, concepts of generative modeling are outlined.

3.1 Basics

Most problems in ML are tackled by a common scheme: At first, a data setD = {x} is
collected that consists of a set of independent and identically distributed variables x
sampled from a distribution X , which is typically high-dimensional and intractable.
In general, x ∈ RD is a vector with dimension D or a tensor of higher rank, such as
an image. Secondly, a model fΘ(x) := f (x; Θ) = ŷ is introduced as a function

fΘ : RD → RS, (3.1)

with parameters Θ that maps the input x to some output ŷ ∈ RS with dimension S.
The last ingredient required to train the model is a cost function C( fΘ(x))

C : RS → R (3.2)

that maps the output y of fΘ(x) to a real number representing the error the model
has made on x. That is, C is used to judge the performance of the model. During
training, the parameters of the model Θ are tuned such that the cost function is
minimized aiming at discovering the optimal set of parameters Θ∗.

ML algorithms split into supervised and unsupervised learning approaches. The
supervised learning approach deploys labeled data D = {(x, y)} that consists
of pairs of input variables x and associated output variables y. Consequently,
the model fΘ(x) is trained to predict the desired output y and the cost function
C(y, fΘ(x)) becomes a function of both, the output of fΘ(x) as well as the actual label
y. For discrete outputs y, the task becomes classification, while continues variables
refer to regression [137]. The unsupervised approach does not use labels explicitly
to train the ML model, but aims at learning the underlying structure of the data
instead. Examples for the unsupervised approach include generative modeling,
clustering and dimensionality reduction [138, 139, 140]. However, in some ML
algorithms the distinction between supervised and unsupervised learning becomes
fuzzy. An example of such semi-supervised algorithms is the generative adversarial
approach (Sec. 3.4.3), which will be an important ML algorithm throughout this
thesis.
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3.1.1 Interpretation of Probability: Bayesian vs Frequentist

In the field of statistical inference two different interpretations of probability can be
found, known as the Bayesian and the frequentist paradigm. The debate over the
different views of probability is going on for more than 250 years and dates back to
a publication of Thomas Bayes titled "An Essay towards solving a Problem in the
Doctrine of Chances" [141].

In the frequentist view, probability is objective and is only discussed for well de-
fined random-experiments [142]. In particular, probability is defined as the relative
frequency of an event with which it occurs in many trials. Since relative frequencies
can vary in different experiments, true probabilities only exist in the limit of infinite
trials where the difference in the relative frequencies diminish. In practice, frequen-
tists follow a deductive approach: They introduce a model, i.e. a point in parameter
space Θ, and ask for its consistency with observed data, which is considered as the
random variable. As such, the focus is set on the likelihood p(D|Θ) of observing the
data given the model parameters. Consequently, frequentists tune model parame-
ters such that the likelihood is maximized.

In the Bayesian view, probability is subjective and quantifies uncertainty or the
degree of personal belief [143]. Bayesians do not seek a point estimate for the pa-
rameters of a model but a distribution p(Θ|D), called posterior distribution. As such,
the parameters Θ are treated as random variables and the likelihood for a model ex-
plaining the observed data is of interest. Importantly, belief in the model parameters
prior to observing any data can be expressed in a prior probability p(Θ). In practice,
the collected data is used to update the belief in the model parameters deploying
the likelihood p(D|Θ) and the prior probability p(Θ). Applying Bayes theorem, the
posterior can be computed as

p(Θ|D) = p(D|Θ)p(Θ)

p(D) , (3.3)

where p(D) =
∫

p(D|Θ)p(Θ)dΘ is the evidence or marginal likelihood [143]. How-
ever, computing the posterior distribution of the model parameters is computation-
ally demanding and often intractable, because of the evidence term. In practice,
Bayesians perform a maximum a posteriori (MAP) estimation, which bypasses the
cumbersome computation of the posterior distribution, but tries to find a point esti-
mate of the parameters that maximize the posterior distribution instead.

While a distinction between the Bayesian and the frequentist probability inter-
pretation is instructive, it is not always possible to strictly assign a given method
to one of both paradigms [144]. For example, MAP estimation can be treated as a
maximum likelihood approach, when a uniform prior distribution p(Θ) is assumed.
In practice, both interpretations are routinely used and many ML algorithms incor-
porate aspects of both ideas.
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FIGURE 3.1: a) Illustration of the typical dependence of the in-
distribution Ein and out-of-distribution Eout error with respect to the
training set size. Eout is composed of two terms: the bias and vari-
ance. Initial drop of the error is omitted in the figure. b) Bias–Variance
tradeoff and model complexity. The out-of-distribution error Eout is
plotted as a function of the model complexity for a training data set
of fixed size. While the bias decreases with model complexity, the

variance increases with model complexity.

3.1.2 Bias-Variance Tradeoff

It is common practice to split the data set D randomly into two exclusive subsets:
The training set Dtrain and the test set Dtest. Typically, the training set Dtrain contains
the majority of the data. During training, the parameters Θ of the model fΘ are
tuned to minimize the cost function C evaluated on the training set Dtrain only. The
error on the training set

Ein = ∑
(x,y)∈Dtrain

C(y, fΘ(x)) (3.4)

is called the in-distribution error. After training, the performance of the model is
evaluated computing the cost function with respect to the test set,

Eout = ∑
(x,y)∈Dtest

C(y, fΘ(x)), (3.5)

which is called the out-of-distribution error. This procedure is known as cross-
validation and its purpose is to find an unbiased estimate for the predictive
performance of the model. In most cases, the out-of-distribution error is greater
than the in-distribution error [132].

The general relationship between the training error Ein and the generalization
error Eout is summarized in Fig. 3.1 a), where both errors are plotted as a function
of the training set size. The following consideration is based on the assumption that
the underlying data distribution is sufficiently complex, such that the model will
not be able to perfectly reproduce it. Therefore, after an initial drop (excluded in the
figure), the in-distribution error Ein will increase with the amount of training data,
as the model is not powerful enough to capture all the regularities of the training set
accurately. On the other hand, the out-of-distribution error Eout will decrease with
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the training set size, as the sampling noise decreases and the training set becomes
more representative of the true data distribution. Consequently, both errors will
converge to the same value in the limit of infinite training set size [132]. The error
in the limit of infinite data is called bias and the fluctuation of Eout due to a limited
training set size is referred to as variance of the model.

The out-of-distribution error Eout is a combination of both, the bias and the vari-
ance. An exact decomposition for the expectation of Eout can be derived for a re-
gression model trained with mean-square-error (MSE) [132]: Consider a data set
D = {(x, y)} sampled from a noisy model

y = f (x) + ε, (3.6)

where ε is normally distributed with zero mean and standard deviation σε. The
model parameters Θ∗D are obtained by minimizing the squared error for the data
set D. Since D is finite, the parameters Θ∗D found will vary for different data sets.
Denoting the expectation over all possible data sets with ED, i.e. the asymptotic
value in the limit of infinite data, and the expectation over the noise with Eε, the
expected out-out-sample error ED,ε[Eout] can be decomposed as

ED,ε[Eout] = ED,ε

[
∑

(x,y)∈Dtest

(y− fΘ∗D (x))
2
]

(3.7)

= ∑
(x,y)∈Dtest

σ2
ε︸︷︷︸

noise

+
(

f (x)− ED [ fΘ∗D (x)]
)2

︸ ︷︷ ︸
bias2

+ED
[(

fΘ∗D (x)− ED [ fΘ∗D (x)]
)2]

︸ ︷︷ ︸
variance

.

(3.8)

While trained to minimize the in-distribution error, the ultimate goal for a predictor
is to achieve a low out-of-distribution error. All three terms in Eq. 3.7 are positive
and therefore each of them has to be minimized. The noise term is not affected by
the model and therefore irreducible. The other two terms, the bias and the vari-
ance, are reducible. Unfortunately, minimizing both of them simultaneously poses
challenges, known as the bias-variance tradeoff [132]. The bias term

bias2 = ∑
(x,y)∈Dout

(
f (x)− ED [ fΘ∗D (x)]

)2
(3.9)

is the deviation of the models estimate in the limit of infinite data from the true
value. A model with high bias is said to underfit the data. On the other hand, the
variance

variance = ∑
(x,y)∈Dout

ED
[(

fΘ∗D (x)− ED [ fΘ∗D (x)]
)2]

(3.10)

describes how much the model is expected to fluctuate around the ideal estimate in
the infinite data limit. In particular, the fluctuations occur due to finite size effects of
the training set. A model with high variance is said to overfit the data set.
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As illustrated in Fig. 3.1 b), both errors depend on the complexity of the model,
which is related to the number of degrees of freedom in the model, i.e. the num-
ber of parameters. However, the bias always decreases with the model complexity
while the variance might increase instead [132]. Intuitively, a very complex model
does not only learn the regularities of the training data but also the sample noise. Es-
sentially, if the training set becomes too small, a complex model can simply remem-
ber every detail of the training examples. Therefore, the generalization will suffer
from overemphasizing particular details in the training set leading to a large dis-
crepancy between the in-distribution and out-of-distribution error. Consequently, a
less-complex model with low variance but high bias can be superior in cases where
the data set size is small [132].

The bias-variance tradeoff highlights the importance of large data sets for ML, as
it offers the ability to deploy more complex models. Beside increasing the training
set size, generalization can be improved using regularization techniques. Regular-
ization enforces constraints on the model and thereby limits the functional space of
the model. In other words, learning of an overly complex function is discouraged
in order to avoid overfitting. In the frequentist approach, regularization is typically
enforced by additional terms in the cost function that penalize overspecialized pa-
rameter settings. Common examples include L1 and L2 terms, where the absolute
value or the square value of the parameters are penalized. In the Bayesian view, reg-
ularization refers to a prior distribution on the model parameters, i.e. less complex
models have a higher probability. In practice, both approaches are closely related.
For example, if a Gaussian prior distribution is assumed, MAP is equal to the max-
imum likelihood approach with L2 regularization, whereas MAP estimation with a
Laplacian prior distribution is equal to maximum likelihood with L1 regularization.

3.2 High-Dimensional Data

Big data has become a hallmark of modern ML. This development is fueled to a great
extent by a continues increase of computational power that makes it possible to col-
lect extremely large data setsD = {x}. However, many data sets do not only contain
a large number of observations x = (x1, x2, .., xD) but the observations also become
high-dimensional, i.e. D becomes very large. Various phenomena that occur when
dealing with high-dimensional spaces are counter intuitive and provide challenges
as well as opportunities for modern ML.

3.2.1 Curse and Blessing of Dimensionality

Depending on the point of view, phenomena related to the high dimensionality
of the data are referred to as curse or blessing of dimensionality [145]. Beside a
performance degradation in terms of speed and efficiency of algorithms in high-
dimensional spaces, more fundamental challenges appear. A common theme of
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such problems is the sparsity of available data [145]. As an example, consider a
set of points within a D-dimensional unit cube with a fixed spacing of 1

10 along
each axis of the Cartesian grid. The number of points n will grow exponentially
with the dimension, i.e. n = 10D. Conversely, increasing the dimension for a
fixed number of points lets the distances between those points grow exponentially,
ultimately leading to an almost empty space. Therefore, approximating a function
in a high-dimensional space becomes intractable, as there is never enough data to
support the result [145, 146].

Another challenge in high-dimensional spaces is the choice of an appropriate
metric. The Euclidian distance is a well suited distance measure in the three-
dimensional physical space, but in higher dimensions the distances grow more and
more alike. It can be shown, that for a wide range of distributions and distance
functions the ratio of distances of the nearest and farthest neighbors to a given target
is almost unity [147]. Therefore, the distribution of distances tend to concentrate and
lose contrast. For this reason, the concept of nearest neighbor becomes meaningless
and similarity search ill-posed [147, 146].

While the previously mentioned challenges are examples for the curse of dimen-
sionality, it might also be regarded as a blessing. In many cases, the high dimension-
ality can lead to simple laws and reduces the impact of fluctuations. A famous exam-
ple is the central limit theorem: The joint effect of random phenomena tends toward
a normal distribution if the number of such phenomena is large. For this reason,
the normal distribution is ubiquitous. Moreover, the benefits of high-dimensional
systems are well known in statistical mechanics. In the thermodynamic limit, where
the number of particles tends to infinity, thermal fluctuations in global quantities are
negligible and relatively simple relations of low-dimensional macroscopic variables
are often sufficient to describe the whole system [148, 149]. As another consequence,
the microcanonical ensemble (fixed energy) and the canonical ensemble (fixed tem-
perature) are statistically equivalent, as the energy fluctuations in the canonical en-
semble become negligible and the energy essentially has a unique value [150].

3.2.2 Latent Variables

Switching between representations of different resolutions is a hallmark of MS mod-
eling. However, a similar concept is also well known in the ML community, where
hidden and typically lower-dimensional representations are described by so called
latent variables. ML models that relate latent with observable variables are referred
to as latent variable models (LVM)[151, 152].

LVMs are motivated by the assumption that real-world data is generally struc-
tured, which implies that it can be described through a lower-dimensional latent
distribution Z supported in Rd. This assumption is known as the manifold hypoth-
esis. Formally, it states that high-dimensional data x ∈ RD tends to lie on a low-
dimensional manifoldM ⊂ RD embedded in the high-dimensional ambient space
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RD [153]. Therefore, real-world data is assumed to have an intrinsic lower dimen-
sionality d < D and the observations x can be explained through some hidden vari-
ables z ∈ Rd. However, the actual dimension d of the latent space is typically un-
known, as well as the mapping between latent z and ambient variables x.

In practice, the concept of coarse-graining and latent variables ultimately follow
the same philosophy: Both aim at reducing the complexity by discovering a lower-
dimensional, simpler representation that still captures the essential features, while
noise and redundant features are removed. However, coarse-grained representa-
tions of molecular systems are typically based on physical and chemical intuition,
whereas dimensionality reduction based on LVMs deploys a learning scheme to dis-
cover the hidden and potentially lower-dimensional representation instead, i.e. a
cost function is minimized. Recently, LVMs have been applied to the coarse-graining
of molecular systems [126].

Similarly to the concept of backmapping, LVMs can be applied to the inverse
task as well, i.e. to generate new instances of x′ ∼ X . In fact, this thesis deploys a
LVM for the backmapping of molecular structures. For this purpose, the generative
process is decomposed into two steps: (1) Draw a sample z ∼ Z from the latent
distribution with probability pZ (z). (2) Introduce a ML model

gΘ : Rd → RD, (3.11)

that transforms points from Z in order to resemble the (intractable) ambient dis-
tribution, i.e. g(Z) ≈ X . Note that deriving gΘ from first principles is infeasible
for most real-world applications. Typically, a tractable distribution, such as a Gaus-
sian distribution, is deployed as a latent distribution. However, the proposed Z can
differ significantly from the actual manifold the data resides. As such, a linear trans-
formation is not sufficient to deform Z in order to match X [154]. Consequently,
highly nonlinear transformations are typically used, such as deep neural networks,
which will be introduced in Sec. 3.3 [155, 156].

3.2.3 Dimensionality Reduction Algorithms

Reducing the dimensionality has become an important aspect of modern data anal-
ysis. Algorithms designed for this purpose are numerous and range from classical
linear techniques, such as principle component analysis (PCA), to nonlinear ML ap-
proaches, such as LVMs. This section gives a brief overview of some important
techniques used in this thesis for analyzing molecular data in order to assess the
accuracy of reverse-mapped structures.

Principle Component Analysis

One of the most commonly used methods for dimensionality reduction is PCA. It
performs a change of basis by projecting the data onto a linear combination of the
original basis vectors called principle components. The new coordinate system is
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thereby chosen such that the axis align with the directions showing the highest vari-
ance in the data set. PCA is typically used for dimensionality reduction by discard-
ing principle components with low variance, i.e. the new representation preserves
most of the variance in the data.

Sketch-map

Despite its wide range of applications, linear dimensionality reduction techniques
like PCA are typically insufficient to capture the global structure of data obtained
from MD trajectories, since the accessible regions in phase space can have a com-
plex, nonlinear structure with non-uniform dimensionality [157, 158, 159]. As such,
nonlinear dimensionality reduction techniques are more promising candidates to
analyze the phase space of molecular systems.

A successful approach introduced by Ceriotti et al. is called Sketch-map (SM) [160,
161]. Related to the curse of dimensionality, Ceriotti et al. hypothesize that energeti-
cally accessible regions in phase space are concentrated in basins and consequently,
only a tiny fraction of phase space is occupied [160]. Further, small pairwise dis-
tances in phase space appear to follow a Gaussian distribution, which is expected
for thermal fluctuations within a basin. On the contrary, large distances, which can
be associated with structures that lie within different basins, are found to be uni-
formly distributed. Consequently, the focus has to be set on an intermediate scale σ

capturing most of the valuable topological information of the phase space.
The SM approach is a nonlinear dimensionality reduction algorithm that aims at

preserving the complex structure of the high-dimensional phase space. In particular,
the method focuses on reproducing the relations between nearby basins, while the
internal structure of basins and the relative positions of distant basins are ignored.
To this end, distances in the high- and low-dimensional spaces are transformed by
a sigmoid function. In particular, the following cost function is minimized to obtain
projections z for N high-dimensional data points x,

C({z1, . . . , zN}) =
N

∑
i

N

∑
j

(
f (rij)− F(Rij)

)2
, (3.12)

where rij and Rij correspond to the low-dimensional and high-dimensional distance
of two points zi and zj, as well as xi and xj, respectively. F and f are sigmoid func-
tions of the form

F(R) = 1− (1 + (2A/B − 1)(R/σ)A)−B/A (3.13)

f (r) = 1− (1 + (2a/b − 1)(r/σ)a)−b/a, (3.14)

where σ, A, B, a and b are the parameters of the model. The value of σ is the
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most important parameter, as it defines the characteristic length scale of the lower-
dimensional embedding. In practice, σ has to lie within the range of distances char-
acteristic of Gaussian fluctuations and the range dominated by the high dimension-
ality of the system. The sigmoid function transforms distances such that distances
far below or far apart from σ are mapped close to zero or unity, respectively. As
such, distances in the vicinity of σ are highlighted. The minimization of Eq. 3.12
scales quadratically with the number of data points. To reduce the computational
effort for projections of large data sets, Eq. 3.12 is used to obtain low-dimensional
positions for a small number of landmark frames. Afterwards, the landmarks can be
used to project any other data point x by minimizing

C(z) =
NL

∑
i

(
f (|z− zi|)− F(|x− xi|)

)2
, (3.15)

where zi is the projection of a landmark xi and NL is the number of landmarks.

Time-lagged Independent Components Analysis

Time-lagged independent component analysis (TICA) is a linear transformation al-
gorithm that is widely used for dimensionality reduction of MD trajectories [162,
163, 164, 165]. While PCA finds coordinates of maximal variance, TICA aims at a
mapping that maximizes the autocorrelation at the given lag time, i.e. it identifies
the slow degrees of freedom. As such, TICA explores a subspace of good reaction
coordinates and is well suited to prepare high-dimensional input data for Markov
model construction.

Consider a mean-free trajectory of configurations x(t) ∈ RD, where t is an integer
denoting the time step. The covariance matrix C(τ) of the data is obtained as

cij(τ) = 〈xi(t)xj(t + τ)〉t, (3.16)

where τ is the lag time. In general, C has to be symmetrized for algebraic reason.
TICA proceeds by solving the generalized eigenvalue problem

C(τ)U = C(0)UΛ, (3.17)

where U is a eigenvector matrix composed of the independent components (ICs) and
Λ is a diagonal eigenvalue matrix. Deploying the eigenvector-matrix U, projections
into the latent space are given by

zT(t) = xT(t)U. (3.18)

Similar to PCA, the eigenvector matrix U can be truncated to establish dimensional-
ity reduction that keeps the slowest modes.
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3.3 Deep Learning

Deep Learning is a part of ML that is based on artificial neural networks (ANNs). ANNs
are inspired by nervous systems, such as our human brain. A nervous system pro-
cesses information and is capable to perform extremely complex tasks: It coordinates
incoming signals, such as information about the environment captured by sensory
cells, and creates actions accordingly. Their ability to organize themselves and learn
from examples distinguishes them from conventional computers and has motivated
researchers to develop artificial models of its biological counterpart [166, 167, 168].
Nowadays, ANNs have won several state of the art ML contests and are used in
many applications [169]. In this work, ANNs are the main tool for the reverse-
mapping of molecular configurations.

3.3.1 General Concept

Nervous systems are built up from a large number of interconnected cells, called
neurons. The human brain, as an example, consists of ∼ 1011 neurons [170]. While
a single neuron is already a complex processing unit, the power of nervous systems
arises from the interplay of a vast number of neurons composing the network.

The main task of a neuron is to receive, process and transmit signals. In a sim-
plified picture, a biological neuron is equipped with dendrites (receiver), a cell body
(processor) and an axon (transmitter) [170]. Dendrites are thin fibers connected via
synapses with the axons of thousands of other neurons. Synapses are crucial for the
flow of information inside the network, as they weight incoming signals captured
by the dendrites: Depending on the synapse, the incoming signal can either increase
or decrease the electrical potential of the cell [170]. If a specific threshold potential is
reached, the axon will fire a signal to all the dendrites it is connected to.

An artificial neuron is a simplified version of its biological counterpart: An input
tensor x is weighted by a weight tensor w and the result is accumulated. Afterwards,
a threshold value ψ is subtracted and a nonlinear function, called activation function,
a() is applied to derive the output y,

y = a
(
∑

i
xiwi − ψ

)
. (3.19)

In this example, x and w are vectors but it is straightforward to extend the concept
to tensors of higher rank [171].

3.3.2 Multiple Levels of Abstraction

To explain the mechanism of information processing in a biological neural network,
visual object recognition can serve as an example: The retina encodes visual stimuli
into electrical signals that are transmitted to the visual cortex. Here, the incoming
signal will cause a subset of neurons to respond yielding a response vector [172]. The
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response vector for a given object is not constant but varies under identity preserv-
ing transformations, such as shifts in position, rotations or changing illumination.
Therefore, a given object has to be linked to a set of response vectors that span a
manifold in the high-dimensional space of all possible response vectors [172]. At
early stages of processing, the object identity manifolds for different objects might
be tangled. As such, it becomes impossible to introduce an accurate decision bound-
ary for object recognition. However, the special structure of the visual cortex enables
to untangle the object manifolds. In particular, neurons are grouped into subsequent
layers and the further the signals are processed the more flattened and separated the
manifolds become [172].

Deep Neural Networks

The same idea is applied in modern deep neural networks (DNNs): Multiple layers
are arranged subsequently and each layer transforms its input into a more abstract
and composite representation. While the first layer learns simple features, such as
the positions of edges, subsequent layers learn more complex features composed of
the preceding ones. As such, DNNs are computational models that are similar in
spirit to the multiscale modeling approach.

The layers arranged between the input layer and the output layer are referred
to as hidden layers. In the most simple case of a feedforward neural network (FF-NN),
information only flows forward in the network, i.e. from the input layer through the
hidden layers to the output layer. In particular, a simple FF-NN f consisting of L
layer can be written as

f (x) = u(L)(...u(1)(u(0)(x))), (3.20)

where u(l) denotes the nodes in the l’th layer of the network.

Recurrent Neural Networks

Different to FF-NNs, recurrent neural networks (RNNs) can have a more complex ar-
chitecture. RNNs enable cyclic connections between layers, such that a layer can
receive information from subsequent layers as well in order to create feedback loops
[173]. In particular, a RNN can be described as a recursive process where a recurring
function is called in each iteration. This is usually necessary for sequential data, like
text or video, where the current state has a dependence on past states. In this thesis,
a RNN is used to recursively reconstruct molecular structures.

Unrolling the recurrent process yields a nested function that is similar to a FF-
NN. For example, consider a network f that reuses its previous output in addition
to its current input. The unrolled network F for an input sequence (x1, x2, .., xn) can
be written as

F(x1, x2, .., xn) = f (xn, .. f (x2, f (x1, 0))..). (3.21)
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Note, that Eq. 3.21 implies that multiple states of the network have to be stored
simultaneously in memory in order to compute the gradients for training (see
Sec. 3.3.4) making the approach computationally demanding.

Universal Function Approximator

DNNs are universal function approximators. In particular, the classical formulation
of the universal function approximation theorem states that any continuous function h
on a compact set K can be approximated by a FF-NN f with just one hidden layer
within arbitrary accuracy | f (x)− h(x)| < ε, where ε > 0 and x ∈ K [174]. Impor-
tantly, the width of the hidden layer, i.e. the number of neurons, needs to be unbound
in this formulation of the theorem. A dual formulation states that the theorem holds
true for bounded width but arbitrary depth, i.e. number of layers, as well [175].

Generalization Capability

Despite being universal function approximators, DNNs also exhibit good general-
ization behavior. This is surprising, since DNNs are typically over-parameterized,
i.e. the number of parameters of the network is significantly larger than the number
of training examples. As such, the network could memorize the training samples,
i.e. overfit the training data, instead of learning the underlying rules that gener-
ate the data. As explained in Sec. 3.1.2, regularization is typically used to prevent
overfitting by limiting the complexity of the model. This can be achieved by explicit
methods, such as penalty terms in the cost function or parameter decay. However,
studies have shown empirically that explicit regularization is neither a sufficient nor
a necessary condition for the generalization capability of DNNs [176]. Moreover, im-
plicit regularization techniques, such as stochastic optimization procedures or early
stopping of the training, can improve the generalization capability of DNNs, but
are also not indispensable [177]. It can be hypothesized that the generalization ca-
pability of DNNs is inherently linked to their architecture [178]. In conclusion, a
more comprehensive theory that explains why DNNs generalize well in practice is
an open area of research [179, 180, 181].

3.3.3 Feature Extraction

An ANN is a composition of layers, where each layer generates features based on
the representation produced by the previous layer. Unlike traditional approaches,
relevant features are learned from the data. As such, ANNs can learn a suitable rep-
resentation of the data for a given task without relying on handcrafted features. The
feature extraction at each level of an ANN can be achieved in various different ways.
In the following, an overview of the two most commonly used layer architectures is
given.
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Dense Layer

A dense layer or fully-connected layer is the simplest and most common layer of an
ANN. Each neuron in a dense layer receives signals x from all the neurons of the
preceding layer. The output y of a dense layer can be expressed as

y = a(Ax), (3.22)

where A is a matrix containing the weights and thresholds. The full-connectivity of
each neuron makes it capable to detect global pattern in the data. However, dense
layer are impractical for high-dimensional inputs, as A grows with the size of x.

Convolutional Layer

Convolutional neural networks (CNNs) have dramatically improved the state-of-the-
art in computer vision and made it possible to synthesize photorealistic images of
complex objects, such as human faces or animals [6, 50, 51, 52]. Therefore, CNNs are
the main tool in this thesis to synthesize molecular structures.

Convolutional layer incorporate the idea of local connectivity and translational-
equivariance. The idea of local connectivity is inspired by the visual cortex: Neu-
rons are only locally connected to neurons in a restricted area of the previous layer,
known as the receptive field [170]. The receptive field of a neuron becomes bigger
the higher it is placed in the hierarchy of the network. Therefore, this architecture is
perfectly suited to learn hierarchical pattern in the data.

A convolutional layer consists of a bank of parameterized filters that are sliced
over the input. In the following, the two dimensional case is considered, i.e. im-
ages Xj ∈ RNx×Ny , where Nx is the width and Ny is the height of the image. The
subscript j ∈ {0, .., Nc} is the index for the Nc feature channels. The different feature
channels provide different views on the data, such as the different color channels of
a red-green-blue (RGB) image. At each position, the discrete convolution of the filter
with the segment of the image it overlaps is computed and stored into a so called
feature map. Note that the parameters of each filter are shared between all neurons
of the layer, which enforces equivariance with respect to translations of the learned
patterns. The bank of filters connecting the jth feature channel of the input with the
ith feature channel of the output is denoted with Ki,j ∈ Rmx×my , where mx is the
width, my is the height of the filters. The ith feature map Yi ∈ Rnx×ny of the output
can be computed as

Yi = a(Φ +
Nc

∑
j

Ki,j ∗ Xj), (3.23)

where Φ is a bias matrix. The size of the output (nx, ny) can be derived as

(nx, ny) = (Nx −mx + 1, Ny −my + 1). (3.24)

Additionally, the size of the output can be controlled by zero-padding and slicing:
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• Zero-padding: The size of the input tensor can be artificially extended by
adding zeros at the border or between input units. P denotes the number of
zeros concatenated at each side.

• Strides: While the filter is sliced over the input, the step size S, called stride, for
the translation can be greater than one effectively reducing the output size, or
smaller than one effectively increasing the output size.

In summary, the output size can be computed as

(nx, ny) =
(Nx −mx + 2P

S
+ 1,

Ny −my + 2P
S

+ 1
)

. (3.25)

Depending on the choice of zero-padding and strides, the size of the output can ei-
ther decrease (downsampling) or increase (upsampling) compared to the size of the
input. The latter is often referred to as transposed (or fractionally-strided) convolution.
It is typically used in a decoder architecture to learn the upsampling transformation.
Note that it is possible to express a convolutional layer as a fully-connected layer
as well. However, this is not done in practice, as this involves many unnecessary
multiplications with zero. In general, a convolutional layer requires less parame-
ters compared to a dense layer, because of the weight-sharing of the filters and the
independence of the size of the filters from the size of the input.

3.3.4 Training

Training of a NN fΘ refers to tuning the weights Θ in order to minimize a cost
function. To achieve this, an efficient optimization algorithm is required.

Cost Function

The cost function C maps the output of the network fΘ(x) to a real number repre-
senting the error. While more details about the cost function used in this thesis will
be revealed in in Sec. 3.4, two requirements it has to fulfill shall be noted to in order
to explain the training procedure of ANNs: (1) It has be differentiable in order to
apply gradient-based optimization algorithms. (2) It has be written as an average

CT =
1
n ∑

(x,y)∈T
C( fΘ(x), y) (3.26)

over cost functions C( fΘ(x), y) for individual instances of the training batch T =

{(x1, y1), . . . , (xn, yn)}. This is crucial in order to generalize the gradient of the error
computed for a single example to the overall error of the training batch (see Stochas-
tic Gradient Descent below).
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Backpropagation

In order to adjust the weights Θ of the network, gradient methods are deployed.
Typically, gradient descent is applied for single input-output pairs (x, y) in the
weight space,

Θt+1 = Θt + η
∂C( fΘt(x), y)

∂Θt
(3.27)

where η is the learning rate and t is an integer denoting the optimization step.
A naive, direct computation of the gradients with respect to each weight individ-

ually is computationally expensive and not feasible for DNNs. To circumvent these
limitations, backpropagation (BP) was invented to efficiently compute the gradients
for DNNs [182]. It is based on the chain rule and benefits from the nested struc-
ture of a NN, which enables to compute the gradients layer by layer: Starting from
the last layer, it iterates backward through the network, whereby avoiding duplicate
and unnecessary intermediate calculations.

Consider a feed-forward NN with L layers. In the following, each layer is treated
as a fully connected layer for simplicity. A single node u(l)

i in layer l can be written
as

u(l)
j = a(∑

i
Θ(l)

i,j u(l−1)
i︸ ︷︷ ︸

z(l)j

), (3.28)

where Θ(l) is the weight matrix for layer l and a() is the activation function.
The chain rule has to be applied to derive the gradients for the weights due to the

nested structure of the NN. Conveniently, the BP algorithm introduces a recursive
notation to derive the gradients,

∂C( fΘ(x), y)

∂Θ(l)
i,j

= δ
(l)
j u(l−1)

i , (3.29)

where δ
(l)
j is referred to as the delta-error or error at the level l. It is computed as

δ
(l)
j =

C ′a′(z
(l)
j ), for l = L

a′(z(l)j )∑i Θ(l)
i,j δ

(l+1)
j , for l < L

, (3.30)

where C ′ and a′ are the derivatives of the cost function C and the activation function
a, respectively. The recursive notation for the delta-error enables to compute the
required gradients from back to front by reusing the delta-error from subsequent
layers.
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Stochastic Optimization

Finding the global minima in a high-dimensional energy landscape is challenging.
In particular, naive deterministic optimization algorithms, such as gradient descent
(Eq. 3.27), are prone to get stuck in local minima. To this end, stochastic optimization
algorithms are typically deployed that permit less optimal local decisions in order
increase the probability of eventually deriving the global minima.

A widely used stochastic optimization algorithm is stochastic gradient descent
(SGD): The size of a training set is typically large and therefore, the gradi-
ent in Eq. 3.27 can not be computed over the whole set in each optimization
step. Therefore, the training set is usually shuffled and split into mini-batches
T = {(x1, y1), . . . , (xn, yn)} of size n, where n is treated as a hyper parameter. Since
the gradient is not computed exactly but only for a part of the data, the optimization
algorithm contains a stochastic element. However, the gradient estimation can
vary significantly for different training batches in SGD. To this end, SGD can be
augmented by a momentum term

Θt+1 = Θt + ηvt, (3.31)

vt = βvt−1 + (1− β)
∂C( fΘt(x), y)

∂Θt
, (3.32)

where β is the momentum parameter. Incorporating momentum smooths the gradi-
ent and improves consistency between optimization steps.

3.4 Generative Modeling

While DNNs will built the core of the reverse-mapping scheme developed in this
thesis, an adequate cost function to train the model is required. In particular, the
model has to be trained such that it can synthesize further samples from the fine-
grained distribution of a molecular system. To this end, concepts of generative mod-
eling are applied to learn this distribution from training data.

Generative models can be distinguished from discriminative models in terms of
their purpose: While the former aims at learning the dependencies of all the vari-
ables in a system, the goal of the latter is to learn decision boundaries. Consider a
set of labeled data D = {(x, y)} drawn from a distribution X with joint probability
pX (x, y). The goal of a discriminative model is to learn the conditional probability
pX (y|x) of the class labels y given the observation x. To this end, a discriminative
model does not necessarily have to learn about the dependencies of all the variables
in the system, as it only has to focus on the variables that are important to label the
observations. On the other hand, generative approaches model the joint probabil-
ity pX (x, y) (or simply pX (x) if no labels are given). As such, the underlying task
for generative models is more complex compared to the discriminative task, as the
generative model has to be more informative.
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Since only generative models are capable of generating new instances of the un-
derlying distribution, the remainder of this chapter focuses on the generative ap-
proach. More specifically, the following discussion is restricted to Deep Generative
Models (DGMs), i.e. generative models based on DNNs.

3.4.1 Maximum Likelihood and the Relative Entropy

A DGM provides an estimate for the probability pΘ(x) of an observation x. The gen-
eral goal is to approximate the true probability distribution, i.e. to find the optimal
parameters Θ∗ such that pΘ∗(x) ≈ pX (x). A major route to train a DGM is the fre-
quentist approach of maximizing the data likelihood. The underlying idea of this
approach is to find a model that best explains the observed data. In particular, the
likelihood L for the data under the parametric model can be written as

L =
N

∏
i

pΘ(x), (3.33)

where N is the number of examples in the training data D. Instead of maximizing
the likelihood L directly, it is common practice to minimize the negative logarithm
of the likelihood to avoid numerical issues

Θ∗ = argmax
Θ

L = argmin
Θ

−
N

∑
i

log(pΘ(x)). (3.34)

If N is large, the maximum likelihood approach is equivalent to minimizing the
cross-entropy

H(pX (x), pΘ(x)) = Ex∼pX (x)

[
log
( 1

pΘ(x)

)]
, (3.35)

as well as the relative entropy, which is also known as the Kullback-Leibler divergence

D(pX (x)||pΘ(x)) = Ex∼pX (x)

[
log
( pX (x)

pΘ(x)

)]
(3.36)

as the law of large numbers states

lim
N→∞

− 1
N

N

∑
i

log(pΘ(x)) = Ex∼pX (x)[−log(pΘ(x))], (3.37)

and the scaling factor 1
N is irrelevant, as it does not affect the argmin

Θ
operation.

Both, cross-entropy and relative entropy, reach a minima when the two distribu-
tions match, i.e. pΘ(x) = pX (x), making the negative logarithm of the likelihood a
well suited cost function for generative models. However, how can the likelihood
function be assessed?
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3.4.2 Review of Explicit Generative Models

Generative models are further distinguished between those that express the model
probability distribution pΘ(x) explicitly through some functional form and those that
define it implicitly through a sampler. The former approach has the benefit that max-
imizing the likelihood L is straightforward, as the probability distribution can be
assessed directly. However, explicit models require to assume some functional form
for the probability pΘ(x), which often becomes a bottleneck for the expressive power
of the model. Therefore, the design of an explicit model is often a tradeoff between
the complexity and tractability of the model. In particular, the various variants of
explicit DGMs fall into two categories: Models that carefully construct a tractable
functional form for the likelihood L, such as autoregressive models and normalizing
flow models, and models that use a tractable approximation, such as the variational
auto encoder and the Boltzmann machine [183]. On the other hand, implicit models
do not require direct access of the likelihood function but define a stochastic pro-
cedure to generate new samples. As such, the implicit approach is perfectly suited
for the overall goal of thesis, i.e. to generate new fine-grained configurations. In
particular, the generative adversarial approach is used, which is the most prominent
member of implicit generative models.

In the following, important explicit generative models are reviewed briefly. Af-
terwards, the generative adversarial approach is explained in detail.

Autoregressive Modeling

The autoregressive approach decomposes a complex probability distribution into
simpler conditional probability distributions [184, 185, 186]. To this end, the
chain rule for probabilities is applied to rewrite the joint probability p(x) of an
n-dimensional vector x into a product of conditional probabilities that are easy to
access

pΘ(x) =
n

∏
i

pΘ(xi|x1, x2, .., xi−1). (3.38)

Splitting the problem into conditional probabilities often allows for a tractable ex-
plicit model. The drawback of such autoregressive models is that they can only gen-
erate one entry at a time prohibiting parallel computation. However, this approach
is well suited for data that is sequential in nature, such as human speech. The au-
toregressive approach is also important in this thesis, as it will be used to factorize
the joint probability of a molecular configuration in terms of atomic contributions to
reduce the complexity of the reverse-mapping task.

Normalizing Flow

Normalizing Flow (NF) models are LVMs that transform a simple prior distribution
into a more complex distribution using invertible and differentiable mappings [187,
188, 189]. NF models are based on the change of variables formula for invertible
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transformations g that map from the data distribution X to the latent distribution
Z . Given a transformation

g : RD → RD (3.39)

that is invertible and both g and g−1 are continuously differentiable, as well as
orientation-preserving, i.e. ∇g > 0, then the change of variables formula can be
used to express the likelihood of a data point x ∼ X in terms of another, potentially
simpler, density function in the latent space

pX (x) = pZ (g−1(x))
∣∣∣det

(
∂g−1(x)

∂x

) ∣∣∣. (3.40)

NF models have the advantage that they allow a direct optimization and evaluation
of the likelihood. However, major drawbacks of NF models are the required restric-
tions on the transformation g that are difficult to fulfill in practice and limit their
applicability [140]. The most severe restriction is the equality of the dimensions of
the latent and the data space.

Variational Autoencoder

A variational autoencoder (VAE) is a LVM consisting of two parts [190, 191, 192]: An
encoder eΨ(z|x) compresses a given input x into a constraint distribution in the latent
space Rd and a decoder pΘ(x|z) reconstructs the distribution in the ambient space
RD. Typically, eΨ(z|x) and pΘ(x|z) are represented as a family of parameterized dis-
tributions, such as multivariate Gaussian distributions N (µΨ, ΣΨ) and N (µΘ, ΣΘ).
In particular, the means µ and variances Σ of the distributions are learned by DNNs
with weights Ψ and Θ, respectively. Importantly, unlike NF models, the dimensions
of latent and ambient space do not have to match. In general, the dimension of the
latent space d is chosen much smaller than the dimension of the ambient space D. As
a consequence, the mapping between the spaces is not invertible and the likelihood
can not be computed directly.

Typically, a standard normal distribution is deployed as a prior distribution
pZ (z) for the latent variables. Using Bayes’s rule, the likelihood for a data point x
can be written as

pΘ(x) =
pΘ(x|z)pZ (z)

pΘ(z|x)
. (3.41)

While the posterior distribution pΘ(z|x) is intractable in most cases, the VAE ap-
proach approximates it deploying the encoder eΨ(z|x),

eΨ(z|x) ≈ pΘ(z|x). (3.42)

Using Jensen’s inequality, a variational lower bound, also called evidence lower
bound (ELBO), can be derived to train both, the encoder eΨ and the decoder pΘ(z|x):
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log(pΘ(x)) ≥ EeΨ(z|x)
[
log
( pΘ(x, z)

eΨ(z|x)
)]

(3.43)

= EeΨ(z|x)
[
log
(

pΘ(x|z)
)]

︸ ︷︷ ︸
reconstruction

− KL(eΨ(z|x)||pZ (z))︸ ︷︷ ︸
regularization

(3.44)

The negative ELBO is then minimized. The first term reduces the approximation
error in ambient space (reconstruction error) that arises due to the restriction for the
dimensionality of the latent space and the approximation error for the posterior. The
second term acts as a regularizer that biases the approximate posterior towards the
prior distribution pZ (z).

The main drawback of VAEs is a potentially large gap between the ELBO used for
optimization and the actual likelihood resulting in a model that differs significantly
from the true distribution [140]. Empirically, vanilla VAEs have a tendency to ignore
some of the latent variables and/or produce blurred samples in ambient space [193].

Markov Chain approximation

Some generative models generate samples using a Markov chain technique: A sam-
ple x is repeatedly updated according to some transition operator x′ ∼ q(x′|x). An
example is the Boltzmann machine (BM), which is a LVM that consists of binary
units ui connected with each other [194, 133, 195, 196]. The weights Θ and thresh-
olds Φ of the network are essentially the parameters of an energy function E(Θ, Φ).
In particular, E(Θ, Φ) describes a spin-glass model with an external field

E(Θ, Φ) = −
(

∑
i<j

Θi,juiuj + ∑
i

Φiui

)
. (3.45)

The energy function can be used to define a probability distribution over the states
of the units. During training, the weights are updated such that the likelihood for
the given training data is maximized. To sample a new state, the units are repeatedly
updated stochastically until an equilibrium state is reached.

The convergence of such Markov models might be very slow in practice and
difficult to detect [183]. BMs and its variants are barely used nowadays, because
they do not scale well to high-dimensional data.

3.4.3 The Generative Adversarial Network: An Implicit Generative
Model

Generative adversarial networks (GANs) were introduced by Ian Goodfellow et al. in
2014 [197]. They have become one of the most successful implicit generative models
known in the ML community [50, 51, 198, 199]. Their ability to generate photoreal-
istic images of complex objects have motivated their usage in this thesis as the main
training procedure to generate high fidelity molecular structures.
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A GAN is a LVM, but unlike VAEs or NF models, they do not infer the distri-
bution of latent variables underlie the samples. Instead, they learn a transformation
from a given prior distribution Z to an ambient distribution X , which is for exam-
ple the distribution of molecular configurations. At its core, a GAN consists of two
competing models trained in a game: A generator gΘ maps samples z ∈ Rd from a
latent distribution Z into the ambient space RD. A second model, the discriminator
cΨ, has to distinguish between synthetic samples gΘ(z) from the generator and real
samples x from the training set D = {x}, where x are drawn from X . As such, the
discriminator cΨ acts as a distance measure in ambient space for the real distribu-
tion X and the distribution of synthetic samples gΘ(Z). While the discriminator cΨ

is trained as a classifier in a supervised manner, the generator gΘ is trained to de-
ceive the discriminator cΨ. As a consequence, the generator gΘ is indirectly pushed
towards minimizing the difference between X and gΘ(Z). The whole training pro-
cess of a GAN is considered a likelihood-free method as neither the likelihood of the
model pΘ(x) itself nor a lower bound of it is used explicitly.

Both, the generator gΘ and the discriminator cΨ are typically implemented as
DNNs with weights Θ and Ψ, respectively. The generator is an inverse LVM (see
Sec. 3.2.2)

gΘ : Rd → RD, (3.46)

that maps latent samples z ∈ Rd into the ambient space RD. The prior distribu-
tion Z is typically defined as a high-dimensional Gaussian distribution or uniform
distribution over a hypercube. Intuitively, the latent samples z provide a source of
randomness for the model.

Vanilla Approach: Discriminator as Binary Classifier

In the seminal work of Ian Goodfellow et al., the GAN training is set up as a binary
classification problem, where the discriminator cΨ is a function

cΨ : RD → [0, 1], (3.47)

aiming to predict the probability whether a given sample is drawn from the distri-
bution X or from the generator gΘ(Z) [197]. As such, an optimal discriminator cΨ∗

is supposed to predict cΨ∗(x) ≈ 1 and cΨ∗(g(z)) ≈ 0.
The natural choice for the loss function for a binary-classification problem is the

cross entropy. Therefore, the original cost function for the GAN C(gΘ, cΨ) is defined
as [197]

C
(

gΘ, cΨ
)
= Ex∼X

[
log(cΨ

(
x)
)]

+ Ez∼Z
[
log
(

1− cΨ
(

gΘ(z)
))]

. (3.48)
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As a result, the GAN training becomes a mini-max game, where the discriminator
aims at maximizing C

(
gΘ, cΨ

)
, while the generator tries to minimize C

(
gΘ, cΨ

)
[197]:

Ψ∗ = arg max
Ψ

C
(

gΘ, cΨ
)

and Θ∗ = arg min
Θ

C
(

gΘ, cΨ
)

(3.49)

This refers to a zero-sum game, where the gain of one player is the loss of the other.
The training of a GAN converges when a saddle point (Ψ∗, Θ∗) is reached, which is
also called Nash equilibrium in game theory: For both networks, the loss can not be
optimized any further given the weights of the other.

Using the loss defined in 3.48, it can be shown that the optimal discriminator
cΨ∗,Θ for a fixed generator gΘ is given by [197]

cΨ∗,Θ(x) =
pX (x)

pX (x) + pΘ(x)
. (3.50)

Plugging Eq. 3.50 into Eq. 3.48 yields the cost function for the generator given an
optimal discriminator,

C(gΘ, cΨ∗) = 2JS(pX ||pΘ)− 2log(2), (3.51)

where JS is the Jenson-Shannon divergence

JS
(

pX ||pΘ
)
=

1
2

D
(

pX
∣∣∣∣∣∣ pX + pΘ

2

)
+

1
2

D
(

pΘ

∣∣∣∣∣∣ pX + pΘ

2

)
. (3.52)

As such, an optimal discriminator yields a cost function for the generator that min-
imizes the Jensen-Shannon divergence JS, which is a symmetrized variant of the
relative entropy defined in Eq. 3.36.

Challenges of the GAN Approach

While the above analysis is instructive and motivates the usage of the GAN ap-
proach, the theoretical analysis does not hold in practice for several reasons: (1) The
minimax game is tackled iteratively with an alternating approach, where the dis-
criminator cΨ is trained for k steps in order to reach optimality followed by a single
training step for gΘ. Typically, a rather small number of training steps k for the
discriminator is chosen in order to maintain a feasible optimization. Therefore, the
assumption of an optimal discriminator does not apply and the convexity of the
cost function is not guaranteed [197]. (2) Convergence to an equilibrium, where
pΘ(x) = pX (x), is hindered by the limited capacity of the generator and the dis-
criminator: A direct optimization in function space would be required to guarantee
convergence. However, both models are represented as DNNs and optimization
takes place in the finite parameter space [197, 200]. (3) Optimizing the generator
with the cross entropy defined in Eq. 3.48 does not perform well in practice, as the
cost can easily saturate [197, 200]: If the discriminator can reject samples produced
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by the generator with high confidence, the generator’s gradients vanish making it
impossible to improve. This limitation is especially severe in the beginning of the
training, when generated samples are clearly different from the training examples.
To circumvent this limitation, a heuristic loss for the generator

C
(

gΘ
)
= Ez∼Z

[
− log

(
cΨ
(

gΘ(z)
))]

(3.53)

is typically used that provides strong gradients.
A more general issue of the GAN approach is mode collapse, which refers to a

lack of diversity [201, 50, 202, 203]. If the generator has learned to generate a plau-
sible output, it might overemphasize that specific output and put a overwhelmingly
high statistical weight on it. Consequently, GANs tend to generate from very few
modes and miss many other modes present in the data distribution. At its core,
the generator is over-specialized for a given discriminator, which is stuck in a local
minimum.

Moreover, training of a GAN is notoriously unstable [204]. While the non-
saturating loss in Eq. 3.53 remedies the vanishing gradient problem early in the
training, the discriminator feedback still gets less meaningful over time and hence
the generator might collapse. In particular, the desired Nash equilibrium displays
a saddle point that is difficult to find numerically [205, 201]. In addition, detecting
convergence of a GAN is difficult as a universal metric for the fidelity of samples
synthesized by the generator is missing [206].

Wasserstein Distance: Discriminator Estimates Transport Cost

Various variants of GANs have been developed to tackle the above mentioned chal-
lenges. A promising route is to improve the objective function of a GAN. A popular
variant is the Wasserstein GAN (WGAN) that uses the Earth Mover distance (EMD) to
measure the distance between X and gΘ(Z) [204]. According to [204], the EMD has
some appealing properties compared to other probability distance functions, such
as relative entropy, cross entropy or Jensen-Shannon divergence: If the distributions
have disjoint support, the aforementioned distance measurements yield gradients
that are always zero. This is a major concern when dealing with real-world high-
dimensional data sets, as the manifold hypotheses states that most of the probability
mass is concentrated in lower-dimensional manifolds. Therefore, it is likely that the
intersection of two probability distributions vanishes. The EMD circumvents these
issues and guarantees continuity and differentiability. As such, the discriminator can
be trained until optimality using the EMD without vanishing gradients and without
getting stuck in local minima.

The EMD is defined as

W
(

pX , pΘ
)
= inf

γ∈Γ(pX ,pΘ)
E(x,x′)∼γ

[
‖x− x′‖

]
, (3.54)
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where Γ(pX , pΘ) denotes the set of all joint distributions γ(x, x′) whose marginals
are pX and pΘ, respectively. γ(x, x′) can be interpreted as a transport plan indicating
how much probability mass has to be moved from x to x′ in order to make the two
distributions match. As such, the EMD seeks the minimal transport cost.

The formulation of the EMD in Eq. 3.54 is highly intractable and most practical
implementations apply an equivalent formulation of the EMD known as Kantorovich-
Rubinstein duality:

W
(

pX , pΘ
)
= max

f∈Lip( f )≤1
Ez∼Z

[
f
(

gΘ(z)
)]
−Ex∼X

[
f (x)

]
(3.55)

In Eq. 3.55, the maximum is taken over all functions f : RD → R that are 1-Lipschitz.
In practice, the function f is approximated with a NN cΨ and additional constraints
are applied to ensure the 1-Lipschitz continuity. The mini-max game for the WGAN
approach can then be written as

min
Θ

max
Ψ

Ez∼Z
[
cΨ
(

gΘ(z)
)]
−Ex∼X

[
cΨ(x)

]
. (3.56)

Various different methods exist to ensure the 1-Lipschitz continuity. A popular ap-
proach is gradient penalty (GP) that introduces an additional term to the cost function
of the critic [207]. A differentiable function is one-Lipschitz if and only if it has gra-
dients everywhere with norm at most one. A soft version of this constraint can be
enforced by a penalty on the gradient norm

Cgp(cΨ) = Ex̄∼X̄
[(
||∇x̄cΨ(x̄)||2 − 1

)2], (3.57)

where x̄ is interpolated linearly between pairs of points x and gΘ(z).
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Chapter 4

Methodology of Deepbackmap:
Adversarial Reverse-mapping of
Condensed-phase Molecular
Structures

In this chapter, deepbackmap (DBM) is introduced: A new method to tackle the
backmapping problem for molecular structures. The method is based on a ML
model that learns the coarse-to-fine mapping from training examples. Unlike other
backmapping schemes, DBM aims at directly predicting equilibrated molecular
structures that resemble the Boltzmann distribution. As such, the method does
not rely on further energy minimization for relaxation and MD simulations for
equilibration of the reverse-mapped structures. As illustrated in Fig. 4.1, a key
feature of DBM is its applicability to condensed-phase molecular systems.

DBM is a deep generative model (DGM) trained with the generative adversar-
ial approach. The training data consists of pairs of corresponding coarse-grained
(CG) and fine-grained (FG) molecular structures. In particular, the CG structure is
treated as a conditional variable for the generative process. Moreover, the ML model

DBM

FIGURE 4.1: DBM generates Boltzmann-equilibrated atomistic struc-
tures conditional on the CG configuration using an adversarial net-
work. It is designed for the backmapping of a condensed-phase
molecular systems, such as polystyrene melts. Reprinted from [208].
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is based on a convolutional neural network (CNN) architecture. As such, a regular
discretization of 3D space is required, which prohibits scaling to larger spatial struc-
tures. Therefore, the generator is combined with an autoregressive approach that
reconstructs the FG structure incrementally, i.e. atom by atom. The autoregressive
reconstruction splits the backmapping task into a sequence of less complex tasks and
thereby enables a local environment representation, i.e. in each step only local in-
formation is used. The locality of DBM is not only essential for the scalability of the
model, but it is also a key feature to achieve remarkable transferability properties.

This chapter presents content that has been previously published in the following
research articles. The content is reproduced here with kind permission from the
other authors and the corresponding journals published this work.

Marc Stieffenhofer, Michael Wand, Tristan Bereau
Adversarial reverse mapping of equilibrated condensed-phase molecular struc-
tures
Machine Learning: Science and Technology, Volume 1, Number 4
DOI: 10.1088/2632-2153/abb6d4
c© IOP Publishing Ltd, 2020

Marc Stieffenhofer, Tristan Bereau, Michael Wand
Adversarial reverse mapping of condensed-phase molecular structures: Chemical
transferability
APL Materials 9, Volume 9, Number 3
DOI: 10.1063/5.0039102
c© AIP Publishing LLC, 2021

4.1 Notation and Problem Formulation

Backmapping is the reintroduction of details along the CG degrees of freedom. More
specifically, the backmapping function g is required to generate new coordinates
r ∈ R3n for the n atoms in the system. As described in Sec. 2.4, g is a function of the
coordinates R ∈ R3N of the N CG beads. Moreover, DBM incorporates additional
information to improve the quality and transferability of the mapping. In particular,
additional information is used to characterize the specific chemistry of both, the CG
as well as the target FG structure.

Formally, let A = {AI = (RI , CI)|I = 1, . . . , N} denote a snapshot of the CG
system consisting of N beads. Each bead has position RI ∈ R3 and an associated
type CI ∈ RT. The type CI is expressed as a T dimensional one-hot vector, where T
is the number of bead types, and reflects various chemistry specific attributes, such
as the bead mass, the connectivity or associated force field parameters. Similarly, let
a = {ai = (ri, ci)|i = 1, . . . , n} denote an atomistic snapshot of the system consisting
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of n atoms. Each atom ai has position ri ∈ R3 and type ci ∈ Rt, where t is the
number of atom types and ci is a one-hot vector. Each CG bead AI has an associated
set of atoms πI = {aj|j ∈ ψI} ⊂ a, where ψI is the corresponding set of atom
indices. Conversely, each atom ai has an associated CG bead AΨi , where Ψi denotes
the index of the CG bead that atom ai belongs to. The joint distribution of CG and
FG snapshots is denoted with X . In the following, a tuple (x1, . . . , xk) is represented
as xk

1, where the subscript and superscript denote the indices for the first and the last
element of the sequence, respectively.

DBM is a DGM designed to infer the conditional probability pX (rn
1 |AN

1 , cn
1) from

training data D = {(Aj, aj)} that consists of pairs of corresponding CG and FG
snapshots. The conditional probability of the model pΘ(rn

1 |AN
1 , cn

1), where Θ are the
model parameters, is not inferred explicitly, but implicitly defined through a sampler
gΘ. More specifically, the sampler

gΘ : R3N , RTN , Rtn → R3n (4.1)

generates a list of coordinates gΘ(AN
1 , cn

1) = rn
1 . The overall goal is to tune the pa-

rameters Θ of gΘ such that pΘ ≈ pX .

4.2 Autoregressive Reconstruction

Direct sampling from pX (rn
1 |AN

1 , cn
1) poses significant challenges. At first, the com-

plexity of the sampling problem rises with the number of particles n. However,
the size of molecular systems studied with computer simulations is typically large.
As a consequence, a sampler gΘ designated to generate all coordinates at once has to
solve a problem with unreasonably large dimensionality. Such an one-shot approach
is ultimately limited to rather small system sizes.

Moreover, direct sampling restricts the transferability of the trained model. As
an example, the number of CG beads and atoms is fixed in a one-shot model, i.e.
the model is only applicable to systems of the same size. This implies that the data
required for training needs to be as high-dimensional as the target system. Such a
strategy is questionable, as the purpose of most multiscale approaches is to extend
the accessible system size. A more progressive approach is to train the model on FG
samples with rather small system sizes, but deploy it on larger CG structures. In
addition, chemical transferability is limited in a one-shot approach, as the trained
sampler expects to generate the same kind of molecules it was trained on. As such,
transferring the learned correlation across chemical space is not straightforward.

The proposed method DBM circumvents these limitations by factorizing pX in
terms of atomic contributions. More precisely, the generation of one specific atom
becomes conditional on both, the CG beads as well as all the atoms previously re-
constructed. Such a factorization can be obtained by applying the chain rule for
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FIGURE 4.2: Adversarial autoregressive approach: The generator, gΘ,
sequentially samples atom positions conditional on the CG structure
and the existing atoms. A critic network, cΨ, estimates the discrep-
ancy between reference and generated atoms. Reprinted from [208].

probabilities

pX (rn
1 |AN

1 , cn
1) =

n

∏
i=1

pX (rs(i)|rs(i−1)
s(1) , cs(i)

s(1), AN
1 ), (4.2)

where s sorts the atoms in the order of reconstruction and rs(i−1)
s(1) denotes the

atoms that have already been generated. Specifically, s(i) denotes the atom index
at the ith position in the ordering. Eq. 4.2 splits a complex, high-dimensional
problem into a sequence of rather simple tasks, namely to learn the conditionals
pX (rs(i)|rs(i−1)

s(1) , cs(i)
s(1), AN

1 ). Such a modular reconstruction increases the flexibility of
the model and offers a perspective to release the aforementioned limitations.

In this study, the conditionals are implicitly learned by a generative model gΘ,
i.e. gΘ is trained to generate and refine atom coordinates sequentially. The local
placement of the atoms is thereby learned with an adversarial approach, as illus-
trated in Fig. 4.2. The dependence on earlier predictions of gΘ makes the method
autoregressive.

4.2.1 Ordering of Molecular Graphs

The factorization proposed in Eq. 4.2 requires a strict ordering s of the particles.
However, the ordering s is generally not unique and has to be defined artificially.
Here, the order is defined on multiple levels: The ordering of molecules, as well
as the ordering of beads and atoms within a molecule. While the ordering of the
molecules is less important for the performance of the model, the traversal through
the molecular structure has to be chosen carefully.
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FIGURE 4.3: Three different options to traverse a graph: a) depth-first
search, b) breadth-first search, c) random search.

The algorithm DBM iterates through the sequence of molecules, which is arbi-
trarily chosen. Each molecule is completely reconstructed before the next molecule
is visited. In order to sort the particles within each molecule, the molecular structure
is represented as a graph. Specifically, particles and bonds are mapped to the nodes
and edges of the graph. As such, the sorting of the particles is described as a graph
traversal. Note, that molecular graphs are generally undirected and can be cyclic
or acyclic [209]. Therefore, the molecular graph has no specific sorting. Here, three
different strategies are available to traverse the graph. In each strategy, a root node
is selected from which the traversal origins. If the structure is linear, the ends are
typically chosen. From there on, the subsequent nodes are selected according to one
of the following search-algorithms:

• depth-first-search: Each branch of the graph is explored as far as possible before
backtracking. See Fig. 4.3 a).

• breadth-first-search: All nodes at the present depth are explored before moving
on to the nodes at the next depth level. See Fig. 4.3 b).

• random: The subsequent node is chosen randomly. See Fig. 4.3 c).

Practice has shown that an ordering based on the depth-first-search yields the
best performance regarding the quality of reconstructed molecules.

DBM sorts the atoms depending on both, the CG as well as the atomistic molecu-
lar topology: In an outer loop, the CG molecular graph is explored yielding a sorting
for the beads. Within each bead AI , DBM iterates through the fragment πI before
visiting subsequent beads.

Note that it is possible to let DBM learn the order of reconstruction itself. How-
ever, while such an approach is feasible for small molecules, it poses significant com-
putational and conceptual challenges for large molecular structures. In particular,
learning the ordering of a molecule requires a cost-function that enables backprop-
agation of the error signal for every step in order to find the best reconstruction
strategy. This becomes intractable for large molecules, since unrolling of the recur-
sive approach requires to store a copy of the model in memory for each step (see
Sec. 3.3.2). Moreover, obtaining a suitable representation is more complicated (see
Sec. 4.3), as it requires to represent the entire molecular structure in every step, which
again limits the scalability of the model. As a remedy, the algorithm would have to
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automatically adapt to a local environment centered around the current focus of in-
terest.

4.2.2 Initial Structure with Forward Sampling

The first step of the proposed algorithm is to generate an initial structure. To this
end, forward sampling is applied based on the factorization in Eq.4.2 [210]. The algo-
rithm starts by sampling the variables with no parents from a prior distribution, i.e.
the atom position rs(1) for the first atom in the ordering s. Note that even this first
atom position is not arbitrary, since translational symmetry is lost by conditioning
on the CG structure. Subsequent variables rs(i) are generated by sampling from the

conditional probability distributions pΘ(rs(i)|rs(i−1)
s(1) , cs(i)

s(1), AN
1 ) given the atoms gen-

erated in the previous steps.
Forward sampling yields accurate results if the underlying graph structure has

a topological order, i.e. a graph traversal in which each node is visited only after all
of its dependencies are explored [210]. Note, that a topological order exists only for
directed acyclic graphs, which is generally not the case for molecular graphs. As
a consequence, forward sampling applied to molecular graphs can yield structures
with low statistical weight, as it requires to sample some variables for which crucial
information might be missing. In other words, it is not possible to find the optimal
position for an atom without knowing its environment. This issue becomes espe-
cially apparent when the underlying graph contains cyclic structures, such as the
phenyl rings in polystyrene. In general, the autoregressive approach is prone to ac-
cumulate errors even without cyclic structures, since misplaced atoms can always
affect the placement of subsequent atoms.

4.2.3 Refinement with Gibbs Sampling

As outlined above, accurate sampling of molecular structures calls for more feed-
back than a simple forward sampling strategy allows. This is especially true for
condensed-phase systems, where great care has to be taken to avoid steric clashes.
To this end, a variant of Gibbs sampling is applied, which subsequently refines the
initial molecular structures [211].

Gibbs sampling is a Markov chain Monte Carlo algorithm. As such, it constructs
a Markov Chain that eventually converges towards the target distribution. Gibbs
sampling starts from an initial structure rn[0]

1 and resamples each component itera-
tively along the ordering s. Importantly, each further iteration still updates a sin-
gle component at a time, but each component is conditioned on all other compo-

nents: The component r
[k+1]

s(i) is conditioned on the values rs(i−1)[k+1]

s(1) of already up-
dated components at the current step k + 1 up to s(i) and thereafter, the values

rs(n)[k]

s(i+1) from the previous step k are used. More precisely, r
[k+1]

s(i) is sampled accord-

ing to pΘ(r
[k+1]

s(i) |r
s(i−1)[k+1])

s(1) , rs(n)[k]

s(i+1), cs(n)
s(1) , AN

1 ). Experiments confirmed that such Gibbs
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sampling leads to a good approximation of the target distribution pX , even with a
small number of iterations.

4.3 Representation of Molecular Structures

Learning of complex, high-dimensional and higher-order dependencies in genera-
tive models is a hallmark of computer vision. As outlined in Sec. 3.3.3, one of the
most successful learning algorithms for processing image content are deep CNNs
[212, 213, 214, 215, 6]. Their success relies on their ability to exploit spatial and tem-
poral correlations. Other key attributes of CNNs are automatic feature extraction,
hierarchical learning and parameter sharing [216].

In order to leverage modern CNNs for the backmapping task, an explicit spatial
discretization of ambient space is required. Similar to pixels in a two dimensional
image, the three dimensional molecular structure has to be mapped onto a voxel-
based representation [217]. To this end, atoms and beads are represented as smooth
densities, γ and Γ, respectively. More specifically, Gaussian distributions are used to
model particle densities: An atom ai at position ri is represented as

γi = exp
(
− (x− ri)

2

2σ2

)
, (4.3)

where x is a spatial location in Cartesian coordinates, expressed on a discretized
grid due to voxelization, and σ is the Gaussian width, which is treated as a hyper
parameter. The same concept is used to represent CG beads.

4.3.1 Local Environment

The proposed voxel-based representation is well suited for deploying CNNs. How-
ever, it does not adapt well to large molecular structures, as the computational cost
scales with the cubic grid size. To circumvent these limitations, the autoregressive
approach is used to build-up larger structures incrementally, while restricting the
receptive field of the CNN: Rather than representing the molecular structure as a
whole, the model becomes conditional on local environments, where the information
is limited to a cutoff rcut. Such a locality assumption makes the model scalable to
larger system sizes, i.e. the computational cost scales linearly with the number of
FG particles.

Beside introducing a cutoff rcut, the local environments are centered and aligned.
This improves generalization, as translational and rotational degrees of freedom are
removed. In other words, the ML algorithm does not have to learn the correspond-
ing equivariance from (additional) training data. Note that the regular CNNs de-
ployed in this thesis are equivariant with respect to translations by construction,
but not with respect to rotations. Although promising progress has been achieved
recently regarding the design of rotational equivariant networks, it is not straightfor-
ward to extend these approaches to generative models [218, 219, 220]. It is therefore
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beneficial to make use of the given molecular geometry to reduce the rotational de-
grees of freedom. Experiments confirm that the alignment of the local environment
improves the performance of the model significantly.

Specifically, the local environment εi for an atom ai is centered around the current
bead of interest AΨi , i.e. all atoms and beads are shifted around RΨi . The local
environment contains the densities of all particles within a cubic environment of
size 2rcut. Further, the local environment is rotated to a local axis. To this end, the
bond between the current CG bead Ψi and its predecessor is aligned to the local z
axis by a rotation matrix MΨi . This yields the definition for the local environment

εi(x) =
n

∑
j=1,j 6=i

γj(MΨi(x− RΨi)) (4.4)

+
N

∑
J=1

ΓJ(MΨi(x− RΨi)), (4.5)

which extends over the region −rcut < xα < rcut, where α runs over the three
Cartesian coordinates. Note that x is discretized over a regular grid. In practice, rcut

is chosen such that several beads are present in each local environment.
In the case of forward sampling, an incomplete representation ε̃i(x) has to be

used. In particular, ε̃i(x) excludes all atoms as(j) for which j ≥ s−1(i), where s−1(i)
denotes the position of the atom ai in the ordering s,

ε̃i(x) =
s−1(i)−1

∑
j=1

γs(j)(MΨi(x− RΨi)) (4.6)

+
N

∑
J=1

ΓJ(MΨi(x− RΨi)). (4.7)

Centering and alignment of εi and ε̃i removes three translational and two rota-
tional degrees of freedom. This leaves one rotational degree of freedom around the
director axis, which the model is supposed to learn from the training data. For this
reason, the training set is augmented by means of rotations around the director axis.

4.3.2 Feature Embedding

The input of CNNs is typically a two or three dimensional image composed of mul-
tiple feature channels, i.e. each pixel or voxel is vector-valued. The different channels
provide different views on the data. As an example, an RGB image contains three
separate channels: One feature channel for every primary color. Similarly, the in-
put for DBM is composed of multiple channels to encode the presence of atoms and
beads of a certain type. In the most basic version, the representation given in Eq. 4.4
is used directly, which yields a single feature channel encoding all atoms and beads.
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FIGURE 4.4: Feature embedding of a local environment. Atoms and
CG beads of the local environment are split into separate channels
according to their atom/bead types. In addition, the atomic envi-
ronment of a current atom of interest is split in terms of molecular
interactions that distinguish between bond, bending angle, torsion
or Lennard-Jones. Afterwards, all channels are voxelized. The final
input for the generator network gΘ consists of the voxelized feature

channels and an additional noise sample. Reprinted from [208].

However, this leads to overlapping atom and bead densities that deteriorate the spa-
tial resolution of the model. Moreover, a single feature channel does not take the
different types of atoms and beads into account and therefore, important informa-
tion is lost. The opposite extreme is to assign each atom or bead to a separate feature
channel. Such a representation is not flawless as well, because the permutational
invariance of the atoms and beads is lost, i.e. atoms and beads have to be presented
in a fixed order, which reduces the generalization ability of the model dramatically.

As shown in Fig. 4.4, various feature channels are created to improve the repre-
sentation defined in Eq. 4.4. Each channel reflects a different attribute of the atoms
and beads assigned to it. For example, an attribute can encode the chemical element
or represent the set of force-field parameters associated with a specific atom type.
Further, attributes can encode the functional form of the interaction to the current
atom of interest. Interaction types distinguish between bond, bending angle, torsion
or Lennard-Jones. At its core, such interaction attributes reflect the local structure of
the molecular graph, as they represent short paths with one (bond), two (bending
angle), three (torsion) or more (Lennard-Jones) edges originating from the current
atom of interest. As such, DBM is trained to place an atom that completes the given
paths. Moreover, paths of the same length can be split up further into distinct feature
channels in order to emphasize the difference of their associated force-field param-
eters. For example, a bending angle C − C − C between carbon atoms might be
treated differently than a bending angle H − C − H between carbon and hydrogen
atoms.

Formally, let f ∈ {1, 2, . . . , N f } denote the index of the N f different feature chan-
nels. The activation function, h f (aj; ai), is defined to denote association of an atom
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aj, which is present in the local environment of the current atom of interest ai, with
a channel f

h f (aj; ai) =

1, if atom aj has feature f (with respect to ai)

0, otherwise.
(4.8)

Note, that some attributes, such as the associated atom types, have no dependence
on the current atom of interest ai. Other attributes, like the interaction channels,
have to be defined with respect to ai. In addition, an activation function H f (AJ) is
defined to encode attributes of the CG beads, i.e. the bead types. In summary, the
following featurized representation is obtained

εi(x, f ) =
n

∑
j=1,j 6=i

γj(MΨi(x− RΨi))h f (aj; ai) (4.9)

+
N

∑
J=1

ΓJ(MΨi(x− RΨi))H f (AJ). (4.10)

The featurized representation for the forward-sampling ε̃i is constructed similarly.

4.4 Conditional Generative Adversarial Network

The autoregressive approach turns the complex problem of generating molecular
structures into a sequence of much simpler decisions. However, learning the local
placement of the atoms is still a challenging task. Implementing a rule based deci-
sion algorithm, for example grounded on the geometry or energy of the structure,
quickly becomes tedious and problem specific. Even more importantly, such meth-
ods would not be able to reproduce the desired Boltzmann distribution. On the other
hand, ML models have shown the ability to learn complex distributions without re-
lying on tedious rule based programming, since decisions are learned from training
data.

At this point, the engine of DBM is introduced: A ML model to learn the lo-
cal placement of the atoms. The recent success of generative adversarial networks
(GANs) in generating sharp, photorealistic images has motivated the application
of the adversarial training approach for this task. As stated in Sec. 3.4.3, a genera-
tor gΘ with parameters Θ maps samples z ∈ Rd from a latent distribution Z into
the ambient space RD. A second model, the discriminator cΨ with parameters Ψ,
acts as a distance measure in ambient space RD for the real distribution X and the
distribution of synthetic samples gΘ(Z). However, the standard GAN approach
does not offer much control over the generative process, as the correlations between
the latent and generated distribution are essentially arbitrary. On the other hand,
reverse-mapping requires to condition the generative process on the CG structure.
Moreover, the autoregressive approach requires to provide the information of pre-
viously reconstructed atoms. To this end, a conditional GAN (cGAN) approach is
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used: Both networks gΘ and cΨ are provided with auxiliary information to generate
samples related to this additional input. As such, the discriminator does not only
evaluate the quality of the generated structure alone, but also its consistency with
the given auxiliary information. In the present work, the conditional input for both
networks consists of the local environment representation εi and the atom type ci,
denoted with ui = (εi, ci).

4.4.1 Densities and Coordinates

The CNN architecture of the critic network cΨ requires that the prediction of the
generator gΘ has a smooth density representation to perform adversarial training.
At the same time, the position of the atom has to be expressed ultimately as a point
coordinate. Two options are available to generate both consistently:

1) The generator gΘ predicts a smooth-density representation γ̂i := gΘ(z, ui),
which is collapsed back to a point coordinate r̂i. To this end, a weighted average is
computed, discretized over the voxel-grid

r̂i =
1
w

d

∑
m,k,l=1

xmklγ̂i(xmkl), (4.11)

where w = ∑d
m,k,l=1 γ̂i(xmkl) is a normalization constant and xmkl a particular coordi-

nate value within the three-dimensional grid of size d.
2) The generator gΘ directly predicts a point coordinate r̂i := gΘ(z, ui), which is

mapped to a smooth-density representation γ̂i. To this end, a Gaussian mapping is
used

γ̂i = exp
(
− (x− r̂i)

2

2σ2

)
. (4.12)

Experiments have shown that both versions perform equally well. If not stated
otherwise, the first option is used in the following. In either case, both γ̂i as well as
r̂i are differentiable and thus can be easily incorporated in a cost function.

4.4.2 Adversarial Cost Function for Training on Sequences

Training of the networks is based on the Wasserstein GAN protocol described in
Sec. 3.4.3, which is extended to incorporate conditional information. However, opti-
mal positioning of an atom is only possible if the previous atoms are placed correctly.
In other words, the autoregressive reconstruction of the molecular structure is prone
to accumulate errors. Therefore, the training protocol of the network has to take the
autoregressive nature of the approach into account. More specifically, the generator
has to be penalized for its actions in the past if they hinder the correct placement of
the current atom. To this end, backpropagation of the error signal is applied to an
entire sequence of generated atom positions.
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FIGURE 4.5: Autoregressive training. Starting from an atomistic con-
figuration taken from training data (black) the predicted atoms (red)
will be added to the local environment description for predicting the

next atom in the sequence. Reprinted from [208].

For simplicity and practical reasons, the training sequences ωI contain the in-
dices ψI of atoms corresponding to a single CG bead AI . Unlike the set ψI , the
sequence ωI is ordered according to s. The autoregressive adversarial cost-function
Car the generator gΘ aims to minimize is expressed as

min
Θ
Car(gΘ) = min

Θ
EI

[ 1
|ωI | ∑

i∈ωI

cΨ(ui, gΘ(z, ui))
]
, (4.13)

where |ωI | is the number of atoms in the sequence. The critic cΨ is trained to mini-
mize

min
Ψ
Car(cΨ) = min

Θ
EI

[ 1
|ωI | ∑

i∈ωI

cΨ(ui, γi)− cΨ(ui, gΘ(z, ui)) + λgpCgp(ui, γ̄i)
]
,

(4.14)
where Cgp is the gradient penalty to enforce the 1-Lipschitz continuity of the critic,
as explained in Sec. 3.4.3. The prefactor λgp scales the weight of the gradient penalty
and is set to λgp = 10 in all experiments. The density γ̄i is interpolated linearly
between pairs of points γi and gΘ(z, ui).

As illustrated in Fig. 4.5, the local environments presented to the network dur-
ing training are composed of atoms taken from the training data as well as already
generated atoms: The initial local environment for the first atom in a sequence ωI is
constructed from training data. After each step, the generated density γ̂i is added
to the local environment representation for the next atom in the sequence, until all
atoms in the sequence are generated. As such, the computational graph for the se-
quence generation consists of |ωI | copies of the generator. The critic judges each
step and the error signals of all |ωI | steps are accumulated. After a sequence is com-
pleted, the accumulated cost is backpropagated through the unrolled network. As
such, this approach takes dependencies among the different steps into account.
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4.5 Potential Energy as Regularizer

Ideally, the adversarial cost is already sufficient to drive the generator towards re-
producing the desired Boltzmann distribution. However, training of a GAN is no-
toriously unstable and the parameters of a GAN easily diverge. As a result, GANs
have a number of failure modes, such as mode-collapse or failure to converge (see
Sec. 3.4.3). Various forms of regularization have been deployed to address those
issues and improve generalization, including gradient penalties, weight normaliza-
tion or architectural methods [221, 222].

Unlike data sets commonly used in the ML community, the target distribution
pX (x) ∝ exp

[
U(x)
kbT

]
for the desired molecular structures is already known up to a

normalization constant, i.e. the partition function. This knowledge can be incorpo-
rated in the training of DBM to improve its performance and to monitor the training
process. Specifically, the potential energy U of generated structures is utilized as an
additional term Cpot in the cost function of the generator. As such, Cpot acts as a reg-
ularizer that effectively narrows down the functional space of the generator by pe-
nalizing structures with high potential energy. In Bayesian terms, Cpot incorporates
prior believe about the model into the training, as it helps steering the optimization
towards generating structures with high Boltzmann weight. It thereby effectively
accelerates convergence and helps to improve accuracy.
Cpot depends on the set of atoms πI corresponding to the current CG bead of

interest AI , as well as reference atoms NI = {aj|aj ∈ πJ , J 6= I, |RJ − RI | < rcut} in
the local environment of AI that are associated to different beads. In the following, et

denotes the potential energy of specific intra- and intermolecular interactions, which
are described in Sec. 2.2.2. Specifically, t runs over the interaction types: bond, angle,
dihedral, and non-bonded Lennard-Jones.

In this study, two different cost functions based on the potential energy are used.
The first prior cost function, C(1)pot, aims at minimizing the potential energy of gener-
ated structures,

C(1)pot(π̂I , NI) = ∑
t

λtet(π̂I , NI), (4.15)

where π̂I denotes atoms positioned by the generator gΘ and λt scales the different
energy terms. The second prior cost function, C(2)pot, penalizes discrepancies between
potential energies of generated and reference structures,

C(2)pot(π̂I , πI , NI) = ∑
t

λt|et(π̂I , NI)− et(πI , NI)|. (4.16)

Overall, the following cost function is minimized by the generator

min
Θ
Ctot(gΘ) = min

Θ
EI

[ 1
|ωI | ∑

i∈ωI

cΨ(ui, gΘ(z, ui)) + λpotCpot(π̂I , πI , NI)
]
. (4.17)

Note that Cpot might be in a conflict with the adversarial cost function: While the
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purely data driven adversarial cost ultimately aims at reproducing the target distri-
bution, the prior cost function encourages the generator to produce structures with
a certain potential energy. In an extreme case, where optimization is solely based
on the prior cost function, the generator is likely to collapse. Therefore, Cpot aims at
supporting the adversarial optimization, which might suffer from resolution limits
of the voxel representation, for fine tuning of the generated structures. As such, the
prior cost function is scaled with an appropriately low weight λpot, such that it pro-
vides a significant contribution to the total cost only for high-energy structures. In
particular, training starts with λprior = 0.0 and is increased slowly during the course
of optimization.

4.6 Discussion

DBM is a new method based on ML for the reverse-mapping of molecular systems
in the condensed-phase. The method is developed to avoid further energy mini-
mization for relaxation and MD simulations for equilibration of the generated FG
structures. Moreover, DBM requires little human intervention, since the reinsertion
of local details is learned from training examples.

The generative adversarial approach is used to train DBM. To this end, a train-
ing set consisting of pairs of corresponding CG and FG molecular structures is used.
While the target of the generator is to reproduce FG configurations, the CG struc-
tures are treated as conditional variables for the generative process. The generator g
reinserts missing degrees of freedom along CG variables and a discriminator c com-
pares the generated structures with the training examples. Since the input for the
discriminator consists of both, the CG and the FG configuration, the discriminator
evaluates not only the quality of the generated FG structure, but also its consistency
with the given CG structure.

A CNN architecture is used for both models that requires a regular discretization
of 3D space, which limits scaling to larger spatial structures. Therefore, the genera-
tor is combined with an autoregressive approach that reconstructs the FG structure
incrementally, i.e. atom by atom. While DBM only learns local correlations, large-
scale features are adapted from the CG structure. As such, only local information is
required in each step, which makes the method scalable to larger system sizes. In
addition, the local environment approach is a key feature for the generalizability of
DBM, which will be explored in the subsequent chapter.

The order of reconstruction is defined by a traversal of the molecular graph.
Since molecular graphs are generally undirected and can be cyclic or acyclic, the
depth-first-search algorithm is applied to obtain a ordering for the atoms. In a first
step, DBM generates atom positions with no parents and positions of subsequent
atoms are based on the atoms generated in previous steps. However, such forward
sampling only yields accurate results if the underlying graph structure has a topo-
logical order, i.e. a graph traversal in which each node is visited only after all of
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its dependencies are explored. As such, accurate sampling of molecular structures
requires more feedback than a simple forward sampling strategy provides. To this
end, a variant of Gibbs sampling is applied, which subsequently refines the initial
molecular structures by iteratively resampling the atom positions. Each further iter-
ation still updates one atom at a time, but uses the knowledge of all other atoms.

The potential energy function of the system can be incorporated in the training
of DBM to improve its performance and to monitor the training process. Specifically,
the potential energy U of generated structures is utilized as an additional term Cpot

in the cost function of the generator. As such, Cpot acts as a regularizer that steers the
optimization towards generating structures with high Boltzmann weight. It thereby
effectively accelerates convergence and helps to improve accuracy.
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Chapter 5

Performance and Transferability of
DBM: Reverse-mapping of
Syndiotactic Polystyrene

Deepbackmap (DBM) is a ML-based approach for the reverse-mapping of
condensed-phase molecular structures. The approach sequentially reconstructs
atomic environments. Moreover, the method is based on a locality assumption, i.e.
the placement of one atom is assumed to rely only on short-range force field related
features. Specifically, DBM learns to reproduce correlations in a local environment,
while large-scale features are adapted from the coarse-grained (CG) structure. It
can be hypothesized that such local environments strongly overlap across different
state points and across chemical space. Therefore, the small-scale features learned
by DBM are likely to generalize, which is examined in this chapter. In particular,
DBM is applied to a challenging condensed-phase polymeric system that consists
of syndiotactic polystyrene (sPS). The performance of DBM is analyzed in terms of
three important aspects: 1) The general reverse-mapping capability of the model is
probed, i.e. the ability to reproduce a reference all-atom (AA) distribution from CG
configurations. 2) The transferability of the model across different thermodynamic
state points is tested. To this end, DBM is trained solely on data obtained in
a high-temperature melt. Afterwards, the model is transferred towards lower
temperatures, where the system is in a crystalline state. 3) The transferability of
DBM across chemical space is examined. In particular, DBM is trained on liquids
of small molecules. After training, the model is applied to the more challenging
polymeric system of sPS. In the following, each of the three aspects is addressed in a
separate section. In the end of this chapter, the results of all sections are summarized
and discussed.

This chapter presents content that has been previously published in the following
research articles [208, 223]. The content is reproduced here with kind permission
from the other authors and the journals which published these articles.
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FIGURE 5.1: CG (left) and AA (right) representation of sPS. The CG monomer consists of
two beads, denoted A for the chain backbone and B for the phenyl ring. Reprinted from

[208].
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5.1 Set-up and Reference Data

In this section, the reference data used to train and evaluate the performance of DBM
is introduced. Moreover, specifications for DBM are given pertaining the training
and inference procedure. In addition, a second backmapping protocol based on en-
ergy minimization (EM) is introduced as a baseline method.

5.1.1 Syndiotactic Polystyrene

Polystyrene (PS) is an aromatic polymer made from the monomer styrene, which
is an organic compound consisting entirely of carbon and hydrogen. Physical and
chemical properties of PS depend significantly on its tacticity, i.e. the arrangement
of the phenyl groups along the polymer backbone. In this study, syndiotactic
polystyrene (sPS) is used, where the phenyl groups are arranged on alternating
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sides of the polymer backbone. An illustration of a single polymer chain with AA
as well as CG resolution is shown in Fig. 5.1.

Despite its simple chemical structure, sPS displays a rich conformational space
and exhibits complex polymorphic behavior. As such, sPS is a well suited candidate
to study the transferability properties of DBM. Upon thermal annealing, the sPS melt
undergoes a phase transition from amorphous to a crystalline phase at T ≈ 450 K
[224]. Five different crystalline forms of sPS have been reported experimentally.
Here, the focus is set on the α and β polymorphs, which are illustrated in Fig. 5.4.

The atomistic data in this study is reported in Liu et al. [224]; the underlying
force field is based on the work of Mueller-Plathe [225]. The system is sampled
using Replica Exchange MD simulations, which are performed using the molecular
dynamics package GROMACS 4.6 [226]. The simulations are carried out in the
NPT ensemble using the velocity rescaling thermostat and the Parrinello-Rahman
barostat. An integration time step of 1 fs is used. For additional details regarding
the simulations of the sPS system, the reader is referred to the work of Liu et al. [224].

Pairs of corresponding AA and CG snapshots are generated by mapping AA
configurations onto the CG resolution. Three data sets are constructed from uncor-
related snapshots selected from different trajectories simulated at T = 313 K, 453 K,
and 568 K. To cover a wide range of conformational space, each atomistic simula-
tion was initialized from a different structure: The simulation at 313 K started from
a β structure, at 453 K from an α structure and at 568 K from an amorphous con-
figuration. The system includes 36 polystyrene chains and each chain consists of 10
monomers. While only 12 snapshots are used for training, further 78 snapshots are
used for testing.

The fine-to-coarse mapping is based on the CG model developed by Fritz et al.
[227]. Each monomer is mapped onto two beads of different types, denoted A for
the chain backbone and B for the phenyl ring (see Fig. 5.1). Bonds are formed only
between backbone and phenyl ring beads, i.e. the CG polymer is represented as a
linear chain A-B-A-B · · · . The close connection between backbone beads A is repro-
duced indirectly by angular potentials. While the CG model is parameterized in the
melt, Liu et al. have shown that it is transferable to the crystalline phase, where it
stabilizes the experimentally observed α and β polymorphs [224].

5.1.2 Octane and Cumene

Octane and cumene are small hydrocarbons. While octane is an acyclic alkane,
cumene is aromatic. MD simulations of octane and cumene liquids are performed
using the molecular dynamics package GROMACS 5.0 [226]. The GROMOS force
field is used and topologies are generated by AUTOMATED TOPOLOGY BUILDER

[228]. Note that the GROMOS and sPS force fields differ in parameterization strate-
gies. While both force fields aim at reproducing thermodynamic properties, the
GROMOS force field is designed for a broad range of molecular systems, while the
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FIGURE 5.2: CG and AA representation of octane and
cumene. The CG mapping is based on the mapping for

sPS.

parameterization for sPS is custom-built from a specific force field designed for ben-
zene. This leads to evident differences in force field parameters, especially in terms
of the non-bonded Lennard-Jones interactions and partial charges.

The simulation boxes of octane and cumene contain 215 and 265 molecules, re-
spectively. MD simulations are performed in the NPT ensemble using the velocity
rescaling thermostat and the Parrinello–Rahman barostat. The integration time step
is set to 1 fs and both systems are sampled at 350 K.

As illustrated in Fig. 5.2, the fine-to-coarse mapping is based on the mapping for
sPS. Cumene is mapped onto one bead of type B for the phenyl ring and two beads
of type A for the backbone, each containing a methyl group and sharing the CH
group connected to the phenyl ring. Octane is mapped onto four beads of type A,
where neighboring A beads share a CH2 group.

5.1.3 Baseline Method

The results of DBM are compared to a generic backmapping strategy, as described
in Sec. 2.4.2. Specifically, the backmapping script developed by Wassenaar et al.
is utilized [47]. In a first step, this method places each particle on the weighted
average position of the CG beads it corresponds to and optionally adds a random
displacement. In addition, the protocol allows the user to apply geometric modifiers
setting the alignment of the next particle "cis", "trans", "out", or "chiral" with respect
to the other particles. The modifiers are crucial for the performance of this method
and require a careful adjustment by the user.

After the initial structure is generated, the protocol by Waasenaar et al. continues
with multiple cycles of force field based energy minimization for relaxation. Here,
the first cycle consists of 200 steps and takes only bonded interactions into account.
Afterwards, all interaction potentials are turned on and energy minimization con-
tinues with a total number of 5000 steps. The original protocol continues with sev-
eral cycles of position restrained MD simulations to equilibrate the relaxed system.
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However, comparing DBM with such equilibrated backmapped structures is not in-
sightful, since applying MD simulations would evidently reproduce the Boltzmann
distribution, which is already captured by the reference test set. In order to highlight
the capability of DBM to generate equilibrated molecular structures without MD, the
script by Waasenaar et al. is stopped after the relaxation, such that reconstructions
generated by DBM can be compared to energy-minimized configurations prior to
MD.

5.1.4 Specifications of DBM

DBM deploys a convolutional neural network (CNN) architecture with residual con-
nections for the generator g and critic c [229]. A detailed description of the network
architecture can be found in Fig. A.1 of the appendix. Training is performed using
the Adam optimizer [230]. The cutoff distance applied for the local environments
is set to rcut = 1.2 nm. To prevent numerical instabilities in the beginning of the
training, the prefactor for the regularization term based on the potential energy is
set initially to λpot = 0 and increased smoothly to λpot = 0.01. The prefactor scaling
the weight of the gradient penalty term is set to λgp = 0.1 throughout the training.
To obtain reliable gradients for the generator g, the critic c is trained five times in
each iteration while the generator g is trained once.

The autoregressive approach of DBM is prone to accumulate errors, i.e. mis-
placed atoms can hinder g to find suitable positions for subsequent atoms. As a
remedy, the potential energy is used during inference in order to spot and reject out-
liers. For each local environment, a mini-batch is constructed by random rotations
around the director axis (see Sec. 4.3.1). Since the CNN architecture is not rotational
equivariant, predictions will slightly differ depending on the relative orientations.
In addition, different prior samples z are used for each element in the mini-batch to
further increase variations of generated structures. As a straightforward solution to
mitigate the effect of misplaced atoms, the structure with the lowest potential en-
ergy is selected from the generated ensemble. While this simple procedure performs
well in practice, it should be noted that it might introduce a bias towards low-energy
structures. In addition, hydrogens are removed from the current and adjacent beads
for the reconstruction of heavy atoms, such that misplaced hydrogens do not affect
the positioning of heavy atoms.

5.2 General Performance

In this section, the general performance of DBM is probed. To this end, DBM is
trained on the high-temperature data set at 568 K, where the sPS system is in a melt
state. After training, the model is applied to test data, i.e. hold-out data at the same
temperature.
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FIGURE 5.3: Canonical distributions for various force field interaction terms at (left) T =
568 K, (middle) T = 453 K and (right) T = 313 K for reference structures (black), struc-
tures generated with a baseline method based on energy-minimization (red), and the new
method DBM (blue). The ML model DBM is trained solely on the high-temperature data
(left), but transferred to lower temperatures (middle and right). (a)–(c) C-C-C backbone an-
gle, (d)–(f) C-C-C-C backbone dihedral, (g)–(i) C-C-C-C improper dihedral, (j)–(l) Lennard-
Jones energies, and (m)–(o) radial distribution functions, g(r), of the non-bonded carbon

atoms. Reprinted from [208].
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Fig. 5.3 displays distribution functions for several structural and energetic prop-
erties of sPS. The distributions of intramolecular carbon backbone angle and dihe-
dral, shown in panels (a) and (d), are in excellent agreement with the reference distri-
butions. On the other hand, structures generated with the baseline method display
distributions that are more compressed compared to the reference system, which is
expectable from an approach based on energy minimization. As shown in panel
(g), the distribution for the carbon improper dihedral of the phenyl group is slightly
biased towards smaller angles for configurations generated with DBM. However,
the small range of angles, imposed by the planarity of the ring, has to be empha-
sized. The distribution of the baseline method is even more peaked, i.e. fluctuations
around the planar structure are significantly suppressed.

A very important aspect towards generating well-equilibrated configurations in
a condensed-phase environment is the correct reproduction of Lennard-Jones ener-
gies. Panel (j) displays the distribution of Lennard-Jones energies obtained sepa-
rately for each chain. While structures generated with DBM show slightly too large
high-energy tails, the overall match with the reference distribution is remarkably
good. The baseline method systematically and drastically over-stabilizes the sys-
tem.

Further, the pair correlation function g(r) for non-bonded carbon pairs is ana-
lyzed in panel (m). Structures generated with DBM show an excellent agreement
with the reference distribution indicating an accurate reconstruction of pairwise dis-
tances. The baseline method is also able to generate pair correlations with high ac-
curacy, but still displays some discrepancies to the reference system.

5.3 Temperature Transferability: From Melt to Crystal

After successfully recovering the state point DBM was trained on, the ability of the
model to transfer across temperatures is probed. As illustrated in Fig. 5.4, the train-
ing of DBM is fixed to the high-temperature ensemble, while testing is performed at
lower temperatures without reparameterization. Specifically, the model is trained at
568 K and tested at 453 K and 313 K. Note that the sPS system undergoes a phase
transition at ≈ 450 K, going from a melt to a crystalline state with different poly-
morphs. In particular, the test data set contains snapshots of the α and β polymorphs
that differ in the packing of the sPS chains.

The transferability of DBM to the crystalline phase of sPS is analyzed in terms of
structural and energetic distributions. In addition, a higher-order investigation facil-
itated by the Sketch-map (SM) algorithm is performed to obtain a two-dimensional
projection of configuration space [160, 161]. Finally, AA MD simulations initialized
from reference and backmapped structures are evaluated.
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FIGURE 5.4: Polymorphism of Polystyrene. At a high temperature
(T = 568 K), the polymeric system is in a melt state. At lower temper-
atures, the CG model mostly stabilizes the α polymorph at T = 453 K
and the β polymorph at T = 313 K. DBM is trained solely on the
high-temperature ensemble and its transferability to the lower tem-

peratures is probed. Reprinted from [208].

5.3.1 Distributions of Structural and Energetic Features

Distributions of structural and energetic properties at 453 K and 313 K can be found
in the middle and right column of Fig. 5.3, respectively. The reference system dis-
plays a number of significant changes upon cooling: distributions of angles become
more compressed, the side peak in the backbone dihedral vanishes, the distributions
of Lennard-Jones energies are shifted towards lower energies and the pair correla-
tion function of non-bonded carbon atoms is more peaked.

The ML model adapts remarkably well to the crystalline phase in terms of the
angle and dihedral distributions shown in panels (b,c,e,f,h,i): DBM yields distri-
butions that follow the reference distributions and become more compressed upon
cooling. Lennard-Jones energies displayed in panels (k) and (l) are also shifted and
match with the reference distributions. Moreover, non-bonded pair correlations in
the crystalline phase are reproduced with remarkable accuracy, as indicated in pan-
els (n) and (o).

On the other hand, the baseline method does not adapt well to lower tempera-
tures. Due to the energy minimization, similar distributions are obtained as for the
high-temperature data, which becomes especially apparent for the side peak of the
backbone dihedral in panels (e) and (f), as well as the flat pair correlation function
in panels (n) and (o).

5.3.2 Sketch-map

Evaluating large-scale structural features beyond pair-statistics is challenging, since
the high dimensionality of the system does not allow for a direct visualization of the
configuration space. For this reason, dimensionality reduction is applied to further



5.3. Temperature Transferability: From Melt to Crystal
81

am
orp

ho
us

reference
baseline
DBM

(a)

(b) (c)

T = 568 K (trained)

T = 453 K (transferred) T = 313 K (transferred)

FIGURE 5.5: Two-dimensional projection of the configuration space
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CG configurations. A projection of the entire data set including all
temperatures is displayed in gray for visual guidance. Reprinted

from [208].

examine the model’s accuracy at higher order. As explained in Sec. 3.2.3, linear di-
mensionality reduction techniques are often insufficient to capture the structure of
data obtained from MD trajectories. Therefore, the non-linear SM algorithm is ap-
plied to build a two-dimensional map representing proximity relationships between
sPS chains [160, 161].

The descriptors for the sPS chains consist of a set of representations for the lo-
cal environments H centered around alternating backbone carbon atoms that are
directly linked to a phenyl group. The pairwise distance between two such envi-
ronments is encoded using a similarity kernel k(H,H′) = p(H)p(H′) based on the
normalized many-body smooth overlap of atomic position (SOAP) representation
p(H) [231]. Hydrogen atoms are neglected in the SOAP representation. To compare
two sPS chains a and b, the covariance matrix

Cij(a, b) = p(Ha
i )p(Hb

j ) (5.1)
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is computed, which contains the complete information of the pairwise similarity of
all local environments that are taken into account between the two structures. In
order to obtain a global similarity kernel k(a, b), the covariance matrix Cij(a, b) has
to be mapped to a single scalar value, which is achieved using a regularized entropy
match kernel [232].

Fig. 5.5 displays the two-dimensional projection obtained with SM, where each
point represents a single sPS polymer chain and its local environment. The projec-
tion of the reference data yields a number of distinct clusters: The low-temperature
data at 313 K forms a single cluster (panel (c)), which can be associated with the β

polymorph. The high-temperature data at 568 K (panel (a)) is mapped to multiple
clusters indicating more diversity, i.e. it includes amorphous, α and other structures.
The data set at an intermediate temperature of 453 K (panel (b)) is mapped mostly
to the cluster corresponding to the α polymorph, but also contains some amorphous
and other structures.

Structures obtained with DBM display a significant overlap with the reference
points for all three data sets indicating closeness in configuration space and a high
structural fidelity of the backmapped structures. This is in strong contrast to the
energy-minimized structures obtained with the baseline method, which map to dif-
ferent areas in the two-dimensional projection of configuration space compared to
the reference configurations.

5.3.3 MD Simulation

Backmapped structures that serve as a starting point for further MD simulations
typically require lengthy preparations, such as energy minimization, temperature
ramp up phase and thermostat/barostat equilibration. In the following, the high
quality of backmapped structures obtained with DBM is demonstrated by running
MD simulations without any heat-up.

The simulations are carried out in the NPT ensemble using the velocity rescal-
ing thermostat and the Parrinello-Rahman barostat. Initial velocities are generated
according to a Maxwell distribution and an integration timestep of 1 fs is used.

Fig. 5.6 displays the time evolution of the potential energy during simulations at
(a) T = 313 K and (b) T = 568 K. Simulations starting from reference or backmapped
structures obtained with DBM show a similar evolution of the potential energy at
both temperatures and reach a steady value after ≈ 100 ps. On the other hand, sim-
ulations starting from backmapped structures obtained with the baseline method
display a different behavior: The potential energy of simulations performed at 313 K
settles at significantly higher energies compared to simulations starting from refer-
ence or DBM structures. This indicates poorly initialized structures that get trapped
into local minima with high energy barriers. However, this issue is not apparent
at 568 K, where all simulations display a similar behavior independent of their ini-
tialization. This can be rationalized with the higher temperature that increases the
probability of escaping local minima.
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FIGURE 5.6: Evolution of the potential energy in MD simulations without heat-up starting
from reference structures (black), backmapped structures obtained with the baseline method

(red) and with DBM (blue). Reprinted from [208].

5.4 Chemical Transferability: From Small Molecules to Poly-
mers

In this section, the transferability of DBM across chemical space is explored. In par-
ticular, the generalization of the model beyond the chemistry used for training is
probed by recycling the learned local correlations to make predictions for molecules
absent from the training data set. As illustrated in Fig. 5.7, the model is trained
on molecular liquids of octane and cumene molecules. After training, the model is
reused for the more complex polymeric system consisting of sPS molecules. While
sPS shares some features with cumene and octane, it is still sufficiently complex
to study the limitations of the generalization. As such, the pertinent but imperfect
match between the small molecules and sPS offers a stringent backmapping exercise.
In the following, the performance of chemically-transferred models is compared to
the performance of chemically-specific models, i.e. models trained directly on sPS. In
addition, the role of the different types of force field based regularization, introduced
in Sec. 4.5, is explored by comparing their impact on the performance of the model,
especially regarding chemical transferability. In particular, three different regular-
ization configurations are applied for the training of the model: Either C1 ("energy
minimizing") or C2 ("energy matching") terms are added to the cost-function of the
generator or no regularization is used.

The training set consists of 15 snapshots of the octane system and 8 snapshots
of the cumene system in the liquid state. After training, DBM is applied to a test
set consisting of 20 snapshots of the sPS melt. While octane and cumene liquids are
simulated at T = 350 K, the sPS melt is simulated at T = 568 K. The discrepancy in
the temperature between the training and test sets is a consequence of the different
boiling and melting points of the molecules, as the model’s transferability shall be
probed in the liquid/melt state. However, as shown in Sec. 5.3, the learned local
correlations are weakly sensitive to changes in the temperature.
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FIGURE 5.7: AA and CG representations of different molecules. A similar fine-to-coarse
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represent phenyl rings. In order to probe the chemical transferability of DBM, it is trained
solely on octane and cumene liquids and then applied to the more challenging polymeric

system of sPS. Reprinted from [223].

5.4.1 Distributions of Structural and Energetic Features

Figs. 5.8-5.10 display various distribution functions for structural and energetic
properties of sPS derived for reference structures and structures generated with
DBM. Results are shown for chemically-specific models (left), i.e. models trained
directly on sPS, and chemically-transferred models (right), i.e. models trained solely
on octane and cumene configurations.

Angle distributions can be found in Fig. 5.8. The general performance of
chemically-transferred models varies and deviates from the chemically-specific
models. The largest discrepancy can be found for the carbon backbone angle
displayed in panels (a) and (b). While models trained directly on sPS reproduce the
angles of the carbon chain with remarkable accuracy, models trained on cumene and
octane generate structures with overly broad distributions. However, the overall
accuracy of further angles (panels (c) - (h)) reproduced by the chemically-transferred
models is exceedingly satisfactory. The role of the regularization applied during
training is not significant.

Various dihedral distributions are displayed in Fig. 5.9. Again, the accuracy of
chemically-transferred models varies compared to chemically-specific models. All
models are able to reproduce the planarity of the phenyl ring with high accuracy,
as displayed in panels (c)-(d) and (g)-(h). While the distributions for the improper
dihedrals are slightly too compressed compared to the reference, the small range of
the distributions has to be emphasized. However, models trained directly on sPS
outperform the chemically-transferred models in terms of the accuracy of the back-
bone dihedrals, as shown in panels (a)-(b) and (e)-(f). In particular, the chemically-
transferred models fail to reproduce the height of the main peak and are not able to
reproduce the side peak of the proper backbone dihedral. The configuration of the
regularization again has no impact on the observed distributions.
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FIGURE 5.8: Canonical distributions for sPS at T = 568 K. (a)-(h) Various angle terms for
reference and backmapped structures. Backmapping is performed with DBM using different
regularization terms during training. Left: Chemically-specific models trained on sPS melts
at T = 568 K. Right: Chemically-transferred models trained on octane and cumene liquids

at T = 350 K. Reprinted from [223].
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Reprinted from [223].
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liquids at T = 350 K. Reprinted from [223].
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The ramification of the applied regularization during training becomes most ev-
ident in the distributions of the Lennard-Jones energies obtained for each sPS chain
separately, which are displayed in Fig. 5.10. Chemically-specific models trained
with regularization C(2)pot or without regularization reproduce the reference Lennard-
Jones energies with high accuracy. Carbon-only Lennard-Jones energies (panels (c)
and (d)) match the reference distribution almost perfectly. Lennard-Jones energies
taking hydrogens into account (panels (a) and (b)) display slightly too large high-
energy tails for the backmapped structures. In contrast, applying regularization
C(1)pot over-stabilizes the system and yields a significant shift of the distribution to-
wards lower energies. However, these observations turn around for the chemically-
transferred models: Here, regularization C(1)pot improves the performance dramati-

cally compared to models trained with C(2)pot or without regularization. While the

chemically-transferred model trained with C(1)pot reproduces the Lennard-Jones ener-
gies remarkably well, except for a small tail towards high energies, the other models
yield backmapped structures with systematically too large Lennard-Jones energies.

The pair correlation function obtained for pairs of non-bonded carbon atoms is
shown in Fig. 5.10 (e)-(f). All models are able to reproduce the pair correlation with
high accuracy.

5.4.2 Sketch-map

Similarly to the analysis in the previous section, the SM algorithm is used to probe
the accuracy of backmapped structures at higher order. In particular, SM is applied
to project environments of sPS monomers onto a two-dimensional embedding. To
this end, local environments of monomers are centered at backbone carbons that
are connected with a phenyl group and the similarity between two environments is
computed based on the SOAP representation.

Fig. 5.11 (a) displays the obtained embedding for reference structures. The
local environments of 720 sPS monomers are used to infer landmarks for the
two-dimensional map. Afterwards, further 1440 local environments are projected
onto the SM space guided by the landmarks. Fig. 5.11 (b) shows the projec-
tions of backmapped structures obtained with a chemically-specific model and a
chemically-transferred model. The underlying CG structures correspond to the
atomistic structures used for the projections of reference structures in Fig. 5.11 (a).
Both models are trained with C(1)pot. Further plots for models trained with C(2)pot or
without regularization can be found in Fig. A.2 in the appendix. The high structural
fidelity of both, the chemically-specific and the chemically-transferred model, is
highlighted by the strong overlap of the projections obtained for reference and
backmapped structures.

The two dimensional representations obtained with the SM algorithm form a
number of distinct clusters. As such, points assigned to the same cluster indicate
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FIGURE 5.11: Low-dimensional representation of the local environments of sPS monomers
at T = 568 K. For each panel, snapshots are backmapped from identical CG configurations.
(a) Landmarks (gray) and projections (black) of reference structures and the obtained cluster
centers. (b) Landmarks of reference structures (gray) and projections of structures generated
with chemically-specific (red) and chemically-transferred (blue) models trained with C(1)pot.

Reprinted from [223].

closeness in conformational space. For a further analysis, cluster centers are iden-
tified using the k-means algorithm. Each monomer embedding is assigned to the
closest cluster. This yields a confusion matrix that enables to compare the clus-
ter assignment of reference and backmapped structures. While the diagonal ele-
ments of the confusion matrix hereby refer to reference and backmapped structures
that get mapped onto the same cluster, off-diagonal elements indicate a change
of the cluster assignment upon coarse-graining and backmapping. The results for
chemically-specific and chemically-transferred models trained with different regu-
larization configurations can be found in Fig. 5.12. Interestingly, the confusion ma-
trix becomes most diagonal for models trained without regularization displayed in
panels (c) and (g), respectively. However, the reduced resolution of the CG confor-
mational space implies that an ensemble of microstates is associated with a single
CG structure, as described in Sec. 2.4. The ensemble of microstates associated with
the same CG structure might span a broad region in conformational space, which is
not guaranteed to map onto the same cluster. As such, the diagonality of the confu-
sion matrix is not necessarily a proper indicator for the quality of the backmapped
distribution. More importantly, the relative populations of the clusters have to be
reproduced, as this implies an accurate coverage of conformational space. Results
comparing the relative cluster populations can be found below each confusion ma-
trix in Fig. 5.12. Chemically-specific models trained with C(2)pot or without regular-
ization yield an excellent match of the relative populations. On the other hand, all
chemically-transferred models display a similar accuracy independent of the regu-
larization and yield relative populations that differ from the reference system.
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FIGURE 5.12: (Top) Confusion matrix for the different clusters obtained in the two-
dimensional SM. (Bottom) Relative populations of the clusters. (a)–(c) chemically-specific
models trained with (a) C(1)pot, (b) C(2)pot, and (c) no regularization. (d)–(f) chemically-

transferred models trained with (d) C(1)pot, (e) C(2)pot, and (f) no regularization. “ol” denotes
outlier. Reprinted from [223].
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5.5 Discussion

This chapter evaluates the performance and transferability of the ML-based
backmapping scheme DBM, which is introduced in Chpt. 4. In this section, the main
results are summarized and discussed.

• General reverse-mapping capability of DBM: The ability of DBM to repro-
duce a reference AA distribution from CG configurations is probed. To this
end, DBM is applied to high-temperature data of a condensed-phase molecu-
lar system of sPS chains. Based on an evaluation of structural and energetic
distributions, it is found that the ML-based method yields well-equilibrated
configurations for this particular state point. In addition, a baseline method
based on geometric rules and energy minimization is applied, which over-
stabilizes the system and therefore does not reproduce the specific state point
accurately.

• Transferability across different state points: To probe the temperature trans-
ferability, the training of DBM is fixed to melt configurations obtained at a high
temperature. Afterwards, the model is transferred to crystalline structures at
lower temperatures. DBM retains the excellent performance it has shown for
the high-temperature state point and reproduces structural and energetic dis-
tributions of the reference system with remarkable accuracy. A higher-order
investigation, facilitated by the SM algorithm, highlights the structural fidelity.
Moreover, MD simulations initialized from backmapped structures display a
similar behavior as simulations initialized from reference structures. In sum-
mary, the local correlations learned in the melt transfer remarkably well to
the crystalline state point. On the other hand, the baseline method displays
limited transferability to the crystalline phase. In particular, MD simulations
starting from backmapped configurations in the crystalline phase get stuck
in local minima. As such, human intervention would be required to achieve
proper equilibration, which hinders the automation of such reverse-mapping
processes.

The remarkable temperature transferability of DBM can be rationalized in
terms of a scale-separation: The model learns to reproduce well-equilibrated
local correlations while large-scale features are dictated by the CG configu-
ration. As such, the backmapped structure is composed of two sources of
information, 1) the learned local features and 2) the CG structure. It can
be hypothesized that most of the temperature dependence is carried by the
CG structure, as shown by Liu et al. that the applied CG model reproduces
the crystallization transition remarkably well [224]. Local features, on the
other hand, are less temperature sensitive, since they correspond primarily
to covalent interactions that operate on energy scales significantly larger
than kBT. As such, local correlations learned in the melt are transferable to
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the crystalline phase. However, it is not clear whether the other direction,
i.e. training at a low temperature, where the system is in the crystalline
phase, should lead to satisfying transferability at high temperatures, given the
broader conformational space spanned.

• Transferability across chemical space: To probe the chemical transferability,
the training of DBM is fixed to liquids of octane and cumene. Afterwards, the
model is transferred to the more complex sPS system without retraining. The
performance of such chemically-transferred models varies in terms of bonded
interactions: While the learned local correlations from octane and cumene al-
low for an accurate reconstruction of phenyl groups, reconstructed polymer
backbones display discrepancies compared to the reference system. On the
other hand, chemically-transferred models retain their capability to reproduce
non-bonded features in the challenging condensed-phase environment. They
are able to recover the distribution of Lennard-Jones energies with remarkable
accuracy and match the pair correlation function of the reference distribution
virtually identically. The high structural fidelity of backmapped structures is
further highlighted by a higher-order investigation facilitated by the SM algo-
rithm. Although backmapped structures and their reference counterparts are
not necessarily mapped onto the same cluster, as indicated by the confusion
matrix, the correct spots in the two-dimensional projection of conformational
space are covered. However, discrepancies in the relative statistical weights of
reference and backmapped microstates are observed.

The overall encouraging performance of chemically-transferred models
demonstrates that small-scale features can be shared between different
molecules. In other words, it highlights the capability of DBM to interpolate
across parts of chemical space due to its local environment representations.
Specifically, the local correlations learned from octane and cumene liquids
transfer to a great extend to sPS melts. However, the limits of generalization
are shown as well, indicated by the limited quality of the reconstructed
carbon backbone. It can be hypothesized that accuracy bottlenecks arise
from missing features. In particular, local environments of backbone carbons
connecting monomers are absent in the training examples. As such, training
on an increasing number of building blocks should systematically improve
the transferability of the backmapping model. Another important aspect
affecting the transferability of DBM are force field inconsistencies between the
molecules. Consequently, conformational spaces are evidently incoherent and
features found for fragments of sPS and cumene/octane are more dissimilar
than first expected.

Finally, the effect of the different regularization terms applied during training
is investigated. The applied regularization has marginal impact on the distri-
butions associated with covalent interactions. However, distributions for the
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non-bonded Lennard-Jones energies are significantly affected by the setting of
the regularization. This can be rationalized taking the functional form of the
interactions the regularization terms are based on into account: Harmonic or
periodic potentials are applied for the bonded interactions, which react mod-
erately to shifts of the atomic positions. On the other hand, the Lennard-Jones
potential is more sensitive, i.e. small shifts of atomic positions can yield a
dramatic change of the energy by several orders of magnitude. As such, gra-
dients computed for energy-based regularization terms are dominated by the
Lennard-Jones contributions. However, the energy-matching regularization
C(2)pot has an overall minor impact compared to training without regulariza-
tion. On the other hand, application of the energy-minimizing regularization
C(1)pot improves the performance of chemically-transferred models dramatically
and yields Lennard-Jones distributions that match the reference distribution
remarkably well. However, application of C(1)pot for chemically-specific models
over-stabilizes the system and yields structures with too low energies. It can
be hypothesized that C(1)pot encourages the model to learn more general aspects
that are better transferable across chemistry, such as maximizing the distance
between non-bonded atoms. The regularization term C(2)pot and no regulariza-
tion, i.e. solely data-driven training, emphasize more specific features found in
the particular training set. As such, the generalizability is limited and possible
force field inconsistencies can become even more severe.

In summary, the ML-based method DBM is able to generate equilibrated AA
molecular configurations based on CG structures. It is a well suited tool to automate
backmapping processes as it learns the AA reconstruction from training data and
therefore requires little human intervention. Moreover, avoiding unnecessary equi-
librations upon reverse-mapping will help to establish a tighter and more consistent
link between models at different scales.

The autoregressive reconstruction splits the backmapping task into a sequence
of less complex tasks and thereby enables a local environment representation. The
locality of DBM is a key feature to achieve remarkable transferability properties, i.e.
transferability across thermodynamic state points and across chemical space. As
such, DBM offers the perspective to recycle learned local correlations. For exam-
ple, samples of small molecules can serve as training data for a model that is ulti-
mately deployed on more complex systems. This enables the backmapping of com-
plex molecular structures without necessarily simulating the specific fine-grained
system in the first place.
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Chapter 6

Backmapping as a Quality Measure
for Coarse-grained Models

Central to the bottom-up coarse-graining (CG) approach is the potential of mean
force (PMF, Sec. 2.3.2). The PMF is an effective CG potential derived from a reference
all-atom (AA) potential, which reproduces the AA probability distribution at the CG
resolution [233, 82]. It is often approximated using simple, parameterized poten-
tials that are tuned to reproduce certain distributions observed in the reference AA
model [75, 76, 77, 85]. For example, harmonic or tabulated pair potentials between
bonded atoms can be tuned to recover the correct bond length and angle distribu-
tions, or non-bonded pair potentials can be optimized to reproduce pair distribution
functions [72]. However, accurately capturing local or pairwise structural properties
does not imply that all cross-correlations and higher-order structures, such as pro-
tein tertiary structures, are recovered as well [234, 87, 82]. Therefore, structure-based
CG methods could benefit from identifying important many-body effects in order to
assess and potentially improve the quality of CG models. In particular, the quality
of CG models is typically evaluated at the CG resolution. However, the reduced res-
olution might hinder the detection of important discrepancies between the AA and
CG ensembles.

In this chapter, backmapping is applied to assess the quality of structure-based
CG models at the AA resolution. To this end, CG models for Tris-Meta-Biphenyl-
Triazine (TMBT) are parameterized using direct Boltzmann inversion (DBI) and iter-
ative Boltzmann inversion (IBI) [57, 91, 92]. At first, the accuracy of the CG models
is evaluated in terms of targeted structural distributions at the CG resolution. After-
wards, two backmapping schemes are deployed to reintroduce atomistic details, i.e.
deepbackmap (DBM) and a backmapping protocol that relies on energy minimiza-
tion (EM). In particular, two data sets for the backmapping task are constructed: (1)
A data set consisting of AA snapshots projected onto the CG resolution and (2) a
data set consisting of snapshots obtained by MD simulations of the CG models. Fa-
cilitated by the reintroduced degrees of freedom, the quality of backmapped struc-
tures is compared between both test sets and thereby significant discrepancies are
revealed.

This chapter summarizes insights obtained during the course of a collaboration
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FIGURE 6.1: All-atom (left) and coarse-grained (right) representation
of Tris-Meta-Biphenyl-Triazine. The central triazine ring is mapped
to one bead of type A and all phenyl rings are mapped to beads of

type B.

with Dr. Scherer, Dr. May and Dr. Andrienko. While the underlying project explores
organic materials as potential candidates for organic light emitting diodes deploying
a multiscale approach, the interesting observations made with respect to the quality
assessment of the CG models through backampping is recorded, as they might serve
as a starting point for a stand-alone research project in the future. A research article
of the presented work is in preparation and will soon be submitted for publication
in a peer-reviewed journal.

6.1 Multiscale Modeling of Tris-Meta-Biphenyl-Triazine

This section outlines the structure-based parameterization strategy for the CG mod-
els as well as the two deployed backmapping schemes. The proposed method is
demonstrated at the example of Tris-Meta-Biphenyl-Triazine (TMBT), a host mate-
rial for organic light emitting diodes [235]. TMBT is a star-shaped molecule consist-
ing of a central triazine ring and three biphenyl side chains.

6.1.1 Mapping

The CG mapping for TMBT is illustrated in Fig. 6.1. In particular, two bead types are
used for the CG representation: The central triazine ring is mapped to one bead of
type A and all phenyl rings are mapped to beads of type B. The mapping M projects
an atomistic configuration r to the CG resolution, such that each bead I is positioned
at the center of mass RI of all atoms i associated with it,

RI = MI(r) = ∑
i∈ΨI

ciIri, ciI =
mi

∑i∈ΨI
mi

, (6.1)
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where ΨI is the set of atomic indices corresponding to bead I, ri is the position and
mi the mass of atom i, respectively.

6.1.2 All-atom simulation

AA Simulations are performed using the GROMACS 2019.3 package [226]. The un-
derlying force field is described in [235]. Equilibration runs are carried out for 60 ns
in the NPT ensemble at p = 1.0 bar using a Parrinello-Rahman barostat with a time
step of 1 fs. Production runs are carried out in the NVT ensemble using a velocity
rescaling thermostat at 450 K. In particular, production runs are performed for 20 ns
at the mean density of preceding NPT equilibration runs. Electrostatic interactions
are treated with a smooth particle mesh Ewald method with fourth-order cubic in-
terpolation, 0.12 nm Fourier spacing and an Ewald accuracy parameter of 10−5. A
short-range cutoff of rcut = 1.3 nm is used and long-range dispersion corrections for
energy and pressure are applied. The simulation box contains 3000 molecules.

6.1.3 Coarse-grained Force Field

The CG force field for TMBT is parameterized based on the AA NVT simulation
data. In particular, bonded interactions are parameterized deploying DBI [57], while
non-bonded interactions are obtained using IBI [91, 92]. More information on the
parameterization schemes can be found in Sec. 2.3.2.

The bonded interaction potentials derived with DBI include two bonds (A-B, B-
B), two angles (A-B-B, B-A-B), one proper (B-A-B-B) and one improper (A-B-B-B)
dihedral. The latter stabilizes the plane of the central triazine ring and the biphenyl
side chains. Distribution functions for all bonded interactions are obtained from AA
reference data mapped onto the CG resolution. The obtained interaction potentials
are smoothed and tabulated. Proper dihedral interactions are expressed as analyti-
cal functions of the Ryckaert-Belleman type, ∑5

i=0 ci cos (180◦ − φ), where ci are the
coefficients of the power expansion. The improper dihedral interactions are mod-
eled by quadratic functions. The coefficients are determined by a least squares fit to
the tabulated potentials.

Non-bonded pair interactions between the beads of type A and B are parameter-
ized using 200 steps of IBI in order to match the pair correlation functions g(r) of the
CG reference data. All CG potentials are short-ranged with a cutoff of rcut = 1.3 nm.
In each iteration step, a 200 ps CG NVT simulation at the density of the AA simu-
lation is conducted. A time step of 1 fs is used, and a velocity rescaling thermostat
at 450 K is deployed. A simple pressure correction scheme is applied every second
iteration by adding a small linear perturbation to the pair potential,

∆UPC = −A
(

1− r
rcut

)
, rcut = 1.3 nm, (6.2)
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where A = −sgn (∆p) 0.1kBT min (1, f ∆p), and ∆p = pi − ptarget. A scaling factor
f = 0.001 is chosen.

After the non-bonded pair potentials are obtained, bonded interactions are
rescaled until the distributions of the CG simulation match those of the mapped
atomistic simulation. Finally, a 20 ns production run of the CG simulation is
performed. The same simulation parameters are deployed as for the IBI iteration
steps.

6.1.4 Backmapping

Backmapping of CG TMBT is performed using the machine learning methodology
deepbackmap (DBM), which is introduced in Sec. 4 and thoroughly tested in Sec. 5.
In addition, a second method that relies on energy-minimization (EM) is applied.

DBM

DBM is trained for 40 epochs with a batchsize of 64 using the same specifications as
described in Sec. 5.1.4. The data set consists of four pairs of AA and corresponding
CG snapshots, where each snapshot contains 3000 molecules. The energy minimiz-
ing regularization term C1 is used based on the force field of the AA MD simulation.

EM

The EM-based backmapping scheme uses the software package Versatile Object-
oriented Toolkit (VOTCA) [236]. The backmapping protocol inserts atomistic
fragments into the CG structure, such that the centers of mass of atoms are aligned
with the corresponding CG bead positions. This initial AA structure is then relaxed
by four cycles of EM. The first three cycles are restraint optimizations, i.e. a strong
force is introduced to enforce a pinning of the atom positions to their respective
CG sites. In the first EM step, only bond-stretching and bending is applied. The
second step introduces bond rotations, and in the third/fourth step all interactions
are switched on.

6.2 Results

Three different CG models are examined that differ in their bonded interactions:
Model A includes two angles (A-B-B, B-A-B), one proper (B-A-B-B) and one improper
(A-B-B-B) dihedral, while bond lengths are constraint to the average bond length ob-
tained for the reference data, model B includes two bonds (A-B, B-B), two angles (A-
B-B, B-A-B), one proper (B-A-B-B) and one improper (A-B-B-B) dihedral, and model
C only includes two bonds (A-B, B-B) and two angles (A-B-B, B-A-B). All models
include the same non-bonded pair interactions between the beads of type A and B.
The quality of all CG models is first evaluated in terms of structural distributions at
the CG resolution. Afterwards, test sets are constructed for the backmapping task:
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(1) The in-distribution test set denotes a collection of AA snapshots projected onto
the CG resolution. (2) In addition, data sets are constructed consisting of snapshots
from MD simulations of the different CG models, which will be referred to as gener-
alization test sets in the following. Both backmapping methods are deployed to all
test sets.

6.2.1 Evaluation at the Coarse-grained Resolution

Structural distributions associated with the parameterized interaction potentials can
be found in Fig. 6.2. All CG models are able to reproduce the targeted structural
distributions of the reference system with remarkable accuracy. However, model A
yields a sharply peaked distribution for the bond lengths due to the applied con-
straints, as shown in panels (a) and (b). Moreover, model C does not recover the
distribution functions for the proper and improper dihedrals in panels (e) and (f),
which is expected since the corresponding interaction potentials are neglected for
this model. In addition, small deviations from the reference system are observed for
model C in terms of the pair correlation function g(r) displayed in panels (g) and
(h), as well as for the angle (B-A-B) displayed in panel (d). As such, model A and B
clearly outperform model C in terms of structural accuracy.

6.2.2 Evaluation at the All-atom Resolution

Backmapping is performed for configurations from two different sources: (1) An in-
distribution test set, which denotes AA MD simulation data that is projected onto
the CG resolution. This data is used to obtain the baseline accuracy of the backmap-
ping method. (2) A generalization test set, which denotes snapshots obtained by
MD simulations based on the CG force fields. To assess and compare the quality of
backmapped snapshots for the in-distribution and the generalization test sets, atom-
istic pair correlation functions and force distributions are analyzed.

Pair Correlation Functions

Selected pair correlation functions obtained with both backmapping schemes are
displayed in Fig. 6.3. For readability, only the AA reference system, in-distribution
test set and the generalization test set for model A are shown. Similar results for
the other CG models can be found in the appendix A.3. Applying DBM to the in-
distribution test set yields pair correlation functions that are in excellent agreement
with the atomistic reference systems, as can be seen in panels (a), (c) and (e). On the
other hand, the EM-based scheme displayed in panels (b), (d) and (f) over-stabilizes
the system and therefore yields pair correlations that are more peaked compared to
the reference system.

Turning to the results obtained for the backmapped generalization test set reveals
that DBM can not maintain its performance observed for the in-distribution test set.
The most significant differences are large tails towards small distances in the pair
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FIGURE 6.2: Structural distribution functions for various force field
terms obtained for three different CG models: Model A includes
bonded interaction potentials that include two angles (A-B-B, B-A-
B), one proper (B-A-B-B) and one improper (A-B-B-B) dihedral, while
bond lengths are constraint. Model B includes two bonds (A-B, B-B),
two angles (A-B-B, B-A-B), one proper (B-A-B-B) and one improper
(A-B-B-B) dihedral. Model C includes two bonds (A-B, B-B), two an-
gles (A-B-B, B-A-B). All models include non-bonded pair interactions
between the beads of type A and B. (a) A-B bond, (b) B-B bond, (c)
A-B-B angle, (d) B-A-B angle, (e) A-B-B-B improper dihedral, (f) B-
A-B-B proper dihedral, (g) radial distribution function g(r) of type A

beads, (h) radial distribution function g(r) of type B beads.
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DBM EM
[nm] [nm]

in-distribution 0.0056 0.0423
model A 0.0064 0.0868
model B 0.0063 0.0866
model C 0.0064 0.0884

TABLE 6.1: Root mean-square deviations for in-distribution and gen-
eralization test sets computed between backmapped and original CG

configurations.

correlation functions indicating steric clashes. On the contrary, the EM scheme yields
similar results for the generalization test set compared to the in-distribution test set.

An explanation for the observed results can be found in Fig. 6.4, which displays
a superposition of a CG structure and its corresponding backmapped configuration
deploying both backmapping schemes. The underlying CG conformation consists of
two TMBT molecules that are in close contact to each other. While structural proper-
ties of both molecules, such as distances between non-bonded beads, are consistent
with the distributions used for parameterization of the CG force field, the specific
CG conformation does not allow for an AA reconstruction that (1) is consistent with
the CG structure, i.e. atomistic details are reinserted along the CG variables, and (2)
has high statistical weight, i.e. a structure with low potential energy. Since DBM is
trained with an emphasis on the first requirement, it is not able to fulfill the second
requirement, i.e. some inter-atomic distances are too small. On the other hand, the
fragment-based scheme violates the first requirement in order to fulfill the second,
i.e. the energy minimization shifts the atomistic structure away from the underlying
CG configuration in order to avoid close atomic contacts. To underpin these insights,
the backmapped structures are projected onto the CG resolution to compute their
root mean-square deviation (RMSD) to the original CG configuration. The RMSDs
obtained for both backmapping schemes and all three CG models are displayed in
Table 6.1. The EM-based backmapping scheme yields RMSDs that are one order
of magnitude larger compared to the results obtained with DBM. In summary, MD
simulations of all CG models yield CG structures with significant probability that
contain cross-correlations inconsistent with the AA ensemble.

Forces

While atomistic pair correlation functions already reveal a discrepancy between the
AA and CG ensembles, the AA force field can be used as a quality measure that
is more sensitive to steric effects. To this end, the force field used for the AA MD
simulation is deployed to calculate forces acting on the atoms. However, as stated
in Sec. 2.4, the coarse-to-fine mapping is not unique and a single CG structure cor-
responds to an ensemble of AA microstates. As such, a direct comparison of forces
acting on reference and backmapped particles is not insightful. Therefore, atomistic
forces are coarse-grained to enable a more stringent comparison. In particular, the
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FIGURE 6.4: Superposition of a CG conformation from the general-
ization test set and backmapped conformation obtained with DBM
(left) and EM scheme (right). The CG structure yields too close atomic
contacts upon backmapping with DBM, while the AA conformation

obtained with the EM scheme is shifted from the CG origin.
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FIGURE 6.5: Force distributions for reference, backmapped in-
distribution and backmapped generalization test sets. Backmapping
with DBM (left) and the EM scheme (right). Forces are obtained de-
ploying the AA force field and are projected onto the CG resolution.

CG force FAA
I is the net force acting on all atoms i associated with bead I,

FAA
I = ∑

i∈ΨI

fAA
i , (6.3)

where ΨI is the set of atomic indices corresponding to bead I and fAA
i is the atomic

force acting on atom i.
Fig. 6.5 displays the CG force distributions obtained for the reference,

backmapped in-distribution and backmapped generalization test sets. As shown
in panel (a), DBM is able to recover the reference forces with high accuracy for
the in-distribution test set, which can be regarded as the baseline accuracy of the
backmapping method. However, the generalization test sets yield force distribu-
tions that differ significantly from the reference. In particular, long tails towards
large forces are observed for all CG models indicating steric clashes, i.e. some
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DBM EM
in-distribution 0.0473 4.9364

model A 0.4571 4.8580
model B 0.5988 4.7915
model C 0.7161 4.8574

TABLE 6.2: Jensen-Shannon divergences for in-distribution and gen-
eralization test sets computed between backmapped and reference
force distribution. Forces are obtained deploying the AA force field

and are projected onto the CG resolution.

atoms are in too close contact with each other. For a more quantitative compari-
son, Table 6.2 lists the Jensen-Shannon (JS) divergences between the reference and
backmapped force distributions. All CG models yield JS divergences that are at least
one order of magnitude larger compared to the in-distribution test set. Moreover, a
clear ranking for the deployed CG models can be obtained: The best match with the
reference force distribution is observed for model A, while the largest discrepancy
can be found for model C. This is reasonable, since model C does not take dihedrals
into account. On the other hand, force distributions obtained for the EM-based
backmapping scheme displayed in panel (b) are not insightful. All distributions
are shifted towards significantly smaller forces due to the relaxation and a clear
distinction between the models is not possible.

Towards Improving Ensemble Consistency

Evaluating forces based on the AA force field opens new routes towards improving
the CG force field parameterization schemes. An evident starting point is the mul-
tiscale coarse-graining approach, which is described in Sec. 2.3.2 [93, 60, 94]. The
force-matching functional χ aims at matching two kind of CG forces: (1) A projection
of AA forces FAA(r) onto the CG resolution, which are derived using the reference
AA force field for a AA configuration r and (2) CG forces FCG(M(r)) derived using
the parameterized CG force field for a projection M(r) of the same AA configuration
r. Note that the functional χ is therefore evaluated in the AA ensemble,

χ2[FCG] =
1

3N

〈 N

∑
I=1
|FCG

I (M(r))− FAA
I (r)|2

〉
AA

. (6.4)

As such, the actual CG ensemble is not taken into account during parameterization
of the CG force field. In order to improve the consistency between the AA and CG
ensembles, backmapping could be used to evaluate the CG ensemble in terms of the
AA force field. In particular, the functional χ could be augmented

χ2
BM[F] = χ2 +

1
3N

〈 N

∑
I=1
|FCG

I (R)− FAA
I (BM(R))|2

〉
CG

, (6.5)
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where BM(R) denotes the backmapping of configuration R from the CG ensemble.
As such, the CG force field would be tuned towards suppressing CG configurations
that yield large atomistic forces upon backmapping. Note that computing χ2

BM re-
quires a backmapping scheme BM(R) that yields consistent reconstructions, i.e. it
has to fulfill M

(
BM(R)

)
= R.

6.3 Discussion

In this chapter, backmapping is deployed to assess the quality of structure-based
CG models at the AA resolution. To this end, CG force fields for TMBT are pa-
rameterized using DBI for bonded interactions and IBI for non-bonded interactions.
Three different models are parameterized differing in their bonded interactions. It
is demonstrated that the CG models reproduce structural properties targeted in the
parameterization with remarkable accuracy. Afterwards, test sets are constructed
for the backmapping task: (1) An in-distribution test set denotes snapshots obtained
in a AA MD simulation that are projected onto the CG resolution. (2) Generalization
test sets are constructed consisting of snapshots obtained in MD simulations deploy-
ing the CG force fields. While the former is used to assess the baseline accuracy of
the backmapping method, a comparison between backmapped in-distribution and
generalization test sets yields insights into the quality of the deployed CG models.

Backmapping of CG structures is performed following two different strategies:
(1) The machine learning approach DBM and (2) a baseline method that relies on
EM are applied. While DBM is able to reproduce AA pair correlation functions for
the in-distribution test set with remarkable accuracy, application to the generaliza-
tion test sets yields AA structures that contain steric clashes, i.e. some atoms are
in too close contact with each other. On the other hand, the baseline backmapping
method is more robust and maintains its performance for both test sets. However,
the baseline method yields pair correlation functions that are overly peaked com-
pared to the atomistic reference due to the relaxation. These findings can be ratio-
nalized with respect to two requirement a backmapping scheme has to fulfill: (1)
Reconstructed AA details have to be consistent with the underlying CG structure
and (2) the backmapped structure has to agree with the Boltzmann distribution.
A visual inspection reveals that the generalization test sets contain CG conforma-
tions that prohibit reconstructing AA details that fulfill both requirements simulta-
neously. In particular, DBM generates AA structures that are consistent with the CG
structure but consequently display unavoidable steric clashes. The baseline method
generates structures with high statistical weight, i.e. low potential energies, but vio-
lates the consistency criteria. More specifically, an analysis of the root mean-square
deviations between backmapped structures projected to the CG resolution and the
original CG configurations reveal a significant shift upon application of the baseline
method, while DBM generates AA structures that are close to the given CG configu-
ration.
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A more quantitative measure to identify steric clashes is given by the Jenson-
Shannon divergence computed between force distributions. In particular, forces act-
ing on the atoms are computed deploying the AA force field and then projected
onto the CG resolution. DBM yields a force distribution for the backmapped in-
distribution test set that matches the AA reference distribution remarkably well,
while distributions for the generalization test sets display long tails towards large
forces. Moreover, the JS divergences provide a clear ranking for the quality of the
different CG models contained in the generalization test set. Force distributions ob-
tained with the baseline backmapping method are not insightful, since the involved
energy minimization yields indistinguishable force distributions that are shifted to-
wards small forces.

Future research might focus on new parameterization strategies for CG force
fields that incorporate quality measures at the atomistic resolution. Here, an ap-
proach is outlined based on the multiscale force-matching strategy that deploys
backmapping to evaluate the CG ensemble in terms of the AA force field. Typi-
cally, the force-matching functional is evaluated in the AA ensemble, i.e. it only con-
tains structural information regarding cross-correlations observed in the AA model.
However, the CG model is in general not guaranteed to reproduce cross-correlations
sufficiently. As such, a force evaluation in terms of the CG ensemble can reveal in-
consistencies of the cross-correlations and has therefore the potential to improve the
force-matching strategy. In particular, the proposed parameterization scheme aims
at suppressing CG configurations that yield large atomistic forces upon backmap-
ping.
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Chapter 7

Morphing of Local Statistics:
Mapping Through a Resolution
Bottleneck

Top-down coarse-grained (CG) models are designed to study the implications of
general rules, which are typically inferred from universal physical principles or con-
structed to reproduce specific phenomena. Unlike bottom-up CG models, top-down
models are not build upon a higher resolution model. However, top-down models
can still be related to a specific chemistry. To this end, the deployed interaction po-
tentials are tuned in order to reproduce certain properties of a target system, such as
density [103], interfacial tension [104] or partitioning of compounds between aque-
ous and hydrophobic environments [105].

An example of such chemically-specific top-down models is the Kremer-Grest
(KG) polymer model with an additional bending potential [112, 113, 114]. A relation
to real polymers can be established by matching the experimentally observed Kuhn
number, which is a key parameter to characterize a specific polymer chemistry [115,
116]. Such Kuhn scale matched model polymers can be regarded as a special case of
structure-based coarse-graining: Controlling the Kuhn number with the parameter
for the chain stiffness allows for a reproduction of emergent universal large length-
and timescale behavior. However, while this remarkably simple model is able to
retain the behavior above the Kuhn scale, particular properties below the Kuhn scale,
i.e. local properties, are not expected to resemble the target system [115]. Specifically,
solely structure-based CG models on a similar level of resolution are presumed to
yield a locally more faithful representation.

In this chapter, a machine learning (ML) method to adjust local properties of
molecular structures is introduced. In particular, two distributions of molecular
configurations are considered, 1) a distribution of configurations sampled from a
top-down CG model, which will be referred to as top-down distribution in the fol-
lowing, and 2) a target distributions, which denotes more faithful representations of
the same molecular system. It is assumed that molecular configurations from both
distributions share large-scale properties, but differ locally. To improve the quality
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of the top-down distribution, a ML model is trained to transform it, such that it re-
sembles the target distribution more closely. To this end, the ML model is trained to
reproduce local correlations learned from the target distribution, while large-scale
properties are maintained. This adjustment of local features based on a target distri-
bution will be referred to as morphing in the following.

The motivation for this project is to introduce a two-step backmapping scheme
for top-down CG models. A mismatch of local properties on the CG scale between
the top-down distribution and a particular target system can impact the quality of
backmapped structures, i.e. unphysical artifacts at the higher resolution are ex-
pected to occur more frequently. In order to reduce such artifacts already on the
CG scale, local statistics of the CG structure are corrected before serving it as an
input for the backmapping algorithm.

In the following, the method is applied to two systems: (1) A polymer melt of
syndiotactic polystyrene (sPS) sampled with the KG model with tuned bending po-
tential and (2) a condensed-phase system of the alkane tetracosane (TCS) sampled
with the Martini force field [117]. The content presented in this chapter is not pub-
lished yet.

7.1 Method

The method applied in this chapter aims at morphing local features of molecular
structures by passing them through a resolution bottleneck. The idea is inspired by
the concept of cross-modal learning (CML) known in the ML community [237, 238,
239, 240]. As illustrated in Fig. 7.1 a), CML is used to link sources of information
from different domains, for example to perform text-to-image translation. As an in-
structive example, consider a distribution of strings A and a distribution of images
B. In order to map a string to the domain of images, two autoencoders A and B
are trained to encode and decode elements a and b sampled from A and B, respec-
tively. At its core, a link between both distributions can be established by matching
the encoded distributions in the latent space. In particular, mapping betweenA and
B is performed by cross-connecting the encoder e and decoder d of both models,
i.e. dB

(
eA(a)

)
for text-to-image translation. However, connecting the latent distri-

butions of both models, i.e. the information-bottlenecks, is challenging and subject
to current research [241].

As illustrated in Fig. 7.1 b), a similar approach to CML is applied to link two
distributions of molecular structures X and Y . It is assumed that molecular con-
figurations of both distributions display similar large-scale features, but differ in
their local properties. In the following, X denotes the distribution of a top-down
CG model, while Y denotes a target distribution representing more faithful molec-
ular structures, for example obtained by a structure-based CG method. In order to
map from X to Y , a ML-based function g is introduced to learn the transformation
g(X ) ≈ Y . To this end, both distributions are linked at a lower-resolution, i.e. at an
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FIGURE 7.1: a) Illustration of cross-modal learning: An autoencoder
A is trained to encode and decode samples from a text-distributionA,
and another autoencoder B is trained to encode and decode samples
from an image-distribution B. In order map from one domain to the
other, for example to achieve text-to-image translation, the encoder e
and decoder d of both models can be cross-connected, i.e. both distri-

butions are matched at the information-bottleneck.
b) Illustration of the morphing approach: Molecular structures from
a distribution X are mapped through a resolution bottleneck in or-
der to reinsert local features learned from a target distribution Y . To
this end, an encoder es is applied, which reduces the degrees of free-
dom by a factor s, and a backmapping model gs is trained to reinsert
details. Importantly, training of gs is fixed to the target distribution
Y . Afterwards, the trained model is transferred to X . Choosing the
value for s is a tradeoff between the complexity of the backmapping

task and the impact of the morphing.
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information-bottleneck. In particular, a simple encoder es is chosen that reduces the
number of particles n by a factor s

es : R3n → R3n/s, (7.1)

, i.e. es denotes a fine-to-coarse mapping of the coordinates. Specifically, es com-
putes the center of mass for groups of s particles. Afterwards, encoded structures
are backmapped to the original resolution deploying the ML model gs, such that
gs(es

(
Y
)
) = Y . To this end, gs is trained with the deepbackmap (DBM) approach,

which is introduced in Chpt. 4. Importantly, training of gs is fixed to the target
distribution Y . Afterwards, the trained model is transferred to X to perform the
morphing gs(es

(
X
)
) ≈ Y , i.e. to reinsert local correlations into the CG structures

es(X ) learned from Y .
The value for the coarse-graining factor s scales the extent to which local features

are varied. Assuming that the backmapping scheme yields a perfect reconstruction,
the mapping gs(es(X )) is expected to yield a more accurate reproduction of Y the
larger s becomes, since the reinsertion of details becomes less restricted by the CG
representation es(X ). However, larger values of s lead to a more complex backmap-
ping exercise. As such, choosing the value for s is a tradeoff between the complexity
of the backmapping task and the impact of the morphing.

Two different morphing schemes A and B, respectively, are tested in this work.
Scheme A refers to the basic backmapping protocol outlined in Chpt. 4, i.e. the
method deploys forward sampling to obtain an initial high-resolution structure,
which is further refined applying Gibbs sampling. In contrast, scheme B skips the
forward sampling step and utilizes the original high-resolution structure drawn
from X as an initial structure, i.e. only Gibbs sampling is applied.

The proposed method is data driven, as the morphing is learned from training
data, and does not require to parameterize a force field for the given target distribu-
tion. However, the quality of morphed structures can be improved by incorporating
a simple potential energy during training of the ML model that penalizes certain
configurations in terms of bond lengths, angles and non-bonded distances. An illus-
tration of such a potential energy landscape can be found in Fig. 7.2. In particular, a
harmonic potential of the form

U(φ) =


a(φ− φmin)

2, φ < φmin

a(φ− φmax)2, φ > φmax

0, otherwise,

(7.2)

is applied as bonded interaction, where φ represents bond lengths or angles, re-
spectively, a is a scaling factor, and φmin/φmax are threshold values of the potential.
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FIGURE 7.2: Illustration of a simple energy landscape for bonded in-
teractions to improve the quality of morphed molecular structures. φ
represents bond lengths or angles, φmin and φmax are the minimum
and maximum values obtained from the distribution p(φ), and U(φ)
is a harmonic potential to penalize regions below φmin or above φmax.

Similarly, a harmonic potential for non-bonded distances d

U(d) =

a(1− d
dmin

)2, d < dmin

0, otherwise,
(7.3)

is introduced, where dmin is the minimum distance for non-bonded particles. The
values for the minimum and maximum distances/angles are obtained from the tar-
get distribution.

7.2 Set-up and Reference Data

The morphing approach is applied to a sPS polymer melt sampled with the KG
model with tuned bending potential [112, 113], and a condensed-phase system of
the alkane tetracosane sampled with the Martini force field [117]. In addition, a
higher resolution model is deployed for each system to obtain locally more faithful
molecular structures. Specifically, the molecular sPS model by Fritz et al. is used
to obtain a target distribution for the KG model [227], and an all-atom (AA) simu-
lation of TCS with the GROMOS-96 force field is performed for the Martini model
[242]. For a direct comparison of the top-down and target distributions, the higher
resolution configurations are projected onto the resolution of the top-down models.

7.2.1 Kremer-Grest Model: Syndiotactic Polystyrene

The KG model is a standard model for computer simulations of polymeric systems
[112, 113]. It is designed to study generic polymer properties with an emphasize on
computational efficiency and simplicity. As outlined in Sec. 2.3.2, the KG model is
a bead-spring model, where consecutive beads are connected via strong nonlinear
springs, i.e. the FENE potential (Eq. 2.42), and mutual interactions between all beads
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are modeled via a truncated Lennard-Jones potential (Eq. 2.43). The deployed inter-
action potentials are tuned such that topological constraints found in real polymeric
systems are reproduced, i.e. chain backbones are prohibited to pass through each
other. As such, the KG model is able to yield large scale entanglement properties
that are characteristic for long-chain polymers. In order to modify the stiffness of
the polymer chains, an additional bending potential can be introduced (Eq. 2.44),
which is scaled by a prefactor κ [114].

Matching at the Kuhn Scale

An important characteristic of many polymeric systems is their universal large-scale
behavior that manifests in scaling relations. Specifically, the mean square end-to-end
distance 〈R2

e 〉 of a polymer chain scales with the number of beads N, i.e. 〈R2
e 〉 ∝ N2ν.

In a melt state, polymers adopt the characteristics of a random-walk and ν = 1
2 .

However, local interactions of real polymers introduce correlations between
monomers that ultimately increase 〈R2

e 〉. In order to account for such correlations,
the results known for ideal chains, i.e. the random-walk behavior 〈R2

e 〉 = l2N,
requires a correction

〈R2
e 〉 = C∞l2N, (7.4)

where l is the bond length between consecutive monomers and C∞ is Flory’s charac-
teristic ratio. Note that C∞ depends on the local stiffness of the polymer chain, i.e.
emergent large-scale properties are influenced by microscopic details.

The crossover from local, chemistry specific to universal, random-walk behavior
is characterized by the Kuhn length b. It is defined by mapping the real chain onto
an equivalent ideal chain with n segments of length b that reproduces 〈R2

e 〉 and the
contour length L = Nl, i.e.,

〈R2
e 〉 = b2n, (7.5)

L = nb. (7.6)

A key parameter to characterize a specific polymer chemistry is the Kuhn number nk.
It is a dimensionless parameter, which defines the number of Kuhn segments within
a cube of length b,

nk = ρkb3, (7.7)

where ρk is the number density of Kuhn segments. It is observed that nk system-
atically correlates with emergent properties, such as the entanglement length [115,
116]. As such, nk can be used to link experimentally observed polymers with model
polymers.

While the Kuhn number nk is material specific and depends on atomic details, it
is not straightforward to infer its dependence on the deployed interaction potentials.
However, Everaers et al. have found a direct relation between the chain stiffness κ of
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the KG model and the implied Kuhn number nk,

b(κ) = b(0) + ∆b, (7.8)

∆b = 0.77σ(tanh(−.03κ2 − 0.41κ + 0.16) + 1), (7.9)

where b(0) is the bare Kuhn length in the absence of excluded volume interactions
and σ is the bead diameter [116]. Given the Kuhn length b, the corresponding Kuhn
number nk can be inferred from Eq. 7.7.

In summary, the KG model with additional bending potential offers a one param-
eter model that covers a wide range of experimentally relevant polymers. However,
while this remarkably simple model is able to retain the behavior above the Kuhn
scale, no particular effort is put into reproducing the correct local properties. There-
fore, local properties are likely to differ from the target system [115].

s = 2 s = 4 s = 6
c) resolution bottleneck

a) Fritz b) Kremer-Grest

FIGURE 7.3: Illustration of the different resolutions for sPS. a) Fritz
model, b) KG model, and c) resolution bottleneck for the morphing

approach.

Sampling

To underpin the above statement, the CG model for sPS by Fritz et al., which is al-
ready discussed in Sec. 5.1.1, is deployed to obtain a target distribution. The model,
which will be referred to as Fritz model in the following, is parameterized based on
detailed AA simulations of stereoregular PS sequences in vacuum and reproduces
the target thermodynamic properties with remarkable accuracy [227]. A simulation
of the Fritz force field is carried out in the NPT ensemble at T = 496 K using the
molecular dynamics package GROMACS 5.0 [226]. Temperature and pressure of
the system are controlled using the velocity rescaling thermostat and the Parrinello-
Rahman barostat. An integration time step of 1 fs is used and samples are recorded
every 2.5 ns. The simulation box contains 24 molecules consisting of 96 monomers
each. As illustrated in Fig. 7.3, the Fritz model has a higher resolution compared
to the KG model. In order to analyze the discrepancies between the Fritz model
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and KG model, the former is mapped onto the resolution of the KG model. Follow-
ing [115], three polystyrene monomers are mapped onto a single KG bead, which is
positioned according to the center of mass of the corresponding monomers.

Snapshots of the KG model with an equivalent number of polymers and chain
size are sampled by an NVT simulation performed with ESPResSo++ [243]. The
standard parameters for the KG model are deployed, i.e. the bead density ρ =

0.85σ−3, the distance at which the FENE potential diverges R = 1.5σ and the bond
length l = 0.965σ. Note that the model is athermal since all interaction potentials
scale with kBT. While [115] only provides values for the stiffness parameter κ asso-
ciated with isotactic and atactic polystyrene, the mean value of both, i.e. κ = 0.8815,
is deployed in this study as an educated guess to model syndiotactic polystyrene. In
general, the stiffness parameters listed in [115] are only valid at the reference tem-
perature T = 413 K. Here, a higher temperature was chosen to sample the Fritz
model, since sPS undergoes a phase transition from a melt to a crystalline phase
at T ≈ 450 K [224]. However, the authors of [115] state that static melt properties
are relatively insensitive to changes of the temperature. The bead diameter is set to
σ = 1.0 throughout the simulation, but distances are rescaled afterwards in order to
match the particle density of the Fritz model.

7.2.2 Martini Model: Tetracosane

An additional test of the morphing procedure is demonstrated for the Martini model.
As described in Sec. 2.3.2, the Martini force field is a generic CG force field for a
wide range of soft matter systems with an emphasis on biomolecules [117, 118, 119,
120]. The parameterization of the force field is based on the top-down approach for
non-bonded interactions and on the bottom-up approach for bonded interactions.
The Martini model is widely used due to its robust transferability across soft matter
systems. However, the price for the transferability of the Martini model is a less
accurate reproduction of structural features for particular systems [122].

a) All-atom b) Martini c) resolution bottleneck
s = 2 s = 3

FIGURE 7.4: Illustration of the different resolutions for TCS. a) AA
model, b) Martini model, and c) resolution bottleneck for the morph-

ing approach.
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Sampling

The Martini model is used for a MD simulation of TCS, which is an alkane hydrocar-
bon with the structural formula H(CH2)24H. An illustration of TCS can be found in
Fig. 7.4. Applying the Martini mapping rules, the Martini representation for a TCS
molecule consists of six beads of the apolar type C. A MD simulation of a TCS liquid
based on the Martini force field is carried out in the NPT ensemble at T = 400 K
using the molecular dynamics package GROMACS 5.0 [226]. Temperature and pres-
sure of the system are controlled using the velocity rescaling thermostat and the
Parrinello-Rahman barostat. An integration time step of 10 fs is used and samples
are recorded every 0.5 ns. The simulation box contains 168 molecules.

To obtain a target distribution, an AA simulation of TCS is performed. To this
end, the GROMOS-96 force field is used and topologies are generated by AUTO-
MATED TOPOLOGY BUILDER [242, 228]. The MD settings are equivalent to the set-
tings of the Martini simulation, except for a reduced integration time step of 1 fs.
The AA simulation is projected onto the resolution of the Martini model by map-
ping every four carbon atoms and associated hydrogens to their center of mass.

7.3 Results

In the following, the impact of the morphing is evaluated. To this end, the morphing
model is trained to reproduce local features of the target distribution. Afterwards,
the trained model is applied to morph configurations obtained with the top-down
model. For the evaluation, structural distributions and free energy landscapes are
analyzed. For each system, the top-down, target and morphed distributions are
compared. For both test systems, morphing is performed using both schemes out-
lined in 7.1, i.e. scheme A (forward sampling and Gibbs sampling) and scheme B
(only Gibbs sampling).

Morphing of the local statistics for snapshots obtained with the KG model is per-
formed for s = 2, 4, 6, as illustrated in Fig. 7.3 c). The training set for DBM consists
of 22 snapshots obtained with the Fritz model projected onto the KG resolution. 500
samples are used for the evaluation. For the Martini model, morphing is performed
for s = 2, 3, as shown in Fig. 7.4 c). The training set for DBM consists of 16 snapshots
obtained with the GROMOS simulation projected onto the Martini resolution. For
the evaluation, 104 samples are used.

7.3.1 Large-scale Characteristics

Table 7.1 summarizes large-scale properties for the sPS system, such as the mean
square end-to-end distance 〈R2

e 〉, radius of gyration 〈R2
g〉 and contour length L. As

expected, the Kuhn scale matched KG model yields similar large-scale characteris-
tics as the Fritz model. The biggest impact upon morphing is observed for s = 6 in
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√
〈R2

e 〉 [nm]
√
〈R2

g〉 [nm] L [nm]

Fritz model 6.06± 0.03 2.51± 0.02 22.92± 0.2
KG model 6.01± 0.03 2.43± 0.02 22.58± 0.2

scheme A, s = 2 6.02± 0.03 2.43± 0.02 22.63± 0.2
scheme A, s = 4 6.05± 0.03 2.43± 0.02 22.36± 0.2
scheme A, s = 6 6.01± 0.03 2.39± 0.02 20.87± 0.2
scheme B, s = 2 6.01± 0.03 2.43± 0.02 22.56± 0.2
scheme B, s = 4 6.00± 0.03 2.44± 0.02 22.53± 0.2
scheme B, s = 6 6.01± 0.03 2.45± 0.02 21.81± 0.2

TABLE 7.1: Large-scale characteristics of the Fritz model, KG model
and morphed structures deploying both morphing schemes A and B

with different morphing scales s = 2, 4, 6.

terms of the contour length L. However, the overall impact of DBM on the large-
scale properties is not significant.

7.3.2 Structural Distributions

The discrepancy between the Fritz and KG model becomes more apparent for local
structural features, as illustrated in Fig. 7.5. Panel (a) and (b) display distribution
functions for the bond length. While the KG model yields polymers with a sharp
bond length distribution that has a peak at 0.72 nm, polymers obtained with the Fritz
model display a broader distribution peaked at 0.79 nm. The impact of the morphing
on the bond length distribution varies and depends on the morphing scale s as well
as the applied morphing scheme. The best results deploying morphing scheme A
are obtained for s = 2, where the bond length distribution of the morphed structures
match remarkably well with the reference Fritz model. Larger values of s deteriorate
the morphing capability in terms of the bond lengths. Regarding scheme B, the best
results are obtained for the intermediate morphing scale s = 4, while s = 2 has an
negligible impact on the distribution and s = 6 yields a distribution that is too broad.

The angle distributions shown in panels (c) and (d) reveal that the KG as well as
the Fritz model yield polymeric structures that cover a wide range of angles between
consecutive bonds. However, the angle distribution for the Fritz model displays
a single peak at ≈ 135◦, while the distribution for the KG model has two peaks:
A major peak at ≈ 130◦ and a side peak at ≈ 70◦. As such, the KG model puts
higher statistical weight on small angles < 100◦ compared to the Fritz model. Both
morphing schemes are able to suppress small angles for s = 6. Smaller values of s
reduce the impact of the morphing on the angle distribution. Especially, morphing
scheme B at s = 2 has no noticeable impact.

Panels (e) and (f) display the pair correlation g(r) between non-bonded beads.
Polymer melts generated with the KG model yield a sharply peaked pair correla-
tion function, while the g(r) for melts obtained with the Fritz model are less peaked



7.3. Results
117

and reveal a shorter minimum distance between non-bonded beads. Both morph-
ing schemes smooth the pair correlation of KG structures. The best match with the
reference Fritz model is obtained for scheme A and s = 2.
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FIGURE 7.5: Canonical distributions for sPS at the KG resolution. (a)
and (b) bond length distribution, (c) and (d) angle distribution, (e)
and (f) radial distribution function g(r). Left: morphing scheme A.

Right: Morphing scheme B
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FIGURE 7.6: Canonical distributions for TCS at the Martini resolution.
(a) and (b) bond length distribution, (c) and (d) angle distribution, (e)
and (f) radial distribution function g(r). Left: morphing scheme A.

Right: Morphing scheme B

Fig. 7.6 displays structural distributions for TCS. The distributions of the bond
length shown in panels (a) and (b) differ significantly for the target and Martini
structures. While the Martini model yields a broad and Gaussian shaped bond
length distribution that extends from ≈ 0.30 nm to ≈ 0.60 nm, the distribution ob-
tained for the AA simulation projected onto the Martini resolution is more struc-
tured and compressed. It extends from ≈ 0.38 nm to ≈ 0.54 nm and has two peaks
at ≈ 0.47 nm and ≈ 0.52 nm. While DBM is able to compress the bond length dis-
tribution to the observed range of the target system, it is not capable of recovering
the specific structure of the distribution. Specifically, it fails to reproduce the second
peak at ≈ 0.52 nm. The best match with the target distribution is visually obtained
for morphing scheme A and s = 2.
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The angle distributions displayed in panels (c) and (d) follow a similar trend.
While the distributions obtained for the Martini and the projected GROMOS simu-
lation data cover a similar range, the later is more complex. The Martini distribution
displays a single peak at ≈ 135◦ and suppresses large angles > 170◦, whereas the
projected AA configurations yield two peaks at ≈ 140◦ and ≈ 170◦. None of the
morphing models is able to correct the angle distribution sufficiently. The best result
is obtained visually for scheme A and s = 3, which slightly shifts the distribution
towards larger angles.

The pair correlation function g(r) depicted in panels (e) and (f) is sharply peaked
for the Martini model. The projected AA configurations yield a less peaked distri-
bution and a slightly shorter minimum distance between non-bonded beads. Most
morphing schemes are able to smooth the pair correlation function except for scheme
B and s = 2. The best match is visually obtained for scheme B and s = 3.

7.3.3 Sketch-map Free Energy

For a further analysis of the configuration space, free energies surfaces (FESs) are
computed. However, the high dimensionality of the molecular configurations pro-
hibits a direct visualization. Therefore, the free energy is computed in terms of low
dimensional collective variables that characterize the state of the molecule. Here,
the focus is set to local properties rather than large-scale chain statistics. There-
fore, dimensionality reduction is applied to generate low-dimensional representa-
tions for a set of local features. To this end, sketch-map (SM) coordinates are de-
ployed to construct FESs. In particular, local environments H centered along the
molecular chain are constructed and the pairwise distance between two such en-
vironments is encoded using a similarity kernel k(H,H′) = p(H)p(H′) based on
the normalized many-body SOAP representation p(H) [231]. In order to obtain a
global similarity kernel k(a, b) for two molecular chains a and b, the covariance ma-
trix Cij(a, b) = p(Ha

i )p(Hb
j ) is mapped to a single scalar value using an average

kernel [232].
Fig. 7.7 displays the obtained FESs for the sPS system expressed in SM coordi-

nates. Landmarks for the SM coordinates are obtained for 524 polymer chains sam-
pled from both, the KG as well as the Fritz model. For each panel, 12000 polymer
chains are projected onto the SM space guided by the landmarks. The projections are
used to construct a two-dimensional histogram with 50 bins along each dimension.
The discretized populations Ni for each bin i are then used to compute free energies

Fi = −kBTln(Ni) + const. (7.10)

The SM FES obtained for the Fritz model is depicted in panel (a). The diverse set
of conformations obtained in the melt yields a single blob in the SM space. However,
a trend within the projected blob is observed when the positions of selected chain
structures are analyzed, as shown for a few examples within Fig. 7.7: The majority
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of sPS chains corresponding to a mean square end-to-end distance close to the ob-
served average are mapped to the blob center (example (2)). The second SM axis a2

correlates with the extension of the chain, i.e. elongated chains are mapped to small
values of a2 (example (3)) while collapsed chains are mapped to large values of a2

(example (1)). The role of first SM axis a1 is more ambiguous. While large values of
a1 can be associated with u-shaped chains (example (4)), small values of a1 can not
be associated with specific shapes of the sPS chains.

The FES for the KG model displayed in panel (b) clearly differs from the FES
obtained for the Fritz model. The overall shape of the obtained blob is more com-
pressed and has an elliptic shape. The intersection between the two FESs is small, as
the majority of KG chains are mapped to significantly smaller values for the SM axis
a1 compared with the Fritz model.

The morphed structures yield SM FESs that vary in shape. While both morphing
schemes yield distinct results, a systematic shift of the obtained blobs towards larger
values for the second SM axis a2 is observed for larger values of the morphing fac-
tor s for both schemes. The best match with the Fritz model is visually obtained for
scheme A and s = 2. On the other hand, deploying morphing scheme B with s = 2
has no significant impact on the FES, i.e. the results for the original KG model are re-
produced. This observation agrees well with the analysis of structural distributions.
Example structures (5)-(8) illustrate the impact of the morphing deploying different
morphing models. While example (5) displays an original KG structure, examples
(6)-(8) illustrate corresponding morphed structures. Deploying scheme A and s = 2
(example (6)) has visually only a minor impact on the overall chain structure. How-
ever, the resulting modifications are sufficient to reposition it to an area associated
with a high statistical weight in terms of the FES obtained for the Fritz model. Ap-
plying scheme A and s = 6 (example (7)) yields an overly smoothed chain structure
that is mapped to an area associated with low statistical weight. Morphing scheme B
and s = 4 (example (8)) results in a false structure, as indicated by an overstretched
bond. Consequently, it gets mapped to an area not covered by the Fritz distribution.

Table 7.2 displays the Jenson-Shannon (JS) divergences computed for the free
energy distributions of the morphed structures and the reference Fritz model. The
reported JS divergences underpin the results obtained from visually inspecting
Figs. 7.5 and 7.7, i.e. the smallest value is obtained for morphing scheme A and
s = 2.

scheme A scheme B

s = 2 0.436 4.654
s = 4 1.953 0.646
s = 6 3.589 3.495

TABLE 7.2: Jenson-Shannon divergences computed for the free en-
ergy distributions of morphed structures and reference Fritz config-
urations. The Jenson-Shannon divergence between distributions of
original KG configurations and reference Fritz configurations is 4.661.
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FIGURE 7.7: Free energy landscapes in sketch-map coordinates for (a)
the projected Fritz model, (b) KG model and (c)-(h) morphed struc-

tures deploying both morphing schemes A and B for s = 2, 4, 6.

The FESs for TCS are depicted in Fig. 7.8. Landmarks are obtained for 672
molecules sampled from both, the Martini as well as the AA simulation projected
onto the Martini resolution. For each FES 16800 molecules are projected onto the
SM space guided by the landmarks. Relative populations are computed over 50
bins along each dimension. The configurations obtained for the projected AA model
(panel (a)) yield a densely distributed FES that covers the upper third of the dis-
played range for the second SM axis a2. Further analysis of selected molecular con-
formations reveal that the area associated with the highest occupation at the center of
the displayed range of a1 correspond to u-shaped molecules (example (2)). Smaller
values of a1 can be associated with stretched molecular conformations (example (1)),
while larger values of a1 can be associated with rather rigid conformations contain-
ing a kink (example (3)). The occupied region corresponding to the smallest value
of a2 can be associated with collapsed molecular conformations (example (4)).

The FES obtained for the Martini model displayed in panel (b) covers a broader
range compared to the target distribution. While most of the probability mass is
still centered at larger values for a2, almost the full range of a2 is covered. Note
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that the occupied area of the projected AA distribution is completely covered by the
Martini distribution indicating that the Martini model covers a broader area in the
configuration space. Example structures (5) and (7) drawn from areas not occupied
by the AA model correspond to a condensed conformation and a zig-zag structure,
respectively.

Comparing panels (a) and (b) reveals the challenges for the morphing task: The
broad area occupied in the configuration space deploying the Martini model has
to be compressed and projected onto those regions covered by the AA model and
thereby ideally reproducing the correct relative populations. Analyzing panels (c)-
(f) indicate that this task is only partly successful. All morphing models are able
to shift the probably mass towards larger values of a2, i.e. pushing it closer to the
target distribution. While this procedure is successful for some conformations, such
as example (6), which is morphed from (5), it fails for others, such as example (8),
which is morphed from (7).
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FIGURE 7.8: Free energy landscapes in sketch-map coordinates for
(a) the projected AA model, (b) Martini model and (c)-(g) morphed

structures deploying both morphing schemes A and B for s = 2, 3.

Identifying the best performing morphing model via visual inspection of the
structural distributions in Fig. 7.6 and the FESs in Fig. 7.8 is challenging. Therefore,
the JS divergence between the free energy distribution for the target and the mor-
phed structures is displayed in Table 7.3. According to the JS divergence, scheme B
and s = 3 yields the best match.
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scheme A scheme B
s = 2 2.338 1.213
s = 3 2.925 1.197

TABLE 7.3: Jenson-Shannon divergences computed for the free en-
ergy distributions of morphed structures and projected AA config-
urations. The Jenson-Shannon divergence between distributions of
original Martini configurations and projected AA configurations is

2.239.

7.3.4 Backmapping

The motivation to morph local statistics stems from the idea to reduce artifacts upon
backmapping due to a mismatch of local properties between the distributions ob-
tained for the top-down CG model and a particular target system. Therefore, the
impact of the morphing on the quality of backmapped molecular configurations is
investigated.

For the backmapping of sPS melts from the KG resolution to the original reso-
lution of the Fritz model, DBM is trained on 10 snapshots obtained with the Fritz
model to reintroduce missing degrees of freedom. Specifically, each CG bead at the
KG resolution maps to three Fritz beads of type A and three Fritz beads of type B.
DBM is trained using regularization C(1)pot based on the force field of Fritz et al.. After
training, backmapping is performed for CG Fritz configurations, KG configurations,
and morphed KG configurations. Morphed structures are obtained with the best
performing morphing model, i.e. scheme A and s = 2.

Fig. 7.9 displays selected structural distributions for the reference Fritz model
and backmapped configurations. The baseline accuracy of DBM is probed by its abil-
ity to backmap CG Fritz configurations. DBM is capable of reproducing bond length
distribution with remarkable accuracy, as illustrated exemplary for the A-B bond de-
picted in panel (a). Distributions for the angles of backmapped structures, shown in
panels (b) and (c) are slightly too broad and fail to reproduce the correct height of the
main peak. Similar issues are observed for the dihedrals of backmapped structures
displayed in panel (d). However, the overall accuracy of intramolecular structural
distributions is satisfactory. The pair correlation function g(r) depicted in panels (e)-
(f) reveals a discrepancy between reference and backmapped structures in terms of
distances between non-bonded beads.

The quality of backmapped structures from the KG model does not signifi-
cantly differ from the baseline quality. In other words, no further artifacts upon
backmapping of the KG model can be observed compared to backmapping of the
CG Fritz structures. Consequently, the influence of the morphing on the quality of
backmapped structures is negligible.
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FIGURE 7.9: Canonical distribution for configurations backmapped
to the Fritz resolution. (a) bond A-B, (b) angle A-B-A, (c) angle B-A-B,
(d) dihedrals A-B-A-B, (e) radial distribution function for non-bonded
beads of type A, (f) radial distribution function for non-bonded beads
of type B. Backmapping is performed for projected Fritz configura-
tions (blue), KG configurations (red), and morphed KG configura-
tions (green). Morphed structures are obtained with the best perform-

ing morphing model, i.e. scheme A and s = 2.
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FIGURE 7.10: Canonical distribution of the carbon atoms for config-
urations backmapped to the AA resolution. (a) bond length distri-
bution, (b) angle distribution and (c) pair correlation function g(r).
Backmapping is performed for projected AA configurations (blue),
Martini configurations (red), and morphed Martini configurations
(green). Morphed structures are obtained with the best performing

morphing model, i.e. scheme B and s = 3.

In order to backmap the Martini structures, DBM is trained on 16 snapshots of
the AA model. Regularization C(1)pot based on the GROMOS-96 force field is applied.
After training, backmapping is performed for projected AA configurations, Martini
configurations, and morphed Martini configurations. Morphed structures are ob-
tained with morphing scheme B and s = 3.

Fig. 7.10 displays structural distributions of the carbon atoms for the reference
AA and backmapped configurations. The baseline accuracy of DBM is probed by its
ability to backmap projected AA configurations. The bond length distribution de-
picted in panel (a) is reproduced with high accuracy, whereas the angle distribution
shown in panel (b) is slightly too broad. However, the small range of angles of the
reference AA simulation has to be emphasized. The pair correlation function g(r)
displayed in panel (c) is reproduced with high accuracy.

The quality of structures backmapped from the Martini model differs signifi-
cantly from the baseline quality. Morphing of the Martini model does only yield a
minor improvement of the quality: The peaks for the bond length and angle distri-
butions slightly increase upon morphing. Most noticeable, the g(r) indicates that
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too small distances of non-bonded carbon pairs are suppressed upon morphing.

7.4 Discussion

In this chapter, a ML-based approach to adjust local properties of molecular con-
figurations is introduced. The method aims at improving the quality of structures
obtained with chemically-specific top-down models that already capture the correct
large-scale behavior of a target system, but differ locally.

In order to correct local discrepancies, molecular configurations are mapped
through a resolution bottleneck. In particular, molecular structures are projected
onto a lower resolution, and DBM is used to reinsert degrees of freedom. Impor-
tantly, DBM is trained solely on structures of a more faithful target distribution
and is afterwards transferred to configurations obtained with the top-down model.
Therefore, local details learned from the target distribution are inserted into the
top-down structures, which is referred to as morphing of local properties.

Two different morphing schemes are probed: Scheme A consists of forward sam-
pling and additional Gibbs sampling, while scheme B starts from the original top-
down structure and deploys Gibbs sampling only. It is observed that scheme B has
a smaller impact on local properties compared to scheme A. This is reasonable, as
scheme A has to generate local features from scratch, while scheme B starts from lo-
cal features obtained with the top-down model, which might hinder the morphing.

Moreover, the extent to which local features are varied can be controlled by the
resolution of the bottleneck. In particular, the number of degrees of freedom in the
resolution bottleneck is reduced by a constant factor s. For large values of s, the
reinsertion of details becomes less restricted by the representation at the resolution
bottleneck, which enables larger variations. However, the larger the value of s the
more complex the exercise for the morphing model becomes, as the dependencies
between particles, which the morphing model has to learn, also increases with s.
Therefore, choosing the value for s is a tradeoff between the complexity and the
impact of the morphing. In this study, small values of s yield superior results than
large values in most cases.

The morphing approach is tested on Kuhn scale matched KG sPS melts and liq-
uids of the alkane TCS obtained with the Martini model. The sPS melts obtained
with the KG model yield similar large-scale characteristics as the higher resolution
and solely-structure based model by Fritz et al. However, Kuhn scale matching does
not take local features below the Kuhn scale into account. As such, local structural
distributions of both models differ, which is demonstrated by projecting the melt
structures obtained with the Fritz model onto the KG resolution. In particular, the
Fritz model yields a broader range of bond lengths compared to the KG model. Fur-
thermore, the Fritz model suppresses small angles and smooths the pair correlation
function. Morphing of KG configurations is performed by DBM, which is trained
on the Fritz distribution. While morphing has no significant impact on large-scale
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characteristics, such as the mean square end-to-end distance, it is able to reconstruct
local structural features that agree remarkably well with the Fritz distribution. For a
higher-order investigation of local properties, FESs are computed in SM coordinates.
The analysis of the obtained FESs underpins the aforementioned results.

TCS liquids obtained with the Martini model are compared to AA simulations
using the GROMOS-96 force field, which are projected onto the Martini resolution.
The GROMOS configurations yield more complex structural distributions compared
to the Martini liquids. In particular, bond length and angle distributions obtained
for the GROMOS model display multiple peaks and are more compressed than the
distributions obtained for the Martini model. Moreover, a analysis of the SM FESs
indicate that the occupied region in configuration space is more compact for the
GROMOS model compared to the Martini model. To adjust local features, morphing
models are trained on the GROMOS distribution and are transferred to the Martini
configurations. Unfortunately, none of the morphing models is able to correct local
features sufficiently. It can be hypothesized that the discrepancy between the Martini
and the GROMOS model are too significant, such that morphing of local properties
is not sufficient to match both distributions, i.e. the distributions do not match at the
resolution bottleneck.

This project aims at introducing a two-step backmapping scheme for top-down
CG models, where local statistics of the CG structure are corrected before it is served
as an input for a backmapping algorithm. To assess the impact of the morphing on
the quality of backmapped structures, backmapping of morphed KG and Martini
structures is performed with DBM. Specifically, DBM is trained to increase the reso-
lution of KG structures to the level of the original Fritz model and Martini structures
to the AA level. Only a minor impact of the morphing on the quality of backmapped
structures is observed for both systems. In particular, backmapping of KG struc-
tures and CG Fritz structures already yield similar distributions of local structural
features without morphing. This can be rationalized by the robust transferability of
the backmapping model DBM, which was observed in Chpt. 5. It can be hypothe-
sized that strong local interactions, such as covalent bonds, at the higher resolution
yield local correlations that separate from larger scales. Therefore, local correlations
learned by DBM transfer well across the CG configuration space and backmapping
of KG structures yield similar local structural properties compared to backmapping
of CG Fritz structures. On the other hand, small differences in the distributions
of structural properties are observed between backmapped Martini and CG GRO-
MOS TCS liquids. However, the morphing model for TCS reproduces the complex
structural distributions of the GROMOS model only with limited accuracy, such that
morphing does not improve the quality of the backmapped liquids significantly.
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Chapter 8

Temporal Coherent Backmapping
of Molecular Trajectories

MD simulations evolve a molecular system in time and produce a trajectory, i.e. a
discretized path in phase space. Typically, consecutive frames of the trajectory are
separated by a fixed time step, which dictates the level of temporal resolution. Com-
puting time averages over a trajectory yields structural or thermodynamic proper-
ties, such as radial distribution functions or average energies. However, temporal
information stored in the trajectory can be used to compute dynamic properties as
well. In particular, time correlations can be used to link simulation results to experi-
mental observables. Examples include (1) the diffusion constant, which can be com-
puted as the integral of the velocity auto-correlation [71], (2) (infrared) absorption
spectra, which are related to the auto-correlation function of the total dipole moment
[244, 245], and (3) scattering functions that can be related to Fourier transforms of
the van Hove correlation function, which is a time-dependent pair correlation func-
tion [246, 247]. Note that some important dynamic properties, such as the dynamic
structure factor, require atomistic details for a comparison with experimental data
[248, 249]. While time correlation functions are central to the analysis of dynamic
properties, typical reverse-mapping strategies are frame-based, i.e. each molecu-
lar snapshot of the trajectory is treated separately [37, 44, 46, 47, 208, 250]. Such
backmapping schemes are not temporally aware and correlations between consec-
utive frames are only maintained via coarse-grained (CG) variables. Consequently,
reintroduced degrees of freedom between consecutive frames might decorrelate lo-
cally. As such, time correlation functions based on local, atomistic descriptors might
not be reliable for such frame-based backmapping strategies.

In this chapter, a new method to perform temporally coherent backmapping of
molecular simulation trajectories is introduced. In particular, temporal coherent
backmapping refers to reproducing shifts of atomic positions between consecutive
frames that agree with the all-atom (AA) reference system. The proposed method
aims at both, generating well-equilibrated molecular structures for each individual
frame, while maintaining temporal coherence within a series of frames. To this end,
a ML model is deployed that reconstructs a molecular structure leveraging informa-
tion from previous simulation frames. In particular, the model is conditioned on the
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g

FIGURE 8.1: Illustration of the temporal coherent backmapping ap-
proach. Consecutive trajectory frames are spaced by time τ. The ML
model generates an atomistic frame rt at time t based on the previous
atomistic state rt−τ , the current coarse-grained frame Rt and latent

sample z from a prior distribution Z .

current coarse- and previous fine-grained state, as illustrated in Fig. 8.1. In contrast
to the previously deployed GAN-based method deepbackmap (DBM), a variational
autoencoder (VAE) is used for this task.

The method is applied to two biomolecular systems: Alanine dipeptide (ADP)
and the mini protein chignolin (CLN). For each system two test sets are constructed:
(1) An in-distribution test set denotes projections of reference AA trajectories onto
the CG resolution. One part of this data set is used to train the backmapping model,
while the other part is used to evaluate its baseline accuracy. In particular, the accu-
racy of the backmapping model is analyzed regarding its ability to reproduce struc-
tural and dynamic properties of the reference system. (2) A generalization test set is
constructed by performing CG simulations deploying approximate force fields gen-
erated with CGSchNet, which is a ML-based approach for molecular coarse-graining
[251]. The trained backmapping model is transferred to this data set to analyze the
CG model on the AA resolution.

The work presented in this chapter stems from a collaboration with Kirill
Shmilovich, Moritz Hoffmann and Nick Charron. The project originates from
the long program Machine Learning for Physics and the Physics of Learning at the
Institute for Pure & Applied Mathematics that was held from 09.04.19 to 12.08.19
at the University of California, Los Angeles. This work will soon be submitted
for publication in a peer-reviewed journal. A preprint can be found at the free
distribution service arXiv [252]:
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8.1 Method

In the following, the proposed method is outlined. In addition, Markov state models
are introduced as a framework to analyze dynamic properties of molecular systems.

8.1.1 Backmapping Approach

The proposed method is similar in spirit to the previously used method DBM
(Sec. 4), but differs in some aspects including the molecular representation, the
incorporation of previous states and the architecture of the ML model. While this
section emphasizes the distinctions to DBM, a detailed description of the applied
ML model can be found in [252].

Molecular Representation

The ML model g generates all atoms of a molecular snapshot in one step, i.e. not au-
toregressively. Therefore, the local environment representation used for DBM does
not apply and molecular representations fed to the model have to capture the struc-
ture entirely. In particular, atoms and beads are represented as smooth densities
expressed on a discretized grid due to voxelization. Note that the center of mass is
removed for each molecule in order to ensure that it is fully enclosed by the grid
representation. To avoid overlaps of particle densities that could deteriorate the
spatial resolution, each particle is placed in its own feature channel, i.e. a molecule
containing N particles with positions r ∈ R3N is represented as a four-dimensional
tensor E(r) ∈ RN×s×s×s, where s is the grid size. Note that g also generates vox-
elized molecular representations Ê . However, these voxel representations can be
transformed into Cartesian coordinates r̂ = m(Ê), where m denotes a sequence of
differentiable operations. Further information on the voxel and coordinate represen-
tation can be found in Sec. 4.3.

Incorporating the Previous State

Central to the proposed method is the incorporation of the previous state in order to
achieve temporal coherence between trajectory frames. To this end, the input for the
ML model g at time t is augmented with the previous AA state at time t− τ, where τ

is the lag time between frames. In particular, the input for the generator g consists of
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the current CG frame E(Rt) and the previous AA frame E(rt−τ), where R ∈ R3N and
r ∈ R3n denote the coordinates of the N beads and n atoms, respectively. While both,
Rt and rt−τ, are taken from the reference trajectory during training, AA coordinates
r̂t−τ = m

(
g
(
E(Rt−τ), E(r̂t−2τ)

))
generated by g in the previous step are used during

prediction. As such, trajectories are backmapped autoregressively. The seed for
this autoregressive procedure, i.e. the initial AA frame at t = 0, is selected from a
presampled library of AA configurations based on the root-mean-square deviation
at the CG resolution.

Variational Autoencoder

A variational autoencoder (VAE, Sec. 3.4.2) architecture is used instead of the gen-
erative adversarial approach [190]. To this end, an encoder network e

(
E(rt)

)
is in-

troduced to generate latent samples ẑt ∈ Rd based on the current target frame rt,
where d is the dimension of the latent space. The decoder g

(
E(Rt), E(rt−τ), ẑt

)
is

then trained to reconstruct the current state rt given the low dimensional embed-
ding ẑt. As such, the model can be trained end-to-end based on a reconstruction loss
and does not rely on an additional critic network.

While the encoder e is indispensable during training, it is omitted during infer-
ence. Instead, the latent sample z is drawn from a prior distribution in order to
provide a source of randomness. This non-deterministic approach is an important
aspect for the backmapping task, since each CG structure is associated with an en-
semble of microstates. In particular, z is drawn from a 10-component Gaussian Mix-
ture Model (GMM) fitted to the latent distribution implied by the encoder instead
of the assumed prior p(z) ∼ N (0, I). The GMM ensures that the decoder operates
within densely sampled latent space regions [253].

Cost-function

The cost-function C used to train the model end-to-end consists of multiple parts.
In particular, a term Crecon vox is introduced to enforce reconstruction of the spatially
voxelized particle densities,

Crecon vox(rt, Ê) =
1

s3n
||E(rt)− Ê||22. (8.1)

Similarly, a term Crecon pos is introduced to encourage the exact reconstruction of po-
sitions

Crecon pos(rt, r̂t) =
1

3n
||rt − r̂t||22. (8.2)

In addition, the reproduction of inter-particle distances is targeted by a term CEDM

that computes the mean squared error between the Euclidean Distance Matrices
(EDM) of the target configuration r and reconstructed configuration r̂,

CEDM(rt, r̂t) =
1

2n2 ||EDM(rt)− EDM(r̂t)||22. (8.3)
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In order to achieve consistency between the backmapped structure r̂ and the given
CG configuration R, the CG mapping M is applied to introduce a reconstruction loss
CCG at the CG resolution, i.e.

CCG(Rt, r̂t) =
1

3N
||Rt −M(r̂t)||22. (8.4)

Moreover, the AA force field is deployed in Cenergy to calculate the mean squared
error between the potential energies for the target structure r and reconstruction r̂,

Cenergy(rt, r̂t) = λ(U(rt)−U(r̂t))
2. (8.5)

This term serves as a regularizer to improve the quality of backmapped structures.
It accelerates convergence and helps to match the reconstructed energetics to the
reference trajectory. Since the potential energy is sensitive to small perturbations of
the coordinates, it can become dominatingly large during early stages of training
before the model learns to localize atomic coordinates. As a remedy, the prefactor
λ is incorporated, which is set to λ = 0 at the beginning of the training and slowly
annealed up to λ = 1 using an exponential annealing schedule.

Finally, a regularization term CKL is applied to bias the approximate posterior
ẑ = e

(
E(r)

)
towards the desired prior distribution, i.e. a normal distributionN (0, I)

[190],
CKL(ẑ) = βDKL(ẑ||N (0, I)), (8.6)

where DKL denotes the Kullback–Leibler (KL) divergence. The associated prefactor
β scales the regularization loss and is set to β = 1 for the CLN model, while a cyclic
annealing schedule is applied for ADP to mitigate vanishing of the KL term [254].

8.1.2 Markov State Model

Central to the evaluation of the proposed method is the analysis of dynamic proper-
ties. To this end, Markov state models (MSMs) are deployed to identify transitions
between metastable states and their associated time scales [255, 256]. In particular,
MSMs are a framework to analysis time-series data, which is often used for MD
trajectories. At its core, an MSM decomposes configuration space into discrete and
disjoint states, and describes the dynamics of the system by a transition matrix P.
Each element of the transition matrix Pij(τ) denotes the transition probability from
state i to state j during the lag time τ. In this work, first order MSMs are consid-
ered, which are memoryless models, i.e. transitions only depend on the current
state. To construct MSMs from simulation data, the transition matrix P(τ) is typi-
cally constructed in terms of collective variables q, i.e. low-dimensional variables
that characterize the configurational state of the system. Afterwards, the transition
matrix P(τ) can be decomposed into eigenvalues λi and eigenvectors Ψi,

P(τ)Ψi = λiΨi. (8.7)
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In particular, the eigenvectors Ψi approximate the eigenfunctions of the transfer op-
erator, i.e. the continuous integral operator that the transition probability matrix
approximates [257]. Assuming that the system is in thermodynamic equilibrium,
ergodic (any state can be reached starting from any other state given enough time)
and aperiodic (different initializations of the system will lead to same equilibrium
distribution), the following statements about eigenvalues λi and eigenvectors Ψi can
be made [255]: (1) The elements of the eigenvectors correspond to each of the con-
sidered states. As such, the eigenvectors describe which states are contributing to
the process identified by the associated eigenvalue. (2) The largest eigenvalue is
always λ1 = 1 and corresponds to the stationary distribution. (3) Subsequent eigen-
values 1 > λi>1 > 0 are associated with characteristic timescales, also called implied
timescales, of dynamic processes described by the eigenvectors Ψi>1 that decay to
equilibrium.

In this work, MSMs are used to compare dynamic properties of AA and CG
simulations. Note that CG force fields typically yield faster simulation dynamics
compared to AA force fields. Moreover, dynamics of the CG system are generally
not accelerated by a constant factor, i.e. implied timescales of different processes
can be rescaled non-uniformly. Therefore, ratios of implied timescales are used for a
comparison of AA and CG dynamics.

8.2 Set-up and Reference Data

The proposed method is applied to the backmapping of two biomolecular systems:
Alanine dipeptide (ADP) and the mini protein chignolin (CLN). Illustrations of both
molecules at the AA and CG level can be found in Fig. 8.2. Data sets for training and
testing of the model consist of pairs of corresponding AA and CG trajectories, which
are obtained by mapping AA trajectories onto the CG representation. Since the test
set is obtained similarly to the training set, it will be referred to as in-distribution test
set in the following. Moreover, a generalization test set is constructed that consists of
CG trajectories obtained with a MD simulation performed at the CG resolution. To
this end, a CG force field is deployed that has been generated by CGSchNet, which
is a ML-based method for force field parameterization [258, 251].
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atomistic coarse-grained(a)

(b)

FIGURE 8.2: AA (left) and CG (right) representations of (a) alanine
dipeptide and (b) chignolin.

8.2.1 Alanine Dipeptide

ADP mimics the dynamics of the amino acid alanine in a peptide chain and has been
used as a model system in numerous previous studies [259, 260, 261, 262].

AA trajectories for ADP are obtained by MD simulations performed in explicit
water. Simulations are carried out in the microcanonical (NVE) ensemble using the
molecular dynamics package OpenMM [30]. The simulation procedure is based on
the protocol outlined in [262]. In particular, the AMBER ff-99SB-ILDN force field is
deployed and a cubic box containing 651 TIP3P water molecules randomly placed
within a volume of (2.7273 nm)3 is used [263]. The length of all bonds involving
hydrogen atoms are constrained. A time step of 2.0 fs is used and initial velocities
are sampled from a Maxwell-Boltzmann distribution at 300 K. During production,
snapshots are recorded every 1.0 ps. The training set comprises 500000 and the test
set 250000 frames, respectively.

The 22 atoms of ADP are coarse-grained into 6 beads. More specifically, the CG
representation for ADP consists of 5 backbone carbon and nitrogen atoms and the
beta carbon of the alanine side chain. Water molecules are treated implicitly, i.e. wa-
ter is removed from the representation. CG forces obtained from the AA simulations
are used for the training of CGSchNet and the training routine follows the procedure
in [251]. The force field produced by CGSchNet is deployed to generate generaliza-
tion data. The MD settings for the CG simulation are equivalent to the settings used
for the AA simulation, except for an increased integration time step of 4.0 fs. Snap-
shots are recorded every 1.0 ps and a total of 400000 samples are collected.
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8.2.2 Chignolin

The proposed method is also tested on a much more challenging data set of the mini
protein CLN, which is composed of 10 amino acids plus termini. CLN displays a
clear folding/unfolding transition when solvated in water [264].

Reference AA trajectories for CLN are provided by Wang et al. and are already re-
ported in [258]. In particular, MD simulations are performed using the MD software
ACEMD [265] deploying the CHARMM22∗ [266] force field and the TIP3P [267] wa-
ter model. Simulations are carried out in the NVT ensemble at 350 K. Adaptive sam-
pling is used to sufficiently sample folding/unfolding transitions of CLN facilitated
by a MSM [268]. 3744 independent trajectories of 50 ns are recorded aggregating
a total simulation time of ∼ 187 µs. Within each trajectory samples are spaced by
100 ps. The training set comprises 3650 trajectories and the test set 94 trajectories.
For additional details regarding the CLN simulations the reader is referred to the
work of Wang et al. [258].

While CLN consists of 175 atoms, it is coarse-grained into 10 beads. In particular,
the CG representation for CLN consists of the 10 sequential α-carbons along the
molecular backbone. Generalization data is generated by CG simulations performed
with OpenMM in the NVT ensemble at 350 K. 1000 independent trajectories are
generated starting from random configurations mapped from the AA trajectories.
Each CG trajectory consists of 4000 frames spaced by 100 ps.

8.3 Results

The performance of the trained model is evaluated in terms of its capability to re-
produce energetic, structural and dynamic properties of the AA reference system.
The model is used to backmap in-distribution as well as generalization data. The
in-distribution test set denotes projections of reference AA trajectories onto the CG
resolution. While one part of this data set is used for training, the other part is used
to evaluate the baseline accuracy of the backmapping model in the following. On
the other hand, the generalization test set corresponds to CG simulation data. Note
that the generalization data represents a more difficult backmapping exercise, as
the model has to generalize to unseen simulated data generated by a different, ap-
proximate force field than the model was trained on. As such, the final error when
performing inference of the generalization test set is a combination of the baseline
reconstruction error of the backmapping model and the error in the approximate
potential of mean force from the CGSchNet model.

8.3.1 Energetics

The potential energy distributions displayed in Fig. 8.3 serve as an indicator for the
overall structural similarity between AA reference and backmapped structures. The
energy distributions obtained for ADP shown in panel (a) reveal that the ML model
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is able to reproduce energetic properties with remarkable accuracy. While small
high-energy tails can be observed for reconstructed molecules, the overall agreement
of both test sets with the reference system is excellent.

Turning to the energy distributions for the more challenging mini protein CLN
in panel (b) indicates a similar performance. However, the model suppresses struc-
tures with low energies compared to the reference system. Moreover, a discrepancy
between the distributions obtained for the in-distribution and generalization test
sets can be observed. In particular, the energy distribution for the generalization set
displays a tail towards high energies that is not observed in the in-distribution test
set.
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FIGURE 8.3: Distributions of the potential energy obtained for the ref-
erence system, backmapped in-distribution test set and backmapped

generalization test set for (a) alanine dipeptide and (b) chignolin.

8.3.2 Free Energy Surfaces

In order to test structural agreement between the reference system and the
backmapped test sets, free energy surfaces (FESs) are constructed. The FES are
generated in the space of collective variables q, i.e. low-dimensional variables
that characterize the configurational state of the system. More specifically, relative
populations N(qi) are computed for discretized states qi yielding free energies
F(qi) = −kBTln(N(q)i) + const.

FESs and selected snapshots for ADP can be found in Fig. 8.4. FESs are com-
puted in terms of the backbone dihedrals φ and ψ, as they are well known collective
variables to describe the conformational states of ADP [261, 260]. Panel (a) displays
the FES obtained for the reference data. Three characteristic metastable states are
observed that correspond to β-sheet (snapshots 1 and 2), α-helix (snapshot 3), and
left-handed α-helix (snapshots 4 and 5) conformations of the amino acid. The base-
line accuracy of the model is evaluated by analyzing AA reconstructions for the
in-distribution test set, which can be found in panel (b). The model accurately repro-
duces all metastable states and is visually in excellent agreement with the reference
FES. In addition, the model is transferred to the generalization test set, as shown
in panel (c). The FES obtained for the backmapped generalization test set matches
remarkably well with the reference FES. However, some regions along transition
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paths between metastable states display higher relative populations compared to
the reference system, for example (φ ≈ −2,ψ ≈ −2). While the CG force field en-
ables broader and more frequent exploration of these regions of configuration space,
they are underrepresented in the AA trajectory. Therefore, it is remarkable that the
ML model generalizes to those sparsely sampled areas and reconstructs high-energy
configurations accordingly. The structural fidelity of reconstructed configurations is
further highlighted by superimposed collections of snapshots displayed in panel (d).
Note that backmapped structures of a superposition are sampled using a fixed CG
structure but varying latent samples z. As such, the superpositions emphasize the
non-deterministic aspect of the backmapping procedure. For both test sets, the ML
model reconstructs visually faithful configurations with remarkable similarity to the
AA reference data.
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FIGURE 8.4: Comparison of atomistic and backmapped FES for ADP
computed in terms of the backbone dihedrals Φ and Ψ. Ramanchan-
dran plots are shown for (a) the atomistic reference in-distribution
test set, (b) backmapped in-distribution test set and (c) backmapped
generalization test set. Labels in (a) denote locations for the five
metastable states of ADP. Panel (d) displays superimposed configu-

rations for each metastable state

Fig. 8.5 displays the FESs and selected snapshots obtained for CLN. Unlike ADP,
constructing meaningful collective variables for CLN is more challenging. To this
end, time-lagged independent component analysis (TICA) is used for dimension-
ality reduction, as outlined in Sec. 3.2.3. The TICA algorithm is applied to the AA
reference data to obtain a low-dimensional projection of the 45 pairwise α-carbon
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distances. In particular, the first two non-trivial independent components (ICs) are
used as collective variables in the following. The FES obtained for the reference data
is displayed in panel (a). Three metastable states can be identified that correspond to
the folded state (snapshot 1), mis-folded state (snapshot 2) and unfolded state (snap-
shot 3). While all metastable states can be recovered upon backmapping of the in-
distribution and generalization test sets (panel (b) and (c)), the FES for backmapped
trajectories are contracted compared to the reference FES. In particular, the diver-
sity of folded and mis-folded states is reduced upon backmapping compared to the
reference system. This is also indicated by a lower variability of backmapped struc-
tures for the folded and mis-folded states displayed in panel (d). Similarly to ADP,
backmapping of the generalization test set yields higher populations along the tran-
sition paths between metastable states compared to the in-distribution test set.
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FIGURE 8.5: Comparison of atomistic and backmapped FES for CLN
computed in terms of the first two non-trivial independent compo-
nents obtained by time-lagged independent component analysis for
the 45 pairwise α-carbon distances. Ramanchandran plots are shown
for (a) the atomistic reference in-distribution test set, (b) backmapped
in-distribution test set and (c) backmapped generalization test set. La-
bels in (a) denote locations for the three metastable states of CLN.
Panel (d) displays superimposed configurations for each metastable

state
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8.3.3 Dynamics

A key feature of the proposed method is the incorporation of the previous trajec-
tory frame as a conditional input for the ML model. Such temporal information is
required to achieve temporal coherence between consecutive frames and sets the
method apart from other backmapping schemes. In this section, kinetic properties
of backmapped trajectories are analyzed in terms of implied timescales of slow pro-
cesses obtained with MSMs. In addition, temporal coherence between frames is
tested in terms of intra-frame velocities.

Timescales of Slow Processes

MSM are constructed as outlined in Sec. 8.1.2 deploying the collective variables used
previously for the construction of FESs. In particular, the space of collective vari-
ables is decomposed using k-means clustering. For a direct comparison between
timescales and processes between different MSMs, the same cluster centers obtained
for the AA reference data are deployed for all data sets. To evaluate the similarity
between processes, the cosine similarity c between two eigenvectors Ψi and Ψj is
computed as

c =
ΨiΨj

|Ψi||Ψj|
. (8.8)

Moreover, collective variables for both systems can be computed at the CG res-
olution as well. Therefore, MSMs for CG trajectories prior to backmapping can be
constructed additionally. Note that CG force fields typically yield faster simulation
dynamics compared to AA force fields. To facilitate comparison between all trajec-
tories, implied timescales obtained for CG simulation data are rescaled such that the
timescales for the slowest process match.

Fig. 8.6 displays the implied timescales obtained for ADP trajectories. MSMs
are built with a lag time of 5 ps and 100 cluster centers are used for the state de-
composition. For all data sets, a cosine similarity > 90 % to the reference system is
observed for the first three processes. A comparison of the implied timescales be-
tween AA reference and reconstructed in-distribution trajectories can be found in
panel (a). While the first timescale matches by construction, the second and third
timescales are also in excellent agreement and match within error. Note that sub-
sequent timescales are below the resolution limit of the MSMs, since corresponding
processes are faster than the applied lag time. Implied timescales for the first three
processes obtained for the backmapped generalization set displayed in panel (b) also
match remarkably well with the reference system. Moreover, timescales obtained for
the backmapped generalization set and CG trajectories prior to backmapping are in
excellent agreement. This indicates that the CG force field yields similar (but accel-
erated) dynamics compared to the AA force field and the ML model maintains the
kinetics of slow motions present in the CG trajectories.
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FIGURE 8.6: Comparison of implied timescales for ADP obtained by
a MSM constructed in terms of the backbone dihedrals Φ and Ψ.
Timescales are shown for (a) the atomistic reference in-distribution
test set and backmapped in-distribution test set, as well as (b) the
atomistic reference in-distribution test set, backmapped generaliza-

tion test set and CG generalization test set.

A similar analysis for the timescales of slow processes obtained for CLN can be
found in Fig. 8.7. The implied timescales obtained for the AA reference system are
reproduced within error upon backmapping of the in-distribution test set, as can
be seen in panel (a). However, a cosine similarity > 90 % is only observed for the
first two processes, while the third process yields ≈ 80 % and the fourth process
≈ 60 % similarity. This indicates that the third and fourth slowest processes have
slightly changed upon backmapping. Turning to the timescales obtained for the
CGSchNet CG simulation in panel (b) reveals that timescales of different processes
are not rescaled uniformly when the CG force field is deployed. While timescale
ratios of the 1st, 3rd and 4th process are consistent with the kinetics observed for the
AA reference system, the second process is accelerated more than the others. How-
ever, cosine similarities of the first and second process is ≈ 60 %, while a similarity
< 25 % for the third and fourth process is observed. As such, timescale comparisons
are not reliable, especially for the third and subsequent processes. Backmapping of
the CG trajectory yields similar timescales compared to the CG kinetics for the first
and second process, while the third and fourth process are slowed down. In con-
clusion, the CG force field for CLN yields dynamics that differ form the AA model
and the backmapping method yields trajectories that reflect the slow dynamics of
the underlying CG trajectories.
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FIGURE 8.7: Comparison of implied timescales for CLN obtained by
a MSM constructed in terms of the first two independent compo-
nents of the time-lagged independent component analysis for the 45
pairwise α-carbon distances. Timescales are shown for (a) the atom-
istic reference in-distribution test set and backmapped in-distribution
test set, as well as (b) the atomistic reference in-distribution test set,

backmapped generalization test set and CG generalization test set.

Intra-frame Velocities

As a measure for temporal coherence, shifts of atomic positions between consecutive
frames are analyzed, i.e. intra-frame velocities. In particular, atomic velocities vi for
a frame at time t are calculated as the deviations of atomic positions si between
consecutive frames,

vi(t) =
si(t)− si(t− τ)

τ
, (8.9)

where τ is the lag time between frames. Fig. 8.8 displays the intra-frame velocity
distributions obtained for the reference trajectory and both reconstructed test sets.
In addition, intra-frame velocity distributions obtained for a second backmapping
method are shown, which is fragment-based and treats each frame separately. More
specifically, a library consisting of 40000 pairs of equilibrated AA and associated CG
frames is generated for both systems. Backmapping of a CG frame is performed
by selecting the closest matching CG structure from the library in terms of root-
mean-square deviation and projecting the corresponding AA structure onto the CG
representation.

The velocity distributions for ADP can be found in panel (a). The backmapped
distribution obtained for the in-distribution test set deploying the proposed tempo-
ral coherent backmapping scheme is in excellent agreement with the reference dis-
tribution. On the other hand, the frame-based method yields a velocity distribution
for the in-distribution test set that differs from the reference system and is shifted
towards slightly larger velocities. Backmapping of the generalization set deploying
the ML model yields significantly larger intra-frame velocities, which is reasonable,
as this reflects the acceleration of the CG dynamics.

The results obtained for CLN are displayed in panel (b). Temporal coherent
backmapping yields a velocity distribution for the in-distribution test set that
matches remarkably well with the reference distribution. Similarly to ADP, the
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frame-based method is not able to reproduce the reference velocities. Moreover, ve-
locities obtained for the generalization set deploying the ML model are significantly
larger compared to the reference system.
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FIGURE 8.8: Comparison of the intra-frame velocity distributions for
(a) alanine dipeptide and (b) chignolin as a measure for temporal
coherence. Distributions are computed for the atomistic reference,
backmapped in-distribution test set and backmapped generalization
test set. In addition, a frame-based method is applied to the in-

distribution test set.

8.4 Discussion

In this chapter, a new ML-based method for temporal coherent backmapping
of molecular trajectories is introduced. In particular, a VAE is trained to non-
deterministically reinsert atomistic details conditioned on the current CG and the
previous AA frame.

The approach is applied to two popular biomolecular systems: ADP and the
miniprotein CLN. The performance of the ML model is analyzed regarding its abil-
ity to reproduce energetic, structural and dynamic properties of the reference sys-
tem. To evaluate the baseline accuracy of the model, the method is applied to an
in-distribution test set that consists of AA structures projected onto the CG reso-
lution. Excellent agreement between the reference system and the backmapped in-
distribution test set is observed in terms of potential energy distributions. Moreover,
structural properties match remarkably well, which is tested by analyzing FESs that
are constructed in terms of collective variables. In order to analyze dynamic proper-
ties, MSMs are constructed in the space of collective variables to identify slow pro-
cesses and their associated timescales. The obtained timescales of the backmapped
trajectory agree remarkably well with the dynamics observed for the AA reference
system. Temporal coherence between consecutive frames is evaluated in terms of
intra-frame velocity distributions, which are reproduced with excellent accuracy de-
ploying the ML model. The benefit of incorporating the previous state of the system
as an additional input is highlighted by a comparison against a frame-based method,
which yields velocity distributions that differ significantly from the reference.



144
Chapter 8. Temporal Coherent Backmapping of Molecular Trajectories

In addition, backmapping of a generalization test set is performed, which con-
sists of trajectories obtained in a CG simulation based on an approximate force field
generated by CGSchNet. As such, this data represents a stress test for the generaliz-
ability of the backmapping model. Note that the final error is therefore a combina-
tion of the baseline reconstruction error of the backmapping model and the error in
the approximate potential of mean force from the CGSchNet model. While energetic
and structural properties of the reference system are reproduced with remarkable
accuracy upon backmapping of this generalization data, dynamic properties differ.
Timescale ratios of slow transitions between metastable states are recovered for ADP,
but deviate from the AA reference for CLN. Moreover, intra-frame velocities of the
backmapped generalization trajectories are significantly larger compared to the ref-
erence. However, a difference of dynamic properties is expected for this test set,
since backmapped trajectories reflect the kinetics of the underlying CG trajectories
rather than the AA reference system. CG simulations typically display faster dy-
namics compared to AA simulations as a direct consequence of deploying a reduced
representation. Averaging over degrees of freedom effectively smoothens the en-
ergy landscape yielding a faster exploration of phase space. However, timescales for
transitions between metastable states are typically not rescaled uniformly yielding
timescale ratios that differ from the AA reference system [34].

Moreover, the VAE approach non-deterministically reinserts atomistic details
along the CG variables. This feature is highlighted by a visual inspection of
backmapped structures sampled from a fixed CG structure but differing latent sam-
ples. This procedure yields an ensemble of AA microstates that are all consistent
with the given CG structure but still display variations.

In summary, the proposed method is able to backmap CG trajectories such that
(1) each reconstructed frame has a high statistical weight, (2) each frame is a valid
reconstruction of the given CG structure, i.e. atomistic degrees of freedom are rein-
serted along the CG variables and (3) consecutive frames are temporally coherent,
i.e. shifts in atomic positions between consecutive frames follow the same distribu-
tion as the AA reference system. As such, the proposed method offers the ability to
analyze the dynamics of a CG simulation at atomistic resolution.

Future work might focus on different strategies to improve the training protocol
of the approach: (1) In order to improve sampling of configuration space, training
samples of sparsely populated regions in configuration space can be emphasized
more. This could be realized by accompanying training samples with thermody-
namic or dynamical path weights. (2) An autoregressive training protocol could be
applied to improve the temporal coherence. In particular, a recurrent neural net-
work approach could add information of multiple consecutive frames to the gradi-
ents used during backpropagation. (3) To further encourage the ML model to uti-
lize knowledge of previous states for its predictions, the training loss could be aug-
mented with a reconstruction error of properties that are explicitly based on such
information, for example intra-frame velocities.
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Chapter 9

Conclusion and Outlook

To conclude this thesis, the main results of each chapter are summarized to high-
light the importance of the results presented and the conclusions drawn. The first
two sections recapitulate the underlying theory and refresh the motivation for this
project. Afterwards, summaries of each of the subsequent chapters are presented,
which restate the discussion sections of each chapter. Finally, an outlook for future
research related to this thesis is given.

9.1 Multiscale Modeling

Computer simulations of molecular systems are routinely used to study molecu-
lar processes. The resolution of such computer models is generally only bound by
computational effort. However, while quantum mechanics provides the most fun-
damental description of matter, ab initio molecular simulations quickly reach their
limits. As a remedy, a coarser description of matter can be used to push the limits
of accessible length- and timescales. In a first step, the resolution of molecular sys-
tems can be reduced to the level of single atoms. Such all-atom (AA) models are
routinely implemented by molecular dynamics (MD) simulations that numerically
integrate Newton’s equation of motion. The interaction potentials for the atoms are
often empirical and aim at correctly modeling structural, thermodynamic and/or
dynamic properties of a target system [24]. However, the exploration of many rel-
evant molecular processes, such as protein folding or binding, requires access to
length- and timescales that are still out of reach for AA models [27, 28]. Therefore,
the resolution is further reduced by averaging over atomistic degrees of freedom.
Such coarse-grained (CG) models represent chemical compounds as particles in a
similar fashion to AA MD simulations. In general, coarse-graining reduces the com-
putational effort of the simulation and enables larger integration time steps [31, 32].
In addition, averaging over degrees of freedom yields "softer" interactions between
coarse-grained sites and therefore, dynamics of the CG system are accelerated and a
faster exploration of configuration space is possible.

The exploration of some phenomena require to consider wide range of length-
and timescales, because molecular processes on multiple scales can be linked and
interwoven. This is especially true for soft matter systems, where local interactions
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can impact large scale conformational changes. Therefore, a single model is some-
times not sufficient to capture the interplay of processes that are potentially linked
to various different scales. As a solution, multiscale modeling (MM) can be applied,
where models of different resolution are combined to address phenomena at mul-
tiple scales [38, 39, 36]: While coarse-graining is deployed to study the large-scale
behavior of the system, higher resolution models are used to explore the behavior at
local scales.

This thesis focuses on an important aspect of MM that is referred to as reverse-
mapping: To establish a tight and consistent link between models of different resolu-
tions, an approach to reintroduce details based on a lower resolution representation
is required. Reverse-mapping is routinely used in the MM community to analyze
simulation results on a local scale [40, 41, 42, 43], or for a direct comparison with ex-
perimental data, for example obtained with spectroscopic methods [44]. Moreover,
reverse-mapping is applied to obtain a starting point for further high-resolution sim-
ulations [45, 41], or to asses the stability and accuracy of the obtained CG structures
[45].

A reverse-mapping scheme has to generate new degrees of freedom and thereby
take all their dependencies into account. In particular, generated microstates should
be consistent with the given CG representation and should agree with the Boltzmann
distribution at a particular state point. Most existing reverse-mapping schemes gen-
erate an initial atomistic structure that requires subsequent energy minimization for
relaxation. In addition, MD simulations are typically performed to recover the cor-
rect statistical weights for the reinserted degrees of freedom. The computational
effort for the subsequent energy minimization and equilibration procedures of such
reverse-mapping schemes can become significant. As such, applications to large sys-
tems or high-throughput simulations are still limited. In addition, poorly initialized
structures can get trapped into local minima with high energy barriers. Therefore,
human intervention is frequently required that hinders the automation of such pro-
cesses.

9.2 Machine Learning

In this work, machine learning (ML) is applied to improve the state-of-the-art in
reverse-mapping of molecular structures. In the past decades, ML has emerged as
a prominent research field that has a transformative impact on many domains, such
as computer vision [6], speech recognition [7] or medical image analysis [8]. At its
core, ML algorithms construct statistical models from data without relying on ex-
plicit program instructions. As such, the recent success of ML models is further
fueled by the availability of large data sets. Recently, ML is gaining significant at-
tention in many fields of modern science as well, especially particle physics and
computational chemistry [9, 10, 11].
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Within the field of ML, deep neural networks (DNNs) have received considerable
attention. In particular, DNNs have dramatically improved the state-of-the-art in
computer vision [6]. For example, deep generative models are able to synthesize
photorealistic images of complex objects, such as human faces or animals [50, 51, 52].
At its core, DNNs are computational models that are based on a multiscale approach:
Multiple layers are arranged subsequently and each layer transforms its input into a
more abstract and composite representation, i.e. DNNs learn representations of data
with multiple levels of abstraction. It is shown empirically that such deep learning
approaches are successful in discovering complex structures in large data sets.

A milestone in the development of DNNs are convolutional neural networks
(CNNs). Each layer of a CNN consists of a bank of convolutional kernels, also called
filter, that slide over the input of the layer. This procedure yields a translation-
equivariant response for the applied filters. Unlike traditional approaches, CNNs
use parameterized filters, i.e. relevant pattern are learned from the data. This allows
CNNs to learn a suitable representation of the data for a given task without rely-
ing on handcrafted features. In addition, the CNN approach benefits from weight
sharing, i.e. learned filters are transferred across the whole input, which reduces the
number of required parameters dramatically.

DNNs are routinely used for generative modeling, i.e. to provide an estimate for
the probability pΘ(x) of an observation x, where Θ are the parameters of the model.
The general goal is to approximate a target distributionX , i.e. to find the optimal pa-
rameters Θ∗ such that pΘ∗(x) ≈ pX (x). The major route to train a generative model
is to maximize the data likelihood. However, directly assessing the data likelihood is
typically based on approximations or computational models that provide a tractable
functional form for the likelihood, which might limit the expressivity of the model.

Implicit generative models do not require direct access of the likelihood function
but define a stochastic procedure to generate new samples. Generative adversar-
ial networks (GANs) have become one of the most successful implicit generative
models known in the ML community [198, 199]. At its core, a GAN consists of two
competing models trained in a game: A generator gΘ produces synthetic samples by
transforming samples z from a prior distribution. A second model, the discriminator
cΨ with parameters Ψ, has to distinguish between synthetic samples gΘ(z) from the
generator and real samples x from the training setD = {x}, where x are drawn from
the target distribution X . As such, the discriminator cΨ acts as a distance measure
for the target distribution X and the distribution of synthetic samples gΘ(Z). This
distance measure serves as a training objective for the generator gΘ, i.e. gΘ is trained
to minimize this distance.
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9.3 Methodology of Deepbackmap: Adversarial Reverse-
mapping of Condensed-phase Molecular Structures

Chapter 4 forms the core of this thesis. The insights gained from the preceding the-
ory chapters lead to the development of deepbackmap (DBM): A new method for
the reverse-mapping of molecular structures based on ML. A key feature of DBM
is its applicability to condensed-phase molecular systems. Unlike other reverse-
mapping schemes, DBM aims at directly predicting equilibrated molecular struc-
tures that resemble the Boltzmann distribution. As such, the method does not rely
on further energy minimization for relaxation and MD simulations for equilibration
of the fine-grained structures. Moreover, DBM requires little human intervention,
since the reinsertion of local details is learned from training examples.

DBM is trained with the generative adversarial approach. In particular, pairs of
corresponding CG and fine-grained molecular structures are used for the training.
While the fine-grained configurations serve as the target distribution, the CG struc-
tures are treated as conditional variables for the generative process: The generator
has to generate missing degrees of freedom based on the CG structure. In order to
evaluate the performance of the generator, a discriminative network is used to com-
pare the generated structures with the training examples. Specifically, the input for
the discriminator consists of both, the CG and the fine-grained configuration. As
such, the discriminator evaluates not only the quality of the generated fine-grained
structure, but also its consistency with the given CG structure.

The architecture of both models is based on CNNs. As the CNN architecture
requires a regular discretization of 3D space, scaling to larger spatial structures is
limited. Therefore, the generator is combined with an autoregressive approach that
reconstructs the fine-grained structure incrementally, i.e. atom by atom. In addition,
it is assumed that the placement of one atom relies only on short-range force field
related features. In particular, DBM only learns local correlations while large-scale
features are adapted from the CG structure. Therefore, only local information is re-
quired in each step, which makes the method scalable to larger system sizes. More-
over, it can be hypothesized that such local environments strongly overlap across
different state points and across chemical space. As such, the local environment
approach is a key feature for the generalizability of DBM.

Molecular graphs are generally undirected and can be cyclic or acyclic. For the
graph traversal, which defines the order of reconstruction, the depth-first algorithm
is used. In particular, the algorithm starts by sampling the variables with no parents
from a prior distribution and generates subsequent variables based on the atoms
generated in the previous steps. However, such forward sampling only yields ac-
curate results if the underlying graph structure has a topological order, i.e. a graph
traversal in which each node is visited only after all of its dependencies are explored.
As such, accurate sampling of molecular structures calls for more feedback than
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a simple forward sampling strategy allows. This is especially true for condensed-
phase systems, where great care has to be taken to avoid steric clashes. To this end,
a variant of Gibbs sampling is applied, which subsequently refines the initial molec-
ular structures by iteratively resampling the atom positions. Each further iteration
still updates one atom at a time, but uses the knowledge of all other atoms.

Given the potential energy function of the system, the target distribution for the
desired molecular structures is already known up to a normalization constant, i.e.
the partition function. This knowledge can be incorporated in the training of DBM
to improve its performance and to monitor the training process. Specifically, the
potential energy U of generated structures is utilized as an additional term Cpot in
the cost function of the generator. As such, Cpot acts as a regularizer that effectively
narrows down the functional space of the generator by penalizing structures with
high potential energy.

9.4 Performance and Transferability of DBM: Reverse-
mapping of Syndiotactic Polystyrene

In chapter 5, the performance and transferability of the new reverse-mapping
method DBM is evaluated. To this end, DBM is applied to a challenging condensed-
phase molecular system of syndiotactic polystyrene (sPS). CG representations
are obtained by a projection of AA data onto the CG resolution, where each sPS
monomer is represented by two beads. In addition to DBM, a baseline backmapping
method based on geometric rules and energy minimization (EM) is applied.

The general ability of DBM to reproduce a reference AA distribution from CG
configurations is probed first. To this end, DBM is applied to high-temperature data
of the polymeric system. DBM yields well-equilibrated configurations for this partic-
ular state point in terms of structural and energetic properties. The baseline method,
on the other hand, over-stabilizes the system and therefore does not reproduce the
specific state point accurately.

To probe the temperature transferability, training of DBM is fixed to melt con-
figurations obtained at a high temperature and afterwards transferred to crystalline
structures at lower temperatures. Again, DBM reproduces structural and energetic
distributions of the reference system with remarkable accuracy. A higher-order in-
vestigation, facilitated by the Sketch-map (SM) algorithm, highlights the structural
accuracy. The transferability of the baseline method to the crystalline phase is lim-
ited. In particular, MD simulations starting from backmapped configurations of the
baseline method in the crystalline phase get stuck in local minima. Therefore, further
human intervention would be required to achieve proper equilibration.

Finally, the chemical transferability of DBM is probed. To this end, training of
DBM is fixed to liquids of octane and cumene. Afterwards, the model is trans-
ferred to the more complex sPS system without retraining. The performance of
such chemically-transferred models varies in terms of bonded interactions: While
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the learned local correlations from octane and cumene allow for an accurate recon-
struction of phenyl groups, reconstructed polymer backbones display discrepancies
compared to the reference system. On the other hand, distributions of Lennard-
Jones energies and pair correlation functions indicate that non-bonded features are
reproduced with high accuracy. In addition, the SM algorithm is used to obtain a
two-dimensional projection of the configuration space. It is observed that the refer-
ence and backmapped ensembles cover similar areas in this projected configuration
space, but relative statistical weights of reference and backmapped microstates dis-
play discrepancies.

In summary, the ML-based method DBM is able to generate equilibrated AA
molecular configurations based on CG structures. It is a well suited tool to auto-
mate backmapping processes as it learns the AA reconstruction from training data
and therefore requires little human intervention. Moreover, avoiding unnecessary
equilibrations of reverse-mapped structures will help to establish a tighter and more
consistent link between models at different scales. In addition, DBM displays re-
markable transferability features that can be linked to the applied local environment
approach. In particular, the transferability across different state points can be ratio-
nalized in terms of a scale-separation: The backmapped structure is composed of the
local correlations learned by DBM and the large-scale properties of the CG structure.
It is hypothesized that most of the temperature dependence is carried by the CG
structure. Local features on the other hand are assumed to be less temperature sen-
sitive, because associated covalent interactions operate on energy scales significantly
larger than kBT. As such, local correlations separate from larger scales and therefore,
can be transferred from the melt to the crystalline phase. Beside the transferability
across state points, the advantages of the local environment approach of DBM are
further highlighted by the encouraging performance of chemically-transferred mod-
els. In particular, it is demonstrated that small-scale features can be shared between
different molecules, which allows DBM to interpolate across parts of chemical space.
However, the limits of the generalization are shown as well by the limited quality
of the reconstructed carbon backbone. It can be hypothesized that a bottleneck for
the accuracy arises from missing features in the training set. Specifically, local envi-
ronments of backbone carbons connecting monomers are not included in the train-
ing examples. As such, it can be expected that an increasing number of building
blocks systematically improves the transferability across chemical space. In conclu-
sion, DBM offers the perspective to recycle learned local correlations across different
state points and across chemical space. This can be useful for future applications in
MM, as DBM can be trained on data that is straightforward to obtain, such as liquids
of small molecules or polymer melts with a small system size, but can be transferred
to more challenging tasks afterwards, for example to study polymer crystallization
or large systems of complex molecules.
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9.5 Backmapping as a Quality Measure for Coarse-grained
Models

In chapter 6, backmapping is applied to assess the quality of structure-based CG
models at the AA resolution. In particular, three different models for Tris-Meta-
Biphenyl-Triazine (TMBT) are parameterized that differ in their bonded interactions.
While all CG models reproduce structural properties at the CG resolution targeted
in the parameterization with remarkable accuracy, important cross-correlations be-
tween CG variables are not captured sufficiently. This is demonstrated by reverse-
mapping of CG structures from two different sources: (1) An in-distribution test set
denotes AA MD simulation data that is projected onto the CG resolution. One part of
this data set is used to train DBM, while the other part is used to obtain the baseline
accuracy of the backmapping method. (2) Snapshots obtained by MD simulations
based on the CG force fields are denoted as generalization test sets. To assess the
quality of the deployed CG models, backmapped in-distribution and backmapped
generalization test sets are compared revealing significant discrepancies between the
AA and CG ensembles.

DBM is able to reproduce AA pair correlation functions for the in-distribution
test set with remarkable accuracy. However, application to the generalization test
sets yields AA structures that contain steric clashes, i.e. non-bonded atoms that are
too close to each other. To rationalize the deterioration in performance for the gener-
alization test sets, consider the following requirements that a backmapping scheme
has to fulfill: (1) Reconstructed AA details have to be consistent with the underlying
CG structure and (2) backmapped structures have to agree with the Boltzmann dis-
tribution. It is demonstrated that the generalization test sets contain CG conforma-
tions that prohibit reconstructing AA details that fulfill both requirements simulta-
neously. In particular, DBM generates AA structures that are consistent with the CG
structure but therefore contain unavoidable steric clashes. To underpin the results,
a second method that relies on EM is applied for the backmapping. The EM-based
method is more robust and displays a similar performance for both test sets. How-
ever, the EM-based method yields pair correlation functions that are overly peaked
compared to the AA reference, which is reasonable because of the involved relax-
ation. More importantly, it is observed that the EM-based method generates struc-
tures with low potential energy but violates the consistency criteria, i.e. backmapped
structures are shifted away from the underlying CG structure.

The reintroduced details enable force computations based on the AA force field.
However, the coarse-to-fine mapping is not unique, as a single CG structure cor-
responds to an ensemble of AA microstates. Therefore, computed AA forces are
projected onto the CG resolution to enable a more stringent comparison. The force
distribution for the backmapped in-distribution test set obtained with DBM matches
the AA reference distribution remarkably well. On the other hand, force distribu-
tions obtained for the generalization test sets display long tails towards large forces.
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Computing the Jenson-Shannon (JS) divergence between force distributions of refer-
ence AA and backmapped configurations yields a clear ranking for the quality of the
different CG models. On the other hand, force distributions obtained with the EM-
based backmapping method are not insightful, since the involved relaxation yields
indistinguishable force distributions that are shifted towards significantly smaller
forces.

Assessing the quality of CG models at the AA resolution can be beneficial for the
development of new CG force field parameterization strategies. For example, force
distributions could be used to evaluate the CG ensemble in terms of the AA force
field, such that CG configurations that yield large AA forces can be suppressed. An
evident starting point for this strategy is the multiscale force-matching approach,
where the parameters of the CG force field are tuned such that the CG potential
approximates the average net AA forces. Note that the force-matching functional
is evaluated in the AA ensemble, i.e. it only contains structural information re-
garding cross-correlations observed in the AA model. However, the CG model is
in general not guaranteed to reproduce cross-correlations between different degrees
of freedom perfectly. A force evaluation in terms of the CG ensemble can reveal in-
consistencies of the cross-correlations and has therefore the potential to improve the
force-matching strategy.

9.6 Morphing of Local Statistics: Mapping Through a Reso-
lution Bottleneck

In chapter 7, DBM is applied to adjust local, structural properties of molecular con-
figurations. The method aims at improving the quality of structures obtained with
chemically-specific top-down models that capture the correct large-scale behavior
of a target system, but yield less faithful representations on a local scale. In order
to correct local discrepancies, molecular structures are projected onto a lower reso-
lution, i.e. a resolution bottleneck, and DBM is used to reinsert degrees of freedom.
Importantly, DBM is trained solely on structures of the target distribution. After-
wards, DBM is transferred to configurations obtained with the top-down model. As
such, local details learned from the target distribution are inserted into the top-down
structures, which is referred to as morphing of local properties.

The morphing approach is tested for Kuhn scale matched Kremer-Grest (KG) sPS
melts. The sPS melts obtained with the KG model display similar large-scale prop-
erties, such as the mean square end-to-end distance, as the higher resolution and
solely structure-based model by Fritz et al. However, Kuhn scale matching does not
account for local properties below the Kuhn scale. As such, local structural distribu-
tions of both models differ, which is demonstrated by a projection of melt structures
obtained with the Fritz model onto the resolution of the KG model. The impact of the
morphing is evaluated in terms of structural distributions, pair correlation functions
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and free energy surfaces computed in SM coordinates. While morphing has no sig-
nificant impact on large-scale characteristics, it is able to reconstruct local properties
of the Fritz distribution with remarkable accuracy.

In addition, morphing of tetracosane (TCS) liquids obtained with the Martini
model is performed. As a target system, AA simulations with the GROMOS-96 force
field are used, which are projected onto the Martini resolution. While the morphing
model is not able to correct local features sufficiently, the significant discrepancies
between local properties of the Martini and the GROMOS configurations have to be
emphasized. As such, it can be hypothesized that the distributions do not match at
the resolution bottleneck.

The general goal of this project is to introduce a two-step backmapping scheme
for top-down CG models. In a first step, local statistics of a CG structure are cor-
rected before it is processed by a backmapping algorithm in a second step. To inves-
tigate the impact of the morphing on the quality of backmapped structures, DBM is
trained to increase the resolution of sPS melts to the level of the original Fritz model
and TCS liquids to the AA level. Only a minor impact of the morphing on the quality
of backmapped structures is observed for both systems. In particular, backmapping
of KG structures and CG Fritz structures already yield similar distributions of local
structural features without morphing. This can be rationalized by the robust trans-
ferability of DBM: It can be hypothesized that strong local interactions at the higher
resolution yield local correlations that separate from larger scales. Therefore, local
correlations learned by DBM transfer well across the CG configuration space. As
such, backmapping of KG structures yield similar local structural properties com-
pared to backmapping of CG Fritz structures. On the other hand, small differences
in the distributions of structural properties are observed between backmapped Mar-
tini and backmapped CG GROMOS TCS liquids. However, the morphing of TCS
liquids has a limited accuracy, such that it is not able yo improve the quality of the
backmapped liquids significantly. Future work to improve the morphing capability
of the model can focus on a hierarchical approach, where local features are succes-
sively adjusted on multiple scales.

9.7 Temporal Coherent Backmapping of Molecular Trajecto-
ries

In chapter 8, a new ML-based method for temporal coherent backmapping of molec-
ular trajectories is introduced. In particular, temporal coherent backmapping refers
to reproducing shifts of atomic positions between consecutive frames that are com-
parable to the AA reference system. The proposed method aims at both, generating
well-equilibrated molecular structures for each individual frame, while maintaining
temporal coherence within a series of frames. To this end, a variational autoencoder
(VAE) is trained to reinsert atomistic details conditioned on the current CG and the
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previous AA frame. The approach is applied to two popular biomolecular systems:
Alanine dipeptide (ADP) and the miniprotein chignolin (CLN).

The baseline accuracy of the ML model is evaluated regarding its ability to re-
produce structural and dynamic properties of reference AA trajectories. To this end,
the method is applied to AA trajectories projected onto the CG resolution, which
are referred to as in-distribution test set. Excellent structural similarity between the
reference system and the backmapped in-distribution test set is observed in terms
of potential energy distributions and free energy surfaces computed with respect to
collective variables. In order to analyze the dynamics of backmapped trajectories,
Markov state models are constructed to identify slow processes and their associated
timescales. The implied timescales of the backmapped trajectories agree remarkably
well with the dynamics observed for the AA reference system. To evaluate tem-
poral coherence between consecutive frames, intra-frame velocity distributions are
computed. The ML model is able to reproduce intra-frame velocities with excel-
lent accuracy. The advantage of incorporating the previous AA simulation frame
is highlighted by a comparison with a frame-based backmapping scheme, which
yields velocity distributions that differ significantly from the reference.

In addition, the method is applied to analyze the dynamics of trajectories ob-
tained in a CG simulation. To this end, CG simulations are performed based on
approximate force fields generated by CGSchNet, which is a ML based method for
CG force field parameterization. While structural properties of the reference AA sys-
tem are reproduced with remarkable accuracy upon backmapping of the CGSchNet
trajectories, dynamic properties differ. Timescale ratios of slow transitions between
metastable states are recovered for ADP, but deviate from the AA reference for CLN.
Moreover, intra-frame velocities of the backmapped CGSchNet trajectories are sig-
nificantly larger compared to the AA reference. These findings are reasonable for
CG simulation data, since averaging over degrees of freedom effectively smoothens
the energy landscape and therefore enables a faster exploration of phase space. As
such, CG simulations display faster dynamics compared to AA simulations. More-
over, timescales for transitions between metastable states are typically not rescaled
uniformly yielding timescale ratios that differ from the AA reference system [34].

In summary, the proposed method is able of reverse-mapping CG trajectories
such that (1) each reconstructed frame has a high statistical weight, (2) each frame
is a valid reconstruction of the given CG structure, i.e. atomistic degrees of freedom
are reinserted along the CG variables and (3) consecutive frames are temporally co-
herent. As such, a tool to analyze the dynamics of a CG simulation at AA resolution
is proposed, which is of relevance for a thorough analysis of dynamic properties that
require atomistic details, such as the dynamic structure factor [248, 249].
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9.8 Outlook

Future work pertaining the integration of generative ML approaches into the MM
framework can proceed along multiple avenues of research. A promising route is
to apply DBM to hierarchical modeling, where a particular system is described by
a nested sequence of CG models [269, 270, 48]. Starting from the lowest resolution,
CG structures are successively backmapped to higher resolutions until the AA level
is reached. While hierarchical modeling is used routinely, it requires a significant
amount of human effort, as force fields for each level of resolution have to be pa-
rameterized. Therefore, DBM could be a great advantage for hierarchical modeling,
as the ML-based model learns the reverse-mapping from training data and does not
necessarily require force field parameterizations. As such, it can be used to automate
the process.

Another direction for future research is to focus on the transferability of DBM,
which is explored in Chpt. 5. Further insights into the limits of chemical transfer-
ability can be gained by systematically increasing the number of building blocks in-
cluded in the training and analyzing their impact on the quality of unseen molecules.
In general, a model trained on a large and diverse data set has the potential to pro-
vide a general-purpose backmapping tool for a wide range of chemical systems.

In addition, parameterization strategies for CG force fields could benefit
from DBM. As outlined in Chpt. 6, a new force matching approach based on an
evaluation of forces at the AA resolution can be used to improve the accuracy of
cross-correlations between CG variables. A thorough investigation of the proposed
method requires to implement an automated scheme that iteratively performs a CG
simulation, backmaps the obtained CG configurations and updates the force field
parameters taking the atomistic forces into account.

Moreover, future work to improve the methodology of DBM can focus on two
aspects: (1) The conventional CNN architecture used for DBM in this work is not
rotationally equivariant and therefore, the model has to learn rotational symmetries.
Can rotational equivariant network architectures be used to improve the accuracy of
DBM and reduce the computational effort for the backmapping task? (2) The order
of reconstruction relies on a depth-first-search of the molecular graph. However, this
might not be the best strategy for reconstruction. Can DBM therefore learn the order
of reconstruction, such that artifacts upon backmapping can be reduced?

In conclusion, MM can benefit from generative ML models in various ways. It is
firmly believed that a tighter integration of ML approaches into the research field of
computational chemistry will lead to significant advances in the future.
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Contributions

In this section, the individual contributions for each chapter are stated in detail.

Chapter 4 and 5:
The original idea of DBM was developed by Marc Stieffenhofer, Michael Wand and
Tristan Bereau. The implementation of DBM was carried out by Marc Stieffenhofer.
The simulation data for syndiotactic polysteryne was provided by Chan Liu. Sim-
ulations of the octane and cumene systems were performed by Marc Stieffenhofer.
Data analysis was carried out by Marc Stieffenhofer. The papers were written by
Marc Stieffenhofer with critical commentary from Tristan Bereau and Michael Wand.

Marc Stieffenhofer, Michael Wand, Tristan Bereau
Adversarial reverse mapping of equilibrated condensed-phase molecular struc-
tures
Machine Learning: Science and Technology, Volume 1, Number 4
DOI: 10.1088/2632-2153/abb6d4
c© IOP Publishing Ltd, 2020

Marc Stieffenhofer, Tristan Bereau, Michael Wand
Adversarial reverse mapping of condensed-phase molecular structures: Chemical
transferability
APL Materials 9, Volume 9, Number 3
DOI: 10.1063/5.0039102
c© AIP Publishing LLC, 2021

Chapter 6:
This chapter summarizes insights obtained during the course of a collaboration
with Christoph Scherer, Falk May and Denis Andrienko. The original idea to
use backmapping as a quality measure for coarse-grained models was developed
by Marc Stieffenhofer and Denis Andrienko. Christoph Scherer parameterized
the coarse-grained force field for Tris-Meta-Biphenyl-Triazine and carried out all
simulations. Energy-based backmapping was performed by Christoph Scherer,
while backmapping with DBM was performed by Marc Stieffenhofer. Data analysis
and interpretation of the results were carried out by Marc Stieffenhofer.
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Chapter 7:
The original idea of the morphing approach was developed by Marc Stieffenhofer,
Michael Wand and Tristan Bereau. Implementation of the approach was carried out
by Marc Stieffenhofer. All simulations and data analysis were performed by Marc
Stieffenhofer

Chapter 8:
The work stems from a collaboration of Marc Stieffenhofer, Kirill Shmilovich, Moritz
Hoffmann and Nick Charron. The project originates from the long program Machine
Learning for Physics and the Physics of Learning at the Institute for Pure & Applied
Mathematics that was held from 09.04.19 to 12.08.19 at the University of California,
Los Angeles. The original idea of temporal coherent backmapping was introduced
by Marc Stieffenhofer and further developed by all collaborators. Kirill Shmilovich
carried out the implementation of the approach advised by Marc Stieffenhofer and
Moritz Hoffmann. All-atom simulations of alanine dipeptide were performed by
Kirill Shmillovich and all-atom trajectories for chignolin were provided by Jiang
Wang. Coarse-grained force fields were parameterized by Nick Charron and coarse-
grained simulations were performed by Nick Charron. Data analysis was performed
by Kirill Shmillovich. The manuscript was written by all four collaborators.

Kirill Shnilovich, Marc Stieffenhofer, Nick Charron, Moritz Hoffmann
Temporally coherent backmapping of molecular trajectories from coarse-grain to
atomistic resolution
arXiv preprint:2205.05213
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c© Creative Commons Attribution 4.0 International
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FIGURE A.1: CNN architecture with residual connections of the gen-
erator (left) and critic (right). The first part of the generator consists
of an encoder which learns a lower dimensional embedding of the
condition given by εi(x) using several residual connections and one
pooling layer. Noise z and the atom type ci are concatenated to this
low dimensional embedding and is fed into the decoding part of the
generator, which again consists of several residual connections and
an upsampling layer. The critic learns a one dimensional embedding
of the condition εi(x) and the target/fake atom γi/γ̂i using residual
layers and a final dense layer. Throughout the whole architecture
layernorm is applied for regularization and LeakyRelus are used as

nonlinearities.
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reference landmark
trained on sPS
trained on Oct/Cum

b)

reference landmark
trained on sPS
trained on Oct/Cum

a)

FIGURE A.2: Low-dimensional representation of the local environ-
ments of sPS monomers at T = 568 K. For each panel, snapshots
are backmapped from identical CG configurations. Landmarks of
reference structures (grey) and projections of structures generated
with chemically-specific (red) and chemically-transferred (blue) mod-
els trained with (a) C(2)pot (b) without regularization. Reprinted from

[223].
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