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K-Motives and Koszul duality

JENS NIKLAS EBERHARDT

Abstract. We construct an ungraded version of Beilinson–Ginzburg–Soergel’s
Koszul duality for Langlands dual flag varieties, inspired by Beilinson’s con-
struction of rational motivic cohomology in terms of K-theory.

For this, we introduce and study categories DKS(X) of S-constructible K-
motivic sheaves on varieties X with an affine stratification. We show that
there is a natural and geometric functor, called Beilinson realisation, from
S-constructible mixed sheaves Dmix

S (X) to DKS (X).
We then show that Koszul duality intertwines the Betti realisation and

Beilinson realisation functors and descends to an equivalence of constructible
sheaves and constructible K-motivic sheaves on Langlands dual flag varieties.
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1. Introduction

Let G ⊃ B be a split reductive group with a Borel subgroup and X = G/B
be the flag variety. Denote by G∨ ⊃ B∨ the Langlands dual group with a Borel
subgroup and by X∨ = G∨/B∨ the Langlands dual flag variety.

In this article we prove an ungraded andK-theoretic version of Beilinson–Ginzburg–
Soergel’s Koszul duality.

Theorem. There is a commutative diagram of functors where the horizontal arrows
are equivalences

Dmix
(B) (X) Dmix

(B∨)(X
∨)

D(B)(X) DK(B∨)(X
∨).

K̂os

v ι

Kos

Let us explain the ingredients of this diagram. In [BG86], [Soe90] and [BGS96],

Beilinson–Ginzburg–Soergel consider a category Dmix
(B) (X) of (B)-constructiblemixed
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2 K-MOTIVES AND KOSZUL DUALITY

sheaves on X, which is a graded version of the (B)-constructible derived category
D(B)(X) of sheaves on the flag manifold X(C) and, equivalently, the bounded de-
rived category of category O of the Lie algebra g = Lie(G(C)). In particular, there

is an autoequivalence (1) of Dmix
(B) (X) called Tate twist, shifting the grading, and a

functor
v : Dmix

(B) (X) → D(B)(X),

called Betti realisation, forgetting the grading.
Most remarkably, Beilinson–Ginzburg–Soergel construct a triangulated equiva-

lence, called Koszul duality,

K̂os : Dmix
(B) (X) → Dmix

(B∨)(X
∨)

mapping projective perverse sheaves to intersection cohomology complexes and in-
tertwining the Tate twist (1) with the shift twist (1)[2]. Although very desirable,
there is no geometric construction of Koszul duality yet. All six functors commute
with Tate twists and hence some new geometric constructions have to enter the
picture.

The main idea of this article is to construct an ungraded version of Koszul duality
and to thereby fill in the bottom right corner of the above diagram. This is achieved
by a K-theoretic point of view and the observation that Betti realisation forgets
the Tate twist (1) whereas passage to K-theory forgets the shift twist (1)[2].

To make this observation more precise, we use Soergel–Wendt’s very satisfying
construction of Dmix

(B) (X) as a full subcategory of the category of motivic sheaves

DM(X/Fp,Q), see [SW16]. We define the category DK(B∨)(X
∨) as a full subcate-

gory of the category of K-motivic sheaves DK(X∨/Fp,Q) analogously. K-motivic
sheaves can be thought of as a K-theoretic cousin of the category of constructible
sheaves computing algebraic K-theory instead of Betti cohomology.

There is a functor, which we call Beilinson realisation,

ι : Dmix
(B∨)(X

∨) → DK(B∨)(X
∨),

expressing Beilinson’s realisation that, rationally, motivic cohomology is a graded
refinement of algebraic K-theory, see [BMS87]. There is a natural isomorphism,
called Bott isomorphism, Q ∼= Q(1)[2] in DK(B∨)(X

∨) and hence ι forgets the shift
by (1)[2].

The construction of the ungraded Koszul duality functor

Kos : D(B)(X) → DK(B∨)(X
∨)

is just a copy of Soergel’s construction of K̂os. The functor send projective perverse
sheaves to so-called intersection K-theory complexes, a K-theoretic version of in-
tersection cohomology complexes. Both sided admit a combinatorial description
in terms of the homotopy category of Soergel modules. The commutativity of the
diagram is hence immediate.

We proceed as follows. In the second section we recall Cisinski–Déglise’s [CD19]
construction of K-motivic sheaves and motivic sheaves. In the third section we
consider the categories Dmix

S (X) and DKS(X) for varieties X with an affine strati-
fication S. We study natural t-structures and weight structures on these categories
and recall Soergel’s Erweiterungssatz. In the fourth and last section we return to
the flag variety. We recall Soergel’s construction of the Koszul duality functor and
prove the Theorem mentioned above. In the appendix we collect some useful facts
about weight structures and t-structures.
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Remark 1.1. (1) The case of modular coefficients is work in progress joint with
Shane Kelly and building on [EK19] and [ES22a].
(2) The construction of an equivariant (both in the sense of Borel and Bredon)
version of K-motivic sheaves is work in progress. This will allow to consider an
ungraded version of Bezrukavnikov–Vilonen’s equivariant/monodromic Koszul du-
ality, see [BY13], and open new pathways to Soergel’s conjecture on Koszul duality
for real groups, see [Soe01] and [BV21], as well as the quantum K-theoretic geo-
metric Satake, see [CK15] and[CK18]

Moreover, the author is considering a motivic Springer correspondence involv-
ing the affine Hecke algebra which generalizes [Rid13],[RR16],[RR21], [Ebe21] and
[ES22b] and provides a derived version of Lusztig’s comparison between the graded
affine Hecke algebra and the affine Hecke algebra, see [Lus89].

Acknowledgements. We warmly thank Shane Kelly for explaining K-motives to
us. We are grateful for discussions with Wolfgang Soergel and Geordie Williamson.
We thank the referee for helpful comments. This publication was written while the
author was a guest at the Max Planck Institute for Mathematics in Bonn.

2. Motivic sheaves d’après Cisinski–Déglise

Motivic sheaves can be viewed as an amalgamation of the topological notion of
sheaves on manifolds and the algebro-geometric concept of motivic cohomology. In
this section, we give an overview of the most important properties of motivic sheaves
and K-motivic sheaves, a lesser known variant. We then discuss the Beilinson
realisation functor, concrete constructions and Tate motives.

2.1. Background on motivic sheaves. To every quasi-projective variety X over
a perfect field k, one can associate a Q-linear, tensor-triangulated category of mo-
tivic sheaves DM(X). There are various equivalent constructions and names for
the category DM(X), see [CD19, Introduction]. For X = Spec(k), the category of
motivic sheaves DM(k) coincides with Voevodsky’s triangulated category of mixed
motives over k, see [VSF00].

The categories DM(X) are equipped with a six functor formalism admitting, for
example, localisation triangles, projection formulae and base change, see [CD19,
A.5]. Using the six functors, one can define the motive (with compact support) of
a variety f : X → Spec(k) as

M(X) = f∗f
!Q ∈ DM(k) and Mc(X) = f!f

!Q ∈ DM(k), respectively.

The motive of the projective line P1
k splits as a direct sum

M(P1
k) = Q⊕Q(1)[2]

and induces an autoequivalence (1) = − ⊗ Q(1) called Tate twist that commutes
with all six functors.

Homomorphisms between motivic sheaves are governed by algebraic cycles. For
X smooth, there is a natural isomorphism

HomDM(X,Q) (Q,Q(p)[q]) ∼= CHp(X, 2p− q)Q

with Bloch’s higher Chow groups, see [Blo86]. For q = 2p, these are the usual Chow
groups CHp(X)Q of codimension-p algebraic cycles on X up to rational equivalence.
For cellular varieties, such as flag varieties, considered in this article these Chow
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groups will just coincide with the usual Borel–Moore homology of their complex
points.

For each prime ℓ invertible in k, there is an ℓ-adic realisation functor

Realℓ : DM(X,Q) → Dét(X,Qℓ)

to the category of ℓ-adic sheaves and for k = C a Betti realisation functor

v : DM(X,Q) → D(X(C),Q)

to the category of sheaves on X(C) equipped with the metric topology, see [Ayo14]
and [Ayo09]. Both types of realisation functors are compatible with the six functors
and induce the cycle class maps

CHp(X)Q → H2p
ét (X,Qℓ) and CHp(X)Q → H2p

Betti(X(C),Q), respectively.

For our purposes, all varieties are defined over Z and all sheaves we consider are of
geometric origin. We will hence take the freedom to treat ℓ-adic sheaves on X/Fp

and sheaves on X(C) interchangeably using [BBD82].

2.2. Background on K-motivic sheaves. Very similarly to the system of cat-
egories of motivic sheaves DM(X) there is a system of K-motivic sheaves DK(X)
associated to quasi-projective varieties X over a perfect field k, see [CD19, Section
13.3]. K-motivic sheaves are also equipped with a full six-functor formalism and
Tate twist with the same properties.

A main difference is that the K-motive of f : P1
k → Spec(k) splits into two

isomorphic copies

M(P1
k) = f∗f

!Q = Q⊕Q ∈ DK(k).

This implies that the shift twist functor (1)[2] acts as the identity on DK(X), a
phenomenon known as Bott periodicity.

As the name suggests, homomorphisms between K-motivic sheaves are governed
by K-theory. For X smooth, there is natural isomorphism

HomDK(S,Q) (Q,Q(p)[q]) = K2p−q(X)Q

with the rational higher algebraic K-theory of X.

2.3. The Beilinson realisation functor. There is a very close relationship be-
tween motivic cohomology (which is isomorphic to higher Chow groups) and alge-
braic K-theory, first observed by Beilinson [BMS87]. The rational K-theory of a
smooth variety X naturally decomposes in eigenspaces of the Adams operations

(1) Kn(X)Q =
⊕

i

K(i)
n (X),

turning K•(X) into a bigraded ring, see [Wei13, IV.5]. By [Blo86], there are natural

isomorphisms K
(i)
n (X) ∼= CHi(X,n)Q such that for n = 0 the decomposition in (1)

yields the Chern character isomorphism

K0(X)Q ∼=
⊕

i

CHi(X)Q.

Hence, rational motivic cohomology can be regarded as a graded refinement of
algebraicK-theory. These results admit a relative version. Namely, there is functor

ι : DM(X) → DK(X),
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which we call Beilinson realisation. It is compatible with the six functors and Tate
twists and it induces for all M,N ∈ DM(X) an isomorphism

HomDK(X) (ι(M), ι(N)) ∼=
⊕

i

HomDM(X) (M,N(i)[2i])(2)

that specialises to the decomposition (1) in Adams eigenspaces. This way, motivic
sheaves can be regarded as a graded refinement of K-motivic sheaves where (1)[2]
is the shift of grading functor and ι forgets the grading.

2.4. Construction of (K-)motivic sheaves. We sketch Cisinski–Déglise’s con-
struction of the categories ofK-motivic sheaves DK(X) and motivic sheaves DM(X),
[CD19, Chapter 13-15].

First, one considers the ring spectrum KGLQ,X representing rational homotopy
invariant K-theory in the stable motivic homotopy category SH(X) . This allows to
consider the category of K-motivic sheaves over X,

DK(X) := Ho(KGLQ,X -mod),

as the homotopy category of modules over KGLQ,X . The system of categories
DK(X) forms a so-calledmotivic triangulated category (see [CD19, Definition 2.4.45])
which entails a six functor formalism with all desired properties.

As shown by Riou [Rio10], the spectrum KGLX admits an Adam’s decomposi-
tion similar to (1)

KGLQ,X =
⊕

i

KGL
(i)
X .

Denoting HB,X := KGL
(0)
X , Cisinski–Déglise define the category of Beilinson mo-

tives over X,

DMB(X) := Ho(HB,X -mod),

as the homotopy category of modules overHB,X . The system of categories DMB(X)
forms a motivic triangulated category and is shown to be equivalent to other def-
initions of motivic sheaves, see [CD19, Chapter 16]. We hence write DM(X) =
DMB(X) and refer to objects as motivic sheaves.

The inclusion map HB,X → KGLQ,S induces a forgetful functor F : DK(X) →
DM(X) whose left adjoint

ι : DM(X,Q) → DK(S,Q), M 7→ KGLQ,X ⊗HB,X
M

we call Beilinson realisation functor. By [CD19, Lemma 14.1.4] each KGL
(i)
S,Q is

naturally isomorphic to HB,S as an HB,S-module and there is an isomorphism of
ring spectra

KGLQ,X
∼= HB,X [t, t−1] :=

⊕

i∈Z

HB,X(i)[2i].

For M ∈ DM(X) this yields the following simple formula

Fι(M) ∼=
⊕

i∈Z

M(i)[2i]

which implies (2). Using [CD19, Theorem 4.4.25] one shows that ι is compatible
with the six functors. For further properties on K-motivic sheaves we refer to
[BL16, Proposition 4.1.1].
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2.5. Tate Motives over Affine Spaces of Finite Fields. Let k = Fq be a finite
field. We denote by

DMT(An
k ,Q) = 〈Q(n) |n ∈ Z〉∆ ⊂ DM(An

k ,Q) and

DKT(An
k ,Q) = 〈Q〉∆ ⊂ DK(An

k ,Q)

the categories of mixed Tate (K-)motives (observe that Q(n) ∼= Q[−2n] in DK and
is hence not needed as a generator). Since the rational higher K-theory and the
rational higher Chow groups of a finite field vanish, these categories of become
semi-simple and one can easily show:

Theorem 2.1. There are equivalences of tensor-triangulated categories

DMT(An
k ,Q) ∼= Db(Q -modZ) and

DKT(An
k ,Q) ∼= Db(Q -mod)

with the bounded derived categories of (graded) finite dimensional vector spaces over
Q. Here we let Q(p) ∈ DMT(An

k ,Q) correspond to Q sitting in grading degree −p
and cohomological degree 0 by convention.

This equips the categories DMT(An
k ,Q) and DKT(An

k ,Q) with canonical t-structures
we denote by t, see Remark A.3(1).

For quasi-projective varieties X/k the categories DM(X,Q) and DK(X,Q) are
equipped with a weight structure w, see [Héb11] and [BL16]. This weight structure
descends to Tate motives and assigns the weight 2p− q to Q(p)[q] such that

Q(p)[q] ∈ DM(X)w=2p−q and Q(p)[q] ∈ DK(X)w=2p−q.

We observe that the t-structure and weight structure on DKT(An
k ) coincide.

As explained in Remark A.3(1), t-structures and weight structures usually behave
very differently. Our case just happens to be quite degenerate, since DKT(An

k ) is
semi-simple.

We observe that the induced functor

ι : DMT(An
k ) → DKT(An

k )

is not compatible with the t-structures, since ι(Q(1)[2]) = Q. Rather, ι is compatible
with the weight structures:

Proposition 2.2. Let M be in DKT(An
k ), then

M ∈ DMT(An
k )

w≤0 ⇐⇒ ι(M) ∈ DKT(An
k )

w≤0 = DKT(An
k )

t≤0 and

M ∈ DMT(An
k )

w≥0 ⇐⇒ ι(M) ∈ DKT(An
k )

w≥0 = DKT(An
k )

t≥0.

As explained in [SW16, Section 3.4], the interplay of the t-structure and weight
structure on DMT(An

k ,Q) can be seen as toy case of Koszul duality. So Proposition
2.2 gives a subtle first hint that ι should be related to Koszul duality!

3. Motivic sheaves on affinely stratified varieties

3.1. Constructible motivic sheaves. Let k = Fq be a finite field. Let X/k be a
variety with a cell decomposition (also called affine stratification), that is,

X =
⊎

s∈S

Xs
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where S is some finite set and each is : Xs → X is a locally closed subvariety
isomorphic to An

k for some n ≥ 0. In this situation, Soergel–Wendt [SW16] make
the following definition:

Definition 3.1. The category of mixed stratified Tate motives on X is

MTDerS(X,Q) = {M ∈ DM(X,Q) | i∗sM ∈ DMT(Xs,Q) for all s ∈ S}

the full subcategory of motivic sheaves which restrict to mixed Tate motives on the
strata.

For this category to be well-behaved, so for example closed under Verdier duality,
Soergel–Wendt impose the following technical condition on the stratification.

Definition 3.2. The stratification S on X is called Whitney–Tate if i∗t is,∗Q ∈
DMT(Xt,Q) for all s, t ∈ S.

We will abbreviate Dmix
S (X) = MTDerS(X,Q) and speak of S-constructible

motivic sheaves, and assume that S is Whitney–Tate from now on.
We can now copy their definition in the context of K-motives.

Definition 3.3. The category of S-constructible K-motivic sheaves is

DKS(X) = {M ∈ DK(X,Q) | i∗sM ∈ DKT(Xs,Q) for all s ∈ S }

the full subcategory of the category of K-motivic sheaves DK(X,Q) of objects which
restrict to Tate motives on the strata.

Since the functor ι : DM(X) → DK(X) commutes with the six operations, we
see that it descends to a functor

ι : Dmix
S (X) → DKS(X)

and observe that the Whitney–Tate condition with respect to DM(X) implies the
one for DK(X).

In order to be closed under the six functors, we need to restrict us to morphisms
of varieties which are compatible with their affine stratification in the following
sense.

Definition 3.4. Let (X,S) and (Y,S ′) be varieties with affine stratifications. We
call f : X → Y an affinely stratified map if

(1) for all s ∈ S ′ the inverse image f−1(Ys) is a union of strata;
(2) for each Xs mapping into Ys′ , the induced map f : Xs → Ys′ is a surjective

affine map.

3.2. Weight Structures. The categories DMgm(X) and DKgm(X) of objects of
geometric origin naturally come with a weight structure, called Chow weight struc-
ture, whose hearts are generated by objects of the form f∗Q for smooth projective
maps f : Y → X, see [Héb11].

We will still define the weight structures on the subcategories Dmix
S (X) and

DKS(X) by hand using the gluing formalism described in Appendix A. We note
that our definition coincides with the restriction of the Chow weight structures.
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Theorem 3.5. Setting

Dmix
S (X)w≤0 =

{
M ∈ Dmix

S (X) | i!sM ∈ DMT(Xs)
w≤0 for all s ∈ S

}
,

Dmix
S (X)w≥0 =

{
M ∈ Dmix

S (X) | i∗sM ∈ DMT(Xs)
w≥0 for all s ∈ S

}
,

DKS(X)w≤0 =
{
M ∈ DKS(X) | i!sM ∈ DKT(Xs)

w≤0 for all s ∈ S
}

and

DKS(X)w≥0 =
{
M ∈ DKS(X) | i∗sM ∈ DKT(Xs)

w≥0 for all s ∈ S
}

defines bounded weight structures on Dmix
S (X) and DKS(X).

Proof. Use Theorem A.7 inductively. �

The weight structures on Dmix
S (X) and DKS(X) are closely related:

Proposition 3.6. Let M ∈ Dmix
S (X). Then

M ∈ Dmix
S (X)w≤0 if and only if ι(M) ∈ DKS(X)w≤0 and

M ∈ Dmix
S (X)w≥0 if and only if ι(M) ∈ DKS(X)w≥0.

Proof. Since ι commutes with i∗s and i!s the statement follows from Proposition
2.2. �

Moreover, the six functors have certain exactness properties with respect to
weight structures:

Theorem 3.7. Let (X,S) and (Y,S ′) be varieties with a Whitney–Tate affine
stratification and f : X → Y be an affinely stratified map. Then we get

(1) f∗, f! and ⊗ are right w-exact.
(2) f !, f∗ are left w-exact.

Proof. See [EK19, Proposition 3.2]. �

3.3. Pointwise purity and the weight complex functor. In general, objects
in the heart of a weight structure w on a category C admit no positive extension,
that is, HomC (M,N [n]) = 0 for all M,N ∈ Cw=0 and n > 0. We will show that
under a certain pointwise purity assumption there are also no negative extensions
for objects in Dmix

S (X)w=0 and DKS(X)w=0.

Definition 3.8. Let M be in Dmix
S (X) (resp. DKS(X)). We say that M is point-

wise pure if i∗sM and i!sM are in DMT(Xs)
w=0 (resp. DKT(Xs)

w=0) for all s ∈ S.

Proposition 3.9. M ∈ Dmix
S (X) is pointwise pure if and only if ι(M) ∈ DKS(X)

is pointwise pure.

One can construct pointwise pure objects by different methods, for example:

(1) Using affinely stratified resolutions of singularities of closures of strata in
X, see [EK19, Theorem 4.5].

(2) Using contracting Gm actions, see [SW16, Proposition 7.3.].
(3) By an inductive process in the case of flag varieties, see [SW16, Lemma

6.6].

All of those methods can be used to show that all objects in Dmix
S (X)w=0 and

DKS(X)w=0 are pointwise pure in the case of flag varieties.
Pointwise pure objects in Dmix

S (X) are under some assumptions in fact sums of
(appropriately shifted and twisted) intersection complexes, that is, simple perverse
motives. See [SW16, Corollary 11.11].
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Pointwise pure objects are very special since they have no non-trivial extensions
amongst each other.

Proposition 3.10. Let M,N be in Dmix
S (X) (resp. DKS(X)) be pointwise pure.

Then for all n 6= 0 we have

HomDmix
S (X) (M,N [n]) = 0 (resp. HomDKS(X) (M,N [n]) = 0).

Proof. The statement for Dmix
S (X) follows from the one of DKS(X) using ι. For

DKS(X), we observe that the pointwise purity implies that M,N ∈ DKS(X)w=0 ∩
DKS(X)t=0, where by DKS(X)t=0 we denote the heart of the bottom p = 0 perverse
t-structure on DKS(X). Hence the statement for negative n follows from the axioms
of the t-structure and the statement for positive n from the axioms of the weight
structure. �

Pointwise purity allows us to consider the category Dmix
S (X) and DKS(X) as

homotopy categories of their weight zero objects.

Theorem 3.11. Assume that all objects in DKS(X)w=0 are pointwise pointwise
pure. Then the weight complex functor(see Theorem A.8) induces an equivalences
of categories,

Dmix
S (X) ∼= Kb(Dmix

S (X)w=0)

DKS(X) ∼= Kb(DKS(X)w=0)

compatible with the functor ι.

Proof. We prove the statement for Dmix
S (X), the case of DKS(X) is done in the

same way. The pointwise purity assumption and Proposition 3.10 shows that there
are no non-trivial extensions in Dmix

S (X) between objects in Dmix
S (X)w=0. Trivially,

the same holds true in Kb(Dmix
S (X)w=0). Since the weight complex functor restricts

to the inclusion Dmix
S (X)w=0 → K(Dmix

S (X)) an inductive argument (“dévissage”)

shows that the functor is indeed fully faithful, where we use that Dmix
S (X) is gen-

erated by Dmix
S (X)w=0 as a triangulated category.

The compatibility with ι follows since ι is weight exact. �

We note that there is a different way of proving the last theorem using a for-
malism called “tilting”, see [SW16] and [SVW18]. We prefer the weight complex
functor, since it also exists without the pointwise purity assumption. The weight
complex functor even exists for all motivic sheaves and K-motivic sheaves of geo-
metric origin, where the heart of the weight structure is the category Chow motives,
see [Bon10].

3.4. Erweiterungssatz. The Erweiterungssatz as first stated in [Soe90] and re-
proven in a more general setting in [Gin91] allows a combinatorial description of
pointwise pure weight zero sheaves on X in terms of certain modules over the coho-
mology ring of X . In the case of X being the flag variety, these modules are called
Soergel modules. In [SW16] a motivic version is considered, which easily extends to
K-motives.

Definition 3.12. We denote by

H : Dmix
S (X) → H(X) -modZ,M 7→

⊕

n∈Z

HomDmix
S (X) (Q,M(n)[2n])

K : DKS(X) → K(X) -mod,M 7→ HomDKS (X) (Q,M)
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the hypercohomology functors. Here H(X) =
⊕

n∈Z HomDmix
S (X) (Q,Q(n)[2n])) ,

and K(X) = HomDKS(X) (Q,Q) , and the former is interpreted as a graded ring.

The rings H(X) and K(X) are nothing else than the motivic cohomology and
K-theory of X and we collect some of the important properties.

Theorem 3.13. (1) The map ι : H(X) → K(X) induced by ι : Dmix
S (X) →

DKS(X) is an isomorphism.
(2) The following diagram commutes up to natural transformation

Dmix
S (X) H(X) -modZ

DKS(X) K(X) -mod

H

ι

K

where the right vertical arrow is forgetting the grading.
(3) The ring H(X) is the Chow ring of X. Assume that X and the stratification
is already defined over Z. Then H(X) coincides with the Borel–Moore singular ho-
mology of Xan(C).
(4) Assume that X is smooth, then K(X) = K0(X) is 0-th K-group of X, that is,
the Grothendieck group of the category of vector bundles on X.

Proof. All statements are direct consequences of the discussion in Section 2.3. �

We remark that motivic cohomology is bigraded (higher Chow groups) and K-
theory graded (higher K-groups). In our particular setup (affine stratification,
finite field base, rational coefficients) all the higher groups vanish. We hence see
one grading less.

Under a certain technical assumption the functors H and K are fully faithful on
pointwise pure objects.

Theorem 3.14 (Erweiterungssatz). Assume that all objects in Dmix
S (X)w=0 are

pointwise pure and for each stratum i : Xs → X and M ∈ Dmix
S (X)w=0 the map

H(M) → H(i∗i
∗M) is surjective and the map H(i!i

!M) → H(M) is injective. Then
the functors

H : Dmix
S (X)w=0 → H(X) -modZ

K : DKS(X)w=0 → K(X) -mod

are fully faithful.

Proof. The statement for Dmix
S (X) is proven in [SW16, Section 8]. The proof uses

the six functor formalism and weight arguments and applies word for word for
DKS(X)w=0. �

The assumptions are fulfilled if there are contracting Gm actions for the closure
of strata, see [SW16, Proposition 8.8]. The theorem in particular applies to flag
varieties.

Definition 3.15. We denote the essential images of Dmix
S (X)w=0 and DKS(X)w=0

under H and K by H(X) -SmodZ and K(X) -SmodZ and call them Soergel modules.
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Corollary 3.16. Under the assumptions of Theorem 3.14, there are equivalences
of categories

Dmix
S (X) ∼= Kb(H(X) -SmodZ) and

DKS(X) ∼= Kb(K(X) -Smod).

4. Flag varieties and Koszul duality

We discuss the particular case of flag varieties and Koszul duality.

4.1. Flag Varieties. Let G ⊃ B ⊃ T be a split reductive group over Fp with a
Borel subgroup and maximal torus. Denote the Langlands dual by G∨ ⊃ B∨ ⊃ T∨.
Denote by X(T ) = Hom (T,Gm) the character lattice, by W = NG(T )/T ⊃ S the
Weyl group with the set of simple reflections corresponding to B, and for w ∈ W
by l(w) ∈ Z≥0 the length of an element. The flag variety X = G/B has an affine
stratification (B) by its B-orbits, called the Bruhat stratification,

X =
⊎

w∈W

Xw

where Xw = BwB/B ∼= A
l(w)
k . By [SW16, Proposition 4.10] this stratification

fulfills the Whitney–Tate condition. More generally, the partial flag varieties G/P
for parabolics B ⊂ P ⊂ G with their stratification by B-orbits are Whitney–Tate.
Similarly, X∨ = G∨/B∨ admits a Bruhat stratification by B∨-orbits. It hence

makes sense to consider the categories Dmix
(B) (X), D(B)(X) as well as Dmix

(B∨)(X
∨),

DK(B∨)(X
∨) from the Introduction.

4.2. Translation Functors and Pointwise Purity. We recall the inductive con-
struction of pointwise pure objects in Dmix

(B∨)(X
∨), see [SW16, Section 6].

First of all, the object ie,!Q is pointwise pure, where e ∈ W denotes the identity.
For a simple reflection s ∈ S we denote by P∨

s = B∨∪B∨sB∨ the minmal parabolic
and the smooth proper morphism (in fact the map is a projective bundle)

πs : X
∨ → G∨/P∨

s .

The functor θs = π∗
sπs,∗ is called translation functor. It clearly preserves pointwise

pure objects. For an arbitary w ∈ W with l = l(w) we choose a shortest expression
w = s1 · · · sl. Then the object θs1 · · · θsnie,!Q is called a Bott–Samelson motive. It

is pointwise pure, has support X∨
w and a unique indecomposable direct summand,

which we will denote by Êw, with support X∨
w . In fact all pointwise pure objects

are sums of shifts twits of the motives Êw and the objects I C w = Êw[l(w)] are
simple perverse motives (intersection cohomology complexes) by the decomposition
theorem! Subsumed, we get

Dmix
(B∨)(X

∨)w=0 = 〈θs1 · · · θsl ie,!Q(n)[2n] | si ∈ S, l ∈ Z≥0, n ∈ Z〉∼=,⊕,A

=
〈
Êw(n)[2n] |w ∈ W,n ∈ Z

〉
∼=,⊕

.

where by ∼=,⊕,A we denote closure under isomorphism, finite direct sum and direct
summands. We see that all objects in Dmix

(B∨)(X
∨)w=0 are pointwise pure.
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We observe that exactly the same construction works for DK(B∨)(X
∨). We de-

note Ew = ι(Êw) and obtain

DK(B∨)(X
∨)w=0 = 〈θs1 · · · θsl ie,!Q | si ∈ S, l ∈ Z≥0〉∼=,⊕,A

= 〈Ew |w ∈ W 〉∼=,⊕ .

Here, the objects Ew may be taken as a definition for intersection K-theory com-
plexes I K w = Ew.

Furthermore, the weight complex functor induces equivalences of categories, see
Theorem 3.11,

Dmix
(B∨)(X

∨) ∼= Kb(Dmix
(B∨)(X

∨)w=0) and

DK(B∨)(X
∨) ∼= Kb(DK(B∨)(X

∨)w=0)

compatible with the functor ι in the obvious way.

4.3. Soergel Modules I. The categories Dmix
(B∨)(X

∨)w=0 and DK(B∨)(X
∨)w=0 can

be described combinatorially in terms of Soergel modules, using the functors H and
K and the Erweiterungssatz, see Section 3.4. We recall the explicit description
of H(X∨) and K(X∨). Recall that X(T ) = Hom (T∨,Gm) denotes the character
lattice. Then there are natural isomorphisms

C = S(X(T∨)⊗Q)/ S(X(T∨)⊗Q)W+
∼= H(X∨) ∼= K(X∨)

where S(X(T )⊗Q) denotes the symmetric algebra, and S(X(T∨)⊗Q)W+ the ideal
of invariants of positive degree under the action of W . In [Soe90] it is shown that
the Bott–Samelson motives

θs1 · · · θslie,!Q

are mapped to the Bott–Samelson modules

C ⊗Cs1 · · · ⊗Csl Q

underH and hence also underK.We denoteDw = H(Êw) = K(Ew). ThenDw can be
characterised as the unique indecomposable direct summand of the Bott-Samelson
module not appearing in the Bott-Samelson modules associated to elements of W
of shorter length.

Furthermore, the assumption for the Erweiterungssatz (Theorem 3.14) are ful-
filled by flag varieties, see [SW16, Proposition 8.8]. Hence, there is an equivalence
of categories

Dmix
(B∨)(X

∨)w=0 =
〈
Êw(n)[2n] |w ∈ W,n ∈ Z

〉
∼=,⊕

∼= 〈Dw〈n〉 |w ∈ W,n ∈ Z〉∼=,⊕

= C -SmodZ

of weight zero objects in Dmix
(B∨)(X

∨) and the category of graded Soergel modules.

Here we denote by 〈n〉 the shift of grading in C -modZ . In the same way there is
an equivalence

DK(B∨)(X
∨)w=0 = 〈Ew |w ∈ W, 〉∼=,⊕

∼= 〈Dw |w ∈ W 〉∼=,⊕

= C -Smod
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between pointwise pure K-motives and ungraded Soergel modules. Both descrip-
tions are compatible with the functor ι in the obvious way.

4.4. Projective Perverse Sheaves. We describe the “Koszul dual” of the last
sections. This is the “classical story”. First, there is a functor, called Betti realiza-
tion functor,

v : Dmix
(B) (X) → D(B)(X)

where D(B)(X) = D(B)(X(C)) is the (B)-constructible derived category of sheaves
on the complex manifold X(C). The functor v is a degrading functor with respect

to the Tate twist (n). We have v(−(n)) ∼= v(−) and for M,N ∈ Dmix
(B) (X) the

functor v induces an isomorphism
⊕

n∈Z

HomDmix
(B)

(X) (M,N(n)) = HomD(B)(X) (v(M), v(N)) .

The functor v is furthermore clearly exact for the perverse t-structures on Dmix
(B) (X)

and D(B)(X). We denote the categories of projective perverse sheaves by

Proj Dmix
(B) (X)t=0 and Proj D(B)(X)t=0.

One can show, using Theorem A.8, that there are equivalences of categories

Kb(Proj Dmix
(B) (X)t=0) ∼= Db(Dmix

(B) (X)t=0) ∼= Dmix
(B) (X) and

Kb(Proj D(B)(X)t=0) ∼= Db(D(B)(X)t=0) ∼= D(B)(X)

which are all compatible with v. Denote by w0 ∈ W the longest element. Let P̂w ∈

Proj Dmix
(B) (X)t=0 be the projective cover of jww0,!Q[l(w)]. Then Pw = v(P̂w) ∈

Proj D(B)(X)t=0 the projective cover of jww0,!Q[l(w)] ∈ D(X)t=0.

4.5. Soergel Modules II. Soergel shows in [Soe90] that categories of projective
perverse objects Proj Dmix

(B) (X)t=0 and Proj D(B)(X)t=0 can be described in terms
of Soergel modules as well.

First, Soergel’s Endomorphismensatz states that there is an isomorphism of
graded algebras

C ∼= HomD(B)(X) (Pw0 ,Pw0) =
⊕

n∈Z

HomDmix
(B)

(X)

(
P̂w0 , P̂w0(n)

)
.

In [Soe90] this statement is originally proven representation-theoretically for cate-
gory O. There is also a topological proof, due to Bezrukavnikov–Riche, see [BR18].

Then, Soergel’s Struktursatz shows that the functors

V̂ : Dmix
(B) (X) → C -modZ,M 7→

⊕

n∈Z

HomDmix
(B)

(X)

(
P̂w0 ,M(n)

)

V : D(X) → C -mod,M 7→ HomD(B)(X) (Pw0 ,M)

are fully faithful on projective perverse objects. In fact there are isomorphisms

V̂(P̂w) ∼= V(Pw) ∼= Dw.

Hence there are equivalences of categories

Proj Dmix
(B) (X)t=0 = C -SmodZ and

ProjD(X)t=0 = C -Smod .
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4.6. Koszul duality. The existence of the following Koszul duality functor K̂os
for Dmix

(B) (X) was first conjectured by Beilinson–Ginzburg in [BG86] and proven by

Soergel in [Soe90] using the combinatorial descriptions in terms of Soergel modules
from above. The very elegant formulation using motivic sheaves is due to Soergel–

Wendt, [SW16]. The functor K̂os can be constructed as the composition

K̂os : Dmix
(B) (X) ∼= Kb((Proj Dmix

(B) (X)t=0)

∼= Kb(C -SmodZ)

∼= Kb(Dmix
(B∨)(X

∨)w=0) ∼= Dmix
(B∨)(X

∨)

Under this equivalence the projective perverse motivic sheaf P̂w is sent to the

intersection complex Êw. It also intertwines the grading shifts (n) and (n)[2n]. For
further properties we refer to [BGS96].

We can now consider the ungraded version of Koszul duality in exactly the same
way, namely, we have equivalences

Kos : D(B)(X) ∼= Kb((Proj D(B)(X)t=0)

∼= Kb(C -Smod)

∼= Kb(DK(B∨)(X
∨)w=0) ∼= DK(B∨)(X

∨)

Under this equivalence the projective perverse sheaf Pw is sent to the intersection

K-theory compex I K w. The functor Kos inherits all the nice properties of K̂os.
Combining everything, we hence obtain the quite satisfying commutative dia-

gram

Dmix
(B) (X) Dmix

(B∨)(X
∨)

D(B)(X) DK(B∨)(X
∨).

K̂os

v ι

Kos

Appendix A. Weight structures and t-structures

For the convenience of the reader, we briefly recall the definitions and gluing of
t-structures and weight structures of triangulated categories.

A.1. Definitions.

Definition A.1. [BBD82, Definition 1.3.1] Let C be a triangulated category. A
t-structure t on C is a pair t = (Ct≤0, Ct≥0) of full subcategories of C such that with
Ct≤n := Ct≤0[−n] and Ct≥n := Ct≥0[−n] the following conditions are satisfied:

(1) Ct≤0 ⊆ Ct≤1 and Ct≥1 ⊆ Ct≥0;
(2) for all X ∈ Ct≤0 and Y ∈ Ct≥1, we have HomC (X,Y ) = 0;
(3) for any X ∈ C there is a distinguished triangle

A X B
+1

with A ∈ Ct≤0 and B ∈ C≥1.

The full subcategory Ct=0 = Ct≤0 ∩ Ct≥0 is called the heart of the t-struture. The
t-structure is called bounded if C =

⋃
n C

t≥n =
⋃

n C
t≥n.
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Definition A.2. [Bon10, Definition 1.1.1] Let C be a triangulated category. A
weight structure w on C is a pair w = (Cw≤0, Cw≥0) of full subcategories of C,
which are closed under direct summands, such that with Cw≤n := Cw≤0[−n] and
Cw≥n := Cw≥0[−n] the following conditions are satisfied:

(1) Cw≤0 ⊆ Cw≤1 and Cw≥1 ⊆ Cw≥0;
(2) for all X ∈ Cw≥0 and Y ∈ Cw≤−1, we have HomC (X,Y ) = 0;
(3) for any X ∈ C there is a distinguished triangle

A X B
+1

with A ∈ Cw≥1 and B ∈ Cw≤0.

The full subcategory Cw=0 = Cw≤0∩Cw≥0 is called the heart of the weight struture.
The weight structure is called bounded if C =

⋃
n C

w≥n =
⋃

n C
w≥n.

Remark A.3. (1) The standard example of a bounded t-structure is the bounded

derived category Db(A) of an abelian category A, where we set

Db(A)t≤0 =
{
X ∈ D(A) |HiX = 0 for all i > 0

}
and

Db(A)t≥0 =
{
X ∈ D(A) |HiX = 0 for all i < 0

}
.

The standard example of a bounded weight structure is the bounded homotopy
category of chain complexes Kb(A) of an additive category A, where we set

Kb(A)w≤0 =
〈
X ∈ Kb(A) |X i = 0 for all i > 0

〉
∼=
,

Kb(A)w≥0 =
〈
X ∈ Kb(A) |X i = 0 for all i < 0

〉
∼=

and by ∼= we denote closure under isomorphism. This already showcases an impor-
tant distinction between t-structures and weight structures. While the heart of a
t-structure is abelian, the heart of a weight structure is only additive in general,
and behaves more like the subcategory of projectives or injectives in an abelian
category.
(2) We use the cohomological convention for weight and t-structures. One can easily
translate to the homological convention, by setting Cw≤0 = Cw≥0 and Cw≥0 = Cw≤0.

Proposition A.4. Let C be a triangulated category with a t-structure or weight
structure. The categories D = Ct≤0, Ct≥0, Cw≤0 and Cw≥0 are extension stable.
That is, for any distinguished triangle in C

A B C
+1

with A,C ∈ D, also B ∈ D.

We will use standard terminology for exactness of functors.

Definition A.5. Let F : C1 → C2 between two triangulated categories with t-
structures (weight structures). We say that F is left t-exact (or left w-exact) if

F (Ct≤0
1 ) ⊂ Ct≤0

2 (or F (Cw≤0
1 ) ⊂ Cw≤0

2 ) and F is right t-exact (or left w-exact) if

F (Ct≥0
1 ) ⊂ Ct≥0

2 (or F (Cw≥0
1 ⊂ Cw≥0

2 ). We say that F is t-exact (w-exact) if F is
both left and right t-exact (or w-exact).

A.2. Gluing. As explained in [BBD82], t-structures can be glued together. In
fact the axiomatic setup required to perform such a gluing also works for weight
structures. But there is subtle and essential difference in the definition of the gluing
of t-structures and weight structures, exchanging ∗ and ! functors.
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Definition A.6. [BBD82, Section 1.4.3] We call sequence of triangulated functors
and categories

CZ
i∗=i!→ C

j∗=j!

→ CU

a gluing datum if the following properties are fulfilled.

(1) The functor i∗ = i! admits triangulated left and right adjoints, denoted by
i∗ and i!.

(2) The functor j∗ = j! admits triangulated left and right adjoints, denoted by
j! and j∗.

(3) One has j∗i∗ = 0.
(4) For all K ∈ C the units and counits of the adjunctions can be completed to

distinguished triangles

j!j
!K K i∗i

∗K
+1

i!i
!K K j∗j

∗K
+1

(5) The functors i∗ = i!, j! and j∗ = j! are fully faithful.

Theorem A.7. Assume that CZ
i∗=i!→ C

j∗=j!

→ CU is a gluing datum.

(1) If (Ct≤0
U , Ct≥0

U ) and (Ct≤0
Z , Ct≥0

Z ) are t-structures on CU and CZ , then

Ct≤0 :=
{
X ∈ C | j!K ∈ Ct≤0

U and i∗K ∈ Ct≤0
Z

}
and

Ct≥0 :=
{
X ∈ C | j∗K ∈ Ct≥0

U and i!K ∈ Ct≥0
Z

}

defines a t-structure on C.
(2) If (Cw≤0

U , Cw≥0
U ) and (Cw≤0

Z , Cw≥0
Z ) are weight structures on CU and CZ ,

then

Cw≤0 :=
{
X ∈ C | j∗K ∈ Cw≤0

U and i!K ∈ Cw≤0
Z

}
and

Cw≥0 :=
{
X ∈ C | j!K ∈ Cw≥0

U and i∗K ∈ Cw≥0
Z

}

defines a weight structure on C.

Proof. The statement for t-structures is [BBD82, Theorem 1.4.10]. The statement
for weight structures is [Bon10, Theorem 8.2.3]. �

A.3. Weight complex and realisation functors. It is often possible to realise
a triangulated category with t-structure as the derived category of its heart. Sim-
ilarly, one can often realise a triangulated category with a weight structure as the
homotopy category of chain complexes of its heart. We recall some statements from
the literature.

Theorem A.8. Let C be an “enhanced” triangulated category, meaning that either

(1) (Derivator) C = D(pt), where D is a strong stable derivator.
(2) (∞-category) C = Ho(C ′), where C ′ is a stable ∞-category.
(3) (f -category) There is an f -category DF over C.

Assume that C is equipped with a t-structure. Then there is a triangulated functor
called realisation functor

Db(Ct=0) → C

restricting to the inclusion of the heart Ct=0 → C.
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Assume that C is equipped with a bounded weight structure. Then there is a
triangulated functor called weight complex functor

C → Kb(Cw=0)

restricting to the inclusion of the heart Cw=0 → Kb(Cw=0).

Proof. For the statement about t-structures, we refer to [Vir18] for derivators,
[Lur17] for ∞-categories and [Bei87] for f -categories. For the statement about
weight structures, we refer to [Bon10] for f -categories and [Sos17], [Aok19] for ∞-
categories. In fact, the derivator assumption implies the f -category assumption by
[Mod19]. �

There are different assumptions under which the above functors can be shown to
be fully faithful. We refer to the references in the proof above. Furthemore, it can
be shown that realisation and weight complex functors are compatible with “en-
hanced” exact triangulated functors between “enhanced” triangulated categories.
We note that the categories of motives and the six operations between them are all
“enhanced”.
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