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VARIATION OF TAMAGAWA NUMBERS OF JACOBIANS OF

HYPERELLIPTIC CURVES WITH SEMISTABLE REDUCTION

L. ALEXANDER BETTS

Abstract. We study how Tamagawa numbers of Jacobians of hyperelliptic
curves vary as one varies the base field or the curve, in the case of semistable
reduction. We find that there are strong constraints on the behaviour that
appears, some of which are unexpected and specific to hyperelliptic curves.
Our methods are explicit and allow one to write down formulae for Tamagawa
numbers of infinite families of hyperelliptic curves, of the kind used in proofs
of the parity conjecture for Jacobians of curves of small genus.
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2 L. ALEXANDER BETTS

1. Introduction

Fix a finite extension K of Qp with ring of integers ØK and residue field k,
and let X/K be a (smooth, projective, geometrically integral) semistable1 curve.
The Jacobian Jac(X) is then also semistable, meaning that the special fibre of its
Néron model is an extension of a finite k-group-scheme ΦJac(X)/K by an abelian
variety by a torus. The number cJac(X)/K := #ΦJac(X)/K(k) of k-rational points
of this group is known as the Tamagawa number of Jac(X), and provides a crude
numerical invariant of the reduction type of Jac(X). Although this captures very
little information about the reduction type, Tamagawa numbers turn out to have
lots of arithmetic content, and appear famously in the leading terms for the L-series
of abelian varieties predicted by the Birch–Swinnerton-Dyer Conjecture.

The object of this paper is to study how the Tamagawa number cJac(X)/K of
the Jacobian of X – henceforth simply called the Tamagawa number cX/K of X –
changes as we vary both the curve X and the field K, in the special case that X/K
is hyperelliptic2.

1.1. Variation in field extensions. Our first and most striking result governs
the behaviour of the Tamagawa number cX/L := cXL/L as L varies over finite
extensions of K, for a fixed semistable hyperelliptic curve X/K. Our main theorem
says that cX/L is a function of L of a very specific form.

Theorem 1.1.1 (Theorem 4.0.2, cf. Lemma 4.0.1). Let p be a prime, K a finite
extension of Qp, and X/K a semistable hyperelliptic curve. Then there are elements
(ad, rd, sd) ∈ N × N0 × Z for each d ∈ N (equal to (1, 0, 0) for almost all d) such
that

cX/L =
∏

d|f

(ad · e
rd · gcd(e, 2)sd)ϕ(d)

for all finite extensions L/K, where e = e(L/K) and f = f(L/K) are the ramifi-
cation and residue class degrees, respectively, and ϕ is Euler’s totient function.

Here is a sample consequence.

Corollary 1.1.2. Suppose that we are in the setup of theorem 1.1.1. Let q be a
prime, and let Kq/K be the unramified extension of degree q. Then cX/Kq

/cX/K is
a (q − 1)th power.

Proof. Apply theorem 1.1.1 to X/K and XKq/Kq. �

What is particularly surprising about this result is that it is no longer true if
we remove the assumption that X is hyperelliptic: we will give an example in
example 2.1.9 of a semistable non-hyperelliptic curve X/K such that cX/K5

= 121
but cX/K = 1, whose ratio is not a 4th power. Thus, theorem 1.1.1 shows that the
functions L 7→ cX/L for semistable hyperelliptic curves X/K are not generic among
the corresponding functions for all semistable curves.

1Throughout this paper, we will use “semistable” as a shorthand for “with semistable reduc-
tion”, i.e. possessing a regular model whose special fibre is a reduced normal crossings divisor.

2For our purposes, a hyperelliptic curve is a smooth, projective, geometrically connected curve
X/K endowed with a degree 2 map to a genus 0 curve over K. We don’t assume that the genus
of X is ≥ 2, or that X/ι ≃ P1

K .
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1.2. Variation in degenerating families. Our second result governs the be-
haviour of the Tamagawa number cX/K as X varies in a degenerating family, in
the case that K is a finite extension of Qp for p 6= 2. Suppose that f0 ∈ K[x] is
a polynomial of degree d ≥ 5 with at worst double roots, whose splitting field is
unramified over K. If f ∈ K[x] is a squarefree polynomial of the same degree d,
then we will describe the behaviour of the Tamagawa numbers of the curves Xf

with affine equation y2 = f(x) as f approaches f0 in the p-adic topology, at least
when Xf is semistable.

These Tamagawa numbers are controlled very precisely by the relative position
of the roots of f . It we enumerate the double roots of f0 as α1, . . . , αm, then any
f sufficiently close to f0 has exactly two roots βi, γi in a small disc about each αi
(see proposition 3.2.1 for a precise statement). We write di(f) := vK(βi−γi) ∈

1
2Z,

where vK is the valuation on the algebraic closure of K, normalised so that the
valuation of a uniformiser ofK is 1. These quantities entirely control the Tamagawa
numbers of the curves Xf , when semistable, in a precise manner.

Theorem 1.2.1 (see §3.2). Keep notation (p, K, f0, d, Xf , di(f)) and hypotheses
as above, and let | · | : K[x] → R≥0 denote the Gauss norm on polynomials (the
largest norm3 of a coefficient). Then there is a positive δ, depending on f0, such
that:

(1) Either:
• for all squarefree polynomials f ∈ K[x] of degree d with |f − f0| < δ,
the curve Xf is semistable; or

• for all squarefree polynomials f ∈ K[x] of degree d with |f − f0| < δ,
the curve Xf is not semistable.

(2) In the first case (all Xf semistable), there exists a rational polynomial P
in m variables and a function s : Fm2 → Z such that

cXf/K = 2s(ρ(2d1(f),...,2dm(f))) · P (d1(f), . . . , dm(f))

for all squarefree polynomials f ∈ K[x] of degree d with |f − f0| < δ, where
ρ : Zm → Fm2 is the reduction map modulo 2.

Moreover, there is an explicit procedure to determine which of the two possibilities
occurs in part (1) and the polynomial P and function s in part (2).

Remark 1.2.2. In the case that f0 is squarefree, theorem 1.2.1 shows that if Xf0 is
semistable, then there is some δ > 0 such that whenever |f − f0| < δ, we have that
f is also squarefree, and that Xf is semistable with the same Tamagawa number
as Xf0 .

Remark 1.2.3. We can think of theorem 1.2.1(2) as describing Tamagawa num-
bers of semistable hyperelliptic curves in a neighbourhood of certain points on the
boundary of the moduli space of hyperelliptic curves. However, some care is needed
in doing so, since there are several inequivalent ways to compactify the moduli space
of hyperelliptic curves [1, Remark 4.3].

Let Ag ∼= A2g+3 denote the affine space (over Q) parametrising homogenous bi-
nary forms in two variables x, z, and let Ag,sm denote the open subscheme consisting
of squarefree forms. There is an action of GL2 onAg by change of coordinates, under
which the subscheme µg+1 of (g+1)th roots of unity (embedded diagonally in GL2)

3The normalisation of the norm on K doesn’t matter in this theorem; later to fix notation we
will use the norm on K for which a uniformiser has norm p−1.
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acts trivially. Arsie and Vistoli prove that the moduli stack Hg,sm of (smooth) hy-
perelliptic curves is canonically equivalent to the quotient stack [Ag,sm/(GL2/µg+1)]
[1, Corollary 4.2]. The universal hyperelliptic curve on Hg,sm pulls back to the hy-
perelliptic curve on Ag,sm with affine equation y2 = F (x, 1), where F (x, z) is the
universal homogenous form of degree 2g+2 on Ag,sm (if a0, . . . , a2g+2 are the coordi-
nates on Ag ∼= A2g+3, then F is the form a2g+2x

2g+2+a2g+1x
2g+1z+ · · ·+a0z2g+2).

One can produce various partial compactifications of the moduli space Hg,sm by
finding GL2/µg+1-equivariant dense open embeddings of Ag,sm into larger schemes

Ag – the quotient stack [Ag/(GL2/µg+1)] then contains Hg,sm as a dense open
substack. For instance, taking the scheme Ag,0 of all non-zero binary forms produces
a partial compactification Hg of Hg,sm which is an Artin stack with finite diagonal
and quasiprojective moduli space [1, p654]. Alternatively, one can use a procedure
due to Kirwan to construct a GL2/µg+1-equivariant morphism Kg → Ag,0, and

the corresponding quotient stack Hg = [Kg/(GL2/µg+1)] is an Artin stack with
finite diagonal and projective moduli space (hence, a compactification of Hg,sm) [1,
Remark 4.3].

Instead of these, theorem 1.2.1 takes place on the partial compactificationHg,≤2 :=
[Ag,≤2/(GL2/µg+1)] of Hg,sm, where Ag,≤2 is the space of cubefree homogenous bi-

nary forms of degree 2g + 2. This is a dense open substack of both Hg and4 Hg.
The cubefree polynomial f0 of degree d = 2g + 1 or 2g + 2 determines a Kv-point
on Ag,≤2, and theorem 3.0.2 describes the Tamagawa number of a semistable hy-
perelliptic curve corresponding to a point in the intersection of Ag,sm with a small
p-adic neighbourhood of f0.

1.3. Reduction types and Tamagawa numbers. What unites the above two
settings – enlargement of the base field and degeneration of the curve – is that in
both cases we are interested in studying infinite families of curves whose reduction
types belong to an infinite parametrised family. As an illustration of what we mean
by this, consider the elliptic curve E/Qp with affine equation y2 = (x− x2)(x− p).
Over Qp, this curve has split multiplicative reduction of Kodaira type I1, but over
a finite extension L of Qp the reduction type instead becomes Ie(L/Qp). Equally,

in the family of elliptic curves Eα/Qp with equations y2 = (x − x2)(x − α) for
α ∈ pZp {0}, all the curves have split multiplicative reduction of Kodaira type In
for some n, but the value of n depends on the value of α (in fact, n = vp(α)). Thus,
the Tamagawa numbers of EL/L for varying L as well as the Tamagawa numbers
of the curves Eα/Qp for varying α are both determined by the following fact: the
Tamagawa number of an elliptic curve of split type In reduction is n.

To generalise this observation to hyperelliptic curves, we will replace the Kodaira
type of a semistable elliptic curve E/K with the dual graph G of the geometric
special fibre of the minimal regular model X of X/K (definition 2.1.6) together
with its induced Frobenius action. In the setup of theorem 1.1.1, it turns out that

4This latter requires some justification. Kirwan’s procedure, applied to a projective variety X
with an action of a reductive group G on its affine cone, gives an iterated blowup of X whose
exceptional locus is contained in the locus of non-semistable points, together with the closure
of the locus of semistable points fixed by a reductive subgroup of positive dimension [25, §§5–
6 & Lemma 4.3]. In the particular case X = P(Ag,0), G = SL2, as in [25, §9], the non-semistable
locus consists of the homogenous forms with a root of multiplicity ≥ g + 2 in P1, while the
semistable points fixed by a positive-dimensional reductive subgroup are the homogenous forms
with two distinct roots of multiplicity g+1 each. The closure of these loci is disjoint from Ag,≤2,

which is thus an open subscheme of Kg. This makes Hg,≤2 an open substack of Hg .
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the dual graph associated to XL/L is a subdivision of the dual graph associated
to X/K (lemma 4.0.1). Equally, in the setup of theorem 1.2.1(2), the dual graph
associated to Xf is a subdivision of a fixed graph determined by f0 (corollary 3.2.3).
Thus, the bulk of the work in proving our two main theorems will be contained in a
result of the following kind: for a fixed graph G0 with automorphism, the Tamagawa
number of any semistable hyperelliptic curve X whose dual graph is a subdivision
of G0 is given by an explicit formula, depending only on the number of times each
edge of G0 is subdivided in the dual graph of X .

To prove a result of this kind, we use the well-known fact that the Tamagawa
number of a semistable curve X/K can be read off from its dual graph G (with the
induced Frobenius action). Over the maximal unramified extension Knr of K, the
description is simple: the Tamagawa number of XKnr/Knr is equal to the order
of the Jacobian or sandpile group ΦG of G, a certain finite group defined purely
combinatorially in terms of G (see definition 2.1.1). Moreover, the order of ΦG also
admits a purely graph-theoretic characterisation as the number of spanning trees
in G [26].

Over the ground field K however, the Tamagawa number is instead equal to
the order of the Frobenius-invariant subgroup of ΦG . This quantity is in general
much more subtle than the order of the entire group ΦG [13], and in particular
doesn’t seem to have a natural graph-theoretic interpretation in terms of spanning
trees. Moreover, it is far from clear how this quantity behaves under subdivision of
edges of G: a priori, the Jacobian ΦG is the cokernel of a matrix whose dimension
depends on the number of vertices of G, and then computing the number of invariant
elements of this cokernel involves complicated calculations with the cohomology of
lattice representations of cyclic groups.

We overcome these difficulties by making some simplifications particular to the
setting of hyperelliptic curves. The dual graph G of the geometric special fibre of a
semistable hyperelliptic curve has the property that the quotient of G by the hyper-
elliptic involution is a tree T (lemma 2.2.4) – such a graph is called a hyperelliptic
graph in [3, 18] – and G can be reconstructed from this quotient tree together with
the ramification locus S of the quotient map G ։ T (proposition 2.3.7). Moreover,
the Frobenius on G induces a certain “signed” automorphism ǫF of the pair (T, S)
(definition 2.3.1).

This data of a tree T and a subgraph S ⊆ T is called a BY tree5 (definition 2.3.1,
following [19]), and provides the combinatorial framework we will use for studying
Tamagawa numbers of semistable hyperelliptic curves. We will define an invariant
cT,ǫF of a BY tree T = (T, S) and signed automorphism ǫF , called its Tamagawa
number (definition 2.3.11), which, when (T, S, ǫF ) arises from a semistable hyper-
elliptic curve X/K, recovers the Tamagawa number cX/K of X/K (§2.3.13). The
main technical input in this paper, then, is a purely combinatorial result describing
how the Tamagawa number of a BY tree changes as one subdivides its edges.

Theorem 1.3.1 (=corollary 3.1.1). Let T0 = (T0, S0) be a BY tree and ǫF = (F, ǫ)
a signed isomorphism of T0 (see definition 2.3.1). Enumerate the F -orbits of edges

in T0 as ω1, . . . , ωm, and for a tuple l = (l1, . . . , lm) ∈ Nm let T
(l)
0 denote the

subdivision of T0 formed by replacing each edge in the F -orbit ωi by a chain of li

5BY since the subgraph S is usually drawn in blue and the tree T in yellow.
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edges. The signed automorphism ǫF induces a signed automorphism of T
(l)
0 , which

we also denote by ǫF .
Then there is a homogenous polynomial P ∈ Q[t1, . . . , tm] and a function s : Fm2 →

Z such that the Tamagawa number c
T

(l)
0 ,ǫF

of (T
(l)
0 , ǫF ) is given by

c
T

(l)
0 ,ǫF

= 2s(ρ(l)) · P (l) ,

where ρ : Zm → Fm2 is the reduction map modulo 2. Moreover, for T
(l)
0 and ǫF

both even (definition 2.3.3 – this condition is automatic for BY trees arising for
hyperelliptic curves) there is an explicit description of both P and s in terms of T0.

Remark 1.3.2. The fact that theorem 3.0.2 gives an explicit description of P
and s is significant in the context of proofs of cases of the parity conjecture [15,
16, 17, 20]. Tamagawa numbers play an important role in these proofs: one first
relates information about parities of ranks of abelian varieties to global Tamagawa
numbers (as in e.g. [16, Proof of Theorem 6] or [15, Corollary 2.21]), and then relates
global Tamagawa numbers to global root numbers by expressing them as a product
of local terms. What makes this latter step particularly subtle is that the local
Tamagawa numbers and local root numbers do not in general match up place-by-
place, and so one needs to show that the total discrepancy over all places vanishes,
for example via Artin symbols [16, Proof of Theorem 2] or by taking an appropriate
combination of local invariants over field extensions [15, Proposition 3.3]. Proving
these relations between local Tamagawa numbers and root numbers often proceeds
via a case-by-case analysis of the possible reduction types involved, see e.g. the
proof of [15, Proposition 3.3], or especially [20, Theorem 4.5].

Of course, in order to be able to carry out such a case-by-case analysis, it is
necessary to have explicit expressions for the Tamagawa numbers of all possible
reduction types that might appear. In general, the list of such reduction types
is infinite, but is made up of finitely many lists indexed by integer parameters
(e.g. the Kodaira classification of reduction types of elliptic curves contains two
infinite families In and I∗n and finitely many exceptional cases). In the setting of
hyperelliptic curves, there are infinitely many graphs arising as the dual graph
of a semistable hyperelliptic curve X/K of some fixed genus, but these are all
subdivisions of a finite list of graphs (see [19, Table 9.3] for the complete list in
genus 2). Thus theorem 1.3.1 allows us, at least in principle, to write down explicit
formulas describing the Tamagawa numbers of every semistable hyperelliptic curve
of a given genus (as a function of its dual graph).

Remark 1.3.3. By combining the explicit description of Tamagawa numbers in
theorem 3.0.2 with the “cluster picture” machinery of [18], one obtains an explicit
way to read off the Tamagawa number of a semistable hyperelliptic curve X/K
from an explicit affine equation y2 = f(x) (for deg(f) ≥ 5 and p 6= 2). Indeed, [18,
§1] explains how to associate to f a certain combinatorial object called a cluster
picture, from which one can read off a great number of arithmetic quantities of X ,
including whether it is semistable [18, Theorem 7.1] and the BY tree associated to
the dual graph of its special fibre [18, Theorem 5.18]. Plugging this BY tree into
theorem 3.0.2 yields the Tamagawa number of X/K.

This algorithm has been implemented in Sage by Alex Best and Raymond van
Bommel as part of a wider implementation of the theory of clusters [7, 8]. Algo-
rithms to efficiently compute Tamagawa numbers are of relevance, for example, in
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the context of numerical verification of the Birch–Swinnerton-Dyer Conjecture, as
in [12].

Remark 1.3.4. One can apply theorem 3.0.2 also in the case when the signed
automorphism ǫF is trivial, which gives a formula for the size of the Jacobian
group of a hyperelliptic graph G in terms of its associated BY tree. It turns out that
in this case, theorem 3.0.2 essentially just asserts that the order of the Jacobian
group is the number of spanning trees in G, as per the matrix-tree theorem [11,
Corollary II.3.13]. Moreover, the proof of theorem 3.0.2 essentially just recovers one
of the standard proofs of this fact: the order of the Jacobian group is given by the
discriminant of a certain pairing (proposition 3.3.10) which is equal to any cofactor
of the Laplacian matrix (proposition 2.1.3), and by changing the lengths of edges
to specific values one describes this discriminant combinatorially (lemma 3.3.11).

Acknowledgments. I am very grateful to Vladimir Dokchitser for suggesting this
problem to me and, along with Tim Dokchitser, Céline Maistret and Adam Morgan,
taking the time to explain to me the cluster picture machinery developed in [18]. I
would also like to thank Anna Somoza for helping me understand moduli stacks of
hyperelliptic curves, Omri Faraggi and Simone Muselli for pointing out a mistake
in the earlier statement of theorem 3.0.2, and the referee for their many helpful
suggestions.

The author was employed under EPSRC grant EP/M016846/2 during the prepa-
ration of this manuscript.

2. BY forests and Tamagawa numbers

To begin with, we recall how one computes Tamagawa numbers of semistable
curves via graph theory, and the particular simplifications one can make in the case
of hyperelliptic curves, following [18]. Our definitions differ slightly from those in
[18, 19], and we shall highlight such discrepancies when they arise.

2.0.1. Conventions. Throughout this paper, by a graph G we will formally mean a
graph in the sense of [28, §2.1], so a set V (G) of vertices and a set Ẽ(G) of oriented
edges, together with a source map s : Ẽ(G) → V (G) and an edge-inversion map

· : Ẽ(G) → Ẽ(G) which is an involution without fixed points. All graphs appearing

will be finite: that is, the sets V (G) and Ẽ(G) will always be finite. The target map

t : Ẽ(G) → V (G) is the map e 7→ s(e). We write E(G) for the quotient of Ẽ(G)
under the identification e ∼ e, and refer to E(G) as the set of edges of G. Note that
a graph in this sense may have loops (edges e with s(e) = t(e)) and parallel edges
(distinct edges e1, e2 with s(e1) = s(e1) and t(e1) = t(e2)). By an (iso)morphism
of graphs, we mean an (invertible) morphism in the sense of [28, §2.1], so a map on
vertex- and oriented edge-sets which preserves all relevant structure.

If we are given a function l : E(G) → N (equivalently an edge-inversion-invariant

function l : Ẽ(G) → N), then we define the subdivision G(l) to be the graph formed
by replacing every edge e of G with a chain of l(e) edges. Formally, this is defined
as follows.

• The oriented edges of G(l) are pairs (e, i) with e an oriented edge of G and
0 ≤ i < l(e) an integer. The inverse of edge (e, i) is (e, l(e)− i− 1).

• The vertices of G(l) are the vertices of G together with new vertices s(e, i) for
each edge (e, i) of G(l), quotiented by the identifications s(e, i) ∼ s(e, l(e)−i)



8 L. ALEXANDER BETTS

for 0 < i < l(e) and s(e, 0) ∼ s(e). The map (e, i) 7→ s(e, i) is the source
function on G(l).

We will also give versions of our main results for metric graphs. A metric on
a graph G is a function l : E(G) → R>0 (equivalently an edge-inversion-invariant

function l : Ẽ(G) → R>0), assigning to each edge its length – we say that the metric
is integral if it takes values in N. An (integral-)metric graph is a graph with an
(integral) metric. A graph without a metric can be thought of as an integral-metric
graph where each edge has length 1 – when we discuss the metric on such a graph,
we always mean this metric.

A metric graph G has an underlying metric space6 |G| – we will often denote
this simply G – which is the quotient of V (G) ⊔

∐
e∈Ẽ(G)[0, l(e)] by identifying

(e, 0) ∼ s(e) for all e ∈ Ẽ(G) and identifying (e, τ) ∼ (e, l(e)−τ) for all e ∈ Ẽ(G) and
τ ∈ [0, l(e)]. Here, (e, τ) ∈ V (G) ⊔

∐
e∈Ẽ(G)[0, l(e)] denotes the element τ ∈ [0, l(e)]

in the eth component of the coproduct. The metric on |G| is the length metric. An
isometry between (metric) graphs is an isometry between their underlying metric
spaces.

Remark 2.0.2. The fact that we use the same notation l : E(G) → N for a function
determining a subdivision G(l) and an integral metric on G is not a coincidence: the
subdivision G(l), viewed as a graph in which every edge has length 1, is canonically
isometric to the metric graph (G, l). The invariants we will study in this paper
turn out to be isometry-invariant, and we will often calculate these invariants for
the subdivision G(l) by instead calculating them for the integral-metric graph (G, l),
where the computations are easier. See for example the proof of corollary 3.1.1.

Remark 2.0.3. An isometry of graphs need not necessarily map vertices to ver-
tices. For instance, if G is a cycle, then its underlying metric space is a circle and has
self-isometries (e.g. irrational rotations) which do not preserve the set of vertices.

This example shows that there are isometries of graphs which are not isomor-
phisms. However, the difference between isometries and isomorphisms is very mild.
Every isomorphism is an isometry, and the converse is true between graphs which
do not have a cycle as a connected component.

2.1. Graph Jacobians and semistable curves. A fundamental invariant of a
graph G of arithmetic relevance is its Jacobian ΦG , which is a finite abelian group
functorially associated to G. There are several standard definitions of this group,
either as a quotient of the degree 0 divisors on G by the principal divisors (see e.g. [2,
§1.3]), or as the group of recurrent positions for the abelian sandpile model on G (see
e.g. [24, Corollary 2.16]). The former definition explains the name Jacobian, while
with the latter definition it is more commonly known as the sandpile group [26].

For our purposes, it will be useful to use a third definition of the Jacobian, which
is metric in nature.

Definition 2.1.1. Let G be a graph, and let Z · Ẽ(G) denote the free Z-module
on the oriented edges of G. The first homology H1(G,Z) of G is the quotient

Z1(G,Z)/B1(G,Z), where Z1(G,Z) is the kernel of the map Z · Ẽ(G) → Z · V (G)
sending an oriented edge e to t(e)− s(e), and B1(G,Z) is the submodule generated

6If G is disconnected, then the distance between two points in different connected components
should be taken to be ∞. All graphs appearing in this paper will be connected.
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by e+ e for e ∈ Ẽ(G). The assignment G 7→ H1(G,Z) is functorial
7 with respect to

graph isomorphisms.
Suppose now that we fix an orientation of each edge of G (a splitting σ of the

map Ẽ(G) → E(G)). This endows the underlying topological space |G| of G with the

structure of a ∆-complex [23, p103]. Via the induced splitting of the map Z·Ẽ(G) ։
Z · E(G), the homology H1(G,Z) is isomorphic to the simplicial homology of this
∆-complex [23, p105], and hence to the first singular homologyH1(|G|,Z) of |G| [23,
Theorem 2.27]. One can check easily that this isomorphism H1(G,Z) ∼= H1(|G|,Z)
is independent of the choice of orientation σ and natural with respect to graph
isomorphisms. In particular, it makes the construction G 7→ H1(G,Z) functorial
with respect to continuous maps between underlying topological spaces.

Suppose now that we have fixed an orientation σ as above, and write Λ :=
H1(G,Z) for short. The lattice Λ admits a Z-valued bilinear intersection-length
pairing, given by

〈
∑

e∈E(G)

ae · e,
∑

e∈E(G)

be · e

〉
:=

∑

e∈E(G)

aebe .

(Informally, 〈γ, γ′〉 is the signed length of the intersection γ∩γ′.) The intersection-
length pairing is positive-definite, being the restriction of the pairing on Z · E(G)
given by the identity matrix, and hence induces an injective map Λ →֒ Λ∨ =
Hom(Λ,Z). We define the Jacobian ΦG := Λ∨/Λ of G to be the cokernel of this
map, which is a finite abelian group. This construction is functorial with respect
to isomorphisms of graphs (i.e. the isomorphism H1(G,Z)

∼
−→ H1(G′,Z) induced by

an isomorphism G
∼
−→ G′ of graphs is automatically compatible with the pairings),

so in particular ΦG carries an action of Aut(G). If Frob is an automorphism of G,
we define the Tamagawa number

cG,Frob := #ΦFrob
G

of (G,Frob) to be the number of Frob-fixed elements in ΦG .

Metric Version. The above definition of the intersection-length pairing extends
naturally to metric graphs via the formula

〈
∑

e∈E(G)

ae · e,
∑

e∈E(G)

be · e

〉
:=

∑

e∈E(G)

aebel(e) .

This is also positive-definite, for the same reasons as above. If the metric on G is
integral, then the intersection-length pairing induces an embedding Λ →֒ Λ∨, and
we define the Jacobian ΦG := Λ∨/Λ of G exactly as above. We will see shortly
(proposition 2.1.2) that the construction of ΦG is functorial with respect to isome-
tries of integral-metric graphs, and hence if Frob is a self-isometry of G, then we
may define the Tamagawa number in exactly the same way as for non-metrised
graphs above.

Proposition 2.1.2. Suppose that f : G
∼
−→ G′ is an isometry of metric graphs.

Then the induced isomorphism f∗ : H1(G,Z)
∼
−→ H1(G′,Z) preserves the intersection-

length pairing. In particular, if the metric graphs are integral, then there is an

7Throughout this paper, when we say that some construction on the objects of a category is
“functorial”, we have in mind a particular way to extend it to a functor on that category.
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induced isomorphism f∗ : ΦG
∼
−→ ΦG′ , and if Frob and Frob′ are isomorphisms of

G and G′ respectively which are conjugate via f , then cG,Frob = cG′,Frob′ .

Proof. The set V (G) of vertices of G is by definition a finite subset of the underlying
metric space |G|, whose complement is isometric to the disjoint union of the open
intervals (0, l(e)) for (unoriented) edges e of G. The same is true of G′. Let us say
that f is a subdivision just when f(V (G)) ⊆ V (G′). It is easy to check that every
isometry is the composite of a subdivision followed by the inverse of a subdivision,
and hence it suffices to prove the proposition when f is a subdivision, which we
now assume.

An oriented edge e determines a locally8 isometric embedding ιe : (0, l(e)) →֒ |G|
whose image is the connected component of |G| V (G) corresponding to e. The
intersection V (G′) ∩ im(f ◦ ιe) is a finite set of degree 2 vertices of G′, whose
complement in im(f ◦ ιe) is the disjoint union of a finite number of components

of |G′| V (G′). It follows that there is a finite subset f∗({e}) ⊆ Ẽ(G′) such that
im(f ◦ ιe) (V (G′)∩ im(f ◦ ιe)) =

∐
e′∈f∗({e})

im(ιe′ ). In particular, we see from this

that l(e) =
∑
e′∈f∗({e})

l(e′).

Changing the orientations on the edges e′ if necessary, we may ensure that the
orientation on each e′ ∈ f∗({e}) is compatible with that on e, in the sense that
the isometric embedding ι−1

e ◦ f−1 ◦ ιe′ : (0, l(e′)) →֒ (0, l(e)) is order-preserving.
This determines the set f∗({e}) uniquely. One checks straightforwardly that the

map f∗ : Z · Ẽ(G) → Z · Ẽ(G′) given by e 7→ f∗(e) =
∑

e′∈f∗({e})
e′ induces the

pushforward map f∗ : H1(G,Z)
∼
−→ H1(G′,Z) in singular homology. Verifying that

this map preserves the intersection-length pairing is then simply a matter of chasing
the definitions. �

Proposition 2.1.3. The Jacobian ΦG of G, as defined in definition 2.1.1, agrees
with the definition in [2, §1.3]9. That is, let Φusual

G denote the Jacobian as defined in
[2, §1.3], which is also functorial with respect to isomorphisms of graphs. Then there
is a canonical isomorphism ΦG

∼= Φusual
G for every graph G, natural with respect to

graph isomorphisms.

Proof. We freely use the notation of [2, §1.3]. If we fix an orientation of the edges of
G, then the boundary map ∂ : Z⊕E(G) → Z⊕V (G) = Div(G) has kernel Λ = H1(G,Z)
and image Div0(G). We thus have a diagram

0 H1(G,Z) Z⊕E(G) Div0(G) 0

0 M(G)/Z ZE(G) H1(G,Z) 0

≀

with exact rows, where the bottom row is the dual of the top row and the central
map is the isomorphism identifying the evident bases of either side. One can check
that the top-left-to-bottom-right composite is the map H1(G,Z) →֒ H1(G,Z) defined
by the intersection-length pairing, and that the bottom-left-to-top-right composite

8The embedding is not isometric, for example, when e is a loop edge.
9Technically, [2] assumes that G has no loop edges, though there is a natural extension of their

definition to permit loop edges. In any case, both the generalised version of the definition in [2]
and our definition in 2.1.1 are unchanged if one removes all loop edges from G, so it suffices to
deal with this case.
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is the Laplacian ∆: M(G) → Div0(G). The cokernels of these maps are, by defi-
nition, ΦG and Φusual

G respectively, so the third isomorphism theorem provides an

isomorphism ΦG
∼= Φusual

G . One can check straightforwardly that this isomorphism
is independent of the orientations on the edges of G. Since the above diagram is
functorial with respect to isomorphisms of oriented graphs, it also follows that the
isomorphism ΦusualG ∼= Φusual

G is natural with respect to graph automorphisms. �

Remark 2.1.4. For our purposes, the advantage of definition 2.1.1 over the more
standard one is that it behaves well with respect to subdivision of edges, or equiv-
alently, change of metric (remark 2.0.2). Suppose we are given a graph G0 and a

function l : E(G0) → N, and let G
(l)
0 denote the subdivision of G0 where each edge e

is replaced by a chain of l(e) edges. This subdivision G
(l)
0 is isometric to the metric

graph (G0, l) by remark 2.0.2, and hence G
(l)
0 and (G0, l) have the same Jacobian by

proposition 2.1.2. From definition 2.1.1 (metric version), this common Jacobian is
given by a presentation

0 → H1(G0,Z)
βl−→ H1(G0,Z) → Φ(G0,l) → 0 ,

where βl is the map induced by the intersection length pairing on the metric graph
(G0, l).

For fixed G0 and varying l, this presentation exhibits Φ
G

(l)
0

= Φ(G0,l) as the

cokernel of a variable map between fixed Z-modules, and this presentation turns out
to be well-suited to studying the dependence of c

G
(l)
0

on l (see §3.4 for example). By

contrast, the standard definition of the Jacobian [2, §1.3] exhibits it as the cokernel

M(G
(l)
0 )

∆
−→ Div0(G

(l)
0 ) → Φusual

G
(l)
0

→ 0

of a map whose domain and codomain also depend on l. This makes the latter
presentation much less well-suited to studying problems where we vary l for fixed G0.

2.1.5. Relation to geometry. The significance of graph Jacobians in the context
of arithmetic geometry is that they compute groups of geometric components of
special fibres of Néron models of Jacobians of semistable curves X/K, and hence
also their Tamagawa numbers. The key object which enables the passage from
arithmetic geometry to combinatorics is the dual graph of the geometric special
fibre of the minimal regular model of X .

Definition 2.1.6 (Dual graphs). Let X/K be a semistable curve of genus ≥ 1,
with minimal regular model X/ØK . The dual graph G of the geometric special fibre
Xk is the graph whose vertices are the connected components of the normalisation

X̃k of Xk, and whose oriented edges are the k-points of X̃k lying over singular points

of Xk. If e is a k-point of X̃k lying over a singular point, then its source s(e) is the

connected component of X̃k containing it, and its inverse e is the (unique) other

point of X̃k mapping to the same point in Xk. The action of the absolute Galois
group GK on Xk induces an action on the graph G, acting on vertices and edges in
the obvious way. This action is unramified, so is determined by the action of any
chosen (arithmetic) Frobenius in GK .

Remark 2.1.7. Note that the graph G in definition 2.1.6 is the dual graph of the
geometric special fibre Xk, as opposed to the special fibre Xk.
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Theorem 2.1.8. Let X/K be a semistable curve of genus ≥ 1 with minimal regular
model X/ØK, and let G denote the dual graph of the geometric special fibre Xk. Let
ΦX/K denote the group-scheme of connected components of the special fibre of the
Néron model of Jac(X). Then there is a canonical isomorphism

ΦX/K(k) ∼= ΦG

which is equivariant for the natural actions of Frobenius on either side (on the left,
induced from the action on k, and on the right, induced from the action on G from
definition 2.1.6). In particular, cX/K = cG,Frob.

Proof. Let Φusual
G denote the group defined in [2, §1.3], which is Aut(G)-equivariantly

isomorphic to ΦG by proposition 2.1.3. [9, Theorem 9.6.1] gives the canonical identi-
fication between the group of geometric components of the Néron model of Jac(X)
and Φusual

G , and hence with ΦG . That this identification is Galois-equivariant is
proved in [13, Theorem 1.1]. The equality of Tamagawa numbers then follows by
definition: cX/K := #Φ(k) = #Φ(k)Frob. �

We illustrate theorem 2.1.8 with the following example, which also shows that the
assumption that X is hyperelliptic in theorem 1.1.1 and corollary 1.1.2 is necessary.

Example 2.1.9. Let K be a p-adic number field with residue field k; write k5 for
the degree 5 extension of k andK5/K for the corresponding unramified extension of
K. Let X/K be a (smooth, projective, geometrically integral) curve with a regular
semistable model10 X/ØK such that the dual graph G of the geometric special fibre
Xk is the following five-spoked wheel graph

where the edge-lengths are all 1, the vertices all have genus 0, and the induced action
of Frobenius rotates the wheel by a one-fifth turn. In other words, the normalisation
of Xk is P1

k ⊔ P1
k5
, where the copy of P1

k meets the copy of P1
k5

transversely at a

point of degree 5 over k, and the copy of P1
k5

meets itself transversely at a (different)
point of degree 5 over k such that, after base-changing from k to k5, each of the
five components of (P1

k5
)k5

∼= (P1
k5
)⊔5 meets its Frobenius conjugate.

The existence of such a curve X/ØK with special fibre Xk is provided by the
classical deformation theory of stable curves, for instance as summarised in [14,
pp. 79–81]. The completed local ring of Xk at each of its two singular (closed) points
is isomorphic to k5[[x, y]]/(xy), which admits a deformation to a regular complete
local ring over ØK , for instance ØK5 [[x, y]]/(xy −̟) with ̟ a uniformiser of ØK .
This determines an ØK-point of the moduli space of deformations of the local rings
of Xk, denoted Mlo in [14]. There is also a moduli space Mgl of deformations

of the curve Xk, i.e. flat projective schemes X̂ over local Artin rings with residue

10In other words, X/ØK is proper, flat and regular, and its special fibre Xk is a reduced normal
crossings divisor.
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field k whose special fibre is Xk. There is a map Mgl → Mlo sending a formal

deformation X̂ of Xk to its local rings at points of its special fibre Xk, and moreover
this map Mgl → Mlo has a splitting [14, Proposition 1.5]. Thus there is a formal

deformation X̂ of Xk over ØK having the prescribed local rings at the singular

points of its special fibre. Since X̂ is projective, it is the formal completion of a
(regular) projective scheme X/ØK at its special fibre [22, Théorème 5.4.5]. This is
the desired curve X.

We can compute the Tamagawa number ofX overK andK5 using theorem 2.1.8,
noting that X has genus 5 and X is its minimal regular model. With respect to
the basis of H1(G,Z) consisting of the five small triangles, the intersection-length
pairing is given by the matrix




3 −1 0 0 −1
−1 3 −1 0 0
0 −1 3 −1 0
0 0 −1 3 −1
−1 0 0 −1 3



.

The Jacobian group of G is then the cokernel of the map given by this matrix, which
a Smith normal form calculation shows is F11 ⊕ F11. To determine the Frobenius
action, we note that the above description presents the Jacobian as the quotient
F11[T ]/(T

2−3T +1), where the Frobenius acts via multiplication by T . Factorising
T 2−3T +1 over F11 thus shows that the action of Frobenius on the Jacobian group
is diagonalisable, with eigenvalues −2 and 5.

We see from this that the Frobenius has only one fixed point on ΦG , but its fifth
power acts trivially. Thus cX/K = 1 and cX/K5

= 121.

2.2. Hyperelliptic graphs. Among all graphs, there is a certain subclass of hyper-
elliptic graphs which exhibit similar behaviour to hyperelliptic curves [3]. Although
there are several equivalent ways to define these (see [3, Theorem 5.12]), we will
only use one which is purely topological in nature.

Definition 2.2.1 (cf. [19, Definition 3.2]). A hyperelliptic graph is a pair (G, ι)
where G is a connected graph and ι is an involution of G such that the topological
quotient G/ι (quotient of the underlying topological space) is a tree, i.e. contractible.

Remark 2.2.2. Our definition of a hyperelliptic graph is slightly more general
than that in [19, Definition 3.2], in that we don’t endow G with a genus function,
nor do we place any requirements on the degrees of its vertices. The reason for
this is simply that these extra data and conditions are irrelevant for the study of
Tamagawa numbers, so we omit them to avoid overloading the notation.

2.2.3. Relation to geometry. In fact, the similarities between hyperelliptic graphs
and hyperelliptic curves are not just formal, and hyperelliptic graphs are indeed
those graphs which arise as dual graphs of the reductions of semistable hyperelliptic
curves.

Lemma 2.2.4. Let X/K be a semistable hyperelliptic curve of genus g ≥ 1 with
minimal regular model X/ØK, and let G denote the dual graph of the geometric spe-
cial fibre Xk. Then G, with the involution ι induced from the hyperelliptic involution
on X, is a hyperelliptic graph.
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Proof. [18, Theorem 5.18] proves this in the case when p 6= 2, g ≥ 2 and X/ι ≃ P1
K .

We will sketch a proof in general using the theory of analytic geometry in the sense
of Berkovich. Let XBerk

CK
denote the Berkovich analytification of X over a completed

algebraic closure CK of K, and let ι denote the hyperelliptic involution on XBerk
CK

.
Formula (∗) in the proof of [6, Proposition 3.4.6] describes the fibres of the map

XBerk
CK

։ (X/ι)Berk
CK

≃ P1,Berk
CK

: if x is a point of P1,Berk
CK

with residue field H(x),

then its fibre is the Berkovich spectrum of a finite H(x)-algebra of dimension 2 or
1 whose ι-fixed subalgebra is exactly H(x).

It follows from this description that the map |XBerk
CK

| ։ |P1,Berk
CK

| between under-
lying topological spaces is a set-theoretic quotient by the hyperelliptic involution ι
– since the domain is compact and the codomain is Hausdorff, it is automatically
a topological quotient.

Now it is well-known that the dual graph G of Xk embeds naturally inside |XBerk
CK

|
(see e.g. [5, Segment 4.9]). The image of this embedding is ι-stable by naturality,
and hence the quotient G/ι is canonically identified with the image of G under

|XBerk
CK

| ։ |P1,Berk
CK

|. This image is a topological tree, since on the one hand it is
topologically a connected graph, and on the other, being a connected subspace of

|P1,Berk
CK

|, it is contractible by [6, Theorem 4.2.1]. Thus (G, ι) is hyperelliptic. �

2.3. BY trees. From the perspective of controlling Tamagawa numbers of hyper-
elliptic curves, it will be convenient to replace hyperelliptic graphs with yet-simpler
combinatorial objects. The pertinent notion is that of a BY tree, as defined in [19].

Definition 2.3.1 (cf. [19, Definition 3.18]). A BY tree T = (T, S) consists of a
tree T (connected, acyclic graph) together with a non-empty subgraph S ⊆ T .

A signed isomorphism ǫF : (T, S)
∼
−→ (T ′, S′) between two BY trees consists of

a pair (F, ǫ) where F : T
∼
−→ T ′ is an isomorphism taking S isomorphically onto

S′, and ǫ is a function π0(T S) → {±1}, where T S denotes the complement of
S in the underlying topological space of T . The composite of two signed isomor-
phisms ǫF : (T, S)

∼
−→ (T ′, S′), ǫ′F ′ : (T ′, S′)

∼
−→ (T ′′, S′′) is the signed isomor-

phism ǫ′′F ′′ : (T, S)
∼
−→ (T ′′, S′′) where F ′′ = F ′ ◦ F and ǫ′′(C) = ǫ(C) · ǫ′(F (C))

for all connected components C of T S.
The collection of BY trees with signed isomorphisms forms a category in which

every morphism is invertible. We write Aut±(T ) for the group of signed automor-
phisms of a BY tree T .

Metric Version. One can also define an integral-metric BY tree to be a BY tree
T endowed with an integral metric l. One defines a (signed) isometry of BY trees
exactly as above. It is easy to check that the category of BY trees with (signed)
isomorphisms is equivalent to the category of integral-metric BY trees with (signed)
isometries, by endowing every non-metric BY tree with the metric whereby each
edge has length 1.

Remark 2.3.2. This definition of BY trees is again slightly more general than that
in [19, Definition 3.18], in that we do not endow T with a genus function, nor do
we place any restrictions on the degrees of vertices. Again, this is because these
extra restrictions do not affect Tamagawa numbers.

It turns out that the category of BY trees defined above is slightly too large,
and includes BY trees that don’t correspond to any hyperelliptic graph. For this
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reason, we introduce certain technical parity conditions on BY trees and their
automorphisms, which we will feel free to use when necessary.

Definition 2.3.3 (Parity conditions). An automorphism F of a tree T either fixes
a vertex or inverts an edge, but not both; we say that F is even when it fixes a
vertex. If ǫF is a signed automorphism of a BY tree T = (T, S), then we say that
ǫF is even just when F is even as an automorphism of T . We write Aut±even(T ) for
the group of even signed automorphisms of T .

We say that a vertex v of a BY tree T = (T, S) is special just when either:

• v has degree ≥ 3;
• v has degree 2, v ∈ S and at most one of the edges incident to v lies in S;
• v has degree 1 and either v /∈ S or both v and its incident edge are in S; or
• v has degree 0 (in the degenerate case that T consists of a single vertex).

We say that T is even just when all special vertices lie an even distance from one
another.

Metric Version. One can extend the definitions of evenness also to integral-metric
BY trees (definition 2.3.1, metric version). If F is a self-isometry of an integral-
metric tree T , then either the distance from v to F (v) is even for all vertices v, or
the distance is odd for all v; we say that F is even in the former case.

If T = (T, S) is an integral-metric BY tree, then one defines special vertices
exactly as in definition 2.3.3 above, and says that T is even just when all of its
special vertices lie an even distance from one another.

It is easy to check that these definitions extend the earlier definitions for non-
metric trees, and are isometry-invariant (e.g. if two integral-metric BY trees are
isometric, then one is even if and only if the other is).

Remark 2.3.4. It is almost true that every automorphism of an even BY tree T is
even, the only exception being when T consists of a chain of an odd number of edges
connecting the two points of S, and F reverses this chain of edges. (To see that this
is the only exception, note that an automorphism of an even BY tree preserves the
set of special vertices, so is even provided that T has at least one special vertex.)

2.3.5. Relation to hyperelliptic graphs. As stated above, BY trees provide a con-
venient combinatorial framework for analysing hyperelliptic graphs. The precise
relation between these two concepts is made precise in the following construction.

Construction 2.3.6. Let (G, ι) be a hyperelliptic graph. We endow the topological
quotient T := G/ι with the structure of a BY tree as follows. Let G(2) denote the
graph formed by subdividing each edge of G into two edges, as in §2.0.1. We define
T to be the graph-theoretic quotient11 G(2)/ι, which is canonically homeomorphic
to G/ι. The ramification locus of the topological quotient map G ։ G/ι ∼= T is a
subgraph S ⊆ T .

We now claim that the BY tree T = (T, S) is even. There is a natural bipar-
tition12 V (T ) = V0(T ) ⊔ V1(T ) of the vertices of T , where V0(T ) consists of those

11By the graph-theoretic quotient of a graph G by an action of a group G, we mean the graph
whose vertices and edges are the G-orbits of vertices and edges in G, with the obvious incidence
relations. In order for this to be well-defined, we require that no element of G inverts any edge of
G – this is automatic when G has a bipartition whose classes are preserved by G.

12A bipartition of a graph is a division of its vertex-set into two classes such that adjacent
vertices lie in different classes.



16 L. ALEXANDER BETTS

vertices of T which are the image of vertices of G, and V1(T ) consists of those ver-
tices which are the image of midpoints of edges of G. Every special vertex v lies in
V0(T ), for, if v were the image of the midpoint of an edge e of G, then we would
have one of three possibilities:

• e is inverted by the hyperelliptic involution;
• e is sent to another edge by the hyperelliptic involution;
• e is pointwise fixed by the hyperelliptic involution.

In the first case, v would lie in S and have one incident edge, which is not in S. In
the second case, v would have degree 2 and not lie in S. In the third case, v would
have degree 2 and both its incident edges would lie in S. All three are impossible
if v is special. Since all special vertices lie in V0(T ), they lie an even distance from
one another in T .

Now let φ : (G, ι)
∼
−→ (G′, ι′) be an isometry of hyperelliptic graphs, i.e. an isom-

etry of graphs compatible with the hyperelliptic involutions. Then φ induces an
isometry F : T

∼
−→ T ′ between the corresponding BY trees. This is necessarily an

isomorphism. We make this into a signed isomorphism as follows. Choose splittings
σ, σ′ of the topological quotient maps G ։ G/ι, G′

։ G′/ι′. We then define the
sign function ǫ : π0(T S) → {±1} by

ǫ(C) :=

{
+1 if σ(F (C)) = φ(σ(C)),

−1 if σ(F (C)) = ιφ(σ(C)).

Finally, if φ is an automorphism of (G, ι), then the induced automorphism of the
corresponding BY tree T preserves each class of the bipartition V (T ) = V0(T ) ⊔
V1(T ) above. Since it preserves a bipartition, it cannot invert an edge, and hence
is even.

Proposition 2.3.7 (cf. [19, Proposition 4.11]). Construction 2.3.6 induces an
equivalence of categories from hyperelliptic graphs with isometries (respecting the
hyperelliptic involutions) to even BY trees with signed isomorphisms. Under this
equivalence, the automorphisms of a hyperelliptic graph correspond to even auto-
morphisms of the corresponding BY tree.

Proof. Fix a choice of splitting σ of the quotient map G ։ G/ι for each hyperelliptic
graph (G, ι). Construction 2.3.6 then provides a functor from hyperelliptic graphs to
even BY trees. We verify that this functor is fully faithful and essentially surjective.

For faithfulness, it suffices to show that for any hyperelliptic graph (G, ι) with
associated BY tree T , the map Aut(G) → Aut±(T ) is injective. But an element of
the kernel is an automorphism φ of G which induces the identity on T = G/ι and
respects the chosen splitting σ for G; it is easy to see that this implies that φ is the
identity. This proves injectivity, hence faithfulness.

For fullness, we note that any even signed isomorphism ǫF between the BY trees
T , T ′ of two hyperelliptic graphs G, G′ factors as ǫ · idT followed by the unsigned
isomorphism F . It is easy to see that ǫ · idT lifts to an automorphism of G, namely
the deck transformation of the ramified cover G ։ G/ι = T which acts as the
identity over each component of T S where ǫ = 1, and as ι over each component
where ǫ = −1. Equally, it is easy to see that F lifts to an isometry G

∼
−→ G′,

namely the unique isometry which is compatible with the splittings and induces
the isomorphism F on the quotients by the respective hyperelliptic involutions.
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Combining these shows that ǫF lifts to an isomorphism G
∼
−→ G′, which proves

fullness.
Finally, to show essential surjectivity, we provide an inverse construction on the

level of objects. Given an even BY tree (T, S), we let G(2) := T ∪S T denote the
graph formed by gluing two copies of T along their copies of S. This comes with
an involution ι exchanging the two copies of T . Since T is even, we may choose a
bipartition V (T ) = V0(T )⊔V1(T ) of its vertices such that V0(T ) contains all special
vertices of T . This induces an ι-stable bipartition V (G(2)) = V0(G(2)) ⊔ V1(G(2)) of
the vertices of G(2), for which every vertex in V1(G(2)) has degree 2. Thus G(2) is the
subdivision of a graph G. It is easy to see that (G, ι) is a hyperelliptic graph, and
that its associated BY tree is isomorphic to T , proving essential surjectivity. �

Remark 2.3.8. Note that proposition 2.3.7 describes the category of hyperelliptic
graphs with isometries, rather than isomorphisms. These are not quite the same
category, due to the existence of isometries which are not isomorphisms in a few
edge cases. For example if G has a single vertex and a single loop edge inverted
by the hyperelliptic involution ι, then (G, ι) has a self-isometry which is not an
automorphism, namely the half-rotation.

Remark 2.3.9. The equivalence of categories in proposition 2.3.7 is non-canonical,
since it depends on a choice of splitting for each hyperelliptic graph. However, this
non-canonicity is relatively mild: the map on objects is independent of the choice
of splittings, and if a hyperelliptic graph G corresponds to a BY tree T , then the
isomorphism Aut(G) ≃ Aut±even(T ) is independent of the choice of splitting, up to
conjugation.

2.3.10. Jacobians of BY trees. Just as we defined the Jacobian group of a graph,
we will want to define a corresponding group in the setting of BY trees, which
corresponds to the original group across the equivalence of categories in proposi-
tion 2.3.7. The definition is very similar to that in definition 2.1.1.

Definition 2.3.11 (cf. [19, Definition 3.31]). Let T = (T, S) be a BY tree. We
let ΛT = H1(T, S,Z) denote the relative homology lattice. This carries an inner
product given by “intersection length in T S”, defined formally as in definition 2.1.1
(neglecting edges in S). This induces an embedding ΛT →֒ Λ∨

T , and we call the
cokernel Λ∨

T /ΛT the Jacobian ΦT of T .
The group of signed automorphisms of T acts on ΛT , and hence ΦT , in a natural

way: if γ is a relative homology class supported on the closure of a component C
of T S, then we set ǫF (γ) := ǫ(C) · F∗(γ) for every signed automorphism ǫF . For
a given signed automorphism ǫF , we define the Tamagawa number

cT,ǫF := #ΦǫFT

to be the number of fixed points in the Jacobian. We often write cT if the signed
automorphism ǫF is clear.

Metric Version. One defines the Jacobian of an integral-metric BY tree T in
exactly the same way as above, where the intersection length pairing on ΛT in-
volves the metric similarly to in definition 2.1.1, metric version. We then define the
Tamagawa number cT,ǫF := #ΦǫFT exactly as above.

It is easy to see that the group ΦT is functorial in signed isometries, and hence
the Tamagawa number cT,ǫF is invariant under isometries (of pairs (T, ǫF )).
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Proposition 2.3.12. If a hyperelliptic graph G and an even BY tree T correspond
under the equivalence of categories from proposition 2.3.7, then there is an isomor-
phism

ΦG ≃ ΦT

of Jacobian groups, which is equivariant for the action of Aut(G) ≃ Aut±even(T ). In
particular, if Frob ∈ Aut(G) corresponds to ǫF ∈ Aut±even(T ), then cG,Frob = cT,ǫF .

Proof. Let σ be the section of G ։ G/ι ∼= T chosen in the proof of proposition 2.3.7.
Now G is covered by σT and ισT , with intersection S, so by excision σ induces an
isomorphism

H1(T, S,Z)
∼
−→ H1(G, ισT,Z)

on relative homology. But since ισT is contractible, the exact sequence on homology
of a pair provides the canonical map

H1(G,Z)
∼
−→ H1(G, ισT,Z)

is an isomorphism. We thus obtain an isomorphism H1(T, S,Z)
∼
−→ H1(G,Z) by

combining the above isomorphisms. In detail, this sends the class of a cycle γ on T
with ∂γ ⊆ S to the class of the cycle σγ − ισγ on G. It is then easy to check that
this isomorphism preserves the inner product on either side and is compatible with
the actions of Aut(G) and Aut±(T ) on either side. �

2.3.13. The BY tree associated to a semistable hyperelliptic curve. We will use the
theory of BY trees to study Tamagawa numbers of semistable hyperelliptic curves.
If X/K is a semistable hyperelliptic curve of genus ≥ 1, then we define the BY
tree T = (T, S) associated to X/K to be the BY tree corresponding to the dual
graph G of the geometric special fibre of the minimal regular model of X under
the equivalence of categories in proposition 2.3.7 (i.e. T = G/ι is the quotient of G
by the hyperelliptic involution, as in construction 2.3.6). The Galois action on G
induced from the action on the geometric special fibre induces an action on T by
signed automorphisms. These actions are unramified, and we write ǫF ∈ Aut±(T )
for the signed automorphism of T corresponding to the action of Frobenius. It
follows from proposition 2.3.7 that T is automatically even, and so too is the signed
automorphism ǫF . Theorem 2.1.8 and proposition 2.3.12 ensure that the Tamagawa
number of X/K is equal to the Tamagawa number of the pair (T, ǫF ).

Remark 2.3.14. With appropriate conventions, the results we prove in this paper
are still valid when X/K has genus 0. Namely, we adopt the convention that its
dual graph G is a single vertex, and that its BY tree T consists of a single vertex,
which lies in S. The induced action of Frobenius is the identity. Since all our results
are essentially trivial to prove in the genus 0 case (the Tamagawa number of X/K
is 1, since Jac(X) = 0), we will often implicitly assume that X/K has genus ≥ 1 in
what follows.

2.3.15. Dependence of Tamagawa numbers on signs. To conclude this section, let
us prove a basic property of BY trees which will be used in the sequel.

Lemma 2.3.16. Let T be a BY tree and let ǫF , ǫ′F be two signed automor-
phisms, only differing in their sign functions. Suppose that for every F -orbit
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C,F (C), F 2(C), . . . , F q−1(C) in π0(T S) we have

q−1∏

r=0

ǫ(F r(C)) =

q−1∏

r=0

ǫ(F r(C)) .

Then ǫF and ǫ′F are conjugate in Aut±(T ). In particular, we have cT,ǫF = cT,ǫ′F .

Proof. It suffices to prove the result in the special case that

ǫ′(C) =

{
−ǫ(C) if C = C0 or F−1C0,

ǫ(C) otherwise,

for some non-F -fixed component C0 of T S. If we set

ǫ′′(C) =

{
−ǫ(C) if C = C0,

ǫ(C) otherwise,

then it follows that ǫ′′idT ◦ ǫF = ǫ′F ◦ ǫ′′idT . Thus ǫF and ǫ′F are conjugate.
This implies that they fix the same number of points of the Jacobian ΦT , so that
cT,ǫF = cT,ǫ′F as claimed. �

3. The Tamagawa number formula

With all the preliminaries above set up, we now come to the main technical
result of this paper: an explicit formula describing the Tamagawa number of a BY
tree with signed isomorphism in terms of purely graph-theoretic invariants. The
full statement is as follows (the proof will be given in §3.3 and some illustrative
examples in §3.5).

Construction 3.0.1. Let (T, S) be a BY tree and let ǫF be an even signed auto-
morphism. If v is a vertex lying in T S, then we write qv for the size of the F -orbit
containing v. We write

ǫv :=

qv−1∏

j=0

ǫ(F jC)

where C is the component of T S containing v. If e is an edge lying in T S, then
we define qe and ǫe similarly. We write Ŝ ⊆ T for the subgraph13 consisting of S
together with all vertices v and edges e with ǫv = −1 and ǫe = −1, respectively.

Theorem 3.0.2. Let T = (T, S) be an even BY tree and let ǫF be an even signed

automorphism of T . Write T ′ ⊇ Ŝ′ ⊇ S′ for the quotients of T ⊇ Ŝ ⊇ S by the
action of F , respectively. Then the Tamagawa number of T is given by

cT := Q · c̃ ·
∑

{e′1,...,e
′
r}∈R

r∏

j=1

1

qe′j
,

where:

• Q is the product of the sizes of the F -orbits of connected components of Ŝ;
• c̃ :=

∏
C∈π0(Ŝ′ S′) c̃(C) is a product of terms c̃(C) over connected compo-

nents C of Ŝ′ S′, where:

13Ŝ is indeed a subgraph, for if v is the endpoint of an edge e in Ŝ, then either v ∈ S, or ǫe is

a power of ǫv. In the latter case, we have ǫe = −1, hence ǫv = −1 and so v ∈ Ŝ.
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– c̃(C) = 2a−1 if the closure of C contains a > 0 points of S′ lying an
even distance from a vertex of degree ≥ 3;

– c̃(C) = gcd(l, 2) if the closure of C consists of two points of S′ a
distance l apart;

– c̃(C) = gcd(b, 2) otherwise, where b is the number of points of S′ in
the closure of C;

• r = #π0(Ŝ
′) − 1 is the number of connected components of Ŝ′, minus 1;

and
• R is the set of unordered r-tuples of edges in T ′ Ŝ′ whose removal dis-
connects the r + 1 components of Ŝ′ from one another (meaning that there
is no path in T ′ {e′1, . . . , e

′
r} whose endpoints lie in different components

of Ŝ′).

Here, by mild abuse of notation, we write qe′ for qe where e is any lift of e′ to an
edge of T (so qe′ is the size of the F -orbit of edges corresponding to e′).

Metric Version. There is also a variant of theorem 3.0.2 which works also for
even integral-metric BY trees T with respect to even signed automorphisms (self-
isometries) ǫF , and this version is often more useful for applications (see e.g. the
proof of corollary 3.1.1). The metric version of theorem 3.0.2 says that

cT := Q · c̃ ·
∑

{e′1,...,e
′
r}∈R

r∏

j=1

l(e′)

qe′j
,

where l(e′) = l(e) for any edge e of T lying over e′. Here, Q, c̃, r, T and qe′ are as
defined in theorem 3.0.2 above, where T ′ is viewed as a integral-metric graph with
edge-length function l (for the purpose of interpreting “distance” in the definition
of c̃).

This metric version is easy to deduce from theorem 3.0.2 directly (by computing
the Tamagawa number of the non-metric BY tree isometric to T ), or one can easily
adapt the proof we give in §3.3.

3.1. Consequences of the formula. For the purposes of the main results of this
paper, the most important consequence of theorem 3.0.2 is that it affords us a
qualitative description of how Tamagawa numbers of BY trees are changed under
subdivision of edges. To explain this, let us fix a BY tree T0 = (T0, S0) and a
signed automorphism ǫF of T0. We let T ′

0 := T0/F and S′
0/F denote the quotients

of T0 and S0 by the action of F , as usual, so that the vertices and edges of T ′
0

correspond to F -orbits of vertices and edges in T0, respectively. Given an element

l ∈ NE(T ′
0), thought of as an F -invariant function l : E(T0) → N, we let T

(l)
0 denote

the subdivision of T0 where we replace each edge e of T0 with a chain of l(e) edges.
The signed automorphism ǫF of T0 induces a corresponding signed automorphism

of each T
(l)
0 .

Theorem 3.0.2 allows us to give a qualitative description of the Tamagawa num-

bers of each T
(l)
0 , as a function of l. This description plays a central role in both of

the main results of this paper: it implies the dependence on e in Theorem 1.1.1; as
well as the second part of Theorem 1.2.1.

Corollary 3.1.1 (to theorem 3.0.2). Keeping notation as above, there exists a

homogenous polynomial map P : QE(T ′
0) E(S′

0) → Q and a function s : F
E(T ′

0) E(S′
0)

2 →
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Z such that the Tamagawa number of T
(l)
0 is given by

c
T

(l)
0 ,ǫF

= 2s(l) · P (l)

for all l ∈ NE(T ′
0).

Proof (even case). We prove the result under the additional assumption that T0
and ǫF are even (see definition 2.3.3), and only for those values of l such that

T
(l)
0 is even14. Since these hypotheses are automatically satisfied for BY trees of

semistable hyperelliptic curves by proposition 2.3.7, this already suffices for our
number-theoretic applications. For a proof in the general case, see §3.4.

Recall from remark 2.0.2 that T
(l)
0 is isometric to the integral-metric BY tree

(T0, l), and hence they have the same Tamagawa number. We compute the Tama-
gawa number of the latter using theorem 3.0.2 (metric version), finding that

c(T0,l) = Q · c̃(l) ·
∑

{e′1,...,e
′
r}∈R

r∏

j=1

l(e′)

qe′j
.

Of the values appearing in this formula, Q, r, R and the qe′ are independent of l
(they are the same as the values in theorem 3.0.2 for T = T0), while c̃(l) is always
a power of 2, depending only on the parity of the values of l on edges outside S′

0.
This implies the result, with

P (l) := Q ·
∑

{e′1,...,e
′
r}∈R

r∏

j=1

l(e′j)

qe′j
and s(l) := log2(c̃(l)) .

�

3.2. Proof of theorem 1.2.1. Using corollary 3.1.1, we can now prove theo-
rem 1.2.1 on the behaviour of Tamagawa numbers of semistable hyperelliptic curves,
using the “cluster picture” machinery of [18, 19]. We recall the setup from [18, §1].
Suppose that K is a finite extension of Qp (p 6= 2) and Xf/K is a hyperelliptic
curve of genus ≥ 2 given by an equation y2 = f(x) (f of degree ≥ 5 and squarefree).
We let R ⊆ K denote the set of roots of f , and define a proper cluster of f [18,
Definition 1.1] to be a subset s ⊆ R of size ≥ 2 which is cut out by a p-adic disc,
i.e. such that there is some z ∈ K and d ∈ Q such that

(3.2.1) s = {r ∈ R | vK(r − z) ≥ d} ,

where vK denotes the valuation on K, normalised so that the valuation of a uni-
formiser of K is 1. The set of proper clusters of f is partially ordered by contain-
ment, and carries a natural action of the absolute Galois group GK induced from
the action on R.

One can attach to a proper cluster s a number of extra data, including:

• the size #s of s;
• the depth ds of s, i.e. the largest value of d in (3.2.1), or equivalently the
smallest value of vK(r − r′) for r, r′ ∈ s [18, Definition 1.1];

14This implies that ǫF is also an even automorphism of T
(l)
0 by remark 2.3.4
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• for each element σ ∈ GK of the absolute Galois group of K, a sign ǫs(σ) ∈
{±1} [18, Definition 1.12]15. (These signs depend on certain auxiliary
choices of square roots.)

These cluster data (proper clusters, containment, Galois action, sizes, depths
and signs) determine a wealth of arithmetic information about the hyperelliptic
curve Xf with affine equation y2 = f(x), including whether Xf is semistable [18,
Theorem 1.8(1)] (this also involves the leading coefficient and splitting field of f),
and its BY tree [18, Theorem 5.18] with signed Galois action [18, Theorem 6.9].

In proving theorem 1.2.1, it will be convenient to also consider cluster data
associated to the polynomial f0. Let R0 denote the multiset16 of roots of f0. As
above, we define a proper cluster of f0 to be a sub-multiset s0 ⊆ R0 of size ≥ 2
which is cut out by a p-adic disc. One can define sizes, depths, Galois action and
signs on proper clusters of f0 just as for f , with the caveat that certain proper
clusters may have infinite depth. Specifically, any double root αi of f0 corresponds
to a proper cluster {αi, αi} of size 2 whose depth is ∞. We refer to such clusters
as degenerate clusters of f0.

The main technical result needed in the proof of theorem 1.2.1 (corollary 3.2.2)
asserts that when f is sufficiently close to f0, then the cluster pictures of f and f0
are isomorphic, up to the depths of clusters. This is a consequence of the following
well-known proposition, which says that p-adically close polynomials have p-adically
close roots.

Proposition 3.2.1. Let f0 ∈ K[x] be a non-zero polynomial of degree d, and let
ε > 0. Then there is a δ (depending on f0 and ε) such that, for all f ∈ K[x] of
degree d with |f − f0| < δ, f and f0 have the same number of roots in every closed
disc D ⊆ K of radius ε, counting multiplicity. Here, | · | denotes the Gauss norm

on K[x], i.e.
∣∣∣
∑
i≥0 aix

i
∣∣∣ = max{|ai|} for | · | = p−vK(·) the norm on K.

Proof. Performing an appropriate change of variables, it suffices to show that if f0
and f are polynomials with |f − f0| < |f0|, then f and f0 have the same number of
roots in the closed unit disc, which we denote n and n0, respectively. Indeed, if we
write f =

∑
i≥0 aix

i, then the theory of Newton polygons implies that n is equal to

the greatest index i such that |ai| = |f |, and similarly for f0. The assumption that
|f − f0| < |f0| ensures that |f | = |f0|, that |an0 | = |f0|, and |ai| < |f0| for i > n0.
This implies that n = n0, as claimed. �

Corollary 3.2.2. Let notation be as in theorem 1.2.1. Then there is a δ > 0 such
that whenever f ∈ K[x] is squarefree of degree d and |f−f0| < δ, there is a bijection

ψ : {proper clusters of f0} ↔ {proper clusters of f}

preserving containment, Galois action, sizes and signs, as well as depths of non-
degenerate clusters. The depth of a cluster of f corresponding to a degenerate
cluster {αi, αi} of f0 is di(f).

15Strictly speaking, [18, Definition 1.12] only defines the signs ǫs(σ) for certain s. For our
purposes, it does no harm to attach signs to all proper clusters in exactly the same way, even
though some of these signs have no number-theoretic content.

16We won’t concern ourselves with exactly what is meant by a “multiset”. For our purposes
it suffices that R0 is a set with a map R0 → K such that the size of the fibre over some r ∈ K is
the multiplicity of r as a root of f0.
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Proof. Fix a positive ε less than the distance between any two distinct roots of f0,
and choose a positive δ as in proposition 3.2.1. We assume moreover that δ < |cf0 |,
where cf0 is the leading coefficient of f0. We will show the corollary holds for this
value of δ.

Fix a squarefree f of the same degree as f0, with |f − f0| < δ. It follows from

proposition 3.2.1 that there is a bijection ψ : R0
∼
−→ R such that |ψ(r0) − r0| ≤ ε

for all r0 ∈ R0. We claim that ψ induces the desired bijection on proper clusters,
proceeding in several steps.

(0) ψ preserves sizes and containment of subsets. (Obvious.)
(1) If s0 is a proper cluster of f0, then ψ(s0) is a proper cluster of f .
There is a closed disc D0 ⊂ K such that R0 ∩ D0 = s0. Since the distance

between distinct roots of f0 is > ε, we may assume without loss of generality that
the radius of D0 is at least ε. This ensures that ψ(s0) = R∩D0, which is a proper
cluster of f .

(2) If s is a proper cluster of f0, then ψ
−1(s) is a proper cluster of f0.

Again, there is a closed disc D ⊆ K such that R ∩ D = s. It follows from
proposition 3.2.1 that every disc containing at least three roots of f has radius > ε,
and hence we may assume without loss of generality that the radius of D is at least
ε. This ensures that ψ−1(s) = R0 ∩D, which is a proper cluster of f0.

(3) ψ preserves depths of non-degenerate clusters. If s0 = {αi, αi} is a degenerate
cluster, then the depth of ψ(s0) is equal to di(f).

The second part follows by definition of di. For the first part, suppose that s0 is
a non-degenerate cluster. Its depth is then < − logp(ε), and hence the disc D0 in

the proof of (1) may be taken to have radius p−ds0 . Since ψ(s0) = R∩D0, it follows
that dψ(s0) ≥ ds0 . For the reverse inequality, we pick elements r0, r

′
0 ∈ s0 such that

vK(r′0 − r0) = ds0 < − logp(ε). The ultrametric triangle inequality implies that
vK(ψ(r′0)− ψ(r0)) = vK(r′0 − r0) = ds0 , and hence dψ(s0) ≤ ds0 by definition.

(4) The action of ψ on proper clusters is Galois-equivariant.
If s0 is a proper cluster of f0, let D0 ⊂ K denote the smallest closed disc

containing s0 whose radius is ≥ ε. It follows from the proof of (1) that R0∩D0 = s0

andR∩D0 = ψ(s0). The assignment s0 7→ D0 is Galois-equivariant by construction,
and the function D0 7→ (R∩D0) is clearly Galois-equivariant.

(5) The action of ψ preserves the signs ǫs0(σ) ∈ {±1} attached to elements σ of
the Galois group [18, Definition 1.12]. More precisely, for any choice of elements
θs0 ∈ K for proper clusters s0 of f0 [18, Definition 1.12], there is a corresponding
choice of elements θs for proper clusters s of f , such that with respect to these
choices we have

ǫψ(s0)(σ) = ǫs0(σ)

for all proper clusters s0 of f0 and all elements σ ∈ GK .
Fix a choice of centre zs0 ∈ K for each proper cluster s0 of f0 [18, Definition 1.9].

It follows from the above discussion that zs0 is also a centre of ψ(s0). Our assump-
tions ensure that |cf − cf0 | < |cf0 | (where cf is the leading coefficient of f) and
|r0 − ψ(r0)| < |zs0 − r0| for every r0 ∈ R0 s0, and hence the quantity

∆s0 :=
cf ·

∏
r∈R ψ(s0)

(zs0 − r)

cf0 ·
∏
r0∈R0 s0

(zs0 − r0)
∈ 1 +mK

is a principal unit. In particular, ∆s0 has a canonical square root which is also a

principal unit, and we define θψ(s0) :=
√
∆s0 · θs0 ∈ K.



24 L. ALEXANDER BETTS

Using these choices of θs in the definition of the signs ǫs(σ), we find that

ǫψ(s0)(σ) ≡
σ(θψ(s0)∗)

θσψ(s0)∗
=
σ(
√

∆s
∗
0
)

√
∆σ(s∗0)

·
σ(θs∗0 )

θσ(s0)∗
≡ ǫs0(σ) ,

where all congruences are modulo the maximal ideal mK . �

The “cluster picture” machinery of [18, 19] allows us to translate corollary 3.2.2
into a corresponding result on BY trees. In order to state this, let Σ0 denote the
set of all proper clusters of f0, along with all singletons {r} for r ∈ R0. This is a
cluster picture in the sense of [18, Definition D.1][19, Definition 3.33]. The Galois
action on proper clusters and the signs ǫs0(·) determine an action of GK on Σ0

by (signed) automorphisms [18, Definition D.4][19, Definition 3.41]. The depths
of proper clusters determines a metric on Σ0 in the sense of [19, Definition 3.45],
except that the metric is valued in R>0 ∪ {∞} rather than R>0.

The construction in [18, Definition D.6] explains how to construct an integral-
metric BY tree T0 = (T0, S0) with a signed Galois action from the cluster picture Σ0.
Roughly speaking, the vertices of T0 are the proper clusters, each proper cluster
except R0 has an edge connecting it to the smallest cluster strictly containing it,
the parities of the sizes of clusters determines the subgraph S0, and the relative
depths of clusters determine the edge-lengths. In particular, T0 has one edge ei of
infinite length for each double-root αi of f0. The Galois action on T0 is the natural
one induced by the action on clusters, and is upgraded to a signed action using the
signs ǫs0(σ).

Corollary 3.2.3. Let notation be as in theorem 1.2.1, and let T0 be the integral-
metric BY tree produced from f0 as above.

Then there is a δ > 0 with the following property. Whenever f ∈ K[x] is
squarefree of degree d with |f − f0| < δ and Xf semistable, the BY tree associated
to Xf (see §2.3.13) is GK-equivariantly isomorphic to the subdivision of T0 formed
by replacing each edge e of finite length with a chain of l(e) edges, and replacing
the edge ei corresponding to a double root αi with a chain of 2 (di(f)− ai) edges,
where ai is the depth of the smallest cluster of f0 strictly containing {αi, αi}.

Proof. We take the same value of δ as in corollary 3.2.2. Let us write Σf for the
cluster picture of f ; that is, the set of all proper clusters of f , along with the
singletons {r} for r ∈ R. Let Tf denote the integral-metric BY tree produced from
Σf via the construction in [18, Definition D.4], which comes with a signedGK-action
induced from the signed GK -action on Σf . It follows from [18, Theorems 5.18 & 6.9]
that Tf is GK-equivariantly isometric to the BY tree of Xf (cf. [18, Definition D.9]
and proposition 2.3.6). Yet it follows from the construction and corollary 3.2.2 that
Tf is GK -equivariantly isometric to the claimed subdivision of T0. �

Proof of theorem 1.2.1. We take the same value of δ as in corollary 3.2.2.
(1): We use the semistability criterion [18, Theorem 1.8(1)]. Part (1) of the

criterion is automatically satisfied, since the action of the inertia group IK fixes
all roots of f0 by assumption, and hence acts on the roots of f with order ≤ 2.
Part (2) of the criterion only depends on the inertia action on clusters of size ≥ 3,
and hence is satisfied for f if and only if it is satisfied for f0. Likewise, part (3) of
the criterion only depends on the valuation of the leading coefficient of f and the
depths of proper clusters, and hence is satisfied for f if and only if it is satisfied for
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f0. In summary, we see that Xf is semistable if and only if f0 satisfies parts (2)
and (3) of the semistability criterion. In particular, whether or not Xf is semistable
depends only on f0, not f .

(2): This follows from corollary 3.2.3 and corollary 3.1.1. �

3.3. Proof of the formula. We now prove theorem 3.0.2.

3.3.1. Reduction to simple BY trees. Our first step in the proof is to reduce to the
case when the BY tree in question is of a particularly simple form. Fix for this
section a BY tree (T, S) with an automorphism ǫF . Let I denote the set of F -
orbits in π0(T S), and write qi for the size of the ith orbit. For each i, we choose
a representative Ci in the ith F -orbit, and write Ti for the closure of Ci in T and
Si := Ti ∩ S. The pair Ti = (Ti, Si) is a BY tree, and (ǫF )qi restricts to a signed
automorphism of Ti. The following basic facts are easy to see.

Proposition 3.3.2. For each i ∈ I, the pair Ti = (Ti, Si) is a BY tree, and (ǫF )qi

restricts to a signed automorphism of Ti. The subgraph Si is a non-empty set of
degree 1 vertices of Ti.

If T is even, then so is each Ti; if ǫF is even then so is the restriction of (ǫF )qi

to Ti for each i.

Our strategy is to reduce the proof of theorem 3.0.2 for T to the corresponding
results for each Ti. This is done by showing that the Tamagawa number of cT
factorises as the product of the Tamagawa numbers of the Ti, as follows.

Lemma 3.3.3. Keeping notation as above, there is an ǫF -equivariant isomorphism

ΦT ≃
⊕

i∈I

IndǫF(ǫF )qiΦTi ,

where IndǫF(ǫF )qiΦTi :=
⊕qi−1

j=0 (ǫF )jΦTi with the evident action of ǫF induced from

the action of (ǫF )qi on ΦTi . In particular, taking ǫF -invariants of either side, we
have

cT,ǫF =
∏

i∈I

cTi,(ǫF )qi .

Proof. By Mayer–Vietoris and excision, the inclusions (Ti, Si) →֒ (T, S) induce an
isomorphism

H1(T, S,Z) ∼=
⊕

i∈I

qi−1⊕

j=0

H1(F
jTi, F

jSi,Z)

in relative homology, which is an orthogonal direct sum with respect to the intersection-
length pairings on the groups involved. It follows that the map H1(T, S,Z) →֒
H1(T, S,Z) induced by the intersection-length pairing is the direct sum of the corre-
sponding maps H1(F

jTi, F
jSi,Z) →֒ H1(F jTi, F

jSi,Z), and hence we have an iso-

morphism ΦT ∼=
⊕

i∈I

⊕qi−1
j=0 ΦF jTi

. Under the obvious identification IndǫF(ǫF )qiΦTi
∼=⊕qi−1

j=0 ΦF jTi
, this yields the desired isomorphism, which is easily seen to be ǫF -

equivariant. �

To complete the reduction step, we need to prove a corresponding factorisation
result for the right-hand side in theorem 3.0.2.
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Proposition 3.3.4. Let T = (T, S) be a BY tree and let ǫF be an even signed
automorphism. Define

c′T := Q · c̃ ·
∑

{e′1,...,e
′
r}∈R

r∏

j=1

1

qe′j
,

c′Ti
:= Qi · c̃i ·

∑

{e′1,...,e
′
r}∈Ri

ri∏

j=1

1

qi,e′j
,

where Q, c̃, r, R and qe′ denote the quantities defined in theorem 3.0.2 for (T, ǫF ),
and Qi, c̃i, ri, Ri and qi,e′ denote the corresponding quantities for (Ti, (ǫF )

qi).
Then we have

c′T =
∏

i

c′Ti
.

Proof. Let T ′ ⊇ Ŝ′ ⊇ S′ denote the graphs defined in construction 3.0.1 for T , and
T ′
i ⊇ Ŝ′

i ⊇ S′
i the corresponding graphs for Ti. The connected components of T ′ S′

are in canonical bijection with the F -orbits of connected components of T S, and
the closures of these components are canonically identified with the trees T ′

i . Under

this identification, we have S′
i = T ′

i ∩ S
′ and Ŝ′

i = T ′
i ∩ Ŝ

′.
We will prove the following five assertions, which together imply the result:

(1) Q =
∏
i (Qi · q

ri
i );

(2) c̃ =
∏
i c̃i;

(3) r =
∑
i ri;

(4) the map
∏
iRi → R sending a choice of an ri-tuple of edges in T ′

i S′
i for

each i to their union is bijective; and
(5) if e′ is an edge in T ′

i S′
i, then qe′ = qi · qi,e′ .

Of these, (2) and (5) are easy to see, and (4) follows once we know (3). For
instance, for the proof of (4), we note that removing an r-tuple {e′1, . . . , e

′
r} of

edges in T ′ Ŝ′ disconnects the components of Ŝ′ from one another if and only if,

for each i, removing those edges which lie in T ′
i disconnects the components of Ŝ′

i

from one another. Since r =
∑
i ri by (3), this is only possible if exactly ri of the

edges e1, . . . , er lie in T ′
i for each i, and hence the map

∏
iRi → R is bijective.

For the remaining two parts, we fix an F -fixed vertex v0 of T , and for each i let
vi,0 denote the vertex of Ti closest to v0.

Claim: Let C be a component of Ŝ not containing v0. Then there is a unique
index i and a unique 0 ≤ j < qi such that C meets F jTi but doesn’t contain F

jvi,0.
Proof of claim: Let v be the vertex of C closest to v0, and let e denote the first

edge on the shortest path from v to v0. The edge e is not contained in Ŝ, and so
lies in F jTi for some i and some 0 ≤ j < qi. It is easy to check that C meets F jTi
but doesn’t contain F jvi,0, and that i and j are unique with this property.

Using this claim, we find that there is an F -equivariant bijection

(†) π0(Ŝ)
◦ ∼=

∐

i

qi−1∐

j=0

π0(F
jŜi)

◦,

where π0(Ŝ)
◦ and π0(Ŝi)

◦ denote the set of all components of Ŝ and Ŝi which do not

contain v0 and vi,0, respectively. The bijection (†) sends a component C ∈ π0(Ŝ)
◦

to C ∩ F jTi ∈ π0(F
jŜi)

◦, where i and j are as in the claim.
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Now there are two cases to consider. If v0 ∈ Ŝ, then we have π0(Ŝ)
◦ = π0(Ŝ) {∗}

and π0(Ŝi)
◦ = π0(Ŝi) {∗} for all i. Thus, taking the number of F -orbits on either

side of (†) shows that r =
∑

i ri, and taking the product of the sizes of the F -orbits
gives Q =

∏
i (Qi · q

ri
i ), proving (3) and (1) in this case.

If instead v0 /∈ Ŝ, then there is a unique index i0 such that v0 ∈ Ti, and we
have qi0 = 1. In this case we have π0(Ŝ)

◦ = π0(Ŝ) and π0(Ŝi0)
◦ = π0(Ŝi0), and

π0(Ŝi)
◦ = π0(Ŝi) {∗} for all other i. Again, taking the number of F -orbits and the

product of the sizes of the F -orbits on either side of (†) gives (3) and (1), which
completes the proof. �

Corollary 3.3.5. Let us say that a BY tree T = (T, S) is simple just when S is
a non-empty set of degree 1 vertices of T (with no edges). If theorem 3.0.2 is true
for simple even BY trees and even automorphisms, then it is true in general (for
even BY trees and even automorphisms).

Proof. This follows from lemma 3.3.3 and proposition 3.3.4, recalling that if T and
ǫF are even, then so too are each Ti and (ǫF )qi , and each Ti is simple (proposi-
tion 3.3.2). �

3.3.6. Simple BY trees: positive case. Having reduced the proof of theorem 3.0.2 to
the case of simple even BY trees and even automorphisms (see corollary 3.3.5), we
now proceed to prove it in the case when T is simple and the signed automorphism
ǫF = +F is even with sign ǫ = +1 everywhere. For technical reasons, we do not
assume that T is even (see remark 3.3.19).

Our proof of theorem 3.0.2 for this T will be largely cohomological, for which we
adopt the following notation.

Notation 3.3.7. If M is a Z-module on which an automorphism σ (usually ±F )
acts with finite order, we will denote by Hj(σ,M) the continuous Galois cohomology

of the continuous action of the profinite cyclic group Ẑ on the discrete group M
where a generator acts by σ.

Remark 3.3.8. One could prove all the main results of this paper using cohomol-
ogy of finite cyclic groups in place of the continuous cohomology of the profinite
cyclic group Ẑ. However, using continuous cohomology of Ẑ allows us to avoid a
considerable amount of bookkeeping, in that we don’t have to keep track of exactly
which cyclic group was acting on each object. Indeed, cyclic group cohomology
in general depends on which cyclic group is acting: if M is a Z-module with an
automorphism σ of finite order d, then M can be thought of as carrying an action
of the cyclic group Z/rdZ for any r ∈ N, but the cohomology H1(Z/rdZ,M) does
depend on r in general. For example, if the action of σ is trivial (d = 1), then

H1(Z/rZ,M) = M [r] is the r-torsion in M . Thus, continuous cohomology of Ẑ is
the “natural” cohomology theory on the category of Z-modules with finite-order
automorphisms.

Now fix a simple BY tree T = (T, S), and let F = +F be an even automorphism
of T . We do not assume that T is even. Note that, in the notation of construc-
tion 3.0.1, we have Ŝ = S, and in particular the term c̃ in theorem 3.0.2 is always 1
(the empty product).
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Let Λ = H1(T, S,Z) denote the relative homology lattice, so that we have an
exact sequence

0 → Λ → Λ∨ → Φ → 0

with Φ the Jacobian of T . Taking cohomology gives an exact sequence

0 → ΛF → (Λ∨)F → ΦF → H1(+F,Λ) → H1(+F,Λ∨) ,

so that

(3.3.1) cT = #coker
(
ΛF →֒ (Λ∨)F

)
·#ker

(
H1(+F,Λ) → H1(+F,Λ∨)

)
.

We calculate these two terms separately, in the following two propositions.

Proposition 3.3.9. Keep notation as above, and let m be the greatest common
divisor of the sizes of the F -orbits in S. Then H1(F,Λ) is cyclic of order m, and
the map

H1(F,Λ) → H1(F,Λ∨)

induced by the intersection length pairing is the zero map. In particular,

#ker
(
H1(+F,Λ) → H1(+F,Λ∨)

)
= m.

Proof. First, note that the exact sequence on homology of a pair gives an exact
sequence

(3.3.2) 0 → Λ → Z[S] → Z → 0 ,

where Z[S] is the free Z-module on S and the right-hand map is the sum-of-
coordinates map. Taking F -fixed points, we obtain an exact sequence

Z[S]F → Z → H1(+F,Λ) → H1(+F,Z[S]),

where the right-hand group vanishes by Shapiro’s lemma. Z[S]F is generated by
the sums of elements in each F -orbit ω, which maps to #ω in Z, and hence we see
that H1(+F,Λ) is cyclic of order m, generated by the cocycle associated to (1−F )y
for any choice of y ∈ S.

It remains to show that this maps to zero in H1(+F,Λ∨). To do this, pick by any
F -fixed vertex y0 of T , and let α ∈ Λ∨ = Hom(H1(T, S,Z),Z) be the map given by
length of intersection with the path from y0 to y. Then the image of (1−F )y in Λ∨

is given by intersection length with the path from Fy to y, and hence is (1− F )α.
In other words, the cocycle associated to (1−F )y maps to a coboundary in Λ∨, as
desired. �

Proposition 3.3.10. Keep notation as above, and let m and Q be the greatest
common divisor and product of the sizes of the F -orbits in S, respectively. Let
T ′ ⊇ S′ be the quotient of T ⊇ S by the action of F as in theorem 3.0.2, and
endow T ′ with the metric whereby an edge e′ of T ′ has length l(e′) = 1/qe′ . Let
Λ′ = H1(T

′, S′,Z) denote the relative homology lattice of T ′ relative to S′, and write
〈·, ·〉′ for the intersection length pairing on Λ′. Then

#coker
(
ΛF →֒ (Λ∨)F

)
=
Q

m
· disc (〈·, ·〉′) .

Proof. Let ρ : ΛF → Λ′ denote the pushforward map on relative homology induced
by the quotient map (T, S) → (T ′, S′), and let E : Λ′ → ΛF ⊗ R be the map which
takes (the class of) a path in T ′ to the average of the paths in T lying above it.

Now E and ρ are adjoint. To see this, observe that ρ and E naturally extend to
all formal sums of oriented edges (not just those with zero boundary), so we need
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only check that 〈e,Ee′〉 = 〈ρe, e′〉′ for edges ẽ and e of T and T ′, respectively. Since
e′ has qe′ preimages in T , we have 〈e,Ee′〉 = 1/qe′ = l(e′) = 〈ρe, e′〉′ if e is one of
these preimages, and is equal to 0 otherwise, so that E and ρ are adjoint as claimed.

It now follows from adjointness that we have a commuting square

Λ′ ⊗ R ΛF ⊗ R

(Λ′)∨ ⊗ R (Λ∨)F ⊗ R.

E

ρ∗

All the vector spaces involved are equidimensional and have specified full-rank
sublattices, which determine volume forms on each vector space (up to sign), and
hence we may talk about the absolute determinant of each of these maps. The
leftmost vertical map has determinant disc (〈·, ·〉′) > 0 by definition, so by taking
determinants both ways around the square we find that

#coker
(
ΛF →֒ (Λ∨)F

)
=

| det ρ∗|

| detE|
· disc (〈·, ·〉′) .

To complete the proof, it suffices to compute | detE| and | det ρ∗|. To perform
the computation of | det ρ∗|, we note that since H1(+F,Z) = 0, the exact sequence
(dual to sequence (3.3.2))

0 → Z → ZS → Λ∨ → 0

remains exact when we take F -fixed points, and so identifies (Λ∨)F as the lattice
of F -invariant Z-valued functions on S, modulo constants. Yet by the same rea-
soning (Λ′)∨ is the lattice of Z-valued functions on S′, modulo constants, so that
ρ∗ : (Λ′)∨ → (Λ∨)F is an isomorphism of lattices. It follows that | det ρ∗| = 1.

To perform the computation of | detE|, note that the proof of proposition 3.3.9
shows that the image of the sum-of-coordinates map Z[S]F → Z had image mZ.
Thus we have a commuting diagram with exact rows

0 Λ′ ⊗ R Z[S′]⊗ R Z⊗ R 0

0 ΛF ⊗ R Z[S]F ⊗ R mZ⊗ R 0.

E E

Again, each of these vertical maps goes between equidimensional vector spaces with
specified full-rank sublattices, so they have well-defined absolute determinants, and
the absolute determinant of the central map is the product of those of the outer
two maps.

Yet if we let yi denote a collection of representatives for the F -orbits on S and qi
their sizes, it follows that ρyi is a basis for Z[S′] and (1+F+· · ·+F qi−1)yi = qiEρyi
is a basis for Z[S]F . Hence the central map has absolute determinant

∏
i q

−1
i = Q−1.

Moreover the rightmost map clearly has absolute determinant m−1, so that the
absolute determinant of the leftmost map is | detE| = m

Q . Combining this with

the computed value of | det ρ∗| = 1 and the above formula, this yields the desired
result. �

In light of the above two propositions and (3.3.1), to prove theorem 3.0.2 for T
it remains to characterise the discriminant disc(〈·, ·〉′). This is an analogue of the
matrix-tree theorem, and is as follows.
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Lemma 3.3.11. Let T be a metric tree with a set S of r+1 marked points, and let
〈·, ·〉 : Λ⊗ Λ → R denote the intersection-length pairing on Λ = H1(T, S,Z). Then

disc (〈·, ·〉) =
∑

e1,...,er

r∏

j=1

l(ej),

where the sum is taken over all unordered r-tuples of edges of T whose removal
disconnects the r + 1 points of S from one another.

Proof. Note that, for any basis of Λ, the entries of the pairing matrix with respect to
this basis are homogenous linear forms in the edge lengths of T , so that disc (〈·, ·〉)
is a degree r homogenous form in the edge lengths. We will find its coefficients
by setting the edge lengths of T to suitably chosen values. In doing so, it will be
convenient for us to permit ourselves to set certain edge-lengths to 0, which may
cause the intersection-length pairing to become indefinite.

Suppose first that E is a set of edges of T whose removal does not disconnect the
points of S from one another (this is certainly the case if |E| < r). Let us set the
lengths of all edges not in E to 0, and let those in E be arbitrary. By assumption,
there is a path between two points of S not meeting E, and this path pairs to 0
with any other element of H1(T, S,Z). Hence the pairing on Λ is degenerate, so its
discriminant is 0 independently of the lengths of the edges in E. It follows that
disc (〈·, ·〉) does not contain any monomials only in edge lengths from E.

Thus we have shown that the only possible monomials that can appear in
disc (〈·, ·〉) are products l(e1) . . . l(er) where e1, . . . , er are distinct edges whose re-
moval disconnects the points of S. It remains to show that each of these monomials
has coefficient 1.

To do this, set the lengths of e1, . . . , er to 1 and all other edge lengths to 0. If
we contract out all the edges of length 0, this does not make any of the points of
S collide (by assumption), and moreover does not affect the pairing on homology,
so we may assume for this that T is a tree with r edges, all of length 1. But this
means that T only has r + 1 vertices in total, so that S consists of all vertices of
T . We can then choose a basis of Λ = H1(T, S,Z) consisting of oriented edges,
and with respect to this basis the intersection length pairing is represented by the
identity matrix. It follows that the discriminant of the pairing is 1, which is what
we wanted to show. �

Corollary 3.3.12. Suppose that T = (T, S) is a BY tree and F = +F is an even
automorphism, viewed as a signed automorphism with sign +1 everywhere (we do
not assume that T is even). Then the conclusion of theorem 3.0.2 holds for T .

Proof. When T is simple, combine (3.3.1) with propositions 3.3.9 and 3.3.10 and
lemma 3.3.11. The general case follows by the same argument as corollary 3.3.5. �

3.3.13. Simple BY trees: negative case. We now turn our attention to proving
theorem 3.0.2 for simple even BY trees with a negative automorphism, where the
group cohomology calculations are a little more complicated. In order to carry out
these computations, we will use without comment the following calculation of the
cohomology of permutation representations.

Proposition 3.3.14. Let S be a finite set with an action by an automorphism F ,
and write S = S0 ⊔ S1 where S0 (resp. S1) is the set of elements of S in an even-
sized (resp. odd-sized) F -orbit. Then the low-degree cohomology of the permutation
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representation Z[S] is given by

Z[S]−F ≃ Z[S′
0]

H1(−F,Z[S]) ∼= F2[S
′
1] ,

where S′
i = Si/F denotes the set of F -orbits in Si. The first isomorphism sends

an orbit ω ∈ S′
0 of size 2m to s − Fs + F 2s − · · · − F 2m−1s where s ∈ ω is any

orbit-representative. The second isomorphism sends an orbit ω ∈ S′
1 of odd size

to the cocycle sending the generator 1 ∈ Ẑ to some orbit-representative s ∈ ω. A
similar description holds for the dual representation ZS (which is also a permutation
representation).

Now fix a simple even BY tree T = (T, S) with a negative even automor-
phism −F . As in proposition 3.3.14, we write S = S0 ⊔ S1 for the partition of
S into F -orbits of even and odd size, respectively. We also write T1 ⊆ T for the
largest subtree of T on which F acts with odd order. An observation which we
will use regularly is that we have Ŝ = T1 ∪ S = T1 ⊔ S0, where Ŝ is as defined in
construction 3.0.1.

Now, exactly as in (3.3.1), the Tamagawa number of (T,−F ) factorises as

(3.3.3) cT = #coker
(
Λ−F →֒ (Λ∨)−F

)
·#ker

(
H1(−F,Λ) → H1(−F,Λ∨)

)
,

where Λ = H1(T, S,Z) as usual. We calculate these two terms separately, in the
following two propositions.

Proposition 3.3.15. Keep notation as above, and write T ′
1 ⊇ S′

1 for the quotient
of T1 ⊇ S1 by the action of F . Let Λ1,F2 := H1(T

′
1, S

′
1,F2) denote the mod 2

relative homology of (T ′
1, S

′
1), which carries a mod 2 intersection length pairing

〈·, ·〉1,F2 : Λ1,F2 ⊗ Λ1,F2 → F2. Then there are canonical isomorphisms

H1(−F,Λ) ∼= Λ1,F2 and H1(−F,Λ∨) ∼= Λ∨
1,F2

:= Hom(Λ1,F2 ,F2)

for which the map H1(−F,Λ) → H1(−F,Λ∨) induced by the intersection length
pairing is identified with the map Λ1,F2 → Λ∨

1,F2
induced by the mod 2 intersection

length pairing.

Proof. Taking cohomology of the sequence (3.3.2) gives an exact sequence

0 → H1(−F,Λ) → F2[S
′
1] → F2 .

On the other hand, the exact sequence on the mod 2 homology of the pair (T ′
1, S

′
1)

gives an exact sequence

0 → Λ1,F2 → F2[S
′
1] → F2 .

In both cases, the right-hand map is the sum-of-coordinates map, and hence there
is a canonical identification Λ1,F2

∼= H1(−F,Λ). Concretely, this isomorphism takes

the class of a path γ′ in T ′
1 to the cohomology class ξ taking the generator 1 ∈ Ẑ

to any lift γ of γ′ to a path in T1.
Similarly, taking the cohomology of the dual sequence to (3.3.2) gives an exact

sequence

F2 → F
S′
1

2 → H1(−F,Λ∨) → 0

By identifying this sequence with the exact sequence on cohomology of the pair
(T ′

1, S
′
1), we obtain a canonical identification H1(−F,Λ∨) ∼= Λ∨

1,F2
. Concretely, this

sends the class of a cocycle ξ to the mod 2 relative cohomology class given by
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γ′ 7→
∑
γ ξ(1)(γ), where γ

′ is a path in T ′
1 with endpoints in S′

1 and the summation

is over all lifts γ of γ′ to a path in T1.
It follows from the explicit descriptions that the map H1(−F,Λ) → H1(−F,Λ∨)

corresponds to the map induced by the mod 2 intersection pairing on Λ1,F2 , com-
pleting the proof. �

Corollary 3.3.16. Keep notation as above, and let c̃ be as in theorem 3.0.2. Then

#ker
(
H1(−F,Λ) → H1(−F,Λ∨)

)
=

{
c̃ if S1 6= ∅,

c̃/2 if S1 = ∅.

Proof. Let M : Λ1,F2 → Λ∨
1,F2

be the F2-linear map induced by the mod 2 intersec-
tion length pairing, as in proposition 3.3.15, so that the left-hand side of the desired
equality is equal to 2n(M) with n(M) the nullity of M .

We divide into several cases. In all cases, we use that Ŝ′ S′ = T ′
1 S′

1 consists
of at most one component, allowing us to read off the value of c̃ from the definition
in theorem 3.0.2. We begin by disposing of a few small cases.

• If S′
1 = ∅, then c̃ = gcd(0, 2) = 2 and n(M) = 0, so c̃/2 = 2n(M) in this

case, as claimed.
• If #S′

1 = 1, then c̃ = 1 and n(M) = 0, so c̃ = 2n(M) in this case, as claimed.
• If #S′

1 = 2, then c̃ = gcd(l, 2) with l the distance between the two points
of S′

1, and M has nullity 0 or 1 according as l is odd or even. It follows
that c̃ = 2n(M) in this case, as claimed.

In the remaining cases, T ′
1 contains a vertex of degree ≥ 3 and S′

1 is a nonempty
set of degree 1 vertices of T ′

1. Moreover, the condition that T was even forces that
the distance between any two vertices of T ′

1 of degree ≥ 3 is also even.
Now enumerate the elements of S′

1 as v1, v2, . . . , vb, so that a basis of Λ1,F2 is
given by the paths from v1 to vj for j ≥ 2. Supposing firstly that S′

1 has a > 0
elements lying an even distance from a vertex of T ′

1 of degree ≥ 3, then without
loss of generality we may assume that v1 is such an element. With respect to the
above basis, the map M is given by the matrix with b− a diagonal entries equal to
1 and all other entries 0, so that n(M) = a− 1. Thus c̃ = 2a−1 = 2n(M) as claimed.

Supposing instead that S′
1 has no element lying an even distance from a vertex of

T ′
1, then with respect to the above basis the map M is given by the (b− 1)× (b− 1)

matrix whose diagonal entries are all 0 and whose off-diagonal entries are all 1. A
simple calculation verifies that n(M) = 0 if b is odd and n(M) = 1 if b is even,
whence c̃ = gcd(b, 2) = 2n(M) as desired. �

This completes the calculation of #ker
(
H1(−F,Λ) → H1(−F,Λ∨)

)
. The corre-

sponding calculation for #coker
(
Λ−F →֒ (Λ∨)−F

)
is as follows.

Proposition 3.3.17. Let T̂ denote the BY tree (T, Ŝ), where Ŝ is as in construc-
tion 3.0.1. Then

#coker
(
Λ−F →֒ (Λ∨)−F

)
=

{
cT̂ ,+F if S1 6= ∅,

2cT̂ ,+F if S1 = ∅,

where +F denotes the induced even automorphism of T̂ , endowed with a sign of +1
everywhere.
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Proof. Let Λ+ = H1(T, Ŝ,Z) denote the relative homology lattice of (T, Ŝ), endowed

with its intersection-length pairing 〈·, ·〉+. Since Ŝ = T1 ⊔ S0, the exact sequence
on the homology of a pair shows that Λ+

∼= Z[S0].

By construction, all F -orbits in π0(T Ŝ) have even size, so cT̂ ,+F = cT̂ ,−F by

lemma 2.3.16. Moreover, since H1(−F,Λ+) = 0 by proposition 3.3.14, the sequence

0 → Λ+ → Λ∨
+ → ΦT̂ → 0

remains exact on taking −F -invariants and so

(∗) cT̂ ,+F = cT̂ ,−F = #coker
(
Λ−F
+ →֒ (Λ∨

+)
−F

)
.

Now the inclusion of pairs ι : (T, S) →֒ (T, Ŝ) induces a map ι∗ : Λ → Λ+, as well
as a dual map ι∗ : Λ∨

+ → Λ∨. It is straightforward to check that ι∗ is the composite
of the boundary map Λ →֒ Z[S] from the long exact sequence (3.3.2) of the pair
(T, S) and the projection Z[S] ։ Z[S0]. Taking −F -fixed points in (3.3.2) and

using proposition 3.3.14, we see that the map ι∗ : Λ
−F ∼

−→ Λ−F
+ is an isomorphism.

A similar argument with the dual sequence shows that we have an exact sequence

0 → (Λ∨
+)

−F ι∗
−→ (Λ∨) → F2 → F2[S

′
1] ,

with the right-hand map the diagonal map. In particular, ι∗ : (Λ∨
+)

−F → (Λ∨) is
an isomorphism if S1 6= ∅, and is injective with cokernel F2 if S1 = ∅.

Finally, we claim that the pairings on Λ and Λ+ are compatible on −F -fixed
elements, in the sense that the square

(∗∗)

Λ−F (Λ∨)−F

Λ−F
+ (Λ∨

+)
−F

ι∗≀ ι∗

commutes. In other words, we claim that

〈ι∗(γ0), ι∗(γ1)〉+ = 〈γ0, γ1〉

for all γ0 ∈ Λ−F and all γ1 ∈ Λ.

To show this, suppose that e is an edge in Ŝ S, so that e lies in an F -orbit of
odd size, say 2m+ 1. In the notation of definition 2.1.1, the multiplicity me(γ0) of
e in γ0 satisfies

me(γ0) = mF 2m+1e(F
2m+1γ0) = −me(γ0) ,

and so me(γ0) = 0. It follows that we have

〈γ0, γ1〉 =
∑

e∈E(T ) E(Ŝ)

me(γ0)me(γ1) = 〈ι∗(γ0), ι∗(γ1)〉+ .

This shows that the square (∗∗) commutes. In particular, we find using (∗) that

#coker
(
Λ−F →֒ (Λ∨)−F

)
= #coker(ι∗) · cT̂ ,+F .

Combined with the description of coker(ι∗) above, this yields the desired result. �

Corollary 3.3.18. Theorem 3.0.2 is true when T is simple and ǫF = −F is
negative.

Proof. Combine (3.3.3) with corollary 3.3.16 and proposition 3.3.17, and corol-

lary 3.3.12 (applied to the positive BY tree T̂ ). �
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Remark 3.3.19. In certain special cases, the BY tree T̂ = (T, Ŝ) can fail to be
even, or fail to be simple. For example, T could be consists of a chain of 2l edges
(l odd) connecting the 2 points of S, and F could reverse the chain of edges in T .
This is why we couldn’t assume that T was even in §3.3.6.

By corollary 3.3.5, this concludes the proof of theorem 3.0.2. �

3.4. Full proof of corollary 3.1.1. As mentioned in the earlier proof, corol-
lary 3.1.1 in fact holds even when T0 and ǫF are not even. Although this is not the
main thrust of this article, we briefly outline here how one can prove this in full
generality. The key point is a structural result for the cohomology of the lattices Λ
associated to BY trees T .

Lemma 3.4.1. Let T be a BY tree, with associated lattice Λ = H1(T, S,Z), and
let ǫF be a signed automorphism of T . Then the image of the map

H1(ǫF,Λ) → H1(ǫF,Λ∨)

induced by the intersection-length pairing on Λ is contained in the 2-torsion sub-
group of H1(ǫF,Λ∨).

Proof (sketch). The proof of lemma 3.3.3 shows that the map H1(ǫF,Λ) → H1(ǫF,Λ∨)
is the direct sum of the corresponding maps for simple BY trees. It thus suffices
to prove this for simple BY trees. In the case where ǫ = −1, this follows since

H1(−F,Λ) ≤ H1(−F,Z[S]) = F#odd orbits in S
2 , as in the proof of proposition 3.3.15.

In the case where ǫ = +1, the same argument as in the proof of proposition 3.3.9
shows that H1(+F,Λ) is cyclic, generated by the cocycle associated to (1 − F )y,
for y some vertex of T . If we let y0 be an F -fixed point of T , which may be the
midpoint of an edge, then intersection with the path from y0 to y gives an element
α ∈ 1

2Λ
∨ such that (1 − F )α is the image of (1 − F )y under the map Λ →֒ Λ∨. It

follows that the image of the cocycle associated to 2(1− F )y is the coboundary of
2α, and hence the zero element of H1(+F,Λ∨). �

Remark 3.4.2. The image of the map H1(ǫF,Λ) → H1(ǫF,Λ∨) is the group BΛ

studied in [10, Definition 1.4.1].

To see how lemma 3.4.1 implies corollary 3.1.1, we recall that the subdivision

T
(l)
0 is isometric to the metric BY tree (T0, l) (remark 2.0.2), and hence we have

c
T

(l)
0

= #coker
(
βl : Λ

ǫF →֒ (Λ∨)ǫF
)
·#ker

(
βl,∗ : H

1(ǫF,Λ) → H1(ǫF,Λ∨)
)
,

where Λ = H1(T0, S0,Z) and βl : Λ →֒ Λ∨ is the map induced by the intersection
length pairing of the metric BY tree (T0, l). Note that the map βl ∈ Hom(Λ,Λ∨)
depends linearly on the function l.

Now the order of the cokernel of βl : Λ
ǫF →֒ (Λ∨)ǫF is given by the absolute de-

terminant of the matrix representation βl with respect to bases of ΛǫF and (Λ∨)ǫF .
Since βl depends linearly on l, it follows that #coker

(
βl : Λ

ǫF →֒ (Λ∨)ǫF
)
is a ho-

mogenous polynomial in l.
On the other hand, by lemma 3.4.1, the map βl,∗ : H

1(ǫF,Λ) → H1(ǫF,Λ∨)[2]
is a map of finite Z-modules whose codomain is 2-torsion, depending linearly on
l, and hence #ker

(
βl,∗ : H

1(ǫF,Λ) → H1(ǫF,Λ∨)
)
is a constant times a power of

2 depending only on the values of l mod 2. Combining these shows that c
T

(l)
0

is a

function of l of the desired form. �
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3.5. Worked examples.

Example 3.5.1. Suppose that p ≡ −1 modulo 4, and let f ∈ Zp[x] be a monic
polynomial of degree eight such that f(0) is a square in Zp. Assume that the
Newton polygon of f(x) (resp. f(x− 1), resp. f(x− i) with i a square root of −1)
consists of six segments of slope 0 and two segments of slope a/2 > 0 (resp. b/2 > 0,
resp. c/2 > 0). This says that the eight roots of f come in four pairs: the first lie
in the residue disc of 0 and are equidistant from it, and the same is true for the
other three pairs in the residue discs of 1, i and −i. The root cluster machinery of
[18] shows that Xf is semistable [18, Theorem 1.8(1)], and allows us to write down
the BY tree of the hyperelliptic curve Xf with affine equation y2 = f(x) (figure 1)
[18, Theorems 5.18 & 6.9]. For ease of calculation, we work with the metric BY
tree produced from f via [18, Definition D.4], which is isometric to the BY tree
associated to Xf .

Figure 1. The metric BY tree associated to Xf

c

ca

b

+

In this diagram, the whole graph represents the tree T , while the blue/solid
vertices represent the vertices of S (which has no edges in this example) – by con-
trast, the vertices of T not in S are represented by yellow/open circles and the
edges of T not in S are represented by yellow/squiggly lines. The lengths of the
edges are indicated by the parameters a, b and c, while the signed automorphism
is indicated both with double-headed arrows for the underlying unsigned automor-
phism of (T, S) (which here has order 2) and with ± signs next to each connected
component17 of T S (so here the sign is +).

According to theorem 2.1.8 and proposition 2.3.12, the Tamagawa number of
Xf/Qp is the same as the Tamagawa number of T , which we calculate using the-
orem 3.0.2 (metric version). In the notation of that theorem, we have Q = 2 and

c̃ = 1 (the empty product, since Ŝ = S). The quotient tree T ′ is

c/2
a

b

where again the blue/solid vertices indicate the subset S′ = Ŝ′ ⊆ T ′, and the
labels indicate the quantities l(e′)/qe′ . The removal of any two of the three edges

17Here our diagrammatic conventions differ slightly from those in [19], where the sign labels
are attached to each orbit of connected components of T S, and record the total sign of the
automorphism over the entire orbit.
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of T ′ disconnects the three points of S′ from one another, and hence the formula
in theorem 3.0.2 provides that the Tamagawa number of Xf is

cXf
= 2 ·

(
ab+ b

c

2
+
c

2
a
)
= 2ab+ bc+ ca.

Example 3.5.2. As a more comprehensive example to illustrate all the aspects of
our formula, let us find the Tamagawa number of the following metric BY tree T
(which would arise from a semistable hyperelliptic curve of genus ≥ 11). This is
even (definition 2.3.3) provided that the edge-lengths a, w and x are all even, which
we now assume.

Figure 2. A more comprehensive example of a BY tree

wz

y y

x

z
z

b c

ca

a c

cb

−

−

−

Here, as before, the subgraph S ⊆ T is represented by blue/solid vertices and
now also has a single edge, rendered blue/straight – the yellow/open circles and
yellow/squiggly lines indicate the vertices and edges of T not in S, respectively.
The parameters a, b, c, w, x, y, z indicate edge-lengths. The signed automorphism
is both indicated by the arrows (identifying the orbits of the underlying unsigned
automorphism as it acts on edges – these orbits have sizes 2, 2, 2, 3 and 4 respec-
tively), and the signs next to each connected component of T S (all −).

Now the quotient T ′ of T by the action of F is as depicted below. Here again
the blue/solid vertices and edges indicate the subgraph S′, while the green/square

vertices and green/dashed edges indicate the extra vertices and edges in Ŝ′. The

labels on yellow/squiggly edges e′ (edges outside Ŝ′) indicate the quantity l(e′)/qe′ ,
while the labels on green/dashed edges indicate the quantity l(e′). We don’t attach
labels to blue/solid edges, since the values of l(e′) and qe′ for these edges don’t
contribute to theorem 3.0.2.

a/2

b/2

c/4
x

y/2

z
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Following through the description in theorem 3.0.2 (metric version), we find that
Q = 16 and c̃ = gcd(z, 2) (since x is even) and r = 3. In order for a triple of edges to

disconnect the four components of Ŝ′, it must contain the left-hand yellow/squiggly
edge and two of the three yellow/squiggly edges on the right. Thus we find from
theorem 3.0.2 (metric version) that

cT = 16 · gcd(z, 2) ·

(
yab

8
+
ybc

16
+
yca

16

)
= y · gcd(z, 2) · (2ab+ bc+ ca) .

Alternatively, one can use lemma 3.3.3 to simplify the calculation of the Tama-
gawa number of T , finding that it is the product of the Tamagawa numbers of the
following two metric BY trees.

z

y y

x

z
z

b c

ca

−
+

We computed the Tamagawa number of the right-hand BY tree as 2ab+ bc+ ca in
example 3.5.1, and theorem 3.0.2 shows that the Tamagawa number of the left-hand
BY tree is y · gcd(x + z, 2) = y · gcd(z, 2) since x is even (we omit details). This
recovers the above value for cT .

Example 3.5.3. Up to signed homeomorphism, there are only finitely many BY
trees (with signed automorphism) arising from semistable hyperelliptic curves of
a given genus (in residue characteristic p 6= 2). Although this encompasses infin-
itely many signed isomorphism types, one can use theorem 3.0.2 to write down
a formula for the Tamagawa numbers of all BY trees in a fixed homeomorphism
class (as a function of the “edge-lengths”), and hence produce a complete list of
the Tamagawa numbers of all semistable hyperelliptic curves of a given genus, as a
function in the reduction type (signed homeomorphism class of BY tree with signed
automorphism). For instance, in genus 2, there are twenty-three possible reduction
types, listed along with their Tamagawa numbers in [19, Table 9.3]. The reader can
verify that the formula in theorem 3.0.2 recovers the expressions for the Tamagawa
numbers in [19, Table 9.3]. Theorem 3.0.2 makes it essentially routine to produce
similar tables in higher genus: one lists all BY trees of a given genus (in the sense
of [19, Definitions 3.18 and 3.23]) and then reads off the corresponding Tamagawa
numbers. In genus 3 there are one hundred and eighty-five possible reduction types,
though many are degenerate forms of one another.

4. Growth of Tamagawa numbers in towers

In this final part of this paper, we use the above techniques to examine how
Tamagawa numbers of semistable hyperelliptic curves X/K vary as we enlarge the
ground field K. On the combinatorial side, changing the base field corresponds to
changing the BY tree in a particularly simple manner.

Lemma 4.0.1. Let X/K be a semistable hyperelliptic curve. Let T = (T, S) be its
associated BY tree, and ǫF the signed automorphism of T induced by the Frobenius
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over K, as in §2.3.13. Then, for all finite extensions18 L/K, the BY tree associated
to XL/L is the BY tree T (e) = (T (e), S(e)) formed from T = (T, S) by replacing
each edge of T by a chain of e edges, where e = e(L/K) is the ramification degree,
as in §2.0.1. The signed automorphism of T (e) induced by the Frobenius over L is
(ǫF )f , where f = f(L/K) is the residue class degree. Here, by abuse of notation,
we identify Aut±(T ) = Aut±(T (e)) in the obvious way.

Proof. Let X/ØK be the minimal regular model ofX/K. This is a semistable model
[27, Theorem 10.3.34(a)], and regularity implies that every singular point of the
special fibre has thickness 1, i.e. has an étale neighbourhood given by the equation
xy = ̟K with ̟K a uniformiser of K. The base change XØL

is a semistable model
of XL [27, Corollary 10.3.36(a)], but not in general regular, since it is easy to see
that all singular points of its special fibre have thickness e. It follows from [27,
Corollary 10.3.25] that the geometric special fibre of the minimal regular model of
XL is the same as Xk, but with each intersection of two components replaced by
a chain of e − 1 projective lines connecting these components (if e = 1 then there
is no change to the geometric special fibre). In the case of self-intersections (nodal
singularities of components), this means that the self-intersecting component is
replaced with its normalisation, with a chain of e−1 projective lines connecting the
two points lying above each node. The action of the Frobenius FrobL ∈ Gal(K/L)

on the geometric special fibre is the fth power of the Frobenius element of Gal(k/k).
In graph-theoretic terms, this says that the reduction graph of XL/L is the eth

subdivision G(e) of the reduction graph G of X/K, and that FrobL acts on G(e) via

(the eth subdivision of) FrobfK . The corresponding assertions regarding the BY
trees follow. �

Thus, theorem 1.1.1 boils down to the purely combinatorial question of deter-
mining how the Tamagawa numbers cT (e),(ǫF )f depend on the parameters e, f . This
is given by the following result, of which theorem 1.1.1 is an immediate corollary.

Theorem 4.0.2. Let T = (T, S) be a BY tree and let ǫF be a signed automorphism
of T . Suppose that F is even (see Definition 2.3.3). Then there are (ad, rd, sd) ∈
N× N0 × Z for each d ∈ N (equal to (1, 0, 0) for almost all d) such that

cT (e),(ǫF )f =
∏

d|f

(ad · e
rd · gcd(e, 2)sd)ϕ(d)

for all e, f ∈ N.

4.1. Totally ramified extensions. We will first prove theorem 4.0.2 in two special
cases: the “totally ramified” case f = 1, and the “unramified case” e = 1. The
former is an immediate consequence of corollary 3.1.1.

Proposition 4.1.1. Let T = (T, S) be a BY tree and let ǫF be a signed automor-
phism of T . Then there are (a, r, s) ∈ N× N0 × Z such that

cT (e),ǫF = a · er · gcd(e, 2)s

for all e ∈ N.

18For the proof, we will assume that L is a subfield of K, so that the residue field of L is a
subfield of k.
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4.2. Unramified extensions. Having dealt with the dependency on e in theo-
rem 4.0.2, it now remains to control the dependency on f , fixing e = 1. In other
words, by definition 2.1.1, we want to control the number of (ǫF )f -fixed points in
the Jacobian group ΦT as a function of f . We will develop tools to deal with such
problems in appendix A, but for now let us just record the definitions and basic
properties we will need.

Definition 4.2.1 (Fixpoint filtrations). Let A be a Z-module with an endomor-
phism σ (for us, always a finite-order automorphism). We define the σ-fixpoint

filtration of A to be the family of sub-Z[σ]-modules Aσ
f

, which come with inclu-

sions Aσ
d

≤ Aσ
f

whenever d | f . We also define the partial quotients of A with
respect to this filtration to be

Grσf (A) :=
Aσ

f

∑
d|f,d 6=f A

σd .

Lemma 4.2.2. Let A be a Z-module with an endomorphism σ. Then, for any

f ∈ N, Aσ
f

has an exhaustive, separated19 filtration with partial quotients Grσd (A)

for d | f . In particular, if Aσ
f

is finite then

#Aσ
f

=
∏

d|f

#Grσd (A).

Moreover, the Z[σ]-module structure on the partial quotient Grσf (A) factors canon-
ically through the quotient Z[σ] ։ Z[µf ] := Z[σ]/(Φf (σ)), where Φf is the f th
cyclotomic polynomial.

Finally, if B is another Z[σ]-module and C is a Z[σq ]-module for some q ∈ N,
we have Z[σ]-module isomorphisms

Grσf (A⊕B) ∼= Grσf (A) ⊕Grσf (B)

and

Grσf (Ind
σ
σqC) ∼= Grσ

q

n(f/q)(C)⊗Z[µn(f/q)] Z[µf ]

where n(f/q) denotes the numerator of f/q.

Proof. Deferred to appendix. �

The concept of fixpoint filtrations and partial quotients gives an integral analogue
of the isotypic decomposition of representations of cyclic groups on Q-vector spaces.
However, while the isotypic pieces of such representations are well-behaved, being
free modules over the vector spaces Q[µn], much less can be expected in general
for the partial quotients of Z[σ]-modules. Thus, it will be useful for us to isolate a
class of Z[σ]-modules where the fixpoint filtration is well-behaved.

Definition 4.2.3. Let A be a Z-module with a finite-order automorphism σ. We
say that A is fixpoint-regular just when there is a collection (Ad)d∈N of Z-modules

such that we have Z[µd]-module isomorphisms Grσd(A)
∼
−→ Ad ⊗Z Z[µd] for all d.

(The Ad are necessarily trivial for d not dividing the order of σ.)
It is clear from lemma 4.2.2 that the class of fixpoint-regular Z[σ]-modules is

closed under direct sums and induction from Z[σq] to Z[σ] for any q ∈ N.

19Recall that an increasing filtration · · · ≤ Fil−1M ≤ Fil0M ≤ Fil1M ≤ . . . on a module M
is called exhaustive just when

⋃
i FiliM = M , and separated just when

⋂
i FiliM = 0.
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The main theorem of this section asserts that Jacobian groups of BY trees are
well-behaved in the above sense.

Theorem 4.2.4. Let T = (T, S) be a BY tree and let ǫF be an even signed auto-
morphism of T . Then the Jacobian group ΦT is fixpoint-regular (for the action of
ǫF ).

Corollary 4.2.5. Let T = (T, S) be a BY tree and let ǫF be an even signed
automorphism of T . Then there are (ad)d∈N ∈ N (equal to 1 for d not dividing the
order of ǫF ) such that

cT,(ǫF )f =
∏

d|f

a
ϕ(d)
d

for all f ∈ N.

Proof. This follows from lemma 4.2.2. The desired ad are the sizes of the groups
Ad from definition 4.2.3. �

Our proof of theorem 4.2.4 is ultimately inductive, and revolves around the
following key lemma, allowing us to add and remove F -fixed points from the set S.

Lemma 4.2.6. Let T = (T, S) be a BY tree with an even signed automorphism
ǫF , and suppose that ∗ is an F -fixed vertex of T not lying in S. Write T∗ for the
BY tree (T, S ∪ {∗}). Then ΦT is fixpoint-regular for the action of ǫF if and only
if ΦT∗ is. Here, ǫF is viewed as a signed automorphism of T∗ whose sign function

is the composite π0(T (S ∪ {∗})) ։ π0(T S)
ǫ
−→ {±1}.

Proof. The intersection-length pairings on the lattices Λ = H1(T, S,Z) and Λ∗ =
H1(T, S ∪ {∗},Z) induce a commuting square

Λ Λ∨

Λ∗ Λ∨
∗

in which all arrows are equivariant for the actions of ǫF . If we define Π := Λ∨
∗ /Λ,

then there are equivariant surjections Π ։ Λ∨/Λ = ΦT and Π ։ Λ∨
∗ /Λ∗ = ΦT∗ ,

whose kernels are the free rank 1 Z-modules ker (Λ∨
∗ ։ Λ∨) and Λ∗/Λ, respectively.

We will see in proposition A.0.7 that this implies that Π is fixpoint-regular if and
only if ΦT , respectively ΦT∗ , is, and hence we are done. �

Proof of theorem 4.2.4. We proceed by strong induction on the quantity

α(T ) := #E(T ) + #V (T )−#V (S) .

Let T be a BY tree, and suppose that the result is true for all BY trees T ′ such
that α(T ′) < α(T ) (with respect to all even signed automorphisms of T ′). Let
ǫF ∈ Aut±(T ) be even. We divide into three cases.

Firstly, if T has an F -fixed vertex ∗ not lying in S, then our inductive assumption
ensures that Φ(T,S∪{∗}) is fixpoint-regular for the action of ǫF . Lemma 4.2.6 implies
that the same is true of ΦT and we are done in this case.

Secondly, if T is not simple, then the proof of corollary 3.3.5 shows that

ΦT ∼=
⊕

i∈I

IndǫF(ǫF )qiΦTi
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where each Ti is the closure of a connected component of T S. It is easy to see that
α(Ti) < α(T ) for all i, and hence ΦT is a direct sum of inductions of fixpoint-regular
modules, so is itself fixpoint-regular.

It remains to deal with the case that T is simple, and that all of its F -fixed
vertices lie in S. This implies that every F -fixed vertex must have degree 1 in
T , which is only possible if T consists of a single edge, S contains the endpoints
of T , and F is the identity. In this case, ǫF acts as ±1 on ΦT , and hence is
fixpoint-regular. �

4.3. General extensions. We now formally combine the results of the previous
two sections to prove theorem 4.2.4 in general.

Proof of theorem 4.2.4. By corollary 4.2.5, we know that, for each e there are
ad(e) ∈ N (equal to 1 for d not dividing the order of ǫF ) such that

cT (e),(ǫF )f =
∏

d|f

ad(e)
ϕ(d)

for all f . But by proposition 4.1.1, for fixed f the Tamagawa number cT (e),(ǫF )f is

of the form aer gcd(e, 2)s for a ∈ Q× and r, s ∈ Z. Applying the Möbius inversion
formula to the product representation of cT (e),(ǫF )f above, we see that ad(e)

ϕ(d)

must also be a function of e of such a form. But ad(e) is a positive integer for all
e, which forces it to be of the form ad(e) = ade

rd gcd(e, 2)sd where ad ∈ N and
rd ∈ N0 as desired. �

Appendix A. Fixpoint filtrations

In this appendix, we set out the basic properties of fixpoint filtrations, aiming
to justify the content of lemma 4.2.2. Recall that we are considering Z-modules
A endowed with an endomorphism20 σ, and that we’re interested in the family of

Z[σ]-submodules Aσ
f

, which we call the fixpoint filtration of A (indexed by N with
the divisibility ordering). We are also interested in the partial quotients of this
filtration, by which we mean the Z[σ]-modules

Grσf (A) :=
Aσ

f

∑
d|f,d 6=f A

σd .

Our chief method of proof is careful calculations involving cyclotomic polynomials,
for which we need a preparatory proposition.

Proposition A.0.1. Let P1, . . . , Pm ∈ Z[t] be integer polynomials, each of which
is a product of some cyclotomic polynomials Pi =

∏
j Φdij . Then the Pi generate a

proper ideal of Z[t] if and only if there exist:

• a prime number ℓ; and
• for each index 1 ≤ i ≤ m, an index ji;

such that diji/di′ji′ is a power of ℓ for all i, i′ (i.e. is ℓn for some n ∈ Z).

20The reader can feel free to replace “endomorphism” with “automorphism” in this section,

as our definitions will only see the submodule
⋃

f Aσf
of A consisting of those elements on which

σ acts as an automorphism of finite order.
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Proof. Let R = Z[t]/(P1, . . . , Pm). If the ideal (P1, . . . , Pm) is proper, then R 6= 0
and so there is a surjection R ։ F from R to a field F . The field F , being a finitely
generated Z-algebra, is a finite field, and hence a subfield of Fℓ for some ℓ.

The image ζ of t under the map R ։ F ⊆ Fℓ is a common root of the polynomials
Pi in Fℓ. For each i, the factorisation Pi =

∏
j Φdij ensures that there is an index

ji such that ζ is a root of Φdiji .

But the roots of Φdiji in Fℓ are exactly the primitive d◦iji th roots of unity, where
d◦ denotes the largest ℓ-free factor of d. Since ζ is a primitive d◦iji th root of unity

for all i, this implies that the d◦iji are all equal. In other words, diji/di′ji′ is a power
of ℓ for all i, i′, which is what we wanted to prove.

In the converse direction, suppose that ℓ, ji and ni,i′ exist satisfying diji/di′ji′ =
ℓni,i′ for all i, i′. This says that the d◦iji are all equal to one another, and we write

d◦ for this common value. Now let ζ ∈ Fℓ be a primitive d◦th root of unity. It
follows that ζ is a root of Φiji , and hence of Pi, for all i. Hence there is a ring

homomorphism R → Fℓ sending t to ζ. The existence of such a homomorphism
implies that R 6= 0, and hence that (P1, . . . , Pm) is proper. �

For us, the main consequence of this proposition is that submodules of Z[σ]-
modules cut out by products of cyclotomic polynomials are particularly well-behaved.

Lemma A.0.2. For a finite subset S ⊆ N let ΦS :=
∏
d∈S Φd, where as usual we

take ΦS = 1 if S is empty. If S, S′ ⊆ N are finite subsets closed under divisors,
then for every Z[σ]-module A we have

A[ΦS∩S′(σ)] = A[ΦS(σ)] ∩ A[ΦS′(σ)]

and

A[ΦS∪S′(σ)] = A[ΦS(σ)] +A[ΦS′(σ)].

Here, A[P ] denotes the kernel of the multiplication-by-P map A → A, for P ∈
Z[σ].

Proof. Let P = ΦS S′ = ΦS/ΦS∩S′ = ΦS∪S′/ΦS′ and P ′ = ΦS′ S = ΦS′/ΦS∩S′ =
ΦS∪S′/ΦS. Since no element of S S′ divides any element of S′ S and vice versa,
proposition A.0.1 ensures that P and P ′ generate the unit ideal of Z[t]: there are
integer polynomials Q and Q′ such that QP +Q′P ′ = 1.

For the first equality, multiplying QP + Q′P ′ = 1 by ΦS∩S′ we see that we
have QΦS + Q′ΦS′ = ΦS∩S′ and hence A[ΦS(σ)] ∩ A[ΦS′(σ)] ≤ A[ΦS∩S′(σ)]. As
ΦS∩S′ | ΦS ,ΦS′ , the converse inclusion is clear.

For the second equality, consider some a ∈ A[ΦS∪S′(σ)]. Now we have that
ΦS(σ)Q(σ)P (σ)a = Q(σ)ΦS∪S′(σ)a = 0 and ΦS′(σ)Q′(σ)P ′(σ)a = 0 similarly, so
a = Q(σ)P (σ)a+Q′(σ)P ′(σ)a ∈ A[ΦS(σ)]+A[ΦS′ (σ)]. Hence we have the inclusion
A[ΦS∪S′(σ)] ≤ A[ΦS(σ)] +A[ΦS′(σ)], and the other inclusion is clear. �

Corollary A.0.3. Let S be a finite subset of N closed under divisors, and A a
Z[σ]-module. Then

A[ΦS(σ)] =
∑

d∈S

Aσ
d

Proof. For each d ∈ S let Sd be the set of divisors of d, so that S =
⋃
d∈S Sd.

Since A[ΦSd
(σ)] = A[σd−1] = Aσ

d

, an iterated application of the preceding lemma
provides the desired equality. �
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Lemma A.0.2 has further important consequences. Firstly, we can use this lemma

to turn the partially ordered fixpoint filtrationAσ
f

on a Z[σ]-module A into a totally
ordered one, thereby justifying our use of the phrase “partial quotients” to describe
the subquotients Grσf (A), and secondly, we find that these partial quotients give
something akin to an isotypic decomposition of the Z[σ]-module A, in that the
Z[σ]-module structure on Grσf (A) factors through Z[µf ].

Corollary A.0.4. Let A be a Z[σ]-module. Then for each f ∈ N, Aσ
f

possesses
an exhaustive separated filtration whose partial quotients are Grσd (A) for d | f in
some order.

Proof. Pick a sequence ∅ = S0 ( S1 ( · · · ( Sm of subsets of N, each closed under
divisors, so that each Si+1 Si = {di} has size 1, and Sm is the set of divisors of f .
For instance, we might take Si to be the set of the first i divisors of f . We consider

the Z-indexed filtration 0 = A0 ≤ A1 ≤ · · · ≤ Am of Aσ
f

defined by

Ai = A[ΦSi(σ)] =
∑

d∈Si

Aσ
d

so that A0 = 0 and Am = Aσ
f

.
Now lemma A.0.2 (applied to Si and the set of divisors of di) shows that Ai ∩

Aσ
di

= A
[
σdi−1
Φdi

(σ)

]
=

∑
d|di,d 6=di

Aσ
d

and Ai + Aσ
di

= Ai+1. Hence by the second

isomorphism theorem, Ai+1/Ai = Aσ
di
/
∑
d|di,d 6=di

Aσ
d

= Grσdi(A). Since di runs

through all the divisors of f , it follows that the partial quotients of the filtration
are Grσd (A) for each d | f , as desired. �

Corollary A.0.5. If A is any Z[σ]-module then Φf (σ) annihilates the partial quo-
tient Grσf (A) for all f ∈ N.

Proof. Φf (σ)A
σf

≤ A
[
σf−1
Φf (σ)

]
=

∑
d|f,d 6=f A

σd

. Hence the induced action of Φf (σ)

on Grσf (A) is zero. �

With these results, we have now justified all of lemma 4.2.2 save the behaviour
of the partial quotients under direct sums and inductions. The case of direct sums
is trivial, while the case of inductions involves some more technical manipulations.

Lemma A.0.6. Let A be an abelian group with an action by σq, so that by corol-

lary A.0.5 Grσ
q

f (A) can be viewed as a Z[µf ]-module with the σq-action given by
multiplication by ζf . Then

Grσf (Ind
σ
σqA) ≃ Grσ

q

n(f/q)(A)⊗Z[µn(f/q)] Z[µf ]

where n(f/q) denotes the numerator of f/q. In particular, when q is prime we have

Grσ
q

f (IndσσqA) ≃

{
Grσ

q

f/q(A)⊗Z[µf/q ] Z[µf ] if q | f

Grσ
q

f (A) else

Proof. It suffices to prove the case when q is prime. Note that

(IndσσqA)
σd

=

{
IndσσqAσ

d

if q | d

(1 + σd + · · ·+ σ(q−1)d)Aσ
qd ∼= Aσ

qd

if q ∤ d
.
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Combining this classification with the definition

Grσf (Ind
σ
σqA) =

(IndσσqA)
σf

∑
d|f,d 6=f (Ind

σ
σqA)

σd

we see immediately that when q ∤ f we have Grσf (Ind
σ
σqA) = A(σq)f

∑
d|f,d 6=f A

(σq)d
=

Grσ
q

f (A), as desired.

When q2 | f instead, then on the denominator we need only take those d
such that q | d, and hence by exactness of Indσσq we have that Grσf (Ind

σ
σqA) =

Indσσq
Aσf

∑
d|f/q,d 6=f/q A

σqd = IndσσqGrσ
q

f/q(A). Since Grσ
q

f/q(A) is a Z[µf/q]-module, this

is the same as Grσ
q

f/q(A) ⊗Z[µf/q] Z[µf ], as desired.
The most difficult case is when q exactly divides d. Here on the denominator we

need only take those d such that q | d, along with d = f/q. In other words, we can
identify Grσf (Ind

σ
σqA) as the cokernel of the natural map

(IndσσqA)
σf/q

∑
d|f/q,d 6=f/q (Ind

σ
σqA)

σd −→
(IndσσqA)

σf

∑
q|d|f,d 6=f (Ind

σ
σqA)

σd .

Exactly as we did above, we can identify the leftmost of these groups with Grσ
q

f/q(A),

the rightmost with IndσσqGrσ
q

f/q(A), and the map between them as multiplication

by 1 + σf + · · ·+ σ(q−1)f .
Yet we have an exact sequence of Z[µf/q]-modules

0 −→ Z[µf/q] −→ IndσσqZ[µf/q] −→ Z[µf ] −→ 0

where Z[µf/q] and Z[µf ] are given σq- and σ-actions in the usual way. The first

arrow is multiplication by 1 + σf + · · · + σ(q−1)f , and the second (which is σ-
equivariant) sends σi 7→ ζiq. Since this sequence is an exact complex of flat Z[µf/q]-

modules, it remains exact when we tensor with Grσ
q

f/q(A) and hence we obtain a
σ-equivariant exact sequence

0 −→ Grσ
q

f/q(A) −→ IndσσqGrσ
q

f/q(A) −→ Grσ
q

f/q(A)⊗Z[µf/q] Z[µf ] −→ 0.

But we identified Grσf (Ind
σ
σqA) as the cokernel of the left-hand arrow, so that

Grσf (Ind
σ
σqA) ≃ Grσ

q

f/q(A)⊗Z[µf/q] Z[µf ] as desired. �

We finish with a technical result used in the proof of lemma 4.2.6.

Proposition A.0.7. Let ψ : Π ։ Φ be a surjection of Z[σ]-modules whose kernel
is a free Z-module of rank 1. Then ψ induces an isomorphism on Grσf for all f > 2.
In particular, Π is fixpoint-regular (definition 4.2.3) if and only if Φ is.

Proof. The action of σ on Z := ker(Π ։ Φ) is multiplication by ±1; we deal with
the two cases separately.

In the case that σ acts on Z by +1, we note that

Grσf (A) =
Aσ

f

/Aσ∑
d|f,d 6=f(A

σd/Aσ)

for all f > 1 and any Z[σ]-module A. In particular, the map Grσf (ψ) for f > 1 fits
into a commuting diagram
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⊕
d|f,d 6=f Π

σd

/Πσ Πσ
f

/Πσ Grσf (Π)

⊕
d|f,d 6=f Φ

σd

/Φσ Φσ
f

/Φσ Grσf (Φ)

⊕
(ψ mod Φσ) ψ mod Φσ

Grσf (ψ)

with exact rows. Thus it suffices to prove that the map Πσ
d

/Πσ → Φσ
d

/Φσ induced
by ψ is an isomorphism for all d ≥ 1. To do this, we note that the exact sequence

(A.0.1) 0 → Z → Π → Φ → 0

remains exact upon taking σ- and σd-fixed points, and hence we have a commuting
diagram

0 Z Πσ Φσ 0

0 Z Πσ
d

Φσ
d

0

with exact rows. Applying the snake lemma shows that the induced map Πσ
d

/Πσ →

Φσ
d

/Φσ is an isomorphism, as desired.
Now, in the case that σ acts on Z by −1, we use the corresponding fact that

Grσf (A) =
Aσ

f

/Aσ
gcd(f,2)

∑
d|f,d 6=f(A

σd/Aσgcd(d,2))

for all f > 2 and any Z[σ]-module A. Thus it suffices to prove that the induced

map Πσ
d

/Πσ
gcd(d,2)

→ Φσ
d

/Φσ
gcd(d,2)

is an isomorphism for all d. When d is even,
this follows from the above calculation (applied to σ2), so we focus on the case that
d is odd.

Taking σ- and σd-fixed points of (A.0.1) provides a commuting diagram

0 Πσ Φσ F2 H1(σ,Π)[2]

0 Πσ
d

Φσ
d

F2 H1(σd,Π)[2]

with exact rows, where H1(σ,−) denotes continuous cohomology of the action of

Ẑ where a generator acts via σ, as usual. The inflation–restriction exact sequence

implies that the kernel of the right-hand vertical map is H1(Ẑ/dẐ,Πσ
d

)[2] = 0
since d is odd, and hence this map is injective. This implies that the two rightmost
horizontal maps have the same kernel, and so the snake lemma again implies that

the induced map Πσ
d

/Πσ → Φσ
d

/Φσ is an isomorphism, as desired.
The assertion regarding fixpoint-regularity follows from the observation that

fixpoint-regularity of A depends only on Grσf (A) for f > 2. �
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