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Abstract
We study monotone and strictly monotone Hurwitz numbers from a bosonic Fock space
perspective. This yields to an interpretation in terms of tropical geometry involving local
multiplicities given by Gromov-Witten invariants. Furthermore, this enables us to prove
that a main result of Cavalieri-Johnson-Markwig-Ranganathan is actually equivalent to the
Gromov-Witten/Hurwitz correspondence by Okounkov-Pandharipande for the equivariant
Riemann sphere.
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1 Introduction

Hurwitz numbers and Gromov-Witten invariants with target the Riemann sphere enumerate
certain maps between Riemann surfaces. The last two decades have shown several fruitful
interactions between those two notions. One of the key revelations for these interactions
is the so-called Gromov-Witten/Hurwitz (GW/H) correspondence—found by Okounkov and
Pandharipande in [22]—which is a substition rule that relates (completed cycles) Hurwitz
numbers and stationary descendant Gromov-Witten invariants. One of the key components of
the GW/H correspondence is the notion of the Fock space, which gives an operator theoretic
interpretation of Gromov-Witten invariants and Hurwitz numbers (for more, see [17,21]).

One successful approach to Hurwitz numbers has been achieved by means of tropical
geometry, in which Hurwitz numbers are expressed as enumeration of maps between metric
graphs with discrete data (tropical covers) [5,8,9]. This interpretation has given rise to many
interesting insights, such as a study of polynomial behaviour of double Hurwitz numbers [9]
or the introduction of tropical mirror symmetry for elliptic curves involving quasi-modularity
statements of certain tropical covers [4]. Furthermore, it was observed in [10] that tropical
geometry gives rise to a graphical interface for the Gromov-Witten theory of curves. In
particular, it was proved for the case of stationary descendant Gromov-Witten invariants
with target P1 that the Fock space notion in [22] is strongly related to the tropical expression
derived in [10]. The tropical covers are weighted by local multiplicities, which are Gromov-
Witten invariants themselves.

In recent years many variants of Hurwitz numbers have started to appear in the literature
and have grown in importance, also in relation with Chekhov-Eynard-Orantin topological
recursion theory. Among those we focus on two, namely monotone and strictly monotone
Hurwitz numbers. Monotone Hurwitz numbers appear in the context of random matrix
theory as coefficients of large N expansion of the Harish-Chandra-Itzykson-Zuber model,
whereas strictlymonotoneHurwitz numbers enumerate certain types ofGrothendieck dessins
d’enfant. These numbers have been intensively studied in terms of operators acting on the
Fock space. Furthermore, special cases of these enumerations may be expressed by means of
tropical geometry as well [12,13]. These expressions however differ fundamentally from the
tropical covers involved in [10]. It is natural to askwhether there exists a tropical interpretation
involving local Gromov-Witten multiplicities as in the classical case [10].

The aim of this paper is threefold. Starting from previous work on monotone and strictly
monotone Hurwitz numbers in terms of the fermionic Fock space [3,6,14,18], we derive an
expression of these variants of Hurwitz numbers in terms of the bosonic Fock space.

We then use the connection between bosonic operators and tropical geometry studied in
[7,10] to answer the previously posed question positively. In fact we derive a new tropical
expression for monotone and strictly monotone Hurwitz numbers that shares several features
with the results of [10], as the tropical covers are once again weighted by local multiplicities
given by Gromov-Witten invariants. This new interpretation has the advantage that the curves
involved carry less non-geometric information than the ones in [12,13] and are closer to the
tropical curves involved in [4,9]. This new interpretation allows applications in sequel work
related to wall-crossing behaviour [15] and mirror symmetry [16].

We use the operator formalism to express a generating series enumerating tropical covers
as the vacuum expectation value of an operator. The operator depends on a variable u that
keeps track of the Euler characteristics of the tropical covers. A closer inspection of the
Euler characteristics leads to degree concentration result: the vacuum expectation value is a
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Tropical Jucys covers 1721

monomial in u. This, in turn, establishes an equivalence between Theorem 5.3.4 in [10] and
the original GW/H correspondence of [22].

1.1 Structure of the paper

In Sect. 2, we introduce the basic notions revolving around the relation between Hurwitz
numbers, Gromov-Witten theory, the Fock space and tropical geometry needed for our work.
In Sect. 3 we derive a bosonic expression for monotone and strictly monotone Hurwitz
numbers from the fermionic one. Our main result lies in Sect. 4, where we express monotone
and strictly monotone Hurwitz numbers in terms of tropical covers with local multiplicities
given by Gromov-Witten invariants. Lastly, in Sect. 5 we analyse and compare the original
[22] and the tropical [10] version of Gromov-Witten/Hurwitz correpondence via the semi-
infinite wedge formalism.

2 Preliminaries

In this section, we recall the basic notions regarding the Fock space and tropical geometry,
needed for our work. A concise introduction to the needed Gromov-Witten theory can be
found in [10, section 2].

2.1 Semi-infinite wedge formalism

We introduce the operators needed for the derivation of our results. For a self-contained
introduction to the infinite wedge space formalism, we refer the reader to [17,22], where
most relevant objects are defined.

Let us define ς(z) = 2 sinh(z/2) = ez/2 − e−z/2 and S(z) = ς(z)/z. We are particularly
interested in the expansion of

1

ς(z)
= 1

2 sinh(z/2)
=
∑

l=0

c2l−1z
2l−1 = 1

z
− 1

24
z + 7

5760
z3 + O

(
z5
)

The coefficients cl have several well known combinatorial and geometric interpretations. The
first coefficient is c−1 = 1, and

c2l−1 = − (22l−1 − 1)

22l−1

B2l

(2l)! = (−1)l
∫

Ml,1

λlψ
2l−2
1

= 〈τ2l−2(ω)〉P1l,1 , for l > 0, (1)

where:

(i) Bk is the k-th Bernoulli number, defined by the generating series t
et−1 = ∑∞

k=0 Bk
tk
k! .

(ii) Ml,1 is the moduli space of stable curves of genus l and one marked point p. The
class λl := cl(E) is the top Chern class of the Hodge bundle E → Ml,1, which is the
rank l vector bundle with fiber H0(C, ωC ) over [C, p]. The class ψ1 = c1(L) is the
first Chern class of the cotangent line bundle L → Ml,1 that has fiber T ∗

C,p over the
moduli point [C, p].
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1722 M. A. Hahn, D. Lewanski

(iii) Recall that for two partitions ν, μ of same size d = |μ| = |ν|, the relative Gromov-
Witten invariant with target P1 is defined as

〈
ν, τk1(ω)τk2(ω) · · · τkn (ω), μ

〉P1

g,n
:=
∫

[Mg,n(P1,ν,μ,d)]vir

n∏

i=1

ev∗
i (ω)ψ

ki
i ,

where Mg,n(P
1, ν, μ, d) is the moduli space of stable maps to P

1 relative to the

partitions ν and μ,
[Mg,n(P

1, ν, μ, d)
]vir

is its virtual fundamental class, ψi is
again c1 of the cotangent line bundle over the i-th marked point, the map evi :
Mg,n(P

1, ν, μ, d) → P
1 is the i-th evaluation morphism that sends the moduli point

[C, p1, . . . , pn, f ] to f (pi ), with f : C → P
1 the stable relative map, and, finally, ω

denotes the class of a point in P1. For a complete introduction on the topic we recom-
mend [24]. When the partitions are omitted and the degree is not specified, degree zero
and empty partitions are meant. The superscripts “◦" or “•" refer to the connected or
the not necessarily connected (also called disconnected for simplicity) Gromov-Witten
invariant, and correspond in the definition to connected or not necessarily connected
(disconnected) stable maps in the moduli space, respectively.

Let V = ⊕
i∈Z+1/2 Ci be an infinite-dimensional complex vector space with a basis labeled

by half-integers, written as i . The semi-infinite wedge space or Bosonic Fock space V :=∧∞
2 V is defined as the C−vector space spanned by vectors

k1 ∧ k2 ∧ k3 ∧ · · ·
such that for large i , ki + i − 1

2 equals a constant, called the charge, imposing that ∧ is
antisymmetric. The charge-zero sector

V0 =
⊕

n∈N

⊕

λ
 n

Cvλ

is then the span of all of the semi-infinite wedge products vλ = λ1 − 1
2 ∧ λ2 − 3

2 ∧ · · ·
for integer partitions λ. The space V0 has a natural inner product (·, ·) defined by declaring
its basis elements to be orthonormal. The element corresponding to the empty partition v∅
is called the vacuum vector and denoted by |0〉. Similarly, we call the covacuum vector its
dual in V∗

0 , and denote it by 〈0|. If P is an operator acting on V0, we denote with 〈P〉• the
evaluation 〈0|P|0〉.
For k a half-integer, define the operator ψk by ψk : (i1 ∧ i2 ∧ · · · ) �→ (k ∧ i1 ∧ i2 ∧ · · · ),
and let ψ

†
k be its adjoint operator with respect to (·, ·). The normally ordered products of

ψ-operators

Ei, j :=
{

ψiψ
†
j , if j > 0

−ψ
†
j ψi if j < 0

are well-defined operators on V0. For n any integer, and z a formal variable, define the
operators

En(z) =
∑

k∈Z+ 1
2

ez(k−
n
2 )Ek−n,k + δn,0

ς(z)
, Ẽ0(z) =

∑

k∈Z+ 1
2

ezk Ek,k,

αn = En(0) =
∑

k∈Z+ 1
2

Ek−n,k .
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Tropical Jucys covers 1723

Their commutation formulae are known to be

[Ea(z), Eb(w)] = ς(aw − bz) Ea+b(z + w) for z = 0 or w = 0,

and otherwise

[αk, αl ] = kδk+l,0. (2)

The commutation relations involving Ẽ0 are clearly the same as the ones involving E0. The
coefficients of both operators will play a crucial role in the rest of the paper:

Fl :=
[
zl
]
Ẽ0(z) =

∑

k∈Z+1/2

kl

l! Ek,k, F sh
l :=

[
zl
]
E0(z) =

∑

k∈Z+1/2

kl

l! Ek,k + cl .

The operator C = F0 is called the charge operator, as its eigenvalues on basis vectors are
given by the charge. In particular, it acts as zero on V0. The operator E = F1 is called the
energy operator. Observe that the commutation relation for α operators implies that

〈 �(μ)∏

j=1

αμ j

�(ν)∏

i=1

α−νi

〉•
= |Aut(μ)|

m∏

i=1

μi · δμ,ν, (3)

where |Aut(μ)| = ∏∞
i=1 mi (μ)!, and mi (μ) the number of parts equal to i in the partition

μ.

2.2 Hurwitz numbers in the semi-infinite wedge formalism

We are now ready to express the Hurwitz numbers in terms of the semi-infinite wedge
formalism. The monotone and strictly monotone Hurwitz numbers have respectively the
following expressions, derived in [3]. We use these expressions as definitions. For g ∈ Z≥0,
two partitions μ and ν, m = 2g − 2 + �(μ) + �(ν), let

h≤,•
g;μ,ν

:= [um]∏
μi
∏

ν j

〈
m∏

i=1

αμiD(h)(u)

n∏

j=1

α−ν j

〉•
, (4)

h<,•
g;μ,ν

:= [um]∏
μi
∏

ν j

〈
m∏

i=1

αμiD(σ )(u)

n∏

j=1

α−ν j

〉•
, (5)

where the operatorsD(h)(u), D(σ )(u) depending on the formal variable u have the vectors vλ

as eigenvectorswith eigenvalues the generating series of complete homogeneous polynomials
h and elementary symmetric polynomialsσ , evaluated in the content crλ of theYoungdiagram
associated to the partition λ:

D(h)(u)vλ =
∑

v=0

hv(crλ)uvvλ, D(σ )(u)vλ =
∑

v=0

σv(crλ)uvvλ.

Remember that the content of a box (i, j) in the Young tableau of a partition is given by
cr(i, j) = j − i , and the content crλ of a partition λ is the multiset of all contents of boxes in
its Young diagram (cr stands for column-row). For example, the partition (3, 2) has boxes
(1, 1), (1, 2), (1, 3), (2, 1), and (2, 2), so cr(3,2) = {0, 1, 2,−1, 0}. The connected monotone
and strictly monotone Hurwitz numbers are defined in the same way by taking the connected
vacuum expectation on the right-hand side. The connected expectation is defined from the
disconnected one by means of the inclusion-exclusion formula [11, section 2].
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1724 M. A. Hahn, D. Lewanski

2.3 Tropical curves

We introduce now the concepts of tropical curve and tropical cover, and we describe the rela-
tion between Fock space vacuum expectations and their tropical counterparts. This relation
is sometimes (see e.g. [10]) indicated in tropical geometry with the motto

“Bosoni f ication is T ropicalisation.′′

A detailed introduction to tropical covers can be found in [1].

Definition 1 An abstract tropical curve is a connected metric graph� with unbounded edges
called ends, together with a function associating a genus g(v) to each vertex v. Let V (�)

be the set of its vertices. Let E(�) and E ′(�) be the set of its internal (or bounded) edges
and its set of all edges, respectively. The set of ends is therefore E ′(�) \ E(�), and all
ends are considered to have infinite length. The genus of an abstract tropical curve � is
g(�):=h1(�) + ∑

v∈V (�) g(v), where h1(�) is the first Betti number of the underlying
graph. An isomorphism between tropical curves is an isormorphism between the underlying
graph that respects edges’ lengths and vertices’ genera. The combinatorial type of a tropical
curve is obtained by disregarding its metric structure.

Definition 2 A tropical cover is a surjective harmonic map π : �1 → �2 between abtract
tropical curves as in [1], i.e.:

(i) Let V (�i ) denote the vertex set of �i , then we require π(V (�1)) ⊂ V (�2);
(ii) Let E ′(�i ) denote the edge set of �i , then we require π−1(E ′(�2)) ⊂ E ′(�1);
(iii) For each edge e ∈ E ′(�i ), denote by l(e) its length. We interpret e ∈ E ′(�1), π(e) ∈

E ′(�2) as intervals [0, l(e)] and [0, l(π(e))], then we require π restricted to e to be
a linear map of slope ω(e) ∈ Z≥0, that is π : [0, l(e)] → [0, l(π(e))] is given by
π(t) = ω(e) · t . We call ω(e) the weight of e. If π(e) is a vertex, we have ω(e) = 0.

(iv) For a vertex v ∈ �1, let v′ = π(v). We choose an edge e′ adjacent to v′. We define the
local degree at v as

dv =
∑

e∈�1
π(e)=e′

ωe.

We require dv to be independent of the choice of edge e′ adjacent to v′. We call this
fact the balancing or harmonicity condition.

We furthermore introduce the following notions:

(i) The degree of a tropical cover π is the sum over all local degrees of pre-images of any
point in �2. Due to the harmonicity condition, this number is independent of the point
in �2.

(ii) For any end e, we define a partion μe as the partition of weights of the ends of �1

mapping to e. We call μe the ramification profile above e.

We give in the following a formulation of Wick’s theorem that suits better our purposes.
In fact, Wick’s theorem is generally expressed in terms of Feynman graphs, which can then
be regarded as tropical covers (for more details see, e.g., [7], last section). We state the result
in terms of tropical covers, directly.

Proposition 2.1 (Wick’s theorem) Let μ and ν be two partitions of the same size. Consider
any collection of non-empty finite sets of non-zero integers x1, . . . , xn s.t. for each j we have
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Tropical Jucys covers 1725

∑
xi, j∈x j

xi, j = 0. Denote by x+
i (x−

i ) the tuple of positive (resp. negative) entries of xi . Then
the vacuum expectation

〈 �(μ)∏

t=1

αμt

∏

0>xi,1∈x1
αxi,1

∏

0<xi,1∈x1
αxi,1 · · · · · ·

∏

0>xi,n∈xn
αxi,n

∏

0<xi,n∈xn
αxi,n

�(ν)∏

j=1

α−ν j

〉

is equal to

∑

π∈�(P1trop;μ,ν)

1

|Aut(π)|
n∏

i=1

|Aut(x+
i )||Aut(x−

i )|
∏

e∈E(�)

ωe,

where �(P1
trop;μ, ν) is the set of tropical covers π : � −→ P

1
trop = R such that

(i) The unbounded left (resp. right) pointing ends of � have weights given by the partition
μ (resp. ν).

(ii) |V (�)| = n. Let {v1, . . . , vn} be the set of its vertices ordered linearly from left to right.
The local structure at v j is determined by x j . For each operator αx j,i , we draw an edge
germ of weight |x j,i |, which points to the left for x j,i < 0 and to the right x j,i > 0. In

particular, the valence val(v j ) of v j is equal to |x j | = ∑�(x j )

l=1 x j,l .
(iii) |E(�)| = ∑

j |x j |/2. Every element of E(�) is formed by connecting one edge germ
pointing to the right with one edge germ with same weight but pointing to the left.
Viceversa, every edge germ that does not correspond to an unbounded edge (i.e. does
not correspond to an element of ν or μ) must be matched to another edge germ of the
same weight ωe to form an internal edge e ∈ E(�). This means in particular that each
internal operator αx j,i must be matched with an operator αxk,l=−xi, j .

(iv) For the genus of each vertex, we have g(vi ) = 0.

3 Bosonification

In this section we derive a bosonic expression for monotone and strictly monotone Hurwitz
numbers from the fermionic one. This is done bymeans of the boson-fermion correspondence.
The fermionic expression itself is recovered from the fermionic expression for the power sums
via transformations at the level of symmetric functions.

3.1 Newton’s identities:� and h polynomials in terms of power sums p

Let X be the set of variables {X1, . . . , Xn}. We indicate with σm, hm and pm the symmet-
ric elementary polynomials, the complete homogeneous polynomials and the power sums,
respectively:

σm(X) =
∑

1≤i1<···<im≤n

Xi1 · · · Xim hm(X) =
∑

1≤i1≤···≤im≤n

Xi1 · · · Xim pm(X) =
n∑

i=1

Xm
i

Newton identities describe relations between the power sums pm and bases σm and hm :

σm(X) = [zm]. exp
⎛

⎝−
∑

i≥1

pi (X)

i
(−z)i

⎞

⎠ , (6)
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1726 M. A. Hahn, D. Lewanski

hm(X) = [zm]. exp
⎛

⎝
∑

i≥1

pi (X)

i
zi

⎞

⎠ . (7)

Example 1 Let us test Newton identities for m = 2 and n = 3. From the right-hand side of
(6) we compute

RHS(6) = (−1)3

1!
p2(X1, X2, X3)

2
+ (−1)2

2! p21(X1, X2, X3)

= 1

2

[−X2
1 − X2

2 − X2
3 + (X1 + X2 + X2)

2]

= X1X2 + X1X3 + X2X3,

which is indeed equal to σ2(X1, X2, X3). From the right-hand side of (7) we compute

RHS(7) = 1

1!
p2(X1, X2, X3)

2
+ 1

2! p
2
1(X1, X2, X3)

= 1

2

[
X2
1 + X2

2 + X2
3 + (X1 + X2 + X2)

2]

= X1X2 + X1X3 + X2X3 + X2
1 + X2

2 + X2
3,

which is indeed equal to h2(X1, X2, X3).

We can write it more explicitly in terms of ordered partitions λ. We have

hm = [zm]. exp
⎛

⎝
∑

i≥1

pi
i
zi

⎞

⎠ =
∑

λ
m

1

�(λ)!
�(λ)∏

i

pλi

λi
,

σm = [zm]. exp
⎛

⎝−
∑

i≥1

pi
i

(−z)i

⎞

⎠ =
∑

λ
m

(−1)m+�(λ)

�(λ)!
�(λ)∏

i

pλi

λi
.

3.2 Lascoux-Thibon operator: power sums p of the content in terms ofF operators

Let crλ be the content of the Young diagram associated to the partition λ, let pk be the k-th
power sum. We moreover adopt the convention Fr = 0 for r ≤ 0, as our calculations all take
place in the charge zero sector.

Lemma 3.1 For any partition λ we have

pl
(
crλ

)

l! vλ =
∞∑

k=0

c2k−1Fl−(2k−1)vλ.

Proof 1 of Lascoux and Thibon ([19], proposition 3.3) in our notation as
[
Ẽ0(z)
ς(z)

− E

]
vλ =

∞∑

l=1

pl(crλ)

l! zlvλ.

where by definition we have Ẽ0(z) := ∑
k∈Z+1/2 e

zk Ekk = ∑
r=1 Fr zr , and F1 =

E . Therefore subtracting E gets rid of the first term of the expansion Ẽ0(z)
ς(z) − E =

∑
l=1 z

l
[∑

k=0 c2k−1Fl−(2k−1)
]
. ��
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Example 2 The first terms read

p1(crλ)

1! vλ = F2vλ,
p2(crλ)

2! vλ =
[
F3 − 1

24
F1

]
vλ,

p3(crλ)

3! vλ =
[
F4 − 1

24
F2

]
vλ,

p4(crλ)

4! vλ =
[
F5 − 1

24
F3 + 7

5760
F1

]
vλ,

p5(crλ)

5! vλ =
[
F6 − 1

24
F4 + 7

5760
F2

]
vλ.

3.3 Boson-Fermion correspondence:F operators in terms of˛ operators

The goal of this section is to express the operators we use in terms of sums of strings of
α operators weighted by coefficients enriched with a geometric meaning (in fact Gromov-
Witten invariants).

First of all, the famous boson-fermion correspondence (see e.g. [20, section 5] and [23,
section 5.2]) gives the following expression for Fl in terms of α operators

Fl = [zl ]. 1

ς(z)

∑

s>0

∑

n,m≥0

1

m!n!
( ∑

k1+···+km=s
ki≥1

m∏

i=1

ς(ki z)

ki
αki

)

( ∑

�1+···+�n=s
�i>0

n∏

i=1

ς(�i z)

li
α−�i

)
. (8)

Since F sh
l = Fl + cl , it is enough to add the s = 0 term in the sum:

F sh
l = [zl ]. 1

ς(z)

∑

s≥0

∑

n,m≥0

1

m!n!
( ∑

k1+···+km=s
ki≥1

m∏

i=1

ς(ki z)

ki
αki

)

( ∑

�1+···+�n=s
�i>0

n∏

i=1

ς(�i z)

li
α−�i

)
.

Definition 3 Let SZk+1−2g (resp. SZk+1−2g
sh ) be the infinite subset of Zk+1−2g of integer

vectors x satisfying

x1 ≤ · · · ≤ xl < 0 < xl+1 ≤ · · · ≤ xk+1−2g,

k+1−2g∑

i=1

xi = 0, l > 0 (resp. l ≥ 0).

Let x−, x+ denote the partitions formed by the negative elements multiplied by a minus sign
of x, and by the positive elements of x, respectively:

x−
i = −xi = −xi , i = 1, . . . , l, x+

i = xl+i = xl+i , i = 1, . . . , k + 1 − 2g − l.

We note that SZk+1−2g and SZk+1−2g
sh agree unless k + 1− 2g = 0. If k + 1− 2g = 0, we

have SZ0 = ∅ and SZ0
sh = {()}, i.e. SZ0

sh contains the empty tuple.

Let us recall the following result, expressing 1-point connectedGromov-Witten correlators
with target P1 in terms of SS functions.
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1728 M. A. Hahn, D. Lewanski

Theorem 3.2 ([22], Theorem 2) For any two partitions x+ and x− of the same size

〈
x+, τ2g−2+�(x+)+�(x−), x

−
〉P1,◦

g

= 1

|Aut(x+)||Aut(x−)| [z
2g]
∏�(x+

i )

i=1 SS(x+
i z)

∏�(x−)
j=1 SS(x−

i z)

SS(z)
.

Lemma 3.3 For the operators Fk and F sh
k , we have the following identity

Fk =
∞∑

g=0

∑

x∈ SZk+1−2g

〈
x+, τk−1(ω), x−

〉P1,◦

g

∏

0>xi∈x
αxi

∏

0<x j∈x
αx j ,

F sh
k =

∞∑

g=0

∑

x∈ SZk+1−2g
sh

〈
x+, τk−1(ω), x−

〉P1,◦

g

∏

0>xi∈x
αxi

∏

0<x j∈x
αx j .

Proof Expand Fk by Eq. (8). Observe that we obtain an infinite sum of words in α operators
(or strings of α operators), weighted by certain coefficients. The longest possible word has
length k+1, because ς(z)−1 = z−1 +O(z1). Since ς(z) is an odd function in z, there are no
words in the expansion of Fk of length k with non-zero coefficients. By the same argument,
in general the length of the α strings decrease two by two. Let the index g count half the
defect of the α strings length. We obtain

Fk =
∞∑

g=0

∑

x∈SZk+1−2g

[
1

|Aut(x+)||Aut(x−)|
[zk ]∏

x+
i
xi
∏

x−
i
xi

∏
x+
i

ς(xi z)
∏

x−
i

ς(xi z)

ς(z)

] ∏

0>xi∈x
αxi

∏

0<x j∈x
αx j

Note that (m!n!)−1 in Eq. (8) gets substituted by |Aut(x+)||Aut(x−)|. This is because we
are re-summing m-tuples and n-tuples in terms of partitions (hence elements are ordered) of
length m and n respectively. Substituting SS(z) = ς(z)/z we get

Fk =
∞∑

g=0

∑

x∈SZk+1−2g

1

|Aut(x+)||Aut(x−)| [z
2g]
∏

x+
i
SS(xi z)

∏
x−
i
SS(xi z)

SS(z)

∏

0>xi∈x
αxi

∏

0<x j∈x
αx j .

Applying Theorem 3.2 proves the equation for Fk . For F sh
k , simply note that the s = 0 term

corresponds to [zk]. 1
ς(z) = ck = 〈∅|τ2k−2(ω)|∅〉P1,◦k and therefore corresponds to adding the

empty α string, which is what the condition l ≥ 0 takes care of. ��

Definition 4 Let us define the operators Gl+1 := (l − 1)!∑∞
k=0 c2k−1Fl−(2k−1).

Lemma 3.4 For the operators Gl+1, we have the expression

Gl+1 = (l − 1)!
∞∑

g1,g2=0
x∈SZl+2−2g1−2g2

〈
τ2g2−2(ω)

〉P1,◦

g2

〈
x+, τ2g1−2+�(x+)+�(x−)(ω), x−

〉P1,◦

g1

∏

0>xi∈x
αxi

∏

0<x j∈x
αx j .

Proof The proof is a straightforward application of Lemma 3.3 and Eq. (1). ��
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3.4 Putting the pieces together

Putting together what we discussed in Sect. 3.1 and in Sect. 3.2 we obtain

hm(crρ)vρ =
∑

λ
m

1

�(λ)!
�(λ)∏

i

⎛

⎝(λi − 1)!
∞∑

ki=0

c2ki−1Fλi−(2ki−1)

⎞

⎠ vρ

σm(crρ)vρ =
∑

λ
m

(−1)m+�(λ)

�(λ)!
�(λ)∏

i

⎛

⎝(λi − 1)!
∞∑

ki=0

c2ki−1Fλi−(2ki−1)

⎞

⎠ vρ.

By the expressions of monotone and strictly monotone Hurwitz numbers in Definition (4)
and (5) and by Definition 4 we have

h≤,•
g;μ,ν

= 1∏m
i=1 μi

∏n
j=1 ν j

∑

λ
m

1

�(λ)!
〈 �(μ)∏

i=1

αμ j

�(λ)∏

i

Gλi+1

�(ν)∏

j=1

α−ν j

〉•

h<,•
g;μ,ν

= 1∏m
i=1 μi

∏n
j=1 ν j

∑

λ
m

(−1)m+�(λ)

�(λ)!
〈 �(μ)∏

i=1

αμ j

�(λ)∏

i

Gλi+1

�(ν)∏

j=1

α−ν j

〉•

4 Tropicalisation

The goal of this section is to express connected monotone and strictly monotone Hurwitz
numbers in terms of tropical covers weighted by Gromov-Witten invariants. This is achieved
by applying Wick’s theorem to the expressions obtained from the bosonification. The main
result of the paper is the following.

Theorem 4.1 Let g be a non-negative integer, and μ, ν partitions of the same size d > 0.

h≤,◦
g;μ,ν

=
∑

π∈�◦(P1trop,g;μ,ν)

1

|Aut(π)|
1

�(λ)!
∏

v∈V (�)

mv

∏

e∈E(�)

ωe

h<,◦
g;μ,ν

=
∑

π∈�◦(P1trop,g;μ,ν)

1

|Aut(π)|
1

�(λ)!
∏

v∈V (�)

(−1)1+val(v)mv

∏

e∈E(�)

ωe

where �◦(P1
trop, g;μ, ν) is the set of connected tropical covers π : � −→ P

1
trop = R with

b = 2g − 2 + �(μ) + �(ν) points p1, . . . , pb fixed on the codomain P1
trop, such that

(i) The unbounded left (resp. right) pointing ends of � have weights given by the partition
μ (resp. ν).

(ii) There exists some l ≤ b, such that� has l many vertices. Let V (�) = {v1, . . . , vl} be the
set of its vertices. Then π(vi ) = pi . Moreover, let wi = val(vi ) be the corresponding
valences.

(iii) There are two integers associated to each vertexvi of�, (gi1, g
i
2) ∈ Z

2≥0 for i = 1, . . . , l,

such that we have g(vi ) = gi1 + gi2 for the genus at vi and the following condition
holds true

h1(�) +
l∑

i=1

g(vi ) = g.
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1730 M. A. Hahn, D. Lewanski

(iv) We define a partition λ of length l by λi = val(vi ) + 2g(vi ) − 2 and impose the
Riemann-Hurwitz condition

l∑

i=1

λi = 2g − 2 + �(μ) + �(ν).

(v) For each vertex vi , let x+,i (resp. x−,i ) be the right-hand (resp. left-hand) side weights.
The multiplicity mvi of vi is defined to be

mvi = (λi − 1)!|Aut(x+,i )||Aut(x−,i )|
⎛

⎝
∫

M
gi1,1

(P1,x+,i ,x−,i ,|x+,i |)
ψ2gi1−2+wi ev�

1(pt)

⎞

⎠

⎛

⎝
∫

M
gi2,1

λgi2
ψ2gi2−2

⎞

⎠

Proof We will work out the details for the monotone case, as the strictly monotone case is
completely parallel. By the previous section, we have

h≤,◦
g;μ,ν

= 1∏m
i=1 μi

∏n
j=1 ν j

∑

λ
m

1

�(λ)!
〈 �(μ)∏

i=1

αμ j

�(λ)∏

i

Gλi+1

�(ν)∏

j=1

α−ν j

〉◦
.

A generic summand of this expression is given by

1∏m
i=1 μi

∏n
j=1 ν j

∏
(λi − 1)!
�(λ)!

�(λ)∏

i=1

〈
τ2gi2−2(ω)

〉P1,◦

gi2

×
〈
x+,i , τ2gi1−2+�(x+,i )+�(x−,i )(ω), x−,i

〉P1,◦

gi1

〈 �(μ)∏

i=1

αμi

�(λ)∏

i=1

αxi1
· · · αxi

λi+1−2gi1−2gi2

�(ν)∏

i=1

ανi

〉◦
,

where gi1, g
i
2 ∈ Z≥0, xi ∈ SZλi+1−2g1−2g2 and xi1 ≤ · · · ≤ xili < 0 < xili+1 ≤

. . . xi
λi+1−2gi1−2gi2

for some li ∈ [λi + 1 − 2gi1 − 2gi2] for all i ∈ [�(λ)].
Let us now apply Wick’s theorem 2.1 to the last vacuum expectation obtaining consider

the vacuum expectation

〈 �(μ)∏

i=1

αμi

�(λ)∏

i=1

αxi1
· · · αxi

λi+1−2gi1−2gi2

�(ν)∏

i=1

ανi

〉◦

=
∑

π∈�◦(P1trop,0;μ,ν))

1

|Aut(π)|
�(λ)∏

i=1

|Aut(x+
i )||Aut(x−

i )|
∏

e∈E(�)

ωe,

These covers already satisfy conditions (i) and (ii). We note that since we are concerned with
connected vacuum expectations, we only need to consider connected tropical covers.

As observed in Proposition 2.1 the vertices of all tropical covers involved are of genus 0.
To relate these tropical covers to the desired ones, we associate new genera to the vertices.
We start with a fixed generic expression with fixed data gi1, g

i
2 for i = 1, . . . , �(λ) for a fixed

λ, such that |λ| = 2g − 2 + �(μ) + �(ν).
We associate a new tropical cover to each cover involved in Eq. (9) by setting g(vi ) =

gi1 + gi2. This is obviously a bijection and it preserves automorphisms. We now check that

123



Tropical Jucys covers 1731

h1(�) +∑l
i=1 g(vi ) = g. Recall that the Euler characteristic for graphs reads |V | − |E | =

1 − h1(�), where |V | is the number of vertices and |E | is the number of edges. We observe
|V | = �(μ) + �(ν) + �(λ). Moreover, by the handshake lemma, we obtain

|E | = 1

2

∑

v∈V (�)

val(v) = 1

2

⎛

⎝
�(λ)∑

i=1

(λi + 2 − 2g(vi )) + �(μ) + �(ν)

⎞

⎠

= 1

2

(
|λ| + 2�(λ) − 2

∑
g(vi ) + �(μ) + �(ν)

)

and substituting |λ| = 2g − 2 + �(μ) + �(ν), we obtain

|E | = 1

2

(
2g − 2 + 2�(μ) + 2�(ν) + 2�(λ) − 2

l∑

i=1

g(vi )

)

= g − 1 + �(μ) + �(ν) + �(ν) −
l∑

i=1

g(vi ).

Thus by imposing the Euler characteristic constraint, we obtain

1 − h1(�) = (�(μ) + �(ν) + �(λ)) − (g − 1 + �(μ) + �(ν)

+�(λ) −
l∑

i=1

g(vi )) = 1 − g +
l∑

i=1

g(vi ).

Thus, we obtain g = h1(γ ) +∑l
i=1(g

i
1 + gi2) as required, and the new associated tropical

covers satisfy condition (iii). Condition (iv) is fulfilled by construction.
Now, we incorporate the prefactor of the above generic summand into the tropical cover

as global and local multiplicities. Recall that the global prefactor is

1∏m
i=1 μi

∏n
j=1 ν j

∏
(λi − 1)!
�(λ)!

�(λ)∏

i=1

〈
τ2gi2−2(ω)

〉P1,◦

gi2

〈
x+,i , τ2g1−2+�(x+,i )+�(x−,i )(ω), x−

〉P1,◦

g1

whereas the tropical covers to be weighted by

∑

π∈�(P1trop;μ,ν)

1

|Aut(π)|
n∏

i=1

|Aut(x+
i )||Aut(x−

i )|
∏

e∈E(�)

ωe. (9)

We define the multiplicity of the i−th vertex by

mvi = (λi − 1)!|Aut(x+
i )||Aut(x−

i )

〈
τ2gi2−2(ω)

〉P1,◦

gi2

〈
x+,i , τ2g1−2+�(x+,i )+�(x−,i )(ω), x−

〉P1,◦

g1

and we weight each cover by

1∏
μi
∏

ν j

1

�(λ)!
1

|Aut(π)|
∏

e∈E(�)

ωe

∏
mvi

to obtain the same contribution. We note that the weights of the unbounded edges of each
cover contribute a factor of

∏
μi
∏

ν j in the last product, which yields the weight of each
cover to be

1

�(λ)!
1

|Aut(π)|
∏

ωe

∏
mvi ,
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1732 M. A. Hahn, D. Lewanski

where the product is taken over all inner edges of�. Finally, we observe that by the same argu-
ment as above, any vaccum expectation involved in computing monotone Hurwitz numbers
arises from a tropical cover, which concludes the proof of the theorem. ��

4.1 Comparison with the tropical curves obtained in [12,13]

In this section, we compare the tropical curves obtained in Theorem 4.1 to the ones derived
in [12,13] by means of a particular example. Both these papers use the notion of monotone
monodromy graphs associated to the data (g, μ, ν) (for a formal definition of such graphs we
refer to the original papers). For us, it is relevant that such graphs carry extra combinatorial
data— including each edge being bi-labelled and being coloured in either solid, dashed, or
bold.

Theorem 4.2 [12,13] For g ≥ 0 and μ, ν partitions of the same size, we have

h≤,◦
g;μ,ν

= 1∏
μi

∑

G

1

|Aut(G)|
∏

ωe,

where we sum over all monodromy graphs associated to (g, μ, ν). In this notationωe denotes
the weight of an edge e of G and the product is taken over a specific subset H of the edges
of G.

Example 3 (For the data (g, μ, ν) = (0, (2, 1), (3))) The data (g, μ, ν) = (0, (2, 1), (3))
produces only two monodromy graphs, illustrated at the top of Fig. 1. They do not have any
non-trivial automorphism, and their subset H consists in both cases of the dashed edge. The
weights of the edges are illustrated as numbers in round brackets. Thus we obtain

h≤,◦
0;(2,1),(3) = 1

1 · 2 · 1 + 1

1 · 2 · 1 = 1.

In the language of Theorem 4.1, we obtain the same result by considering a single tropical
cover. Its graph is illustrated at the bottom of Fig. 1—it does not have any automorphism and
corresponds to λ = (1), which clearly gives |�(λ)!| = 1. The local vertex multiplicity can
be computed using the relation c2l−1 = 〈τ2l−2(ω)〉P1l,1 and Theorem 3.2. This yields a vertex
multiplicity of 1 and thus

h≤,◦
0;(2,1),(3) = 1

1
· 1
1

· 1 = 1.

We now compute a slightly more involved example.

Example 4 We consider the case (g, μ, ν) = (0, (3, 1), (3, 1)). Using GAP [2], we compute
the monotone Hurwitz number in terms of factorisations in the symmetric group and obtain

h≤,◦
0;(3,1),(3,1) = 4.

We now show that our interpretation in Theorem 4.1 gives the same number. The three
connected graphs for the data (g, μ, ν) = (0, (3, 1), (3, 1)) are illustrated in Fig. 2.

1. For the graph on the left in Fig. 2, we obtain |Aut(π)| = 1. Further, we see that λ = (1, 1)
and thus �(λ)! = 2. For both vertices, we obtainmv = 1. The only inner edge is of weight
ω(e) = 4, which yields a contribution of 1

1 · 1
2 · 1 · 4 = 2.

2. For the graph in themiddle of Fig. 2,we obtain |Aut(π)| = 1.Again,we obtainλ = (1, 1)
and �(λ) = 2. For both vertices, we obtain mv = 1 and the only inner edge is of weight
ω(e) = 2. This yields a contribution of 1

1 · 1
2 · 1 · 2 = 1.

123



Tropical Jucys covers 1733

(2)

(1)

(3)

(2)

(1)

(3)

2

1

3

1 1

11
2 3

Fig. 1 Comparing the tropical curves appearing in [12,13] (top) to the tropical curves appearing in Theorem
4.1 (bottom) for (g, μ, ν) = (0, (2, 1), (3))

1

3

3

1 3

1 3

1 3

31

1
4 2

Fig. 2 The tropical curves for (g, μ, ν) = (0, (3, 1), (3, 1)) according to Theorem 4.1

3. For the graph on the right in Fig. 2, we obtain |Aut(π) = 1, λ = (2) and �(λ)! = 1. The
only vertex gives mv = 1 and there are no inner edges. Thus, we obtain a contribution
of 1

1 · 1
1 · 1 · 1 = 1.

In total, we obtain h≤,◦
0;(3,1),(3,1) = 2 + 1 + 1 = 4, which is what we expected.

5 Gromov-Witten theory and tropical curves

The goal of this section is to analyse and compare the original [22] and the tropical [10]
version of Gromov-Witten/Hurwitz correpondence via the semi-infinite wedge formalism.
The results are summarised at the end of the section.

Definition 5 Let Ml(u) be the operator

[zl+1].
u1/2ς(zu1/2)

∑

s≥0

∑

n,m≥0

1

m!n!
( ∑
∑m

i=1 ki=s
ki≥1

m∏

i=1

u−1/2ς(ki zu3/2)

ki
αki

)

( ∑
∑n

i=1=s
�i≥1

n∏

i=1

u−1/2ς(�i zu1/2)

li
α−�i

)
.
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1734 M. A. Hahn, D. Lewanski

For us it will be relevant that

Ml(1)= F sh
l+1. (10)

After expanding it in the same way as in Lemma 3.3, Ml takes the form

Ml(u) =
∞∑

g=0

∑

x∈ SZl+2−2g
sh

〈
x+, τl(ω), x−

〉P1,◦

g
u|x+|+g−1

∏

0>xi∈x
αxi

∏

0<x j∈x
αx j . (11)

and therefore coincides with the operator Ml defined in [10]. We are now ready to list and
compare the two results.

Theorem 5.1 ([10], Theorem 5.3.4)

|Aut(μ)||Aut(ν)|
〈
μ,

n∏

i=1

τki (ω), ν

〉P1,◦
= [ug+�(μ)−1]∏

i μi
∏

j ν j

〈 �(μ)∏

i=1

αμ j

n∏

i

Mki (u)

�(ν)∏

j=1

α−ν j

〉◦
.

Theorem 5.2 ([22], GW/H correspondence)

|Aut(μ)||Aut(ν)|
〈
μ,

n∏

i=1

τki (ω), ν

〉P1,◦
= 1∏

i μi
∏

j ν j

〈 �(μ)∏

i=1

αμ j

n∏

i

Mki (1)
�(ν)∏

j=1

α−ν j

〉◦

Remark 1 We rearranged GW/H correspondence in a form that is more convenient to our
purposes. To derive the formulation above from the original paper [22], simply combine
their equation (3.2) with their Proposition 3.1 obtaining

|Aut(μ)||Aut(ν)|
〈
μ,

n∏

i=1

τki (ω), ν

〉P1,•
= 1∏

i μi
∏

j ν j

〈 �(μ)∏

i=1

αμ j

n∏

i

F sh
ki+1

�(ν)∏

j=1

α−ν j

〉•
,

then conclude by Eq. (10) and by taking the connected correlators on both sides.

Clearly, in order for both results to hold true, some non-trivial property of the correlator

〈 �(μ)∏

i=1

αμ j

n∏

i

Mki (u)

�(ν)∏

j=1

α−ν j

〉◦

considered as formal power series u should be involved - in fact, either the degree is com-
pletely concentrated in g+�(μ)−1, or the sumof all the coefficients, excluding the coefficient
of ug+�(μ)−1, should vanish altogether. We are going to prove that the first is the correct one.

Proposition 5.3 (Concentration of the degree) Let K0 be
∑

ki+�(μ)−�(ν)

2 .

[uK ]
〈 �(μ)∏

i=1

αμ j

n∏

i

Mki (u)

�(ν)∏

j=1

α−ν j

〉◦
= 0 for K = K0.

Remark 2 To avoid confusion, let us remark that the statement of the proposition expresses
K0 as

(∑
ki + �(μ) − �(ν)

)
/2 instead of g + �(μ) − 1 because the variable g loses its

meaning without mentioning the GW correlator - however, the two quantities are equal since
the genus is determined by the Riemann-Hurwitz condition

∑
ki = 2g − 2 + �(μ) + �(ν).

The proposition immediately implies the following corollary.
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Corollary 5.4 Theorem 5.1 holds true if and only if Theorem 5.2 holds true.

Proof To be precise, what we are going to show is that each vacuum expectation produced by
the product of the formal expansions of theMki (u) in degree different from K0 vanishes on its
own (i.e. there are no non-trivial cancellations even between summands of the same degree,
if that degree differs from K0). Let us analyse a generic summand of the vacuum expectation
〈∏�(μ)

i=1 αμ j

∏n
i Mki (u)

∏�(ν)
j=1 α−ν j 〉 expanded via Eq. (11). A generic such summand is of

the form

n∏

i=1

〈
x+,(i), τki (ω), x−,(i)

〉P1,◦

g′
i

〈 �(μ)∏

t=1

αμt

n∏

i=1

α−x−,(i)
1

· · · α−x−,(i)
pi

· αx+,(i)
1

· · · αx+,(i)
qi

�(ν)∏

j=1

α−ν j

〉
u
∑n

i=1(pi+g′
i−1).

Our goal is to show that every non-vanishing summand satisfies the equation

n∑

i=1

(pi + g′
i − 1) = g + �(μ) − 1.

��
We provide two different proofs of the concentration of the degree: the first involves the

analysis of each vacuum expectation via the commutation relations of the α operators, the
second one analyses the tropical curves associated to each vacuum expectation and compute
their Euler characteristic.

Proof (Proof via vacuum expectations analysis) The vanishing of each such summand comes
from the following lemma, which immediately follows from (3) and the commutation rela-
tions (2). It also follows as immediate corollary from condition (iii) of Wick’s Theorem 2.1.

��
Lemma 5.5 For any collection of finite sets of non-zero integers x1, . . . , xn, the vacuum
expectation

〈 �(μ)∏

t=1

αμt

∏

0>xi,1∈x1
αxi,1

∏

0<xi,1∈x1
αxi,1 · · · · · ·

∏

0>xi,n∈xn
αxi,n

∏

0<xi,n∈xn
αxi,n

�(ν)∏

j=1

α−ν j

〉
= 0

whenever the following condition is not satisfied:

{μi }i=1,...,�(μ) ∪ x+
1 ∪ · · · ∪ x+

n = {νi }i=1,...,�(ν) ∪ x−
1 ∪ · · · ∪ x−

n .

In other words, the set of positive indices appearing in the expression must be equal to the
set of the absolute values of the negative indices.

From Lemma 5.5, we know that, for every non-vanishing summand, the set of positive
indices must be equal to the set of the absolute values of the negative indices. In particular,
the cardinalities of the two sets must be equal. This gives us the additional requirement

n∑

i=1

pi + �(ν) =
n∑

i=1

qi + �(μ) or, equivalently,
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n∑

i=1

pi − �(μ) =
n∑

i=1

qi − �(ν). (12)

Now, from the definition of Mki (u) operators we get pi + qi = ki + 2 − 2g′
i , and therefore

n∑

i=1

pi +
n∑

i=1

qi =
n∑

i=1

ki + 2n − 2
n∑

i=1

g′
i .

Imposing the Riemann-Hurwitz constraint
∑n

i=1 ki = 2g − 2 + �(μ) + �(ν), we get

2

(
g − 1 −

n∑

i=1

g′
i

)
=

n∑

i=1

pi − �(μ) +
n∑

i=1

qi − �(ν) − 2n.

Applying the additional requirement (12) and dividing by two gives the desired equation

g − 1 −
n∑

i=1

g′
i =

n∑

i=1

pi − �(μ) − n or, equivalently,
n∑

i=1

(pi + g′
i − 1)=g+�(μ) − 1.

Proof (Proof via tropical curves’ Euler characteristic analysis) Let π : � −→ P
1
trop = R be

the tropical curve associated to the generic summand as above. Let V (�), E(�), h1(�) the
set of vertices, the set of edges and the first Betti number of the tropical cover �. Because
we are considering connected covers, the Euler characteristic constraint gives

|V (�)| − |E(�)| = 1 − h1(�).

Let us compute each ingredient separately in terms of the indices of the generic correlator.

(i) |V (�)| = �(μ) + �(ν) + n.
(ii) |E(�)| = ∑n

i=1 pi + �(ν). Indeed the sum of the pi counts the incoming edges, and
every edge is either an incoming edge for some vertex, or it is an edge of infinite length
on the right and therefore must correspond to some part of ν.

(iii) h1(�) = g −∑n
i=1 gi .

Substuting these quantities in the Euler characteristic contraint we obtain

�(μ) + �(ν) + n −
(

n∑

i=1

pi + �(ν)

)
= 1 −

(
g −

n∑

i=1

gi

)
,

which is equivalent to

g + �(μ) − 1 =
n∑

i=1

(
pi + gi − 1

)
.

��
This concludes the proof of the proposition.

We can summarise the results of this section in the following two points.

(i) It provides another proof of Theorem 5.1 (by combining Theorem 5.2 and Corollary 5.4).
(ii) It allows a clear comparison between Theorem 5.1 and GW/H correspondence 5.2—on

the one hand, it shows that Theorem 5.1 is a refined version of the GW/H correspondence,
since it discardsmany summands that contribute trivially andotherwisewould be counted.
On the other hand, it shows that the formal u-variable in Theorem 5.1 is redundant, which
is a non trivial fact, and that getting rid of the u-variable recovers nothing but GW/H
correspondence.
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