DERIVATIVES OF EISENSTEIN SERIES OF WEIGHT 2 AND INTERSECTIONS OF MODULAR CORRESPONDENCES

SUNGMUN CHO, SHUNSUKE YAMANA AND TAKUYA YAMAUCHI

Abstract

We give a formula for certain values and derivatives of Siegel series and use them to compute Fourier coefficients of derivatives of the Siegel Eisenstein series of weight $\frac{g}{2}$ and genus g. When $g=4$, the Fourier coefficient is approximated by a certain Fourier coefficient of the central derivative of the Siegel Eisenstein series of weight 2 and genus 3, which is related to the intersection of 3 arithmetic modular correspondences. Applications include a relation between weighted averages of representation numbers of symmetric matrices.

1. Introduction

1.1. Motivation : On the modular correspondences. Let $j=j^{\prime}=$ $j(\tau)$ be the elliptic modular function on the upper half plane. For $m \geq 1$ let $\varphi_{m} \in \mathbb{Z}\left[j, j^{\prime}\right]$ be the classical modular polynomial defined by

$$
\varphi_{m}\left(j(\tau), j\left(\tau^{\prime}\right)\right)=\prod_{A \in \mathrm{M}_{2}(\mathbb{Z})} \prod_{\left(\bmod \mathrm{SL}_{2}(\mathbb{Z})\right), \operatorname{det} A=m}\left(j(\tau)-j\left(A \tau^{\prime}\right)\right) .
$$

Put $S=\operatorname{Spec} \mathbb{Z}\left[j, j^{\prime}\right]$ and $S_{\mathbb{C}}=\operatorname{Spec} \mathbb{C}\left[j, j^{\prime}\right]$. Let T_{m} and $T_{m, \mathbb{C}}$ be the arithmetic and geometric divisors defined by $\varphi_{m}=0$. We can view S as an arithmetic threefold $\mathcal{S}=\mathcal{M} \times$ Spec $\mathbb{Z} \mathcal{M}$, where \mathcal{M} is the moduli stack of elliptic curves over \mathbb{Z}, and T_{m} as the moduli stack \mathcal{T}_{m} of isogenies of elliptic curves of degree m. In the 19th century Hurwitz has computed the intersection

$$
\left(T_{m_{1}, \mathbb{C}} \cdot T_{m_{2}, \mathbb{C}}\right):=\operatorname{dim}_{\mathbb{C}} \mathbb{C}\left[j, j^{\prime}\right] /\left(\varphi_{m_{1}}, \varphi_{m_{2}}\right)
$$

of complex curves. Gross and Keating [3] discovered that $\left(T_{m_{1}, \mathbb{C}} \cdot T_{m_{2}, \mathbb{C}}\right)$ is related to the Fourier coefficients of the Siegel Eisenstein series of weight 2 for $S p_{2}(\mathbb{Z})$. Moreover, they gave an explicit expression for the intersection

$$
\left(T_{m_{1}} \cdot T_{m_{2}} \cdot T_{m_{3}}\right):=\log \sharp \mathbb{Z}\left[j, j^{\prime}\right] /\left(\varphi_{m_{1}}, \varphi_{m_{2}}, \varphi_{m_{3}}\right)
$$

of 3 arithmetic modular correspondences. It is already mentioned in the introduction of [3] that computations of Kudla or Zagier strongly suggest that $\operatorname{deg} \mathscr{Z}(B)$ equals the B-th Fourier coefficient of the derivative of the Siegel Eisenstein series of weight 2 for $S p_{3}(\mathbb{Z})$, up to multiplication by a

[^0]constant which is independent of B. A complete proof of this identity has been given in [17] (cf. [11]).

The purpose of this paper is to compute the Fourier coefficients of the derivative of the Siegel Eisenstein series of weight 2 for $S p_{4}(\mathbb{Z})$. One may expect that these coefficients are related to the intersection of 4 modular correspondences. However, the number

$$
\log \sharp \mathbb{Z}\left[j, j^{\prime}\right] /\left(\varphi_{m_{1}}, \varphi_{m_{2}}, \varphi_{m_{3}}, \varphi_{m_{4}}\right),
$$

does not seem to be naturally expanded to a sum over positive semi-definite symmetric half-integral matrices of size 4 and does not seem to be a right object. The fiber product $\mathcal{T}_{m_{1}} \times \mathcal{S} \mathcal{T}_{m_{2}} \times{ }_{\mathcal{S}} \mathcal{T}_{m_{3}} \times{ }_{\mathcal{S}} \mathcal{T}_{m_{4}}$ has a disjoint sum decomposition according to the values of the fundamental matrices:

$$
\mathcal{T}_{m_{1}} \times \mathcal{S} \mathcal{T}_{m_{2}} \times{ }_{\mathcal{S}} \mathcal{T}_{m_{3}} \times{ }_{\mathcal{S}} \mathcal{T}_{m_{4}}=\bigsqcup_{T} \mathscr{Z}(T)
$$

where T extends over the set of positive semi-definite symmetric half-integral matrices of size 4 with diagonal entries $m_{1}, m_{2}, m_{3}, m_{4}$. If T is positive definite, then $\mathscr{Z}(T)$ is empty unless $\operatorname{det} T$ is a square and T is split except over a single prime. If T is positive definite and $\operatorname{det} T$ is a square, then the T-th Fourier coefficient is zero unless T is anisotropic only at a prime p, in which case the T-th Fourier coefficient is approximately equal to $\operatorname{deg} \mathscr{Z}\left(T^{\prime}\right)$, where T^{\prime} is some positive semi-definite symmetric half-integral matrix of size 3 (see Theorem (1.3). Our result may imply that for each point of the intersection, where 4 surfaces intersect properly, in a small neighborhood of the point, the intersection multiplicity behaves like the intersection multiplicity of 3 surfaces of them.

In the intervening years Kudla and others have gone a long way towards proving such relations in much greater generality. In [8], he introduced a certain family of Eisenstein series of genus g and weight $\frac{g+1}{2}$. They have an odd functional equation and hence have a natural zero at their center of symmetry. The central derivatives of such series, which he refers to as incoherent Eisenstein series, have a connection with arithmetic algebraic geometry of cycles on integral models of Shimura varieties attached to orthogonal groups of signature $(2, g-1)$, at least when $g \leq 4$. We refer the reader to [14] for $g=1$, to [8, 12, 15] for $g=2$, to [11, 24, 17] for $g=3$, and to [13] for $g=4$. However, there are serious problems with the construction of arithmetic models of these Shimura varieties as soon as $g \geq 5$.
1.2. The Fourier coefficients of derivative of Eisenstein series. In this paper we compute the Fourier coefficients of derivatives of incoherent Eisenstein series of genus g and weight $\frac{g}{2}$. In this introductory section we will consider classical Eisenstein series of level 1. Let g be a positive integer that is divisible by 4 . Let

$$
E_{g}(Z, s)=\sum_{\{C, D\}} \operatorname{det}(C Z+D)^{-g / 2}|\operatorname{det}(C Z+D)|^{-s}(\operatorname{det} Y)^{s / 2}
$$

be the Siegel Eisenstein series of genus g, where $\{C, D\}$ runs over a complete set of representatives of the equivalence classes of coprime symmetric pairs of degree g, and Z is a complex symmetric matrix of degree g with positive definite imaginary part Y. This series converges absolutely for $\Re s>\frac{g}{2}+1$ and admits a meromorphic continuation to the whole s-plane by the general theory of Langlands.

If $\frac{g}{4}$ is even, then $E_{g}(Z, s)$ is holomorphic at $s=0$ and the T-th Fourier coefficient of $E_{g}(Z, 0)$ is equal to

$$
\begin{equation*}
2\left(\sum_{i} \frac{1}{N\left(L_{i}, L_{i}\right)}\right)^{-1} \sum_{i} \frac{N\left(L_{i}, T\right)}{N\left(L_{i}, L_{i}\right)} \tag{1.1}
\end{equation*}
$$

by the Siegel formula (see [23, 10, 27]), where $\left\{L_{i}\right\}$ is the set of isometry classes of positive definite even unimodular lattices of rank g. Here $N\left(L, L^{\prime}\right)$ denotes the number of isometries $L^{\prime} \rightarrow L$ for two quadratic spaces L, L^{\prime} over \mathbb{Z}. In particular, the nondegenerate Fourier coefficients are supported on a single rational equivalence class.

On the other hand, if $\frac{g}{4}$ is odd, then $E_{g}(Z, s)$ has a zero at $s=0$. Our main object of study in this paper is the derivative

$$
\left.\frac{\partial}{\partial s} E_{g}(Z, s)\right|_{s=0}=\sum_{T>0} C_{g}(T) e^{2 \pi \sqrt{-1} \operatorname{tr}(T Z)}+\sum_{\text {other } T} C_{g}(T, Y) e^{2 \pi \sqrt{-1} \operatorname{tr}(T Z)}
$$

Fix a positive definite symmetric half-integral $n \times n$ matrix T and a rational prime p. Let $\mathbb{Q}^{(p)}$ be a subring of \mathbb{Q}, consisting of the numbers of the form $\frac{a}{p^{n}}$ with $n \in \mathbb{N}$ and $a \in \mathbb{Z}$. We define the additive character \mathbf{e}_{p} of \mathbb{Q}_{p} by setting $\mathbf{e}_{p}(x)=e^{-2 \pi \sqrt{-1} y}$ with $y \in \mathbb{Q}^{(p)}$ such that $x-y \in \mathbb{Z}_{p}$. The Siegel series attached to T and p is defined by

$$
b_{p}(T, s)=\sum_{z \in \operatorname{Sym}_{n}\left(\mathbb{Q}_{p}\right) / \operatorname{Sym}_{n}\left(\mathbb{Z}_{p}\right)} \mathbf{e}_{p}(-\operatorname{tr}(T z)) \nu[z]^{-s}
$$

where $\nu[z]$ is the product of denominators of elementary divisors of z. Put $D_{T}=(-4)^{[n / 2]} \operatorname{det} T$. We denote the primitive Dirichlet character corresponding to $\mathbb{Q}\left(\sqrt{D_{T}}\right)$ by χ_{T} and its conductor by \mathfrak{d}^{T}. Put $\xi_{p}^{T}=\chi_{T}(p)$. Let $e_{p}^{T}=\operatorname{ord}_{p} D_{T}$ or $e_{p}^{T}=\operatorname{ord}_{p} D_{T}-\operatorname{ord}_{p} \mathfrak{d}^{T}$ according as n is odd or even. There exists a polynomial $F_{p}^{T}(X) \in \mathbb{Z}[X]$ such that

$$
b_{p}(T, s)=\gamma_{p}^{T}\left(p^{-s}\right) F_{p}^{T}\left(p^{-s}\right)
$$

where

$$
\gamma_{p}^{T}(X)=(1-X) \prod_{j=1}^{[n / 2]}\left(1-p^{2 j} X^{2}\right) \times \begin{cases}1 & \text { if } n \text { is odd } \\ \frac{1}{1-\xi_{p}^{T} p^{n / 2} X} & \text { if } n \text { is even } .\end{cases}
$$

The symbol η_{p}^{T} stands for the normalized Hasse invariant of T over \mathbb{Q}_{p} (see Definition (2.1). We write $\operatorname{Diff}(T)$ for the finite set of prime numbers p such that $\eta_{p}^{T}=-1$. A direct calculation gives the following formula:

Proposition 5.1. Assume that $\frac{g}{4}$ is odd. Let T be a positive definite symmetric half-integral matrix of size g.
(1) If $\chi_{T}=1$, then $C_{g}(T)=0$ unless $\operatorname{Diff}(T)$ is a singleton.
(2) If $\chi_{T}=1$ and $\operatorname{Diff}(T)=\{p\}$, then

$$
C_{g}(T)=-\frac{2^{(g+2) / 2} p^{-\left(g+e_{p}^{T}\right) / 2} \log p}{\zeta\left(1-\frac{g}{2}\right) \prod_{i=1}^{(g-2) / 2} \zeta(1-2 i)} \frac{\partial F_{p}^{T}}{\partial X}\left(p^{-g / 2}\right) \prod_{p \neq \ell D_{T}} \ell^{-e_{\ell}^{T} / 2} F_{\ell}^{T}\left(\ell^{-g / 2}\right)
$$

(3) If $\chi_{T} \neq 1$, then

$$
C_{g}(T)=-\frac{2^{(g+2) / 2} L\left(1, \chi_{T}\right)}{\zeta\left(1-\frac{g}{2}\right) \prod_{i=1}^{(g-2) / 2} \zeta(1-2 i)} \prod_{\ell \mid D_{T}} p^{-e_{\ell}^{T} / 2} F_{\ell}^{T}\left(\ell^{-g / 2}\right)
$$

Remark 1.1. If $\chi_{T} \neq 1$, then $L\left(1, \chi_{T}\right)=\frac{\sqrt{\mathfrak{D}^{T}}}{\log \epsilon} h$ by Dirichlet's class number formula, where h is the class number of the real quadratic field $\mathbb{Q}(\sqrt{\operatorname{det} T})$ and $\epsilon=\frac{t+u \sqrt{\mathfrak{d}^{T}}}{2}(t>0, u>0)$ is the solution to the Pell equation $t^{2}-\mathfrak{d}^{T} u^{2}=$ 4 for which u is smallest.

The following theorem is a special case of Theorem 4.3 and allows us to compute $\frac{\partial F_{p}^{T}}{\partial X}\left(\xi_{p}^{T} p^{-g / 2}\right)$. For simplicity we here assume p to be odd.

Theorem 1.2. Let p be an odd rational prime and $T=\operatorname{diag}\left[t_{1}, \ldots, t_{g}\right]$ with $0 \leq \operatorname{ord}_{p} t_{1} \leq \cdots \leq \operatorname{ord}_{p} t_{g}$. Put $T^{\prime}=\operatorname{diag}\left[t_{1}, \ldots, t_{g-1}\right]$. Suppose that g is even and $p \nmid \mathfrak{d}^{T}$. Then

$$
F_{p}^{T}\left(\xi_{p}^{T} p^{-g / 2}\right)=p^{e_{p}^{T} / 2} F_{p}^{T^{\prime}}\left(\xi_{p}^{T} p^{-g / 2}\right)
$$

If $\eta_{p}^{T}=-1$, then

$$
\frac{\xi_{p}^{T}}{p^{g / 2}} \frac{\partial F_{p}^{T}}{\partial X}\left(\frac{\xi_{p}^{T}}{p^{g / 2}}\right)=\frac{F_{p}^{T^{\prime}}\left(\xi_{p}^{T} p^{(2-g) / 2}\right)}{p-1}-p^{e_{p}^{T} / 2} \frac{\xi_{p}^{T}}{p^{g / 2}} \frac{\partial F_{p}^{T^{\prime}}}{\partial X}\left(\frac{\xi_{p}^{T}}{p^{g / 2}}\right)
$$

Our key ingredient is the explicit formula for $F_{p}^{T}(X)$, given by Ikeda and Katsurada in [5], which expresses the polynomial F_{p}^{T} in terms of the (naive) extended Gross-Keating datum H of T over \mathbb{Z}_{p}. The polynomial $F_{p}^{T^{\prime}}=F_{p}^{H^{\prime}}$ is defined in terms of a subset $H^{\prime} \subsetneq H$ for any p in a uniform way. Actually, if $g=4$, then the values $\frac{\partial F_{p}^{H^{\prime}}}{\partial X}\left(p^{-2}\right)$ and $F_{p}^{H^{\prime}}\left(p^{-1}\right)$ depend only on $\left(a_{1}, a_{2}, a_{3}\right)$ if we write $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ for the Gross-Keating invariant of T over \mathbb{Z}_{p}.

1.3. Applications.

1.3.1. On the average of the representation numbers. Theorem 1.2 combined with the Siegel formula will identify (1.1) with four times the average of the representation numbers of a symmetric matrix of size $g-1$ (see Conjecture 5.4 and Proposition 5.5). The following result is a special case of Proposition 5.5 .

Corollary 5.6. If T is a positive definite symmetric half-integral matrix of size 4 which satisfies $\chi^{T}=1$ and $\eta_{\ell}^{T}=1$ for $\ell \neq p$, then there exists a positive definite symmetric half-integral matrix T^{\prime} of size 3 such that

$$
\sum_{\left(E^{\prime}, E\right)} \frac{N\left(\operatorname{Hom}\left(E^{\prime}, E\right), T\right)}{\sharp \operatorname{Aut}(E) \sharp \operatorname{Aut}\left(E^{\prime}\right)}=2 \sum_{\left(E^{\prime}, E\right)} \frac{N\left(\operatorname{Hom}\left(E^{\prime}, E\right), T^{\prime}\right)}{\sharp \operatorname{Aut}(E) \sharp \operatorname{Aut}\left(E^{\prime}\right)},
$$

where $\left(E, E^{\prime}\right)$ extends over all pairs of isomorphism classes of supersingular elliptic curves over $\overline{\mathbb{F}}_{p}$.
1.3.2. On the Fourier coefficients and the modular correspondences. The factor $\frac{\partial F_{p}^{H^{\prime}}}{\partial X}\left(\xi_{p}^{T} p^{-g / 2}\right)$ appears in Fourier coefficients of central derivatives of incoherent Eisenstein series of genus $g-1$ and weight $\frac{g}{2}$, which have close connection with arithmetical geometry on Shimura varieties at least for $g \leq 5$ as mentioned above. We will be mostly interested in the case $g=4$. When $T_{m_{1}}, T_{m_{2}}$ and $T_{m_{3}}$ intersect properly, the formula of Gross and Keating in [3] can be stated as follows:

$$
\left(T_{m_{1}} \cdot T_{m_{2}} \cdot T_{m_{3}}\right)=\sum_{B} \operatorname{deg} \mathscr{Z}(B),
$$

where B extends over all positive definite symmetric half-integral matrices with diagonal entries m_{1}, m_{2}, m_{3}. Here $\operatorname{deg} \mathscr{Z}(B)=0$ unless Diff (B) consists of a single rational prime p, in which case

$$
\begin{equation*}
\operatorname{deg} \mathscr{Z}(B)=-\frac{(\log p)}{2 p^{2}} \frac{\partial F_{p}^{B}}{\partial X}\left(\frac{1}{p^{2}}\right) \sum_{\left(E, E^{\prime}\right)} \frac{N\left(\operatorname{Hom}\left(E^{\prime}, E\right), B\right)}{\sharp \operatorname{Aut}(E) \sharp \operatorname{Aut}\left(E^{\prime}\right)} . \tag{1.2}
\end{equation*}
$$

The degree $\operatorname{deg} \mathscr{Z}(B)$ equals the B-th Fourier coefficient of the derivative of the Siegel Eisenstein series of weight 2 and genus 3 up to a negative constant (cf. Theorem 2.2 of [17]). We combine (1.2), Theorem [5.3 and Corollary 5.6 to obtain the following formula:

Theorem 1.3. If T is a positive definite symmetric half-integral matrix of size $4, \chi_{T}=1$ and $\operatorname{Diff}(T)$ consists of a single prime number p, then there exists a positive definite symmetric half-integral matrix T^{\prime} of size 3 such that

$$
\frac{C_{4}(T)}{-2^{8} \cdot 3^{2}}=\operatorname{deg} \mathscr{Z}\left(T^{\prime}\right)+\frac{F_{p}^{T^{\prime}}\left(p^{-1}\right)}{2 \sqrt{p}^{e_{p}^{T}}(p-1)} \log p \sum_{\left(E, E^{\prime}\right)} \frac{N\left(\operatorname{Hom}\left(E^{\prime}, E\right), T^{\prime}\right)}{\sharp \operatorname{Aut}(E) \sharp \operatorname{Aut}\left(E^{\prime}\right)},
$$

where $\left(E, E^{\prime}\right)$ extends over all pairs of isomorphism classes of supersingular elliptic curves over $\overline{\mathbb{F}}_{p}$.

Since $\operatorname{Hom}\left(E^{\prime}, E\right)$ is a quaternary quadratic space, if S has rank greater than 4 , then $N\left(\operatorname{Hom}\left(E, E^{\prime}\right), S\right)=0$. Therefore when $g \geq 5$, the nature of Fourier coefficients of the derivative of Eisenstein series of weight 2 and genus g should be much different. The case $g=4$ should be a boundary
case. We will explicitly compute $F_{p}^{T^{\prime}}\left(p^{-1}\right)$ in Lemma 5.7 and show that

$$
\left|\frac{C_{4}(T)}{-2^{8} \cdot 3^{2} \cdot \operatorname{deg} \mathscr{Z}\left(T^{\prime}\right)}-1\right|<\frac{20}{p \sqrt{p}} .
$$

Moreover, Corollary 5.8 says that for a fixed prime number p

$$
\lim _{\operatorname{ord}_{p}(\operatorname{det} T) \rightarrow \infty} \frac{C_{4}(T)}{-2^{8} \cdot 3^{2} \cdot \operatorname{deg} \mathscr{Z}\left(T^{\prime}\right)}=1 .
$$

1.4. Organizations. We now explain the lay-out of this paper. Section 2 extends the notion of incoherent Eisenstein series to the case where the point at which the Eisenstein series is evaluated lies within the left half-plane. We calculate the Fourier coefficients of those Eisenstein series and their derivatives. In Section 3 we derive a general formula for Fourier coefficients of derivatives of incoherent Eisenstein series. Section 4 is devoted to a local study of the Siegel series. We give the inductive expression for the special value of the derivative of the Siegel series. Section 5 is devoted to proving Theorem 5.3.

Acknowledgement. Cho is supported by JSPS KAKENHI Grant No. 16F16316. Yamana is partially supported by JSPS Grant-in-Aid for Young Scientists (B) 26800017. We would like to thank Stephen Kudla for very stimulating discussions.

Notations

For a finite set A, we denote by $\sharp A$ the number of elements in A. For a ring R we denote by $\mathrm{M}_{i, j}(R)$ the set of $i \times j$-matrices with entries in R and write $\mathrm{M}_{m}(R)$ in place of $\mathrm{M}_{m, m}(R)$. The group of all invertible elements of $\mathrm{M}_{m}(R)$ and the set of symmetric matrices of size m with entries in R are denoted by $\mathrm{GL}_{m}(R)$ and $\operatorname{Sym}_{m}(R)$, respectively. Let $\mathcal{E}_{m}(R)$ be the set of elements $\left(a_{i j}\right) \in \operatorname{Sym}_{m}(R)$ such that $a_{i i} \in 2 R$ for every i. For matrices $B \in \operatorname{Sym}_{m}(R)$ and $G \in \mathrm{M}_{m, n}(R)$ we use the abbreviation $B[G]={ }^{t} G B G$, where ${ }^{t} G$ is the transpose of G. If A_{1}, \ldots, A_{r} are square matrices, then $\operatorname{diag}\left[A_{1}, \ldots, A_{r}\right]$ denotes the matrix with A_{1}, \ldots, A_{r} in the diagonal blocks and 0 in all other blocks. Let $\mathbf{1}_{m}$ be the identity matrix of degree m. Put

$$
\begin{aligned}
& S p_{g}(R)=\left\{G \in \mathrm{GL}_{2 g}(R) \left\lvert\, G\left(\begin{array}{cc}
0 & \mathbf{1}_{g} \\
-\mathbf{1}_{g} & 0
\end{array}\right)^{t} G=\left(\begin{array}{cc}
0 & \mathbf{1}_{g} \\
-\mathbf{1}_{g} & 0
\end{array}\right)\right.\right\}, \\
& M_{g}(R)=\left\{\left.\mathbf{m}(A)=\left(\begin{array}{cc}
A & 0 \\
0 & { }^{t} A^{-1}
\end{array}\right) \right\rvert\, A \in \mathrm{GL}_{g}(R)\right\} \text {, } \\
& N_{g}(R)=\left\{\left.\mathbf{n}(B)=\left(\begin{array}{cc}
\mathbf{1}_{g} & B \\
0 & \mathbf{1}_{g}
\end{array}\right) \right\rvert\, B \in \operatorname{Sym}_{g}(R)\right\} .
\end{aligned}
$$

Let \mathbb{Z} be the set of integers and μ_{n} the group of n-th roots of unity. If x is a real number, then we put $[x]=\max \{m \in \mathbb{Z} \mid m \leq x\}$.

2. Eisenstein series

Let k be a totally real number field with integer ring \mathfrak{o}. The set of real places of k is denoted by \mathfrak{S}_{∞}. The completion of k at a place v is denoted by k_{v}. Let $(,)_{k_{v}}: k_{v}^{\times} \times k_{v}^{\times} \rightarrow \mu_{2}$ denote the Hilbert symbol. We let \mathfrak{p} denote a finite prime of k and do not use the letter \mathfrak{p} for a real place. Let $q_{\mathfrak{p}}=\sharp \mathfrak{o} / \mathfrak{p}$ be the order of the residue field. We define the character $\mathbf{e}_{\mathfrak{p}}$ of $k_{\mathfrak{p}}$ by $\mathbf{e}_{\mathfrak{p}}(x)=\mathbf{e}(-y)$ with $y \in \mathbb{Q}^{(p)}$ such that $\operatorname{Tr}_{k_{\mathfrak{p}} / \mathbb{Q}_{p}}(x)-y \in \mathbb{Z}_{p}$ if p is the rational prime divisible by \mathfrak{p}. Put $\mathbf{e}(z)=e^{2 \pi \sqrt{-1} z}$ for $z \in \mathbb{C}$ and $\mathbf{e}_{\infty}(z)=\prod_{v \in \mathfrak{S}_{\infty}} \mathbf{e}\left(z_{v}\right)$ for $z \in \prod_{v \in \mathfrak{S}_{\infty}} \mathbb{C}$.

Once and for all we fix a positive integer $g \geq 2$. Let $(V,()$,$) be a$ quadratic space of dimension m over k_{v}. Whenever we speak of a quadratic space, we always assume that $($,$) is nondegenerate, i.e., (u, V)=0$ implies that $u=0$. Put $s_{0}=\frac{1}{2}(m-g-1)$. Given $u=\left(u_{1}, \ldots, u_{g}\right) \in V^{g}$, we write (u, u) for the $g \times g$ symmetric matrix with (i, j) entry equal to $\left(u_{i}, u_{j}\right)$. We write det V for the element in $k_{v}^{\times} / k_{v}^{\times 2}$ represented by the determinant of the matrix representation of the bilinear form (,) with respect to any basis for V over k_{v}. We define the character $\chi^{V}: k_{v}^{\times} \rightarrow \mu_{2}$ by

$$
\begin{equation*}
\chi^{V}(t)=\left(t,(-1)^{m(m-1) / 2} \operatorname{det} V\right)_{k_{v}} \tag{2.1}
\end{equation*}
$$

We normalize our Hasse invariant η^{V} so that it depends only on the isomorphism class of an anisotropic kernel of V (cf. [2, 22]).

Definition 2.1. We associate to the quadratic space V over $k_{\mathfrak{p}}$ of dimension m an invariant $\eta^{V} \in \mu_{2}$ according to the type of V as follows:

- If m is odd, then an anisotropic kernel of V has dimension $2-\eta^{V}$.
- If m is even and $\chi^{V} \neq 1$ and if we choose an element $c \in k_{\mathfrak{p}}^{\times}$such that $\chi^{V}(c)=\eta^{V}$, then V is the orthogonal sum of a split form of dimension $m-2$ with the norm form scaled by the factor c on the quadratic extension of $k_{\mathfrak{p}}$ corresponding to χ^{V}.
- If m is even and $\chi^{V}=1$, then V is split or the orthogonal sum of the norm form on the quaternion algebra over $k_{\mathfrak{p}}$ with a split form of dimension $m-4$ according as $\eta^{V}=1$ or -1 .

We denote the set of positive definite symmetric matrices over \mathbb{R} of rank g by $\operatorname{Sym}_{g}(\mathbb{R})^{+}$. Let

$$
\mathfrak{H}_{g}=\left\{X+\sqrt{-1} Y \in \operatorname{Sym}_{g}(\mathbb{C}) \mid Y \in \operatorname{Sym}_{g}(\mathbb{R})^{+}\right\}
$$

be the Siegel upper half-space of genus g. The real symplectic group $S p_{g}(\mathbb{R})$ acts transitively on \mathfrak{H}_{g} by $G Z=(A Z+B)(C Z+D)^{-1}$ for $Z \in \mathfrak{H}_{g}$ and $G=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in S p_{g}(\mathbb{R})$. We define the maximal compact subgroups by

$$
K_{\mathfrak{p}}=S p_{g}\left(\mathfrak{o}_{\mathfrak{p}}\right), \quad K_{v}=\left\{G \in S p_{g}\left(k_{v}\right) \mid G\left(\sqrt{-1} \mathbf{1}_{g}\right)=\sqrt{-1} \mathbf{1}_{g}\right\}
$$

for $v \in \mathfrak{S}_{\infty}$. We have the Iwasawa decomposition

$$
S p_{g}\left(k_{v}\right)=M_{g}\left(k_{v}\right) N_{g}\left(k_{v}\right) K_{v}
$$

Denote the two-fold metaplectic cover of $S p_{g}\left(k_{v}\right)$ by Mp_{v}. There is a canonical splitting $N_{g}\left(k_{v}\right) \rightarrow \mathrm{Mp}_{v}$. When \mathfrak{p} does not divide 2, we have a canonical splitting $K_{\mathfrak{p}} \rightarrow \mathrm{Mp}_{\mathfrak{p}}$. We still use $N_{g}\left(k_{v}\right)$ and $K_{\mathfrak{p}}$ to denote the images of these splittings. Let \tilde{K}_{v} denote the pull-back of K_{v} in Mp_{v}. Define the map $\operatorname{Mp}_{v} \rightarrow \mathbb{R}_{+}^{\times}$by writing $\tilde{G}=\mathbf{n}(b) \tilde{m} \tilde{k} \in \operatorname{Mp}_{v}$ with $b \in \operatorname{Sym}_{g}\left(k_{v}\right), a \in \mathrm{GL}_{g}\left(k_{v}\right)$, $\tilde{m}=(\mathbf{m}(a), \zeta)$ and $\tilde{k} \in \tilde{K}_{v}$ and setting $|a(\tilde{G})|=|\operatorname{det} a|_{v}$. We refer to Section 1.1 of [27] for additional explanation.

Let V be a quadratic space over k_{v} and ω_{v} the Weil representation of Mp_{v} with respect to \mathbf{e}_{v} on the space $\mathcal{S}\left(V^{g}\right)$ of the Schwartz functions on V^{g}. We associate to $\varphi \in \mathcal{S}\left(V^{g}\right)$ the function on $\mathrm{Mp}_{v} \times \mathbb{C}$ by

$$
f_{\varphi}^{(s)}(\tilde{G})=\left(\omega_{v}(\tilde{G}) \varphi\right)(0)|a(\tilde{G})|^{s-s_{0}}
$$

The real metaplectic group acts on the half-space \mathfrak{H}_{g} through $S p_{g}(\mathbb{R})$. There is a unique factor of automorphy $\jmath_{v}: \mathrm{Mp}_{v} \times \mathfrak{H}_{g} \rightarrow \mathbb{C}^{\times}$whose square descends to the automorphy factor on $S p\left(k_{v}\right) \times \mathfrak{H}_{g}$ given by $\jmath_{v}\left(G_{v}, Z_{v}\right)^{2}=$ $\operatorname{det}\left(C_{v} Z_{v}+D_{v}\right)$ for $G_{v}=\left(\begin{array}{cc}* & * \\ C_{v} & D_{v}\end{array}\right) \in S p\left(k_{v}\right)$. We define an automorphy factor $\jmath: \prod_{v \in \mathfrak{G}_{\infty}}\left(\operatorname{Mp}_{v} \times \mathfrak{H}_{g}\right) \rightarrow \mathbb{C}^{\times}$by $\jmath(\tilde{G}, Z)=\prod_{v} \jmath_{v}\left(\tilde{G}_{v}, Z_{v}\right)$.

Let \mathbb{A} be the adele ring of k and $\mathbb{A}_{\mathbf{f}}$ the finite part of the adele ring. We arbitrarily fix a quadratic character χ of $\mathbb{A}^{\times} / k^{\times}$such that $\chi_{v}=\operatorname{sgn}^{m(m-1) / 2}$.

Definition 2.2. Let $\mathcal{C}=\left\{\mathcal{C}_{v}\right\}$ be a collection of local quadratic spaces of dimension m such that $\chi^{\mathcal{C}_{v}}=\chi_{v}$ for all v, such that \mathcal{C}_{v} is positive definite for $v \in \mathfrak{S}_{\infty}$ and such that $\eta^{\mathcal{C}_{\mathfrak{p}}}=1$ for almost all \mathfrak{p}. We say that \mathcal{C} is coherent if it is the set of localizations of a global quadratic space. Otherwise we call \mathcal{C} incoherent.

One can derive the following criterion from the theorem of MinkowskiHasse (see Theorem 4.4 of [21).

Lemma 2.3. Put $d=[k: \mathbb{Q}]$. When m is odd, \mathcal{C} is coherent if and only if $(-1)^{d\left(m^{2}-1\right) / 8} \prod_{\mathfrak{p}} \eta^{\mathcal{C}_{\mathfrak{p}}}=1$. When m is even, \mathcal{C} is coherent if and only if $(-1)^{d m(m-2) / 8} \prod_{\mathfrak{p}} \eta^{\mathcal{C}_{\mathfrak{p}}}=1$.

There is a unique splitting $S p_{g}(k) \hookrightarrow \mathrm{Mp}_{g}$ by which we regard $S p_{g}(k)$ as the subgroup of the two-fold metaplectic cover Mp_{g} of $S p_{g}(\mathbb{A})$. Let $P_{g}=$ $M_{g} N_{g}$ be the Siegel parabolic subgroup of $S p_{g}$. Given any pure tensor $\varphi=\otimes_{\mathfrak{p}} \varphi_{\mathfrak{p}} \in \otimes_{\mathfrak{p}}^{\prime} \mathcal{S}\left(\mathcal{C}_{\mathfrak{p}}^{g}\right)$, we consider the function

$$
f_{\varphi}^{(s)}(\tilde{G})=\prod_{\mathfrak{p}} f_{\varphi_{\mathfrak{p}}}^{(s)}\left(\tilde{G}_{\mathfrak{p}}\right), \quad f_{\varphi_{\mathfrak{p}}}^{(s)}\left(\tilde{G}_{\mathfrak{p}}\right)=\left(\omega_{\mathfrak{p}}\left(\tilde{G}_{\mathfrak{p}}\right) \varphi_{\mathfrak{p}}\right)(0)\left|a\left(\tilde{G}_{\mathfrak{p}}\right)\right|^{s-s_{0}}
$$

on $\mathrm{Mp}_{g} \times \mathbb{C}$ and the Eisenstein series on $\prod_{v \in \mathfrak{S}_{\infty}} \mathfrak{H}_{g}$

$$
E\left(Z, f_{\varphi}^{(s)}\right)=(\operatorname{det} Y)^{\left(s-s_{0}\right) / 2} \sum_{\gamma \in P_{g}(k) \backslash S p_{g}(k)}|\jmath(\gamma, Z)|^{s_{0}-s} \jmath(\gamma, Z)^{-g} f_{\varphi}^{(s)}(\gamma),
$$

where Y is the imaginary part of Z. The series is absolutely convergent for $\Re s>\frac{g+1}{2}$. It admits a meromorphic continuation to the whole plane and its Laurent coefficients define automorphic forms. Moreover, it is holomorphic at $s=s_{0}$, and if \mathcal{C} is coherent, then the Siegel-Weil formula holds by [10].

From now on we require that $m \leq g+1$. Let V be a totally positive definite quadratic space of dimension m over k. We normalize the invariant measure $\mathrm{d} h$ on $\mathrm{O}(V, k) \backslash \mathrm{O}(V, \mathbb{A})$ to have total volume 1 and define the integral

$$
I(Z, \varphi)=\int_{\mathrm{O}(V, k) \backslash \mathrm{O}(V, \mathrm{~A})} \Theta(Z, h ; \varphi) \mathrm{d} h
$$

of the theta function

$$
\Theta(Z, h ; \varphi)=\sum_{u \in V(k)^{g}} \varphi\left(h^{-1} u\right) \mathbf{e}_{\infty}(\operatorname{tr}((u, u) Z)) .
$$

Since we are under coherent situation, the Siegel-Weil formula can now be stated as follows:

$$
\begin{equation*}
\left.E\left(Z, f_{\varphi}^{(s)}\right)\right|_{s=s_{0}}=2 I(Z, \varphi) \tag{2.2}
\end{equation*}
$$

The reader who is interested in this identity can consult Theorem 2.2(i) of [27]. On the other hand, if \mathcal{C} is incoherent, then the series $E\left(Z, f_{\varphi}^{(s)}\right)$ has a zero at $s=s_{0}$ by Corollary 5.5 of [27].

Consider the Fourier expansions

$$
\begin{aligned}
E\left(Z, f_{\varphi}^{(s)}\right) & =\sum_{T \in \operatorname{Sym}_{g}(k)} A(T, Y, \varphi, s) \mathbf{e}_{\infty}(\operatorname{tr}(T Z)), \\
\left.\frac{\partial}{\partial s} E\left(Z, f_{\varphi}^{(s)}\right)\right|_{s=s_{0}} & =\sum_{T \in \operatorname{Sym}_{g}(k)} C(T, Y, \varphi) \mathbf{e}_{\infty}(\operatorname{tr}(T Z)),
\end{aligned}
$$

where

$$
Z=X+\sqrt{-1} Y, \quad C(T, Y, \varphi)=\left.\frac{\partial}{\partial s} A(T, Y, \varphi, s)\right|_{s=s_{0}}
$$

Put $\operatorname{Sym}_{g}^{\text {nd }}=\operatorname{Sym}_{g}(k) \cap \operatorname{GL}_{g}(k)$. When $T \in \operatorname{Sym}_{g}^{\text {nd }}$, the Fourier coefficient has an explicit expression as an infinite product

$$
A(T, Y, \varphi, s)=a(T, Y, s) \prod_{\mathfrak{p}} W_{T}\left(f_{\varphi_{\mathfrak{p}}}^{(s)}\right)
$$

for $\Re s \gg 0$, where

$$
W_{T}\left(f_{\varphi_{\mathfrak{p}}}^{(s)}\right)=\int_{\operatorname{Sym}_{g}\left(k_{\mathfrak{p}}\right)} f_{\varphi_{\mathfrak{p}}}^{(s)}\left(\left(\begin{array}{cc}
0 & \mathbf{1}_{g} \\
-\mathbf{1}_{g} & 0
\end{array}\right) \mathbf{n}\left(z_{\mathfrak{p}}\right)\right) \overline{\mathbf{e}_{\mathfrak{p}}\left(\operatorname{tr}\left(T z_{\mathfrak{p}}\right)\right)} \mathrm{d} z_{\mathfrak{p}}
$$

and $a(T, Y, s) \mathbf{e}_{\infty}(\sqrt{-1} \operatorname{tr}(T Y))$ is a product of the confluent hypergeometric functions investigated in [18]. Given $T \in \operatorname{Sym}_{g}^{\text {nd }}$, we define the quadratic form on $V^{T}=k^{g}$ by $u \mapsto T[u]$ and define the Hecke character $\chi^{T}=\prod_{v} \chi_{v}^{T}$ and the Hasse invariants η_{p}^{T}, where χ_{v}^{T} is defined in (2.1). Let $\operatorname{Diff}(T, \mathcal{C})$ denote the set of places v of k such that T is not represented by \mathcal{C}_{v}. Let
Sym_{g}^{+}denote the set of totally positive definite symmetric $g \times g$ matrices over k.
Lemma 2.4. Let $\varphi_{\mathfrak{p}} \in \mathcal{S}\left(\mathcal{C}_{\mathfrak{p}}^{g}\right)$ and $T \in \operatorname{Sym}_{g}^{\text {nd }}$.
(1) $a(T, Y, s)$ and $W_{T}\left(f_{\varphi_{\boldsymbol{\rho}}}^{(s)}\right)$ are entire functions in s.
(2) $\lim _{s \rightarrow s_{0}} W_{T}\left(f_{\varphi_{\mathfrak{p}}}^{(s)}\right)=0$ unless T is represented by $\mathcal{C}_{\mathfrak{p}}$.
(3) If $m=g, T \in \operatorname{Sym}_{g}^{+}, \chi^{T}=\chi$ and \mathcal{C} is incoherent, then $\operatorname{Diff}(T, \mathcal{C})$ is a finite set of odd cardinality.
Proof. The first part is well-known (see [6, 18]). Lemma on p. 73 of [16] implies (22). By assumption $\operatorname{Diff}(T, \mathcal{C})=\left\{\mathfrak{p} \mid \eta^{\mathcal{C}_{\mathfrak{p}}}=-\eta_{\mathfrak{p}}^{T}\right\}$. Since \mathcal{C} is incoherent, Lemma 2.3 implies $\prod_{p} \eta^{\mathcal{C}_{\mathfrak{p}}}=-\prod_{\mathfrak{p}} \eta_{\mathfrak{p}}^{T}$, which proves (3).

Let $T \in \operatorname{Sym}_{g}^{+}$. Then both $a\left(T, Y, s_{0}\right)$ and $C(T, Y, \varphi)$ are independent of Y. Put

$$
c_{m}(T)=a\left(T, Y, s_{0}\right), \quad C(T, \varphi)=C(T, Y, \varphi), \quad D_{T}=\mathrm{N}_{k / \mathbb{Q}}(\operatorname{det}(2 T)) .
$$

Let \mathfrak{d}_{k} denote the absolute value of the discriminant of k. Note that

$$
\begin{equation*}
c_{g}(T)=c_{g} D_{T}^{-1 / 2}, \quad c_{g}=\mathfrak{d}_{k}^{-g(g+1) / 4}\left(\mathrm{e}\left(\frac{g^{2}}{8}\right) \frac{2^{g} \pi^{g^{2} / 2}}{\Gamma_{g}\left(\frac{g}{2}\right)}\right)^{d} \tag{2.3}
\end{equation*}
$$

by $(4.34 \mathrm{~K})$ of $[18]$, where $\Gamma_{g}(s)=\pi^{g(g-1) / 4} \prod_{i=0}^{g-1} \Gamma\left(s-\frac{i}{2}\right)$.
Proposition 2.5. Let $m=g$ and $T \in \operatorname{Sym}_{g}^{+}$. Suppose that \mathcal{C} is incoherent. If $\chi^{T}=\chi$, then $C(T, \varphi)=0$ unless $\operatorname{Diff}(T, \mathcal{C})$ is a singleton. Moreover, if $\operatorname{Diff}(T, \mathcal{C})=\{\mathfrak{p}\}$, then

$$
C(T, \varphi)=c_{g} D_{T}^{-1 / 2} \lim _{s \rightarrow-1 / 2} \frac{\partial W_{T}\left(f_{\varphi_{\mathfrak{p}}}^{(s)}\right)}{\partial s} \prod_{\mathfrak{l} \neq \mathfrak{p}} W_{T}\left(f_{\varphi_{\mathfrak{l}}}^{(s)}\right) .
$$

Proof. For given φ and T, let \mathfrak{S} be a finite set of rational primes of k such that if $\mathfrak{q} \notin \mathfrak{S}$, then \mathfrak{q} does not divide 2 , $\chi_{\mathfrak{q}}$ is unramified, $\mathbf{e}_{\mathfrak{q}}$ is of order $0, T \in \mathrm{GL}_{g}\left(\mathfrak{o}_{\mathfrak{q}}\right)$ and the restriction of $f_{\varphi_{\mathfrak{q}}}^{(s)}$ to $K_{\mathfrak{q}}$ is 1 . Since T cannot be unimodular at $\mathfrak{p} \in \operatorname{Diff}(T, \mathcal{C})$, the set \mathfrak{S} necessarily contains $\operatorname{Diff}(T, \mathcal{C})$. The T-th Fourier coefficient of $E\left(Z, f_{\varphi}^{(s)}\right)$ is given by

$$
\begin{equation*}
A(T, Y, \varphi, s)=\beta^{T}(s) a(T, Y, s) \prod_{\mathfrak{q} \in \mathfrak{S}} \beta_{\mathfrak{q}}^{T}(s) W_{T}\left(f_{\varphi_{\mathfrak{q}}}^{(s)}\right), \tag{2.4}
\end{equation*}
$$

where

$$
\begin{aligned}
& \beta^{T}(s)=\frac{L\left(s+\frac{1}{2}, \chi^{T} \chi\right)}{\prod_{j=1}^{[(g+1) / 2]} \zeta(2 s+2 j-1)} \times \begin{cases}1 & \text { if } 2 \nmid g, \\
L\left(s+\frac{g+1}{2}, \chi\right)^{-1} & \text { if } 2 \mid g,\end{cases} \\
& \beta_{\mathfrak{q}}^{T}(s)=\frac{\prod_{j=1}^{[(g+1) / 2]} \zeta_{\mathfrak{q}}(2 s+2 j-1)}{L\left(s+\frac{1}{2}, \chi_{\mathfrak{q}}^{T} \chi_{\mathfrak{q}}\right)} \times \begin{cases}1 & \text { if } 2 \nmid g, \\
L\left(s+\frac{g+1}{2}, \chi_{\mathfrak{q}}\right) & \text { if } 2 \mid g .\end{cases}
\end{aligned}
$$

Notice that the product $\beta_{\mathfrak{q}}^{T}(s) W_{T}\left(f_{\varphi_{q}}^{(s)}\right)$ is holomorphic at $s=-\frac{1}{2}$. Indeed, if $\chi_{\mathfrak{q}}^{T}=\chi_{\mathfrak{q}}$, then $\beta_{\mathfrak{q}}^{T}(s)$ is holomorphic at $s=-\frac{1}{2}$ while if $\chi_{\mathfrak{q}}^{T} \neq \chi_{\mathfrak{q}}$, then $\beta_{\mathfrak{q}}^{T}(s)$ has a simple pole at $s=-\frac{1}{2}$, but $W_{T}\left(f_{\varphi_{\mathfrak{q}}}^{(s)}\right)$ has a zero at $s=-\frac{1}{2}$ by Lemma 2.4(2).

Assume that $\chi^{T}=\chi$. Then $\beta^{T}(s)$ is holomorphic and has no zero at $s=-\frac{1}{2}$. If $\mathfrak{q} \in \operatorname{Diff}(T, \mathcal{C})$, then $\beta_{\mathfrak{q}}^{T}(s) W_{T}\left(f_{\varphi_{\mathfrak{q}}}^{(s)}\right)$ has a zero at $s=-\frac{1}{2}$ by Lemma [2.4(2), which combined with (2.4) proves the first statement. We obtain the first formula by differentiating (2.4) at $s=-\frac{1}{2}$.
Corollary 2.6. If $m=g, \mathcal{C}$ is incoherent and $T \in \operatorname{Sym}_{g}^{+}$with $\chi^{T} \neq \chi$, then

$$
C(T, \varphi)=c_{g} D_{T}^{-1 / 2} \lim _{s \rightarrow-1 / 2} \frac{\partial \beta^{T}}{\partial s}(s) \prod_{\mathfrak{p}} \beta_{\mathfrak{p}}^{T}(s) W_{T}\left(f_{\varphi_{\mathfrak{p}}}^{(s)}\right) .
$$

Proof. Since $\beta^{T}(s)$ has a zero at $s=-\frac{1}{2}$ if $\chi \neq \chi^{T}$, we can deduce Corollary 2.6 from (2.4).

3. Fourier coefficients of Derivatives of Eisenstein series

Let $\gamma_{v}(t)$ be the Weil constant associated to the character of second degree $u \mapsto \mathbf{e}_{v}\left(t u^{2}\right)$, and $\varepsilon_{v}\left(\mathcal{C}_{v}\right)$ the unnormalized Hasse invariant of \mathcal{C}_{v}. Put

$$
\gamma\left(\mathcal{C}_{v}\right)=\varepsilon_{v}\left(\mathcal{C}_{v}\right) \gamma_{v}\left(\frac{1}{2}\right)^{m-1} \gamma_{v}\left(\frac{1}{2} \operatorname{det} \mathcal{C}_{v}\right) .
$$

Let $L_{\mathfrak{p}}$ be an integral lattice of $\mathcal{C}_{\mathfrak{p}}$, i.e., a finitely generated $\mathfrak{o}_{\mathfrak{p}}$-submodule of $\mathcal{C}_{\mathfrak{p}}$ which spans $\mathcal{C}_{\mathfrak{p}}$ over $k_{\mathfrak{p}}$ and such that $(u, u) \in \mathfrak{o}_{\mathfrak{p}}$ for every $u \in L_{\mathfrak{p}}$. Let

$$
L_{\mathfrak{p}}^{*}=\left\{u \in \mathcal{C}_{\mathfrak{p}} \mid 2(u, w) \in \mathfrak{o}_{\mathfrak{p}} \text { for every } w \in L_{\mathfrak{p}}\right\}
$$

be its dual lattice. Let $\operatorname{ch}\left\langle L_{\mathfrak{p}}^{g}\right\rangle \in \mathcal{S}\left(\mathcal{C}_{\mathfrak{p}}^{g}\right)$ be the characteristic function of $L_{\mathfrak{p}}^{g}$. We write $S_{\mathfrak{p}}$ for the matrix for the quadratic form on $\mathcal{C}_{\mathfrak{p}}$ with respect to a fixed basis of $L_{\mathfrak{p}}$. For nondegenerate symmetric matrices $T \in \frac{1}{2} \mathcal{E}_{g}\left(\mathfrak{o}_{\mathfrak{p}}\right)$ and $S \in \frac{1}{2} \mathcal{E}_{m}\left(\mathfrak{o}_{\mathfrak{p}}\right)$ the local density of representing T by S is defined by

$$
\alpha_{\mathfrak{p}}(S, T)=\lim _{i \rightarrow \infty} q_{\mathfrak{p}}^{i g((g+1)-2 m) / 2} A_{i}(S, T),
$$

where

$$
A_{i}(S, T)=\sharp\left\{X \in \mathrm{M}_{m, g}\left(\mathfrak{o} / \mathfrak{p}^{i}\right) \mid S[X] \equiv T \quad\left(\bmod \mathfrak{p}^{i}\right)\right\} .
$$

Proposition 3.1 (cf. [8]). Put $\mathcal{V}_{r}=\mathcal{C}_{\mathfrak{p}} \oplus \mathcal{H}\left(k_{\mathfrak{p}}\right)^{r}$, where \mathcal{H} is the split binary quadratic space. We choose an integral lattice $L_{\mathfrak{p}}^{g} \oplus \mathrm{M}_{2 r, g}\left(\mathfrak{o}_{\mathfrak{p}}\right)$ of full rank in \mathcal{V}_{r}^{g}. Then

$$
\lim _{s \rightarrow r+s_{0}} W_{T}\left(f_{\operatorname{ch}\left\langle L_{\mathfrak{p}}^{g} \oplus \mathrm{M}_{2 r, g}\left(\mathfrak{o}_{\mathfrak{p}}\right)\right\rangle}^{(s)}\right)=\frac{\alpha_{\mathfrak{p}}\left(S_{\mathfrak{p}} \perp \frac{1}{2}\binom{\mathbf{1}_{r}}{\mathbf{1}_{r}}, T\right)}{\gamma\left(\mathcal{C}_{\mathfrak{p}}\right)^{g \mathfrak{d}_{k}^{-g / 2}}\left[L_{\mathfrak{p}}^{*}: L_{\mathfrak{p}}\right]^{g / 2}} .
$$

Here, s_{0} is associated to $\mathcal{C}_{\mathfrak{p}}$.

Proof. This result can be deduced from the proof of [28, Lemma 8.3(2)].
Let \mathcal{V} be a totally positive definite quadratic space of dimension g over k. Fix an integral lattice L in \mathcal{V}. Put

$$
L_{\mathfrak{p}}=L \otimes_{\mathfrak{o}} \mathfrak{o}_{\mathfrak{p}}, \quad \operatorname{ch}\left\langle L^{g}\right\rangle=\otimes_{\mathfrak{p}} \operatorname{ch}\left\langle L_{\mathfrak{p}}^{g}\right\rangle .
$$

For $h \in \mathrm{O}(\mathcal{V}, \mathbb{A})$ we write $h L$ for the lattice defined by $(h L)_{\mathfrak{p}}=h_{\mathfrak{p}} L_{\mathfrak{p}}$. Put

$$
K_{L}=\{h \in \mathrm{SO}(\mathcal{V}, \mathbb{A}) \mid h L=L\}, \quad \mathrm{SO}(L)=\{h \in \mathrm{SO}(\mathcal{V}, k) \mid h L=L\} .
$$

Definition 3.2. We mean by the genus (resp. class) of L the set of all lattices of the form $h L$ with $h \in \mathrm{O}(\mathcal{V}, \mathbb{A})$ (resp. $h \in \mathrm{O}(\mathcal{V}, k)$). The proper class of L consists of all lattices of the form $h L$ with $h \in \operatorname{SO}(\mathcal{V}, k)$.

We write $\Xi^{\prime}(L)$ and $\Xi(L)$ for the sets of classes and proper classes in the genus of L, respectively. Define the mass of the genus of L by

$$
\mathfrak{m}^{\prime}(L)=\sum_{\mathscr{L} \in \Xi^{\prime}(L)} \frac{1}{\sharp \mathrm{O}(\mathscr{L})}, \quad \mathfrak{m}(L)=\sum_{\mathscr{L} \in \Xi(L)} \frac{1}{\sharp \mathrm{SO}(\mathscr{L})} .
$$

Remark 3.3. For each finite prime \mathfrak{p} there is $h \in \mathrm{O}\left(\mathcal{V}, k_{\mathfrak{p}}\right)$ with $\operatorname{det} h=-1$ such that $h L_{\mathfrak{p}}=L_{\mathfrak{p}}$. The genus of L therefore consists of lattices $h L$ with $h \in$ $\mathrm{SO}(\mathcal{V}, \mathbb{A})$. We identify $\Xi(L)$ with double cosets for $\operatorname{SO}(\mathcal{V}, k) \backslash \operatorname{SO}(\mathcal{V}, \mathbb{A}) / K_{L}$ via the map $h \mapsto h L$.

Lemma 5.6(1) of [20] says that

$$
\begin{equation*}
\mathfrak{m}(L)=2 \mathfrak{m}^{\prime}(L) \tag{3.1}
\end{equation*}
$$

We consider the following sums of representation numbers of $T \in \operatorname{Sym}_{g}(k)$:

$$
R^{\prime}(L, T)=\sum_{\mathscr{L} \in \Xi^{\prime}(L)} \frac{N(\mathscr{L}, T)}{\sharp O(\mathscr{L})}, \quad R(L, T)=\sum_{\mathscr{L} \in \Xi(L)} \frac{N(\mathscr{L}, T)}{\sharp \mathrm{SO}(\mathscr{L})},
$$

where $N(L, T)=\sharp\left\{u \in L^{g} \mid(u, u)=T\right\}$.
Proposition 3.4. Notation being as above, we have

$$
2 \frac{R(L, T)}{\mathfrak{m}(L)}=c_{g} D_{T}^{-1 / 2} \lim _{s \rightarrow-1 / 2} \prod_{\mathfrak{p}} W_{T}\left(f_{\operatorname{ch}\left\langle L_{\mathfrak{p}}^{g}\right\rangle}^{(s)}\right) .
$$

Proof. This equality is nothing but the Siegel formula. Nevertheless we reproduce its proof here because of its importance for us. Since both sides are zero unless $V^{T} \simeq \mathcal{V}$ by Lemma (2.4(2), we may identify V^{T} with \mathcal{V}. As is well-known, there exists $h \in \mathrm{O}\left(V^{T}, k_{\mathfrak{p}}\right)$ such that $h L_{\mathfrak{p}}=L_{\mathfrak{p}}$ and $\operatorname{det} h=-1$. Since $\mathrm{SO}\left(V^{T}, \mathbb{A}\right) \backslash \mathrm{O}\left(V^{T}, \mathbb{A}\right)=\mu_{2}(\mathbb{A})$, we have

$$
I\left(Z, \operatorname{ch}\left\langle L^{g}\right\rangle\right)=\frac{1}{2} \int_{\mathrm{SO}\left(V^{T}, k\right) \backslash \mathrm{SO}\left(V^{T}, \mathrm{~A}\right)} \Theta\left(Z, h ; \operatorname{ch}\left\langle L^{g}\right\rangle\right) \mathrm{d} h .
$$

Choose a finite set of double coset representatives $h_{i} \in \operatorname{SO}\left(V^{T}, \mathbb{A}_{\mathbf{f}}\right)$ so that

$$
\mathrm{SO}\left(V^{T}, \mathbb{A}\right)=\bigsqcup_{i} \mathrm{SO}\left(V^{T}, k\right) h_{i} K_{L}
$$

Then

$$
I\left(Z, \operatorname{ch}\left\langle L^{g}\right\rangle\right)=\frac{1}{2} \operatorname{vol}\left(K_{L}\right) \sum_{i} \frac{\Theta\left(Z, h_{i} ; \operatorname{ch}\left\langle L^{g}\right\rangle\right)}{\sharp \operatorname{SO}\left(h_{i} L\right)} .
$$

Since $\mathfrak{m}(L)=2 \operatorname{vol}\left(K_{L}\right)^{-1}$, the T-th Fourier coefficient of $I\left(Z, \operatorname{ch}\left\langle L^{g}\right\rangle\right)$ is equal to $\frac{R(L, T)}{\mathfrak{m}(L)}$. The Siegel-Weil formula (2.2) proves the declared identity.

An examination of the proof of Proposition 3.4 confirms that

$$
\begin{equation*}
\frac{R(L, T)}{\mathfrak{m}(L)}=\frac{R^{\prime}(L, T)}{\mathfrak{m}^{\prime}(L)} . \tag{3.2}
\end{equation*}
$$

We can prove the following result by combining Propositions 2.5 and 3.4,
Proposition 3.5. We assume that $\operatorname{Diff}(T, \mathcal{C})=\{\mathfrak{p}\}$, notation and assumption being as in Proposition 2.5. Take an integral lattice L in V^{T} such that

$$
\lim _{s=-1 / 2} W_{T}\left(f_{\operatorname{ch}\left\langle L_{\hat{\gamma}}^{g}\right\rangle}^{(s)}\right) \neq 0
$$

If $\varphi_{\mathfrak{l}}=\operatorname{ch}\left\langle L_{\mathfrak{l}}^{g}\right\rangle$ for every prime ideal \mathfrak{l} distinct from \mathfrak{p}, then

$$
C(T, \varphi)=2 \frac{R(L, T)}{\mathfrak{m}(L)} \lim _{s \rightarrow-1 / 2} W_{T}\left(f_{\operatorname{ch}\left\langle L_{\mathfrak{p}}^{g}\right\rangle}^{(s)}\right)^{-1} \frac{\partial W_{T}\left(f_{\varphi_{\mathfrak{p}}}^{(s)}\right)}{\partial s} .
$$

4. Siegel series

In this section we drop the subscript \mathfrak{p}. Thus k is a nonarchimedean local field of characteristic zero with integer ring \mathfrak{o}. We denote the maximal ideal of \mathfrak{o} by \mathfrak{p} and the order of the residue field $\mathfrak{o} / \mathfrak{p}$ by q. Fix a prime element ϖ of \mathfrak{o}. We define the additive order ord: $k^{\times} \rightarrow \mathbb{Z}$ by ord $\left(\varpi^{i} \mathfrak{o}^{\times}\right)=i$.

Let $T \in \frac{1}{2} \mathcal{E}_{g}(\mathfrak{o})$ with $\operatorname{det} T \neq 0$. Denote the conductor of χ^{T} by \mathfrak{d}^{T}. Put

$$
\begin{aligned}
& D_{T}=(-4)^{[g / 2]} \operatorname{det} T, \\
& e^{T}= \begin{cases}\operatorname{ord} D_{T} & \text { if } g \text { is odd, }, \\
\operatorname{ord} D_{T}-\operatorname{ord} \mathfrak{d}^{T} & \text { if } g \text { is even, }\end{cases} \\
& \xi^{T}= \begin{cases}1 & \text { if } D_{T} \in k^{\times 2}, \\
-1 & \text { if } D_{T} \notin k^{\times 2} \text { and } \mathfrak{d}^{T}=\mathfrak{o}, \\
0 & \text { if } D_{T} \notin k^{\times 2} \text { and } \mathfrak{d}^{T} \neq \mathfrak{o} .\end{cases}
\end{aligned}
$$

The Siegel series associated to T is defined by

$$
b(T, s)=\sum_{z \in \operatorname{Sym}_{g}(k) / \operatorname{Sym}_{g}(\mathbf{o})} \psi(-\operatorname{tr}(T z)) \nu[z]^{-s},
$$

where $\nu[z]=\left[z \mathfrak{o}^{g}+\mathfrak{o}^{g}: \mathfrak{o}^{g}\right]$ and ψ is an arbitrarily fixed additive character on k which is trivial on \mathfrak{o} but nontrivial on \mathfrak{p}^{-1}. As is well-known, there exists
a polynomial $\beta(T, X) \in \mathbb{Z}[X]$ such that $\beta\left(T, q^{-s}\right)=b(T, s)$. Moreover, this polynomial $\beta(T, X)$ is divisible by the following polynomial

$$
\gamma^{T}(X)=(1-X) \prod_{j=1}^{[g / 2]}\left(1-q^{2 j} X^{2}\right) \times \begin{cases}1 & \text { if } g \text { is odd } \\ \frac{1}{1-\xi^{T} q^{g / 2} X} & \text { if } g \text { is even } .\end{cases}
$$

Put

$$
\beta(T, X)=\gamma^{T}(X) F^{T}(X), \quad \mathcal{F}^{T}(X)=X^{-e^{T} / 2} F^{T}\left(q^{-(g+1) / 2} X\right) .
$$

If g is even, then $\mathcal{F}^{T} \in \mathbb{Q}[\sqrt{q}]\left[X+X^{-1}\right]$. If g is odd, then $\mathcal{F}^{T} \in \mathbb{Q}\left[\sqrt{X}, \frac{1}{\sqrt{X}}\right]$.
Let \mathcal{C} be a g-dimensional quadratic space over k. Recall that S is the matrix for the quadratic form on \mathcal{C} with respect to a fixed basis of L, where L is an integral lattice of \mathcal{C} as explained at the beginning of Section 3, If g is even, $\chi=\chi^{\mathcal{C}}$ is unramified and $\operatorname{det}(2 S) \in \mathfrak{o}^{\times}$, then Lemma 14.8 combined with Proposition 14.3 of [19] gives

$$
\alpha\left(S \perp \frac{1}{2}\left(\begin{array}{ll}
\mathbf{1}_{r} \tag{4.1}\\
\mathbf{1}_{r} &
\end{array}\right), T\right)=\beta\left(T, \chi(\varpi) q^{-(g+2 r) / 2}\right) .
$$

For the rest of this paper we require g to be even.
Proposition 4.1. If g is even, χ is unramified, $\chi^{T}=\chi, \eta^{T}=-1, \eta^{\mathcal{C}}=1$ and L is a self-dual lattice of \mathcal{C}, then

$$
\left.\frac{\partial}{\partial s} W_{T}\left(f_{\operatorname{ch}\left\langle L^{g}\right\rangle}^{(s)}\right)\right|_{s=-1 / 2}=-\frac{{\sqrt{\mathfrak{D}_{k}}}^{g} \log q}{\gamma(\mathcal{C})^{g}} \frac{\xi^{T}}{\sqrt{q}^{g}} \gamma^{T}\left(\frac{\xi^{T}}{\sqrt{q}^{g}}\right) \frac{\partial F^{T}}{\partial X}\left(\frac{\xi^{T}}{\sqrt{q}^{g}}\right) .
$$

Proof. By assumption $\lim _{s \rightarrow-1 / 2} W_{T}\left(f_{\varphi}^{(s)}\right)=0$ in view of Lemma 2.4(2). We combine Proposition 3.1 and (4.1) with Lemmas A.2-A. 3 of [8] to see that

$$
\begin{aligned}
W_{T}\left(f_{\varphi}^{(s)}\right) & =\gamma(\mathcal{C})^{-g}{\sqrt{\mathfrak{d}_{k}}}^{g} \beta\left(T, \xi^{T} q^{-(g+1+2 s) / 2}\right) \\
& =\gamma(\mathcal{C})^{-g}{\sqrt{\mathfrak{d}_{k}}}^{g} \gamma^{T}\left(\xi^{T} q^{-(g+1+2 s) / 2}\right) F^{T}\left(\xi^{T} q^{-(g+1+2 s) / 2}\right) .
\end{aligned}
$$

Since $\chi^{T}=\chi$, we see that $F^{T}\left(\xi^{T} q^{-g / 2}\right)=0$. We can obtain the stated identity by differentiating this equality at $s=-\frac{1}{2}$.

Definition 4.2. Let $T=\left(t_{i j}\right) \in \frac{1}{2} \mathcal{E}_{g}(\mathfrak{o}) \cap \mathrm{GL}_{g}(k)$. We denote by $S(T)$ the set of all nondecreasing sequences $\left(a_{1}, \ldots, a_{g}\right)$ of nonnegative integers such that ord $t_{i i} \geq a_{i}$ and $\operatorname{ord}\left(2 t_{i j}\right) \geq \frac{a_{i}+a_{j}}{2}$ for $1 \leq i, j \leq g$. The Gross-Keating invariant $\mathrm{GK}(T)$ of T is the greatest element of $\bigcup_{U \in \mathrm{GL}_{g(0)}} S(T[U])$ with respect to the lexicographic order.

Here, the lexicographic order is defined as follows: $\left(y_{1}, \ldots, y_{g}\right)$ is greater than $\left(z_{1}, \ldots, z_{g}\right)$ if there is an integer $1 \leq j \leq g$ such that $y_{i}=z_{i}$ for $i<j$ and $y_{j}>z_{j}$. Ikeda and Katsurada [5] define a set $\operatorname{EGK}(T)$ of invariants of T attached to $\mathrm{GK}(T)$, which they call the extended Gross-Keating datum of
T. They associated to an extended Gross-Keating datum H a polynomial $\mathcal{F}^{H}(Y, X) \in \mathbb{Z}\left[Y^{1 / 2}, Y^{-1 / 2}, X, X^{-1}\right]$ and show that

$$
\mathcal{F}^{\operatorname{EGK}(T)}(\sqrt{q}, X)=\mathcal{F}^{T}(X) .
$$

When g is even and $\mathfrak{d}^{T}=\mathfrak{o}$, one can associate to $\operatorname{EGK}(T)$ truncated extended Gross-Keating datum EGK $(T)^{\prime}$ of length $g-1$ by Proposition 4.4 of [5]. By Definitions 4.2-4.4 of [5]

$$
\begin{aligned}
\mathcal{F}^{\operatorname{EGK}(T)}(Y, X)= & Y^{\mathrm{c}^{\prime} / 2} X^{-\left(\mathfrak{e}-\mathfrak{e}^{\prime}+2\right) / 2} \frac{1-\xi^{T} Y^{-1} X}{X^{-1}-X} \mathcal{F}^{\operatorname{EGK}(T)^{\prime}}(Y, Y X) \\
& +Y^{\mathfrak{e}^{\prime} / 2} X^{\left(\mathfrak{e}-\mathfrak{e}^{\prime}+2\right) / 2} \frac{1-\xi^{T} Y^{-1} X^{-1}}{X-X^{-1}} \mathcal{F}^{\operatorname{EGK}(T)^{\prime}}\left(Y, Y X^{-1}\right)
\end{aligned}
$$

where $\operatorname{GK}(T)=\left(a_{1}, \cdots, a_{g}\right), \mathfrak{e}=2\left[\frac{a_{1}+\cdots+a_{g}}{2}\right]$ and $\mathfrak{e}^{\prime}=a_{1}+\cdots+a_{g-1}$. It is worth noting that since $\mathfrak{d}^{T}=\mathfrak{o}$, we have $\mathfrak{e}=a_{1}+\cdots+a_{g}=e^{T}$. We put

$$
F^{H}(X)=\left(q^{(g+1) / 2} X\right)^{\mathfrak{c} / 2} \mathcal{F}^{H}\left(\sqrt{q}, q^{(g+1) / 2} X\right)
$$

If q is odd, then T is equivalent to a diagonal matrix $\operatorname{diag}\left[t_{1}, \cdots, t_{g}\right]$ with ord $t_{1} \leq \cdots \leq$ ord t_{g} and the (naive) extended Gross-Keating datum $\operatorname{EGK}(T)=\left(a_{1}, \cdots, a_{g} ; \varepsilon_{1}, \ldots, \varepsilon_{g}\right)$ is given by

$$
a_{i}=\operatorname{ord} t_{i}, \quad T^{(i)}=\operatorname{diag}\left[t_{1}, \cdots, t_{i}\right], \quad \varepsilon_{i}= \begin{cases}\eta^{T^{(i)}} & \text { if } i \text { is odd } \\ \xi^{T^{(i)}} & \text { if } i \text { is even }\end{cases}
$$

and $\operatorname{EGK}(T)^{\prime}=\left(a_{1}, \cdots, a_{g-1} ; \varepsilon_{1}, \ldots, \varepsilon_{g-1}\right)$.
Theorem 4.3. Assume that g is even and that $\mathfrak{d}^{T}=\mathfrak{o}$. Then

$$
F^{H}\left(\xi^{T} q^{-g / 2}\right)=q^{e^{T} / 2} F^{H^{\prime}}\left(\xi^{T} q^{-g / 2}\right)
$$

where we put $H=\operatorname{EGK}(T)$ and $H^{\prime}=\operatorname{EGK}(T)^{\prime}$. If $\eta^{T}=-1$, then

$$
\frac{\xi^{T}}{\sqrt{q}^{g}} \frac{\partial F^{H}}{\partial X}\left(\frac{\xi^{T}}{\sqrt{q}^{g}}\right)=\frac{F^{H^{\prime}}\left(\xi^{T} q^{(2-g) / 2}\right)}{q-1}-\sqrt{q}^{e^{T}} \frac{\xi^{T}}{\sqrt{q}^{g}} \frac{\partial F^{H^{\prime}}}{\partial X}\left(\frac{\xi^{T}}{\sqrt{q}^{g}}\right) .
$$

Proof. Substituting $Y=\sqrt{q}$ into $\mathcal{F}^{H}(Y, X)$, we get

$$
\begin{aligned}
\mathcal{F}^{H}(\sqrt{q}, X)= & X^{-(\mathfrak{e}+2) / 2} \frac{1-\xi^{T} q^{-1 / 2} X}{X^{-1}-X}(\sqrt{q} X)^{\mathfrak{c}^{\prime} / 2} \mathcal{F}^{H^{\prime}}(\sqrt{q}, \sqrt{q} X) \\
& +X^{(\mathfrak{e}+2) / 2} \frac{1-\xi^{T} q^{-1 / 2} X^{-1}}{X-X^{-1}}\left(\sqrt{q} X^{-1}\right)^{\mathfrak{c}^{\prime} / 2} \mathcal{F}^{H^{\prime}}\left(\sqrt{q}, \sqrt{q} X^{-1}\right) \\
= & X^{-\left(e^{T}+2\right) / 2} \frac{1-\xi^{T} q^{-1 / 2} X}{X^{-1}-X} F^{H^{\prime}}\left(q^{(1-g) / 2} X\right) \\
& +X^{\left(e^{T}+2\right) / 2} \frac{1-\xi^{T} q^{-1 / 2} X^{-1}}{X-X^{-1}} F^{H^{\prime}}\left(q^{(1-g) / 2} X^{-1}\right) .
\end{aligned}
$$

By letting $X=\xi^{T} \sqrt{q}$, we get

$$
\left(\xi^{T} \sqrt{q}\right)^{-e^{T} / 2} F^{H}\left(\xi^{T} q^{-g / 2}\right)=\mathcal{F}^{H}\left(\sqrt{q}, \xi^{T} \sqrt{q}\right)=\left(\xi^{T} \sqrt{q}\right)^{e^{T} / 2} F^{H^{\prime}}\left(\xi^{T} q^{-g / 2}\right) .
$$

In the proof of Proposition 4.1 we have seen that if $\eta^{T}=-1$, then

$$
\mathcal{F}^{H}\left(\sqrt{q}, \xi^{T} \sqrt{q}\right)=\mathcal{F}^{T}\left(\xi^{T} \sqrt{q}\right)=\left(\xi^{T} \sqrt{q}\right)^{-e^{T} / 2} F^{T}\left(\xi^{T} q^{-g / 2}\right)=0,
$$

and hence $F^{H^{\prime}}\left(\xi^{T} q^{-g / 2}\right)=0$. We can prove the stated identity by differentiating the equality above at $X=\xi^{T} \sqrt{q}$.

We will use the following result in the next section.
Lemma 4.4. If T is a split symmetric half-integral matrix of size 4 over \mathbb{Z}_{p}, then there exists a nondegenerate isotropic symmetric half-integral matrix B of size 3 over \mathbb{Z}_{p} such that $F_{p}^{B}=F_{p}^{\mathrm{EGK}_{p}(T)^{\prime}}$.

Proof. If $p=2$, then the existence of such B follows from Proposition 6.4 of (4) and Theorem 1.1 of [5]. If p is odd, then T is equivalent to a diagonal matrix $\operatorname{diag}\left[t_{1}, \cdots, t_{4}\right]$ with $\operatorname{ord} t_{1} \leq \cdots \leq \operatorname{ord} t_{4}$. Then we may choose B as diag $\left[t_{1}, \cdots, t_{3}\right]$ by using the argument explained in the paragraph just before Theorem 4.3.

5. The case $g=4$

We discuss the classical Eisenstein series of Siegel. For this it is simplest to work over $k=\mathbb{Q}$. Provided that g is a multiple of 4 , we consider the series

$$
E_{g}(Z, s)=\sum_{\{C, D\}} \operatorname{det}(C Z+D)^{-g / 2}|\operatorname{det}(C Z+D)|^{-s}(\operatorname{det} Y)^{s / 2}
$$

Here the sum extends over all symmetric coprime pairs modulo $\mathrm{GL}_{g}(\mathbb{Z})$. Let $\mathcal{C}_{p}=\mathcal{H}\left(\mathbb{Q}_{p}\right)^{g / 2}$ be the split quadratic space of dimension g over \mathbb{Q}_{p}. Define $\varphi=\otimes_{p} \varphi_{p}$ by taking $\varphi_{p}=\operatorname{ch}\left\langle\mathrm{M}_{g, g}\left(\mathbb{Z}_{p}\right)\right\rangle \in \mathcal{S}\left(\mathcal{C}_{p}^{g}\right)$. It is known that $E_{g}\left(Z, s+\frac{1}{2}\right)=E\left(Z, f_{\varphi}^{(s)}\right)$ (see §IV. 2 of [9]). The series is incoherent if and only if $\frac{g}{4}$ is odd due to Lemma 2.3.

Fix a positive definite symmetric half-integral matrix T of size g. Recall that χ_{T} stands for the primitive Dirichlet character corresponding to χ^{T}. The T-th Fourier coefficient of $E_{g}(Z, s)$ is given by

$$
A(T, Y, s)=\frac{a\left(T, Y, s-\frac{1}{2}\right) L\left(s, \chi_{T}\right)}{\zeta\left(s+\frac{g}{2}\right) \prod_{i=1}^{g / 2} \zeta(2 s+2 i-2)} \prod_{p \mid D_{T}} F_{p}^{T}\left(p^{-(2 s+g) / 2}\right) .
$$

The T-th Fourier coefficient of $\left.\frac{\partial}{\partial s} E_{g}(Z, s)\right|_{s=0}$ is given by

$$
C_{g}(T)=\left.\frac{\partial}{\partial s} A(T, Y, s)\right|_{s=0} .
$$

Recall that $\operatorname{Diff}(T)=\left\{p \mid \eta_{p}^{T}=-1\right\}$.
Proposition 5.1. Assume that $\frac{g}{4}$ is odd. Let $T \in \frac{1}{2} \mathcal{E}_{g}(\mathbb{Z}) \cap \operatorname{Sym}_{g}^{+}$.
(1) If $\chi_{T}=1$, then $C_{g}(T)=0$ unless $\operatorname{Diff}(T)$ is a singleton.
(2) If $\chi_{T}=1$ and $\operatorname{Diff}(T)=\{p\}$, then

$$
C_{g}(T)=-\frac{2^{(g+2) / 2} p^{-\left(g+e_{p}^{T}\right) / 2} \log p}{\zeta\left(1-\frac{g}{2}\right) \prod_{i=1}^{(g-2) / 2} \zeta(1-2 i)} \frac{\partial F_{p}^{T}}{\partial X}\left(p^{-g / 2}\right) \prod_{p \neq \mid D_{T}} \ell^{-e_{\ell}^{T} / 2} F_{\ell}^{T}\left(\ell^{-g / 2}\right)
$$

(3) If $\chi_{T} \neq 1$, then

$$
C_{g}(T)=-\frac{2^{(g+2) / 2} L\left(1, \chi_{T}\right)}{\zeta\left(1-\frac{g}{2}\right) \prod_{i=1}^{(g-2) / 2} \zeta(1-2 i)} \prod_{p \mid D_{T}} p^{-e_{p}^{T} / 2} F_{p}^{T}\left(p^{-g / 2}\right) .
$$

Proof. We have already proved (1) in Proposition 2.5. Taking

$$
\zeta(2 i)=(-1)^{i} \frac{(2 \pi)^{2 i}}{2(2 i-1)!} \zeta(1-2 i)
$$

into account, we have

$$
\zeta\left(\frac{g}{2}\right) \prod_{i=1}^{(g-2) / 2} \zeta(2 i)=\frac{(2 \pi)^{g^{2} / 4} \zeta\left(1-\frac{g}{2}\right)}{2^{g / 2}\left(\frac{g}{2}-1\right)!} \prod_{i=1}^{(g-2) / 2} \frac{\zeta(1-2 i)}{(2 i-1)!}
$$

Recall that $a\left(T, Y,-\frac{1}{2}\right)=\frac{2^{g} \pi^{g^{2} / 2}}{\Gamma_{g}\left(\frac{g}{2}\right) D_{T}^{1 / 2}}$ by (2.3). Since

$$
\Gamma_{g}\left(\frac{g}{2}\right)=\frac{\pi^{g^{2} / 4}}{2^{\left(g^{2}-2 g\right) / 4}} \prod_{i=1}^{(g-2) / 2}(2 i)!, \quad \zeta(0)=-\frac{1}{2}, \quad L^{\prime}\left(0, \chi_{T}\right)=\frac{\sqrt{\mathfrak{d}^{T}}}{2} L\left(1, \chi_{T}\right),
$$

we get (2) and (3).
Hereafter we let $g=4$. By a quaternion algebra over a field k we mean a central simple algebra over k of dimension 4 . Let \mathbb{B}_{p} denote the definite quaternion algebra over $k=\mathbb{Q}$ that ramifies only at a prime number p. The reduced norm Nrd on \mathbb{B}_{p} defines a positive definite quadratic space \mathcal{V}_{p}. Fix a maximal order \mathcal{O}_{p} of \mathbb{B}_{p}. Let $\varphi_{\ell} \in \mathcal{S}\left(\mathcal{C}_{\ell}^{g}\right)$ be the characteristic function of $\mathrm{M}_{2}\left(\mathbb{Z}_{\ell}\right)^{g}$ and $\varphi_{p}^{\prime} \in \mathcal{S}\left(\mathcal{V}_{p}^{g}\left(\mathbb{Q}_{p}\right)\right)$ the characteristic function of $\mathcal{O}_{p}^{g} \otimes \mathbb{Z}_{p}$. We $\operatorname{regard} \varphi^{\prime}=\varphi_{p}^{\prime} \otimes\left(\otimes_{\ell \neq p} \varphi_{\ell}\right)$ as the characteristic function of $\mathcal{O}_{p}^{g} \otimes \hat{\mathbb{Z}}$. We write S_{p} for the matrix representation of \mathcal{V}_{p} with respect to a \mathbb{Z}-basis of \mathcal{O}_{p}. Put

$$
S_{0}=\operatorname{diag}\left[\left(\begin{array}{cc}
0 & \frac{1}{2} \\
\frac{1}{2} & 0
\end{array}\right),\left(\begin{array}{cc}
0 & \frac{1}{2} \\
\frac{1}{2} & 0
\end{array}\right)\right]
$$

Lemma 5.2. Let $T \in \operatorname{Sym}_{g}\left(\mathbb{Q}_{p}\right)$.
(1) If $T \notin \frac{1}{2} \mathcal{E}_{4}\left(\mathbb{Z}_{p}\right)$, then $W_{T}\left(f_{\varphi_{p}}^{(s)}\right)$ is identically zero.
(2) If $T \in \frac{1}{2} \mathcal{E}_{4}\left(\mathbb{Z}_{p}\right)$ with $\operatorname{det} T \neq 0, \chi^{T}=1$ and $\eta_{p}^{T}=-1$, then
$\lim _{s \rightarrow-1 / 2} \frac{W_{S_{p}}\left(f_{\varphi_{p}^{\prime}}^{(s)}\right)}{W_{T}\left(f_{\varphi_{p}^{\prime}}^{(s)}\right)} \frac{\frac{\partial}{\partial s} W_{T}\left(f_{\varphi_{p}}^{(s)}\right)}{p W_{S_{0}}\left(f_{\varphi_{p}}^{(s)}\right)}=\left(p^{-2} \frac{\partial F_{p}^{H^{\prime}}}{\partial X}\left(p^{-2}\right)-\frac{p^{-e_{p}^{T} / 2}}{p-1} F_{p}^{H^{\prime}}\left(p^{-1}\right)\right) \log p$, where we put $H^{\prime}=\operatorname{EGK}_{p}(T)^{\prime}$.

Proof. The first part is trivial. Since

$$
\alpha_{p}\left(S_{p}, T\right)=p^{\left(e_{p}^{T}-2\right) / 2} \alpha_{p}\left(S_{p}, S_{p}\right)
$$

by Hilfssatz 17 of [23], it follows from Proposition 3.1] that

$$
\lim _{s \rightarrow-1 / 2} \frac{W_{S_{p}}\left(f_{\varphi_{p}^{\prime}}^{(s)}\right)}{W_{T}\left(f_{\varphi_{p}^{\prime}}^{(s)}\right)}=p^{-\left(e_{p}^{T}-2\right) / 2}
$$

On the other hand, Proposition 4.1 and Theorem 4.3 give

$$
\lim _{s \rightarrow-1 / 2} \frac{\frac{\partial}{\partial s} W_{T}\left(f_{\varphi_{p}}^{(s)}\right)}{W_{S_{0}}\left(f_{\varphi_{p}}^{(s)}\right)}=\left(p^{\left(e_{p}^{T}-4\right) / 2} \frac{\partial F_{p}^{H^{\prime}}}{\partial X}\left(p^{-2}\right)-\frac{F_{p}^{H^{\prime}}\left(p^{-1}\right)}{p-1}\right) \log p
$$

These complete our proof.
Let $\overline{\mathbb{F}}_{p}$ be an algebraic closure of a finite field \mathbb{F}_{p} with p elements. For two supersingular elliptic curves E, E^{\prime} over $\overline{\mathbb{F}}_{p}$ we consider the free \mathbb{Z}-module $\operatorname{Hom}\left(E^{\prime}, E\right)$ of homomorphisms $E^{\prime} \rightarrow E$ over $\overline{\mathbb{F}}_{p}$ together with the quadratic form given by the degree. As E and E^{\prime} are supersingular, $\operatorname{Hom}\left(E^{\prime}, E\right)$ has rank 4 as a \mathbb{Z}-module. For two quadratic spaces over \mathbb{Z} we write $N\left(L, L^{\prime}\right)$ for the number of isometries $L^{\prime} \rightarrow L$.

We are now ready to prove our main result.
Theorem 5.3. If $T \in \frac{1}{2} \mathcal{E}_{4}(\mathbb{Z})$ is positive definite, $\chi_{T}=1$ and $\operatorname{Diff}(T)$ consists of a single prime p, then

$$
C_{4}(T)=2^{6} \cdot 3^{2}\left(p^{-2} \frac{\partial F_{p}^{H^{\prime}}}{\partial X}\left(p^{-2}\right)-\frac{F_{p}^{H^{\prime}}\left(p^{-1}\right)}{\sqrt{p} e_{p}^{T}(p-1)}\right) \log p \sum_{\left(E^{\prime}, E\right)} \frac{N\left(\operatorname{Hom}\left(E^{\prime}, E\right), T\right)}{\sharp \operatorname{Aut}(E) \sharp \operatorname{Aut}\left(E^{\prime}\right)},
$$

where we put $H^{\prime}=\operatorname{EGK}_{p}(T)^{\prime}$ and where $\left(E^{\prime}, E\right)$ extends over all pairs of isomorphism classes of supersingular elliptic curves over $\overline{\mathbb{F}}_{p}$.

Proof. Proposition 3.5 and (3.2) applied to $L=\mathcal{O}_{p}$ gives

$$
C_{4}(T)=R^{\prime}\left(\mathcal{O}_{p}, T\right) c \lim _{s \rightarrow-1 / 2} \frac{W_{S_{p}}\left(f_{\varphi_{p}^{\prime}}^{(s)}\right)}{W_{T}\left(f_{\varphi_{p}^{\prime}}^{(s)}\right)} \frac{\frac{\partial}{\partial s} W_{T}\left(f_{\varphi_{p}}^{(s)}\right)}{p W_{S_{0}}\left(f_{\varphi_{p}}^{(s)}\right)},
$$

where

$$
c=\frac{2 p}{\mathfrak{m}^{\prime}\left(\mathcal{O}_{p}\right)} \lim _{s \rightarrow-1 / 2} \frac{W_{S_{0}}\left(f_{\varphi_{p}}^{(s)}\right)}{W_{S_{p}}\left(f_{\varphi_{p}^{\prime}}^{(s)}\right)}
$$

If $T=S_{p}$, then we claim that $R^{\prime}\left(\mathcal{O}_{p}, S_{p}\right)=1$. To prove this, it suffices to show that $N\left(\mathscr{L}, S_{p}\right)=0$ if \mathscr{L} is not isometric to \mathcal{O}_{p} and $N\left(\mathcal{O}_{p}, S_{p}\right)=$ $\sharp \mathrm{O}\left(\mathcal{O}_{p}\right)$, where $\mathscr{L} \in \Xi^{\prime}\left(\mathcal{O}_{p}\right)$. If $N\left(\mathscr{L}, S_{p}\right) \neq 0$, then there is an injection $f: \mathcal{O}_{p} \rightarrow \mathscr{L}$ as a lattice preserving the associated quadratic forms. Thus we only need to show that f is surjective. If it is not surjective, then \mathscr{L} and
\mathcal{O}_{p} have different discriminant, which is a contradiction to the assumption that \mathscr{L} and \mathcal{O}_{p} are in the same genus.

Applying Proposition 3.4 and (3.2) to $T=S_{p}$, we get

$$
\frac{2}{\mathfrak{m}^{\prime}\left(\mathcal{O}_{p}\right)}=c_{4} D_{S_{p}}^{-1 / 2} \lim _{s \rightarrow-1 / 2} W_{S_{p}}\left(f_{\varphi_{p}^{\prime}}^{(s)}\right) \prod_{\ell \neq p} W_{S_{p}}\left(f_{\varphi_{\ell}}^{(s)}\right) .
$$

It follows that

$$
\begin{aligned}
c & =p c_{4} D_{S_{p}}^{-1 / 2} \lim _{s \rightarrow-1 / 2} \prod_{\ell} W_{S_{0}}\left(f_{\varphi \ell}^{(s)}\right) \\
& =c_{4} \lim _{s \rightarrow-1 / 2} \prod_{\ell} \gamma_{\ell}^{S}\left(\ell^{-(5+2 s) / 2}\right)=\frac{c_{4}}{\zeta(2)^{2}} \lim _{s \rightarrow-1 / 2} \frac{\zeta\left(s+\frac{1}{2}\right)}{\zeta(2 s+1)}=2^{7} \cdot 3^{2} .
\end{aligned}
$$

Since $R\left(\mathcal{O}_{p}, T\right)=2 R^{\prime}\left(\mathcal{O}_{p}, T\right)$ by (3.1) and (3.2), and

$$
\begin{equation*}
R\left(\mathcal{O}_{p}, T\right)=\sum_{\mathscr{L} \in \Xi\left(\mathcal{O}_{p}\right)} \frac{N(\mathscr{L}, T)}{\sharp \operatorname{SO}(\mathscr{L})}=\sum_{\left(E^{\prime}, E\right)} \frac{N\left(\operatorname{Hom}\left(E^{\prime}, E\right), T\right)}{\sharp \operatorname{Aut}(E) \sharp \operatorname{Aut}\left(E^{\prime}\right)} \tag{5.1}
\end{equation*}
$$

by Proposition 4.1 of [25], our statement follows from Lemma 5.2(2).
Conjecture 5.4. Let \mathcal{V} be a totally positive definite quadratic space over a totally real number field k of dimension g. Fix a maximal integral lattice L of \mathcal{V}. Let $T \in \frac{1}{2} \mathcal{E}_{g}(\mathfrak{o})$ be totally positive definite. If g is even and $\chi^{\mathcal{V}}=1$, then there is a totally positive definite matrix $T^{\prime} \in \frac{1}{2} \mathcal{E}_{g-1}(\mathfrak{o})$ such that

$$
R(L, T)=2 R\left(L, T^{\prime}\right)
$$

Proposition 5.5. If $k=\mathbb{Q}$ and $g=4$, then Conjecture 5.4 is true.
Proof. Since $R(L, T)=0$ unless $\operatorname{Diff}(T)=\operatorname{Diff}(\mathcal{V})$, we may assume that

$$
\operatorname{Diff}(T)=\operatorname{Diff}(\mathcal{V})
$$

Lemma 4.4 gives $T_{p}^{\prime} \in \frac{1}{2} \mathcal{E}_{3}\left(\mathbb{Z}_{p}\right)$ such that $F_{p}^{T_{p}^{\prime}}=F_{p}^{\mathrm{EGK}_{p}(T)^{\prime}}$ for every rational prime p. In addition, the proof of Lemma4.4 yields that T_{p}^{\prime} is unimodular for almost all primes p. Thus we can find a positive rational number $0<\delta \in \mathbb{Q}^{\times}$ such that $\delta^{-1} \operatorname{det} T_{p}^{\prime} \in \mathbb{Z}_{p}^{\times}$for every $p \notin \operatorname{Diff}(\mathcal{V})$. For $p \in \operatorname{Diff}(\mathcal{V})$ we fix an arbitrary anisotropic ternary quadratic form T_{p}^{\prime} over \mathbb{Z}_{p}. Recall that $\alpha_{p}\left(S_{p}, T_{p}^{\prime}\right)$ is independent of the choice of T_{p}^{\prime}.

Since $F_{p}^{u T_{p}^{\prime}}=F_{p}^{T_{p}^{\prime}}$ for $u \in \mathbb{Z}_{p}^{\times}$, there is no harm in assuming that $\delta=$ $\operatorname{det} T_{p}^{\prime}$. Since $\eta_{p}^{T_{p}^{\prime}}=1$ for $p \notin \operatorname{Diff}(\mathcal{V})$, the Minkowski-Hasse theorem gives $z \in \operatorname{Sym}_{3}(\mathbb{Q})$ which is positive definite and such that $z \in T_{p}^{\prime}\left[\mathrm{GL}_{3}\left(\mathbb{Q}_{p}\right)\right]$ for every p. Take $A \in \mathrm{GL}_{3}\left(\mathbb{A}_{\mathbf{f}}\right)$ so that $z=T_{p}^{\prime}\left[A_{p}\right]$ for every p. We can take $D \in \mathrm{GL}_{3}(\mathbb{Q})$ in such a way that $A D^{-1} \in \mathrm{GL}_{3}\left(\mathbb{Z}_{p}\right)$ for every p. Put $T^{\prime}=z\left[D^{-1}\right]$. Then $T^{\prime} \in T_{p}^{\prime}\left[\mathrm{GL}_{3}\left(\mathbb{Z}_{p}\right)\right]$ for every p. In particular, $T^{\prime} \in \frac{1}{2} \mathcal{E}_{3}(\mathbb{Z})$.

In view of (3.2) it suffices to show that

$$
\frac{R^{\prime}(L, T)}{\mathfrak{m}^{\prime}(L)}=2 \frac{R^{\prime}\left(L, T^{\prime}\right)}{\mathfrak{m}^{\prime}(L)} .
$$

We see by the Siegel formula that

$$
\frac{R^{\prime}(L, T)}{\mathfrak{m}^{\prime}(L)}=2^{-1} d_{\infty}(L, T) 2^{4} \prod_{p \in \operatorname{Diff}(\mathcal{V})} \frac{\alpha_{p}\left(S_{p}, T\right)}{2} \prod_{q \notin \operatorname{Diff}(\mathcal{V})}\left(1-q^{-2}\right)^{2} F_{q}^{T}\left(q^{-2}\right) .
$$

Recall that the archimedean densities are given by

$$
d_{\infty}(L, T)=\frac{\prod_{i=1}^{4} \frac{\pi^{i / 2}}{\Gamma\left(\frac{i}{2}\right)}}{\operatorname{det}(2 T)^{1 / 2}\left[L^{*}: L\right]^{2}}, \quad d_{\infty}\left(L, T^{\prime}\right)=\frac{\prod_{i=2}^{4} \frac{\pi^{i / 2}}{\Gamma\left(\frac{i}{2}\right)}}{\left[L^{*}: L\right]^{3 / 2}} .
$$

Since

$$
\alpha_{p}\left(S_{p}, T^{\prime}\right)=2(p+1)\left(1+p^{-1}\right), \quad \alpha_{p}\left(S_{p}, T\right)=4 p^{e^{T} / 2}(p+1)^{2} .
$$

by [26, Theorem 1.1] and Proposition 6.5 of [1]. The latter result can be derived more generally from Shimura's exact mass formula. Since $\left[L^{*}: L\right]=$ $\prod_{p \in \operatorname{Diff}(\mathcal{V})} p^{2}$ by assumption, we have

$$
d_{\infty}(L, T)=\left[L^{*}: L\right]^{-2} \operatorname{det}(2 T)^{-1 / 2} \prod_{i=1}^{4} \frac{\pi^{i / 2}}{\Gamma\left(\frac{i}{2}\right)}=\frac{d_{\infty}\left(L, T^{\prime}\right)}{\operatorname{det}(2 T)^{1 / 2}} \prod_{p \in \operatorname{Diff}(\mathcal{V})} p^{-1}
$$

We combine these with Theorem 4.3 to obtain

$$
\frac{R^{\prime}(L, T)}{\mathfrak{m}^{\prime}(L)}=d_{\infty}\left(L, T^{\prime}\right) 2^{3} \prod_{p \in \operatorname{Diff}(\mathcal{V})} \alpha_{p}\left(S_{p}, T^{\prime}\right) \prod_{q \notin \operatorname{Diff}(\mathcal{V})}\left(1-q^{-2}\right)^{2} F_{q}^{T^{\prime}}\left(q^{-2}\right) .
$$

The final expression equals $2 \frac{R^{\prime}\left(L, T^{\prime}\right)}{\mathrm{m}^{\prime}(L)}$ by the Siegel formula.
Corollary 5.6. If T is a positive definite symmetric half-integral matrix of size 4 which satisfies $\chi^{T}=1$ and $\eta_{\ell}^{T}=1$ for $\ell \neq p$, then there exists a positive definite symmetric half-integral matrix T^{\prime} of size 3 such that

$$
\sum_{\left(E^{\prime}, E\right)} \frac{N\left(\operatorname{Hom}\left(E^{\prime}, E\right), T\right)}{\sharp \operatorname{Aut}(E) \sharp \operatorname{Aut}\left(E^{\prime}\right)}=2 \sum_{\left(E^{\prime}, E\right)} \frac{N\left(\operatorname{Hom}\left(E^{\prime}, E\right), T^{\prime}\right)}{\sharp \operatorname{Aut}(E) \sharp \operatorname{Aut}\left(E^{\prime}\right)},
$$

where $\left(E, E^{\prime}\right)$ extends over all pairs of isomorphism classes of supersingular elliptic curves over $\overline{\mathbb{F}}_{p}$.
Proof. Proposition 4.1 of [25] gives

$$
R\left(\mathcal{O}_{p}, T^{\prime}\right)=\sum_{L \in \Xi\left(\mathcal{O}_{p}\right)} \frac{N\left(L, T^{\prime}\right)}{\sharp S O(L)}=\sum_{\left(E^{\prime}, E\right)} \frac{N\left(\operatorname{Hom}\left(E^{\prime}, E\right), T^{\prime}\right)}{\sharp \operatorname{Aut}(E) \sharp \operatorname{Aut}\left(E^{\prime}\right)} .
$$

We can derive Corollary 5.6 from (5.1) and Proposition 5.5.
Let $T \in \frac{1}{2} \mathcal{E}_{4}\left(\mathbb{Z}_{p}\right)$ be an anisotropic symmetric matrix with (naive) extended Gross-Keating invariant $\left(a_{1}, a_{2}, a_{3}, a_{4} ; \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}\right)$. Note that $\varepsilon_{1}=$ $\varepsilon_{4}=1$ by definition. One can easily see that $\varepsilon_{2} \neq 1$ and $\varepsilon_{3}=-1$. Proposition 5.3 of [1] gives a partition $\{1,2,3,4\}=\{i, j\} \cup\{k, l\}$ such that

$$
a_{i} \equiv a_{j} \not \equiv a_{k} \equiv a_{l} \quad(\bmod 2) .
$$

Lemma 5.7. (1) If $a_{1} \not \equiv a_{2}(\bmod 2)$, then

$$
\begin{aligned}
F_{p}^{T^{\prime}}\left(p^{-1}\right)= & \frac{p^{a_{1}+1}-1}{(p-1)\left(p^{3}-1\right)}\left(p^{\left\{a_{1}+3\left(a_{2}+1\right)\right\} / 2}-\frac{p^{a_{1}+1}+1}{p+1}\right) \\
& -\frac{p^{\left(a_{1}+a_{2}+2 a_{3}+1\right) / 2}}{p-1}\left\{\left(a_{1}+1\right) p^{\left(a_{1}+a_{2}+1\right) / 2}-\frac{p^{a_{1}+1}-1}{p-1}\right\} .
\end{aligned}
$$

(2) If $a_{1} \equiv a_{2}(\bmod 2)$, then

$$
\begin{aligned}
F_{p}^{T^{\prime}}\left(p^{-1}\right)= & \frac{p^{a_{1}+1}-1}{(p-1)\left(p^{3}-1\right)}\left(p^{\left(a_{1}+3 a_{2}\right) / 2}-\frac{p^{a_{1}+1}+1}{p+1}\right) \\
& -\frac{p^{\left(a_{1}+a_{2}+2 a_{3}+2\right) / 2}}{p-1}\left\{\left(a_{1}+1\right) p^{\left(a_{1}+a_{2}\right) / 2}-\frac{p^{a_{1}+1}-1}{p-1}\right\} \\
& +p^{\left(a_{1}+3 a_{2}\right) / 2} \frac{p^{a_{1}+1}-1}{p^{2}-1}\left(p^{a_{1}-a_{2}+1}+1\right) .
\end{aligned}
$$

Proof. We write the naive extended Gross-Keating invariant of T as

$$
\operatorname{EGK}_{p}(T)=\left(a_{1}, a_{2}, a_{3}, a_{4} ; 1, \varepsilon_{2}, \varepsilon_{3}, 1\right) .
$$

Let σ be either 1 or 2 according as $a_{1}-a_{2}$ is odd or even. Section 8 of [5] expresses $F_{p}^{\mathrm{EGK}_{p}(T)^{\prime}}(X)$ in terms of $\operatorname{EGK}_{p}(T)^{\prime}=\left(a_{1}, a_{2}, a_{3} ; 1, \varepsilon_{2}, \varepsilon_{3}\right)$:

$$
\begin{aligned}
& F_{p}^{\mathrm{EGK}_{p}(T)^{\prime}}\left(p^{-2} X\right)= \sum_{i=0}^{a_{1}} \sum_{j=0}^{\left(a_{1}+a_{2}-\sigma\right) / 2-i} p^{i+j} X^{i+2 j} \\
& \varepsilon_{3} \sum_{i=0}^{a_{1}} \sum_{j=0}^{\left(a_{1}+a_{2}-\sigma\right) / 2-i} p^{\left(a_{1}+a_{2}-\sigma\right) / 2-j} X^{a_{3}+\sigma+i+2 j} \\
& \quad+\varepsilon_{2}^{2} p^{\left(a_{1}+a_{2}-\sigma+2\right) / 2} \sum_{i=0}^{a_{1}} \sum_{j=0}^{a_{3}-a_{2}+2 \sigma-4} \varepsilon_{2}^{j} X^{a_{2}-\sigma+2+i+j} .
\end{aligned}
$$

We now specialize the formula to $X=p$ and $\varepsilon_{3}=-1$. Then

$$
\begin{aligned}
F_{p}^{T^{\prime}}\left(p^{-1}\right)= & \frac{p^{a_{1}+1}-1}{(p-1)\left(p^{3}-1\right)}\left(p^{\left\{a_{1}+3\left(a_{2}-\sigma+2\right)\right\} / 2}-\frac{p^{a_{1}+1}+1}{p+1}\right) \\
& -\frac{p^{\left(a_{1}+a_{2}+2 a_{3}+\sigma\right) / 2}}{p-1}\left(\left(a_{1}+1\right) p^{\left(a_{1}+a_{2}-\sigma+2\right) / 2}-\frac{p^{a_{1}+1}-1}{p-1}\right) \\
& +\varepsilon_{2}^{2} p^{\left\{a_{1}+3\left(a_{2}-\sigma+2\right)\right\} / 2} \frac{\left(p^{a_{1}+1}-1\right)\left(1-\left(\varepsilon_{2} p\right)^{a_{1}-a_{2}+2 \sigma-3}\right)}{(p-1)\left(1-\varepsilon_{2} p\right)} .
\end{aligned}
$$

Since $\varepsilon_{2}=0$ or -1 according as $a_{1}-a_{2}$ is odd or even by Proposition 2.2 of [4] and Proposition 5.4 of [1] we obtain the stated formulas.

The degree $\operatorname{deg} \mathscr{Z}(B)$ is defined in (1.2) for positive definite symmetric half-integral 3×3 matrices B such that $\operatorname{Diff}(B)$ is a singleton.

Corollary 5.8. Let T be a positive definite symmetric half-integral 4×4 matrix such that $\chi_{T}=1$ and $\operatorname{Diff}(T)=\{p\}$. Let σ be either 1 or 2 according as $a_{1}-a_{2}$ is odd or even. If $\operatorname{deg} \mathscr{Z}\left(T^{\prime}\right) \neq 0$, then

$$
\left|\frac{C_{4}(T)}{-2^{8} \cdot 3^{2} \cdot \operatorname{deg} \mathscr{Z}\left(T^{\prime}\right)}-1\right|<\frac{4}{p \sqrt{p}}\left(p^{-\left(a_{4}-3+\sigma\right) / 2}+\frac{4 p^{-\left(a_{4}-a_{1}\right) / 2}}{a_{1}+1}\right),
$$

where $\operatorname{GK}_{p}(T)=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$. In particular,

$$
\left|\frac{C_{4}(T)}{-2^{8} \cdot 3^{2} \cdot \operatorname{deg} \mathscr{Z}\left(T^{\prime}\right)}-1\right|<\frac{20}{p \sqrt{p}}, \quad \lim _{e_{p}^{T} \rightarrow \infty} \frac{C_{4}(T)}{-2^{9} \cdot 3^{2} \cdot \operatorname{deg} \mathscr{Z}\left(T^{\prime}\right)}=1 .
$$

Proof. By (2.12) and (2.13) of [26]

$$
\begin{aligned}
-p^{-2} \frac{\partial F_{p}^{H^{\prime}}}{\partial X}\left(p^{-2}\right) & \geq\left(a_{1}+1\right) p^{\left(a_{1}+a_{2}\right) / 2}\left(\frac{a_{3}-a_{2}+2 \sigma}{\sqrt{p}^{\sigma}}+\varepsilon_{2}^{2} \frac{a_{3}-a_{2}+1}{2}\right) \\
& \geq\left(a_{1}+1\right) p^{\left(a_{1}+a_{2}-(2-\sigma)\right) / 2}
\end{aligned}
$$

Recall that if $\sigma=1$, then $a_{1}<a_{2} \leq a_{3} \leq a_{4}$ while if $\sigma=2$, then $a_{1} \leq a_{2}<$ $a_{3} \leq a_{4}$. An examination of the proof of Lemma 5.7 confirms that

$$
\begin{aligned}
\left|\frac{F_{p}^{H^{\prime}}\left(p^{-1}\right)}{\sqrt{p}^{e_{p}^{T}}(p-1)}\right| & \leq \frac{a_{1}+1}{(p-1)^{2}} p^{\left(a_{1}+a_{2}-a_{4}+2\right) / 2}+\frac{p^{a_{1}+a_{2}-\left(a_{3}+a_{4}+3 \sigma\right) / 2+4}}{(p-1)^{2}\left(p^{3}-1\right)} \\
& +\varepsilon_{2}^{2} \frac{p^{2 a_{1}+2-\left(a_{3}+a_{4}\right) / 2}}{(p-1)^{2}(p+1)}+\varepsilon_{2}^{2} \frac{p^{a_{1}+a_{2}+1-\left(a_{3}+a_{4}\right) / 2}}{(p-1)^{2}(p+1)} \\
& <4 p^{\left(a_{1}+a_{2}\right) / 2-1}\left\{\left(a_{1}+1\right) p^{-a_{4} / 2}+2 p^{-\left(a_{4}-a_{1}+3 \sigma\right) / 2}+2 \varepsilon_{2}^{2} p^{-\left(a_{4}-a_{1}+1\right) / 2}\right\} .
\end{aligned}
$$

Now our proof is completed by Theorem 1.3 ,

References

[1] S. Cho and T. Yamauchi, A conceptual reformulation of the Siegel series and $\bmod p$ intersection numbers, preprint
[2] M. Eichler, Quadratische Formen und orthogonale Gruppen. Springer, Heiderberg, 1952.
[3] B. Gross and K. Keating, On the intersection of modular correspondences, Invent. Math. 112 (1993), 225-245.
[4] T. Ikeda and H. Katsurada, On the Gross-Keating invariants of a quadratic form over a non-archimedean local field, to appear in Amer. J. Math.
[5] T. Ikeda and H. Katsurada, An explicit formula for the Siegel series of a quadratic form over a non-archimedean local field, preprint
[6] M. Karel, Functional equations of Whittaker functions on p-adic groups, Am. J. Math 101 (1979) 1303-1325.
[7] G. Kaufhold, Dirichletsche Reihe mit Funktionalgleichung in der Theorie der Modulfunktionen 2, Grades 137 (1959), 454-476.
[8] S. S. Kudla, Central derivatives of Eisenstein series and height pairings, Ann. of Math. 146 (1997), 545-646.
[9] S. S. Kudla, Some extensions of the Siegel-Weil formula, Eisenstein series and applications, 205-237, Progr. Math., 258, Birkhäuser Boston, Boston, MA, 2008.
[10] S. S. Kudla and S. Rallis, On the Weil-Siegel formula, J. Reine Angew. Math. 387 (1988), 1-68.
[11] S. S. Kudla and M. Rapoport, Arithmetic Hirzebruch-Zagier cycles, J. Reine Angew. Math. 515 (1999), 155-244.
[12] S. S. Kudla and M. Rapoport, Height pairings on Shimura curves and p-adic uniformization. Invent. Math. 142 (2000), 153-223.
[13] S. S. Kudla and M. Rapoport, Cycles on Siegel threefolds and derivatives of Eisenstein series, Ann. Sci. Ecole Norm. Super. (4) 33 (2000), 695-756.
[14] S. S. Kudla, M. Rapoport and T. Yang, On the derivative of an Eisenstein series of weight one, Int. Math. Res. Not. 7 (1999), 347-385.
[15] S. S. Kudla, M. Rapoport and T. Yang, Modular Forms and Special Cycles on Shimura Curves, Annals of Mathematics Studies, vol. 161. Princeton University Press, Princeton (2006)
[16] C. Moeglin, M.-F. Vigneras and C.-L. Waldspurger, Correspondence de Howe sur un corps p-adique, Springer Lec. notes in Math. 1291, 1987.
[17] M. Rapoport and T. Wedhorn, The connection to Eisenstein series, Astérisque No. 312 (2007), 191-208.
[18] G. Shimura, Confluent hypergeometric functions on tube domains, Math. Ann. 260 (1982), no. 3, 269-302.
[19] G. Shimura, Euler Products and Eisenstein Series, CBMS Reg. Conf. Ser. Math., vol. 93, Amer. Math. Soc., 1997.
[20] G. Shimura, An exact mass formula for orthogonal groups, Duke Math. J. 97 (1999), 1-66.
[21] G. Shimura, Classification, construction, and similitudes of quadratic forms, Amer. J. Math. 128 (2006) 1521-1552.
[22] G. Shimura, Arithmetic of quadratic forms. Springer, 2010.
[23] C. L. Siegel, Über die analytische Theorie der quadratishen Formen, Ann. of Math. (2) 36 (1935), 527-606.
[24] U. Terstiege, Intersections of arithmetic Hirzebruch-Zagier cycles, Math. Ann. 349 (2011), 161-213.
[25] T. Wedhorn, The genus of the endomorphisms of a supersingular elliptic curve, Astérisque No. 312 (2007), 25-47.
[26] T. Wedhorn, Calculation of representation densities, Astérisque No. 312 (2007) 179190.
[27] S. Yamana, On the Siegel-Weil formula: the case of singular forms, Compos. Math. 147 (2011), no. 4, 1003-1021.
[28] S. Yamana, On the Siegel-Weil formula for quaternionic unitary groups, Am. J. Math. 135 (2013), 1383-1432.

Sungmun Cho, Department of Mathematics, Kyoto University, Japan
E-mail address: sungmuncho12@gmail.com
Shunsuke Yamana, Hakubi Center, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan

Department of mathematics, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan

Max Planck Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany
E-mail address: yamana07@math.kyoto-u.ac.jp
Takuya Yamauchi, Mathematical Institute, Tohoku University, 6-3,Aoba, Aramaki, Aoba-Ku, Sendai 980-8578, JAPAN

E-mail address: yamauchi@math.tohoku.ac.jp

[^0]: 2010 Mathematics Subject Classification. 11F30, 11F32.
 Key words and phrases. Eisenstein series, arithmetic intersection numbers, modular correspondence.

