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We present the Novel-Materials-Discovery (NOMAD) Artificial-Intelligence (AI) Toolkit, a web-
browser-based infrastructure for the interactive AI-based analysis of materials-science findable, ac-
cessible, interoperable, and reusable (FAIR) data. The AI Toolkit readily operates on the FAIR
data stored in the central server of the NOMAD Archive, the largest database of materials-science
data worldwide, as well as locally stored, users’ owned data. The NOMAD Oasis, a local, stand
alone server can be also used to run the AI Toolkit. By using Jupyter notebooks that run in a
web-browser, the NOMAD data can be queried and accessed; data mining, machine learning, and
other AI techniques can be then applied to analyse them. This infrastructure brings the concept
of reproducibility in materials science to the next level, by allowing researchers to share not only
the data contributing to their scientific publications, but also all the developed methods and ana-
lytics tools. Besides reproducing published results, users of the NOMAD AI toolkit can modify the
Jupyter notebooks towards their own research work.

I. INTRODUCTION

Data-centric science has been identified as the 4th
paradigm of scientific research.[1] The novelty introduced
by the new paradigm is two-fold. First, the creation of
large, interconnected databases of scientific data, which
are more and more expected to comply with the so-called
FAIR principles [2] of scientific data management and
stewardship: i.e., data and related metadata need to be
findable, accessible, interoperable, and reusable (or re-
purposable, or recyclable). The second aspect is the mas-
sive use of artificial-intelligence (AI) algorithms, applied
to scientific data, in order to find patterns and trends
that would be hard if possible at all to identify by unas-
sisted human observation and intuition.

Materials science has been embracing in the last few
years both aspects. Databases, in particular from com-
putational materials science have been created via high-
throughput screening initiatives, mainly boosted by the
US Materials-Genome Initiative, starting in the early
2010’s. More recently, the NOMAD (Novel Materi-
als Discovery) Repository & Archive [3–5], the first
FAIR storage infrastructure for computational materials-
science data, was launched at the end of 2014 and was
later further developed within the NOMAD Centre of Ex-
cellence (CoE), which was founded in 2015. NOMAD’s
servers and storage are hosted by the Max Planck Com-
puting and Data Facility in Garching (Germany). The
NOMAD Repository stores, as of today, input and out-
put files from more than 50 different atomistic (ab initio
and molecular mechanics) codes. It totals more than
100 million total-energy calculations, uploaded by vari-
ous materials scientists from their local storage or from
other public databases. The NOMAD Archive stores the
same information, but converted, normalized, and char-
acterized by means of a metadata schema, the NOMAD
Metainfo [6], which allows for the labeling of most of the

data in a code-independent representation. The transla-
tion from the content of raw input and output files into
the code-independent NOMAD Metainfo format makes
the data ready for AI analysis.

Materials science has embraced also the second aspect
of the 4th paradigm, i.e., AI-driven analysis. The appli-
cations of AI to materials science span two main classes
of metohds. One is the modeling of potential-energy sur-
faces (PES) by means of statistical models that promise
to yield ab initio accuracy at a fraction of the evaluation
time [7–12] (if the CPU time necessary to produce the
training data set is not considered). The other class is the
so-called materials informatics, i.e., the statistical model-
ing of materials aimed at predicting their physical, often
technologically relevant properties [13–18], by knowing
limited input information about them, often just their
stoichiometry. The latter aims at identifying the mini-
mal set of descriptors (the materials’ genes) that correlate
with properties of interest. This aspect, together with the
observation that only a very small amount of the almost
infinite number of possible materials is known today, may
lead to the identification of undiscovered materials that
have properties (conductivity, plasticity, elasticity, etc.)
superior to the known ones.

The NOMAD CoE has recognized the importance of
enabling the AI analysis of the stored FAIR data and
has launched the NOMAD AI Toolkit. This web-based
infrastructure allows users to run in a web-browser com-
putational notebooks (i.e., interactive documents that
freely mix code, results, graphics, and text, supported by
a suitable virtual environment) for performing complex
queries and AI-based exploratory analysis and predictive
modeling on the data contained in the NOMAD Archive.
In this respect, the AI Toolkit pushes to the next, neces-
sary step the concept of FAIR data, by recognizing that
the most promising purpose of the FAIR principles is en-
abling AI analysis of the stored data. As a mnemonic, the
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FIG. 1. Home page of the NOMAD Artificial-Intelligence
Toolkit, showcasing its three purposes: Querying (and ana-
lyzing) the content of the NOMAD Archive, providing tuto-
rials for AI tools, and accessing the AI workflow of published
work. The fourth access point, get to work, is for experienced
users, who can create and manage their own workspace.

next step in FAIR data starts by upgrading its meaning
to: Findable and AI-Ready data [19].

The mission of the NOMAD AI Toolkit is three-fold:
• Providing an API and libraries for accessing and

analysing the NOMAD Archive data via state-of-the-
art (and beyond) AI tools.

• Providing a set of shallow-learning-curve tutorials from
the hands-on introduction to the mastering of AI tech-
niques.

• Maintaining a community-driven growing collection
of computational notebooks, each dedicated to an
AI-based materials-science publication. By providing
both the annotated data and the scripts for their
analysis, students and scholars worldwide are enable
to retrace all the steps that the original researchers
followed to reach publication-level results. Further-
more, the users can modify the existing notebooks
and quickly checks alternative ideas. This brings
reproducibility in science and dissemination of new
ideas to an unprecedented level in the history of
(materials) science.

This paper is structured as follows. In section II, we
describe the technology of the AI Toolkit. In sections III
and IV, we describe two exemplary notebooks. One note-
book is a tutorial introduction to the interactive querying
and exploratory analysis of the NOMAD Archive data.
The other notebook demonstrates the possibility to re-
port publication-level materials science results [20], while
enabling the users to puts their hands on the workflow,
by modifying the input parameters and observing the im-
pact of their interventions.

II. TECHNOLOGY

We provide a user-friendly infrastructure to apply the
latest AI developments and the most popular machine-

learning methods to materials-science data. The NO-
MAD AI Toolkit aims to facilitate the deployment of
sophisticated AI algorithms by means of an intuitive in-
terface that is accessible from a webpage. In this way,
AI-powered methodologies are transferred to materials
science. In fact, the most recent advances in AI are
usually available as software stored on web repositories.
However, these need to be installed in a local environ-
ment which requires specific bindings and environment
variables. Such an installation can be a tedious pro-
cess, which limits the diffusion of novel methods, and
also brings in the problem of reproducibility of published
results. The NOMAD AI Toolkit offers a solution to this,
by providing the software, that we install and maintain,
in an environment that is accessible directly from the
web.

Docker[21] allows to install software in a container that
is isolated from the host machine where it is running. In
the NOMAD AI Toolkit we maintain such a container,
installing therein software that has been used to produce
recently published results and taking care of the version-
ing of all required packages. Jupyter notebooks are then
used inside the container to interact with the underly-
ing computational engine. Interactions include the ex-
ecution of code, displaying the results of computations,
and writing comments or explanations by using markup
language. We opted for Jupyter notebooks because such
interactivity is ideal for combining computation and anal-
ysis of the results in a single framework. The kernel of
the notebooks, i.e. the computational engine that runs
the code, is set to read Python. Python has built-in sup-
port for scientific computing as the SciPy ecosystem and
it is highly extensible, because it allows to wrap codes
written in compiled languages such as C or C++. NO-
MAD AI Toolkit containers are deployed on servers that
are orchestrated by Kubernetes on computing facilities
offered by the Max Planck Computing and Data Facility
in Garching, Germany.

A key feature of the NOMAD AI Toolkit is that
we allow users to create, modify and store computa-
tional notebooks where original AI workflows are de-
veloped. From the ’Get to work’ button accessible at
https://nomad-lab.eu/aitoolkit, registered users are
redirected to a personal space, where we provide cloud
storage and where work can also be saved. Jupyter note-
books, which are created inside the ’work’ directory in the
users’ personal space, are stored on our servers and can
be accessed and edited over time. These notebooks are
placed in the NOMAD AI Toolkit environment, which
means that all software and methods demonstrated in
other tutorials can be deployed therein. The versatility
of Jupyter notebooks in fact facilitates an interactive and
instantaneous combination of different methods. This
is useful if one aims to, e.g., combine different methods
available in the NOMAD AI Toolkit in an original man-
ner, or to deploy a specific algorithm to a novel dataset
that is retrieved from the NOMAD Archive. The origi-
nal notebook, which is developed in the ’work’ directory,

https://nomad-lab.eu/aitoolkit
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might then lead to a new publication and the notebook be
added to the ‘Published results’ section of the AI Toolkit.

A. Contributing

The NOMAD AI Toolkit aims to promote reproducibil-
ity of published results. Researchers working in the field
of AI applied to materials science are invited to share
their software and install it in the NOMAD AI Toolkit.
The shared software can be used in citeable Jupyter note-
books, which are accessible online, to reproduce results
that have been recently published in scientific journals.
Sharing software and methods in a user-friendly infras-
tructure such as the NOMAD AI Toolkit can also pro-
mote the visibility of research and boost interdisciplinary
collaborations.

Contributing to the NOMAD AI Toolkit is straightfor-
ward, and consists of the following steps:
• Data must be uploaded to the NOMAD Archive and

Repository. Either in the public server (https://
nomad-lab.eu/prod/rae/gui/uploads) or in the lo-
cal, self-contained variant (see Sec. II B).

• Software needs to be installed in the base image of the
NOMAD AI Toolkit.

• The whole workflow of a (published) project, from
importing the data to generating results, has to
be placed in a Jupyter notebook. The package(s)
and notebook are then uploaded to JupyterLab in
a public repository (https://gitlab.mpcdf.mpg.de/
nomad-lab/analytics), where the back-end code is
stored.

• A DOI is generated for the notebook, which is ver-
sioned in GitLab. In the spirit of, e.g., Cornell Univer-
sity’s arXiv.org, the latest version of the notebook is
linked to the DOI, but all previous versions are main-
tained.

Researchers interested in contributing to the NOMAD
AI Toolkit are invited to contact us for further details.

B. AI Toolkit App

In addition to the web-based toolkit, we also maintain
an App that allows to deploy the NOMAD AI Toolkit
environment[22] on a local machine. This App employs
the same graphical user interface (GUI) as the online
version, in particular, the user accesses it via a normal
web browser. However, the browser does not need to
have access to the web and can therefore run behind fire-
walls. Software and methods installed in the NOMAD AI
Toolkit will deploy the users’ personal computational re-
sources. This can be useful when calculations are partic-
ularly demanding, and also when AI methods are applied
to private data that should not access the web. Through
the local App, both the data on the NOMAD server as
well locally stored data can be accessed. The latter ac-
cess is supported by the NOMAD OASIS, the stand alone

version of the NOMAD infrastructure[23].

III. QUERYING THE NOMAD ARCHIVE AND
PERFORMING AI MODELING ON RETRIEVED

DATA

The NOMAD AI Toolkit features the tutorial ‘Query-
ing the archive and performing Artificial Intelligence
modeling’ notebook [24] (also accessible from the
’Query the archive’ button at https://nomad-lab.eu/
aitoolkit), which demonstrates all steps required to
perform AI analysis on data stored in the NOMAD
Archive. These steps are the following: (i) querying the
data by using the RESTful API (see below) that is built
on the NOMAD Metainfo; (ii) loading the needed AI
packages, including the library of features that are used
to fingerprint the data points (materials) in the AI anal-
ysis; (iii) performing the AI training and visualizing the
results.

The NOMAD Laboratory has developed the NOMAD
Python package, which includes a client module to query
the Archive using the NOMAD API. All functionalities
of the NOMAD Repository and Archive are offered
through a RESTful API, i.e. an API that uses HTTP
methods to access data. In other words, each item in
the Archive (typically a JSON data file) is reachable via
a URL accessible from any web browser.

In the example notebook [24], we use the NOMAD
Python client library to retrieve ternary elements con-
taining oxygen. We also request that the ab ini-
tio calculations were carried out with the VASP code,
using exchange-correlation (xc) functionals from the
generalized-gradient-approximation (GGA) family. In
addition, to ensure that calculations have converged, we
also set that the energy difference during geometry op-
timization has converged. As of April 2022, this query
retrieves almost 8 000 entries, which are the results of
simulations carried out at different laboratories. We em-
phasize that in this notebook we show how data with het-
erogeneous origin can be used consistently for machine-
learning analyses.

Here, we target the atomic density, that is obtained by
a geometrically converged DFT calculation. The client
module in the NOMAD Python package establishes a
client-server connection in a so-called lazy manner, i.e.
data are not fetched altogether, but with an iterative
query. Entries are then iteratively retrieved, and each
entry allows to access data and metadata relative to the
simulation results that have been uploaded. In this ex-
ample, the queried materials are composed of three dif-
ferent elements, where one of the elements is required to
be oxygen. From each entry of the query, we retrieve the
converged value of the atomic density and the name and
stoichiometric ratio of the other two chemical elements.
During the query, we use the atomic features library (see
below) to add other atomic features to the dataframe that

https://nomad-lab.eu/prod/rae/gui/uploads
https://nomad-lab.eu/prod/rae/gui/uploads
https://gitlab.mpcdf.mpg.de/nomad-lab/analytics
https://gitlab.mpcdf.mpg.de/nomad-lab/analytics
https://nomad-lab.eu/aitoolkit
https://nomad-lab.eu/aitoolkit
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is built with the retrieved data. Before discussing the ac-
tual analysis performed in the notebook, let us briefly
comment on the NOMAD Metainfo and the libraries of
input (atomic) features.

The NOMAD Metainfo. The NOMAD API access
to the data in the NOMAD Archive, which are organized
by means of the NOMAD Metainfo, which is presented in
Ref. [6] and [25]. Here, we mention that it is a hierarchi-
cal and modular schema, where each piece of information
contained in an input/output file of an atomistic simu-
lation code has its own metadata entry. The metadata
are organized in sections (akin to tables in a relational
database) such as System, containing information on the
geometry and composition of the simulated system, and
Method, containing information on the physical model
(e.g., type of xc functional, type of relativistic treatment,
and basis set). Crucially, each item in any section (a
column in the relational database analogy, where each
data object is a row) has a unique name. Such name
(e.g. ‘atoms’, which is a list of the atomic symbols of
all chemical species present in a simulation cell) is asso-
ciated with values that can be searched via the API. In
practice, one can search all compounds containing oxygen
by specifying query={’atoms’: [’O’]} as argument of
the query archive() function, which is the backbone of
the NOMAD API.

Libraries of input features. Together with the ma-
terials data, the other important piece of information
for an AI analysis is the representation of each data
point. A possible choice, useful for exploratory anal-
ysis, but also the training of predictive models, is to
represent the atoms in the simulation cell by means of
their periodic-table properties (also called atomic fea-
tures), e.g., atomic number, row and column in the pe-
riodic table, ionic or covalent radii, electronegativity. In
order to facilitate access to these features, we maintain
the atomic collections library, containing features for
all atoms in the periodic table (up to Z = 100), calcu-
lated via DFT with a selection of xc functionals. Further-
more, we have also installed the matminer package[26],
a recently introduced rich library of atomic properties
from calculations and experiment. In this way, all atomic
properties defined in the various sources are available
within the toolkit environment.

A. Example of exploratory analysis: Clustering

We now proceed with the discussion of the showcase
notebook, which performs an unsupervised-learning anal-
ysis called clustering. The evolutionary human ability to
recognize patterns in empirical data has led to the most
disparate scientific findings, from e.g. Kepler’s Laws to
the Lorenz attractor. However, finding patterns in highly
multidimensional data requires automated tools. Here,
we would like to understand whether the data retrieved
form the NOMAD Archive can be grouped into clus-
ters of data that share a similar representation, where

data points within the same cluster are similar to each
other while being different from data points belonging to
other clusters. The notion of similarity in the discussed
unsupervised-learning task is strictly related to the rep-
resentation of the data, here a set of atomic properties of
the constituent material.

A plethora of different clustering algorithms has been
developed in the last years, each with different ideal ap-
plications (see, e.g., our tutorial notebook introducing
the most popular clustering algorithms[27]). Among the
various algorithms currently available, we chose a re-
cent algorithm, which we will briefly outline below, that
stands out for simplicity, quality of the results, and ro-
bustness.

The clustering algorithm that is employed in this note-
book is the hierarchical density-based spatial cluster-
ing of applications with noise (HDBSCAN)[28], a recent
extension of the popular DBSCAN algorithm[29]. As
density-based algorithms, HDBSCAN relies on the idea
that clusters are islands of high-density points separated
by a sea of low-density points. The data points in the
low-density region are labeled as ‘outliers’ and are not
associated with any clusters. Outlier identification is at
the core of the HDBSCAN algorithm, which uses the mu-
tual reachability distance, i.e. a specific distance metric
to distort the space so as to “push” outliers away from
the high density regions.

Cluster definition is to some extent subtle, as many
possible different combinations are acceptable. One of
the main challenges is represented by nested clusters,
where it is not always trivial to decide whether a rela-
tively large cluster should be decomposed into more sub-
clusters, or if instead a unique supercluster should be
taken. The HDBSCAN algorithm performs a hierarchi-
cal exploration that evaluates the possible subdivision of
the data into clusters. Initially, for low values of the
distance threshold, there is only one large cluster that
includes all points. As the threshold is lowered, the clus-
ter can eventually split into smaller subclusters. This
algorithm automatically decides whether to split the su-
percluster, and this decision is based on how robust —
with respect to further divisions — the new subclusters
would be. If, for example, after a cluster division many
other splittings would shortly follow while lowering the
threshold distance, then the larger supercluster is taken;
if, otherwise, the subclusters do not immediately face fur-
ther subdivisions, they are selected instead of the large
supercluster.

B. Dimension reduction: the Visualizer

The NOMAD AI Toolkit also comes with a Visual-
izer, a package which allows a straightforward analy-
sis of tabulated data that contain materials structures,
and which is optimized for data retrieved from the NO-
MAD Archive. The visualizer is built using the Plotly
package[30], which allows the creation of an interactive
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FIG. 2. Snapshot of the Visualizer in the “Querying the
Archive and performing Artificial Intelligence modeling” note-
book. The visualization of a two-dimensional map allows to
identify subsets (in AI nomenclature: clusters) of materials
with similar properties. Two windows at the bottom of the
map allow to view the structures of the compounds in the
map. Clicking a point shows the structure of the selected ma-
terial. Ticking the box on top of the windows selects which
one of the two windows is used for the next visualization. The
two windows have different types of symbols (here, crosses)
to mark the position on the map. It is also possible to display
a specific material chosen from the Compound text box to
show its structure and its position on the map, which is then
labelled with a cross. In this figure, two compounds are visu-
alized, and it is possible to spot the position of the materials
on the map.

map, whose usability is improved using ipywidgets. The
map shows with distinct colors different clusters of mate-
rials, that were embedded into a two-dimensional plane
using the dimension reduction algorithm t-SNE [31]. We
would like to remark that axes in this embedding do not
have a meaning, and cannot be expressed as a global
function of the features spanning the original space. This
embedding algorithm, as many nonlinear embedding al-
gorithms, finds a low dimensional representation where
pairwise distances between data points are preserved,
which makes it possible to visualize clusters of points
in a two-dimensional plot.

Clicking on any of the points in the map displays the
atomic structure of the material in one of the windows at

FIG. 3. An example of a high-quality plot that can be pro-
duced using the visualizer. The ’Toggle on/off plot appear-
ance utils’ button displays a number of controls that can be
used to modify and generate the plots. It is possible to change
resolution, format file, color palette for the markers, text for-
mat and size, and markers’ size.

the bottom of the map. The position of the compound
that is displayed is marked with a cross on the map.
There are two different display windows to facilitate the
comparison of different structures, and the window for
the next visualization is selected with a tick box on top of
the visualizer. By clicking “Display” the structure of the
material and its position on the map are shown. We also
provide some plotting utilities to generate high-quality
plots. Controls for fine-tuning the printing quality and
appearance are displayed by clicking the “For a high-
quality print . . . ” button.

IV. DISCOVERING OF NEW TOPOLOGICAL
INSULATORS: APPLICATION OF SISSO TO

ALLOYED TETRADYMITES

As a second, complementary example, we discuss
a notebook that addresses an analysis of topological
semiconductors[20]. The employed AI method is SISSO
(sure-independent screening combined with sparsifying
operator [17]), which combines symbolic regression with
compressed sensing. In practice, for a given target prop-
erty of a class of materials, SISSO identifies a low-
dimensional descriptor, out of a huge number of candi-
dates (billions, or more). The candidate descriptors, the
materials genes, are constructed as algebraic expressions,
by combining mathematical operators (e.g., sums, prod-
ucts, exponentials, powers) with basic physical quanti-
ties, called primary features. These features are prop-
erties of the materials, or their constituents (e.g., the
atomic species in the material’s composition), that are
(much) easier to evaluate (or measure) than the target
properties that are modeled by using the SISSO-selected
features as input and with the mathematical relationship
identified as well by SISSO. In Ref. [20], the materials’
property of interest was the classification between topo-
logical vs trivial insulators.

The addressed class of materials was the tetradymites
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FIG. 4. Graphical input interface for the SISSO training
of tetradymite-materials classification, taken from the “Dis-
covery of new topological insulators in alloyed tetradymites”
notebook.

FIG. 5. Interactive map of tetradymite materials, as produced
with the AI-Toolkit visualizer. The topological (trivial) insu-
lator training points are marked in red (blue). All materials
falling in the convex hulls delimited by the dashed line en-
veloping the red (blue) points are predicted to be topological
(trivial) insulators. The axes, D1 and D2 are the components
of the descriptor identified by SISSO, in terms of analytical
function of the selected input parameters (see Ref. [20] and
the notebook [32] for more details).

family, i.e., materials with the general chemical formula
AB −LMN , where the cations A,B ∈ {As, Sb, Bi} and
the anions L,M,N ∈ {S, Se, Te}, and a trigonal (R3m)
symmetry. Some of these materials are known to be topo-
logical insulators and the data-driven task was to predict
the classification into topological vs trivial insulators of

all possible such materials, just by knowing their for-
mula, by using as training data a set of 152 tetradymites
for which the topological invariant Z2 is calculated via
DFT for the optimized geometries.

In the notebook “Discovery of new topological insu-
lators in alloyed tetradymites” [32] , we invite the user
to interactively reproduce the results of Ref. 20, namely
the materials property map as shown in Fig. 5. The map
is obtained within the notebook, after selecting as input
settings the same primary features and other SISSO pa-
rameters as used for the publication. In Fig. 4, we show
a snapshot of the input widget, where users can select
features, operators, and SISSO parameters according to
their preference and test alternative results. When click-
ing “Run”, the SISSO code is running within the con-
tainer created for the user at the NOMAD server. In the
notebook, the map as shown in Fig. 5 is managed by
the same Visualizer as described in Section III for the
query-and-analyse notebook. This means that by mouse
hovering the chemical formula of the compound repre-
sented by the marker is shown in a tooltip. By clicking
a marker, the crystal structure of the corresponding ma-
terial is shown in a box below the plot.

In summary, with the notebook “Discovery of new
topological insulators in alloyed tetradymites”, we pro-
vide an interactive, complementary support to Ref. [20],
where the user can reproduce the results of the paper
starting with the same input, by using the same code,
and by going as far as re-obtaining exactly the same main
result plot (except for the different graphical style). More
than what can be found in the paper, the user can change
the input settings to the SISSO learning, explore the re-
sults by changing the visualization settings, and brows-
ing the structures of the single data points. The user can
also use the notebook as a template and start from other
data, retrieved from the NOMAD Archive, to perform an
analysis with the same method, etc.

V. CONCLUSIONS

We presented the NOMAD AI Toolkit, a web-browser-
based platform for performing AI analysis of materials-
science data, both online, on NOMAD servers, and lo-
cally on own computational resources, even behind fire-
walls. The purpose of the AI toolkit is to provide
the tools for exploiting the Findable and AI Ready (F-
AIR) materials-science data that are contained in the
NOMAD Repository and Archive, as well as several
other databases in the field. The platform provides in-
tegrated access, via Jupyter notebooks to state-of-the-
art AI methods ans concepts. Shallow learning curve
hands-on tutorials are provided, in the form of interactive
Jupyter notebooks, for all the available tools. A particu-
lar focus is on the reproducibility of AI-based workflows
associated with high-profile publications: The AI Toolkit
offers a selection of notebooks demonstrating such work-
flows, so that users can understand step by step what
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was done in publications and readily modify and adapt
the workflows to their own needs. We hope this example
could be an inspiration to augment future publications
with similar hands-on notebooks. This will allow for en-
hanced reproducibility of data-driven materials science
papers and dampen the learning curve for newcomers to
the field. The community is invited to contribute more
notebooks in order to share cutting-edge knowledge in an

efficient and scientifically robust way.
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