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Tunneling ionization of an atom in ultrashort laser pulses is considered. When the driving laser pulse is
switched-on and -off with a steep slope, the photoelectron momentum distribution (PMD) shows an edge-effect
because of the photoelectron diffraction by the time-slit of the pulse. The trivial diffraction pattern of the edge
effect consisting of fast oscillations in the PMD disguises in the deep nonadiabatic regime the physically more
interesting features in the spectrum which originate from the photoelectron dynamics. We point out the precise
conditions how to avoid this scenario experimentally and if unavoidable in theory we put forward an efficient
method to remove the edge-effect in the PMD. This allows to highlight the nonadiabatic dynamical features of
the PMD, which is indispensable for their further investigation in complex computationally demanding scenarios.
The method is firstly demonstrated on a one-dimensional problem, and further applied in three-dimensions for
the attoclock. The method is validated by a comparison of analytical results via the strong-field approximation
with numerical solutions of the time-dependent Schrödinger equation.

I. INTRODUCTION

Modern state-of-the-art laser techniques allow for full con-
trol over the wave form of a laser pulse, and in particular, the
generation of few-cycle strong laser pulses [1–4]. Such few-
cycle laser pulses of sufficient strength are an efficient tool in
attoscience [5–7]. They have been employed for the generation
of isolated attosecond pulses via high-order harmonic genera-
tion (HHG) [8–11], for molecular imaging and laser induced
electron diffraction [12–15], as well as for the time-resolved
study of strong-field phenomena, such as nonsequential double
ionization [16–23] and dissociative ionization [24, 25]. The
theoretical description of strong-field phenomena in few-cycle
pulses within the strong field approximation (SFA) is outlined
in Ref. [26].

In ultrashort laser pulses an abrupt switch-on and -off of the
laser pulse can induce a diffraction effect of the photoelectrons
by the time slit of the pulse due to the pulse edges, the so-called
edge-effect. The edge-effect is exhibited as oscillations in the
photoelectron momentum distribution (PMD), additionally to
the dynamical features of PMD, and it disappears in the case of
a smooth laser pulse. The edge-effect distorts the most impor-
tant dynamical physical signal in strong-field ionization and
for this reason one tries to avoid or separate it. The distortion is
especially conspicuous at low laser intensities when the ioniza-
tion signal is weak, but just in this deeply nonadiabatic regime
the dynamical features of PMD are nontrivial. We underline
that there are observed unexplained features in PMD in ellip-
tically polarized laser fields in the weak field regime [27, 28],
and the edge-effect hinders their analysis.

In an experiment the role of edge-effects could be dimin-
ished using more and more smoother laser pulses. In a theo-
retical description via numerical solution of time-dependent
Schrödinger equation (TDSE), as well as within SFA, different
forms of laser pulses with a smooth switch-on and -off are em-
ployed. The most simple description of a short N-cycle laser
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pulse is via a cos2-envelope: f (t) = cos2(ωt/N), with the laser
frequency ω, see e.g. [26, 29]. Smoother pulses are obtained
via cosn-envelopes with n = 4 or larger (in this case one needs
to take into account the change of the effective frequency of
the laser field). A better description is obtained with the use of
a Gaussian pulse with a long tail [30], which however requires
rather time consuming computationally expensive calculations.

In this paper we put forward a simple method to sepa-
rate the edge-effect and single-out the PMD dynamical sig-
nal in SFA calculations as well as in the numerical solution
of TDSE, while using laser pulses with no-smooth switching.
The method (U-contour method) mimics the saddle-point inte-
gration, however, without explicit finding and classification of
all relevant saddle-points for the given PMD. We demonstrate
the method in a one-dimensional (1D) model of tunneling ion-
ization in half-cycle pulses of cos2 and truncated-Gaussian
form, and confirm its accuracy in comparison with the numer-
ical TDSE solution. Finally, we apply the method in a 3D
example of the attoclock. The U-contour method in 3D has a
clear advantage with respect to the saddle-point integration, as
the latter would require the calculation of a large data set of
saddle-points.

The structure of the paper is the following. In Sec. II the
SFA model is introduced,and the edge-effect is described. The
conditions for the appearance of the effect are discussed in
Sec. III. The U-contour method for separation of the edge-
effect is introduced in Sec. IV, and its performance is tested in
comparison with numerical solutions of TDSE. The application
of the U-contour method for the analysis of the edge-effect in
3D case of attoclock is presented in Sec. V, and the conclusion
is given in Sec. VI.

II. EDGE-EFFECT AND THEORETICAL DESCRIPTION

We consider ionization of an electron bound in an atomic
potential V(r), in a laser pulse with electric field E(t). The
asymptotic momentum distribution,

w(p) = |m(p)|2, (1)
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FIG. 1. PMD with a field E(t) = −E0 cos2(ωt): (a) E0 = 0.1, (b)
E0 = 0.05, (c) E0 = 0.025, ω = 0.05 a.u., κ = 1 a.u., the field is
truncated atωti = −π/2 andωt f = π/2, (orange, dashed) via SFA with
the edge-effect, (blue, solid) via SFA with the edge-effect subtracted,
(dotted, green) via numerical solution of TDSE.

is determined by the SFA direct ionization amplitude [31]:

m(p) = −i
∫

dt〈ψV
p (t)|Hi(t)|φ(t)〉, (2)

where φ(r, t) is the bound state wave function, ψV
p (r, t) the

Volkov wave function [32], Hi(t) = r · E(t) the electron in-
teraction Hamiltonian with the laser field. Atomic units are
used throughout. The integrals in the amplitudes of Eqs. (2)
are calculated in two ways, fully numerically and with the
saddle-point approximation (SPA) analytically.

We illustrate the edge-effect on a 1D problem of ion-
ization of an electron bound in a 1D zero-range potential
V(x) = −κδ(x), in a half-cycle laser pulse with electric field
E(t) = −E0 cos2(ωt), with the field vanishing at t < ti and
t > t f . Here ω = 0.05 a.u., κ =

√
2Ip = 1 a.u., Ip is the

ionization potential, γ = ω̃κ/E0 the Keldysh parameter, with
the effective frequency ω̃ ≡

√
2ω related to the cos2-pulse (the

effective frequency is defined as ω̃ =
√
−E′′(0)/E(0) at the

field maximum t = 0). We calculate PMD for different laser
fields, using SFA amplitude of Eq. (2), with the bound state
wave function φ(x, t) =

√
κ exp(−κ|x| + iκ2/2t). The results are

presented in Figs. 1-3.
In strong fields, the PMD is a smooth function of the asymp-

totic momentum, see the case of E0 = 0.1 a.u. for cos2-pulse
in Fig. 1(a), and for truncated-Gaussian pulses in Fig. 2(a,c).
In contrast, at weak fields PMD appears to be superimposed by
the diffraction pattern due to the time-slit of the pulse edges,
see E0 = 0.05 a.u. and E0 = 0.025 a.u. in Fig. 1(b) and (c)
for cos2-pulse, and Fig. 2(b,d) for Gaussian pulses, respec-
tively (orange-dashed lines in figures correspond to SFA, and
green-dotted lines to the TDSE numerical solutions). This
effect is large in weak fields, when the ionization dynamical
signal is weak, and strongly dependent on the pulse shape. In
fact, in a Gaussian pulse E(t) = −E0 exp[−(ωt)2] of the same
effective frequency (ω = 0.05) as in cos2 one, the edge-effect
gradually decreases with increasing of the Gaussian trunca-
tion. In particular, the edge-effect vanishes, i.e. oscillations
in PMD disappear, if a rather large truncation time is applied,
see the green-dotted lines in Figs. 2(b,d), and 3 correspond-
ing to ω(t f − ti) = 16. However, the edge-effect persists at
smaller truncation time at the same field strength and the same
frequency, see the dashed lines in Fig. 2(b,d) corresponding
to ω(t f − ti) = 4. While the use of Patchkovskii’s smooth-
truncated-Gaussian pulse of Ref. [30] decreases the edge-effect,
see red-dot-dashed line in Fig. 3, however, at weak fields the
boundary terms still contribute and contaminate the physical
PMD.

In Figs. 1-3, we provide PMD via SFA, as well as via the
numerical solution of TDSE. For strong fields E0 = 0.1 and
E0 = 0.05, the SFA results are in close accordance with the nu-
merical ones in any pulse. Deviations mainly originate from the
Stark-shift that is not accounted in SFA, yielding slightly over-
estimated ionization probabilities. In weak fields, E0 = 0.025
the results are still in accordance with long Gaussian pulses,
but in short truncated-Gaussian pulses the edge effects are
different in SFA and in TDSE, concurring only qualitatively.

III. CONDITIONS FOR THE EDGE-EFFECT
APPEARANCE

Generally, the smoother the switching-on and -off of the
laser pulse, the less pronounced are the edge-effects. However,
for a given smooth pulse shape there is a threshold intensity,
below which the edge-effects again show up. This is illustrated
for cosn-type pulses in Fig. 4. We estimate the condition for the
edge-effect appearance as follows. The switching-on/-off of the
laser pulse results in appearance of high-energy components
in the field spectrum. The edge-effect is induced by the high-
energy component of the field with Ω & Ip, available in the
spectrum of the pulse. We characterize the edge-effect by the
probability of photoionization via absorption of such a high-
energy photon [33]:

WΩ ∼

(EΩa
Ω

)2

, (3)
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FIG. 2. PMD with a field E(t) = −E0 exp[−(ωt)2]: (left column) via first-order SFA Eq. (2); (right column) via numerical solution of TDSE;
(a,c) E0 = 0.1, (b,d)) E0 = 0.05; (dashed, orange) short pulse with the truncation points of the Gaussian at ωti = −2 and ωt f = 2, (dotted, green)
long pulse with ωti = −8 and ωt f = 8, (blue, solid) the edge-effect subtracted, (red, dot-dashed) in (b) is SFA calculation with SPA; ω = 0.05
a.u., κ = 1 a.u.
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FIG. 3. PMD with a field E(t) = −E0 exp[−(ωt)2], E0 = 0.025: (a) via first-order SFA, (b) via numerical solution of TDSE; (dashed, orange)
short pulse with the truncation points of the Gaussian at ωti = −2 and ωt f = 2, (dotted, green) long pulse with ωti = −8 and ωt f = 8, (blue,
solid) SFA with the edge-effect subtracted, (dot-dashed, red) via Patchkowsii’s truncated Gaussian [30] with parameters ωt1 = 2, and ωt2 = 2.5;
ω = 0.05 a.u., κ = 1 a.u.

with the field strength EΩ ∼ E0(ω/Ω)n of the high-frequency
component Ω, and the typical atomic length a = 1/κ. The
edge-effect will be visible if this probability is comparable
with (or larger than) the strong-field ionization probability [34]
due to the monochromatic field of the effective frequency of
the pulse:

WS FI ∼
Ea

Es
exp

−2Ip

ω̃

(1 +
1

2γ2

)
arcsinh γ −

√
1 + γ2

2γ


 .
(4)

where Es = E0
√

1 + γ2 is the field value at the time saddle-
point. Thus, the condition of the onset of the edge-effect is
WΩ & WS FI . In Fig. 4 WΩ = WS FI corresponds to the crossing
point of the red line representing WS FI with the corresponding
one-photon probabilities WΩ for different pulses. Thus, the
edge-effect will be visible in the corresponding pulses with
the field strength below the crossing points. The smoother
the laser pulse, the smaller will be the laser intensity below
which the edge-effect will emerge. The edge-effect appears at
low laser intensities, when the tunneling ionization signal is
weak and becomes comparable with the diffraction signal. This
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FIG. 4. Determination of the threshold field strength in cosn-pulses,
below which the edge-effect contaminates the strong-field ionization
PMD. The edge-effect is induced by the high-energy component of the
field with Ω & Ip, the probability of photoionization WΩ via such an
one high-energy photon absorption: (blue) in cos2-pulse, (orange) in
cos4-pulse, (green) in cos6-pulse; (red) the PPT-probability WS FI . The
edge-effect will be visible below the field value when WΩ = WS FI .
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FIG. 5. Contours of the time-integration in Eqs. (5) and (17): (red,
horizontal) the original contour along the real time-axis from the pulse
outset ti to the end t f , (green, dashed) the saddle-point contour, (red,
solid) the proposed U-contour to remove the pulse edge-effect. The
laser pulse form is illustrated via the blue, dashed line.
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FIG. 6. The amplitude of the integrand along the vertical contour,
exactly (blue, solid), and approximated by the expansion of Eq. (10)
(orange, dashed).

effect hinders the understanding of nonadiabatic tunneling at
large Keldysh parameters , as it conceals specific nonadiabatic
features in PMD.

IV. SEPARATION OF THE EDGE-EFFECT

In this section we put forward a method for separation of the
edge effect and singling-out the dynamical features of PMD
at given laser parameters. In the total PMD with the edge-
effect, the dynamical signal is superimposed by the trivial
diffraction pattern due to the time-slit of the pulse. Meanwhile,
the dynamical signal is most interesting physically because
it provides information on the nonadiabatic dynamics of the
photoelectron in a weak field regime. As an example we refer
to structures inside the attoclock ring in a weak elliptically
polarized laser field [28], which also could be related to the
unexplained large attoclock offset angles in the multiphoton
regime [27].

A. U-contour method

Before introducing the method for separation of the edge-
effects, let us to note that the edge-effect can be avoided in
the calculation of PMD within SFA, when using SPA for the
time-integration, e.g. see red-dashed line in Fig. 2(b) [35].
However, in 3D cases and for a large range of PMD, e.g. in the
attoclock, see Sec. V, it is a cumbersome procedure to find all
saddle-points of the full PMD. Moreover, there still remains
the question how to remove the edge-effect for TDSE. In the
latter the only possibility is to use a Gaussian pulse with a very
large truncation time, which requires extensive computational
resources.

Here we propose a simple method for the calculation of the
edge-effect-free PMD. The method mimics the saddle-point
time-integration method for the ionization amplitude. In the
first-order SFA the integrand m(t) of the ionization amplitude

m(p) =

∫ t f

ti
dt m(t), (5)

has the form

m(t) = C
(p + A(t)) · E(t)[
(p + A(t))2 + κ2

]2 exp[−iS (t) + iκ2/2t], (6)

with the classical action in the laser field S (t) =
∫ t f

t ds(p +

A(s))2/2, and the constant C1D = −2i
√

2
π
κ3/2 for the 1D case,

and C3D = 1/(
√

2πκ)C1D for the 3D case. In the original
Eq. (5) the time-integration runs along the real time-axis from
the onset of the pulse ti to the end t f , see Fig. 5. When one
applies SPA, the original contour is deformed to the steepest-
descent contour of the saddle-point. Generally, one has to find
all saddle-points corresponding to the given asymptotic mo-
mentum via an appropriate deformation of the initial contour
of the time-integration. As is shown in Fig. 5, the integral
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along the steepest-descent contour equals to that along the
U-contour (red in Fig. 5). Thus, the edge-free PMD can be
obtained adding two integrals along the vertical contour to the
main integral along the real axis (from ti to t f ). This can be
done analytically within SFA, as well as numerically in TDSE
solution.

Further, we note that the U-contour can also be used to
calculate half-cycle resolved ionization probabilities in long
sinusoidal fields via truncating the field at the beginning and
the end of the half-cycle of interest.

B. Calculation of the time-integral along the vertical contour

The calculation of the time-integrals along the vertical con-
tours in Fig. 5, Ci and C f , is facilitated by the fact that the
integrand is exponentially suppressed at large imaginary times,
see Fig. 6, and only the beginning of the contour close to the
real axis gives the main contribution to the integral. In order
to account for the edge-effect analytically, we approximate the
prefactor and the exponential of the integrand m(t) near the
truncation points ti and t f :

mCi (t) ≈ C
∑

n

(p + A(ti))A(n+1)(ti)(t − ti)n

n!
(
(p + A(ti))2 + κ2)2

× exp
[
−iS (ti) + iκ2/2ti

+ i(κ2/2 + (p + A(ti))2/2)(t − ti)
]

(7)

mC f (t) ≈ C
∑

n

(p + A(t f ))A(n+1)(t f )(t − t f )n

n!
(
(p + A(t f ))2 + κ2

)2

× exp
[
−iS (t f ) + iκ2/2t f

+ i(κ2/2 + (p + A(t f ))2/2)(t − t f )
]
, (8)

where the summation over n begins from the first non-vanishing
derivative of the function A′(t) up to the next third orders at
weak fields and terms of the order of A′(ti)2 or A′(t f )2 are ne-
glected. These approximated integrands can now be integrated
along the steepest descent contour at the truncation points.
Since κ2/2 + (p + A(ti))2/2 and κ2/2 + (p + A(t f ))2/2 are real
numbers, the contour is vertically aligned in the complex plane
starting at ti or t f , respectively. The integration yields

mCi (p) = C
∑

n

2n+1 exp[−iS (ti) + iκ2/2ti)]

×
(p + A(ti))An+1(ti)

((p + A(ti)) + κ2)n+1 (9)

mC f (p) = C
∑

n

2n+1 exp[−iS (t f ) + iκ2/2t f )]

×
(p + A(t f ))An+1(t f )

((p + A(t f )) + κ2)n+1 . (10)

The approximated integrand function of Eq. (10) is shown in
Fig. 6. It coincides with the analytical one. Thus, using expres-
sions of Eqs. (10), (10) the contribution of the vertical contours
Ci, C f can be subtracted analytically, which corresponds to the
subtraction of the edge-effect.

C. Edge-effect subtraction in the numerical solution of TDSE

The PMD according to numerical solution of TDSE can be
written as:

w(p) = |m(p)|2 = |〈ψV
p (x, t f )|U(t f , ti)|φ(x, ti)〉|2, (11)

where the time evolution operator U(t f , ti) can be obtained
through the normal Schrödinger equation

U(t f , ti) = T exp
[
−i

∫ t f

ti
dt H(t)

]
, (12)

with H(t) = p̂2/2m + r · E(t) + V(r) and T being the time
ordering operator, or based on the Dyson equation

U(t f , ti) = U0(t f , ti) − i
∫ t f

ti
dt U(t f , t)Hi(t)U0(t, ti), (13)

with Hi(t) = r · E(t) being the interaction Hamiltonian and
U0(t2, t1) being the field free time evolution operator.

The ionization amplitude m(p) along the real axis is calcu-
lated as

mCr (p) = 〈ψV
p (t f )|T exp

[
−i

∫ t f

ti
dt H(t)

]
|φ(ti)〉 (14)

employing the traditional time-splitting operator method.
Along the vertical contours (Ci and C f ), on the other hand,
the amplitude is obtained through

mCi (p) = −i
∫

Ci

dt 〈ψV
p (t f )|U(t f , t)Hi(t)U0(t, ti)|φ(ti)〉, (15)

mC f (p) = −i
∫

C f

dt 〈ψV
p (t f )|U(t f , t)Hi(t)U0(t, ti)|φ(ti)〉.(16)

Here U(t f , t) is the exact time evolution operator in the numer-
ical simulation rather than the time evolution operator in the
laser pulse only, which is used in the SFA calculations.

Finally, the total PMD is calculated as

w(p) = |mCr (p) + mCi (p) + mC f (p)|2. (17)

V. ATTOCLOCK

The proposed U-contour method proves very efficient for the
calculation of PMD of the attoclock at weak laser intensities.
We calculate PMD via 3D first-order SFA in the attoclock case
with an elliptically polarized laser field

E(t) = −E0 cos(ωt/6)2 [cos(ωt), ε sin(ωt)] , (18)

with ω = 0.062 a.u., κ = 1.345 a.u., E0 = 0.04 a.u., ε = 0.87
a.u. and truncation at ωti = −3π/ω and ωt f = 3π/ω. The time
integral in Eqs. (5)-(6) is calculated numerically and the edge
terms are subtracted analytically as shown above.

The corresponding momentum distribution is shown in
Fig. 7. Note that in a long Gaussian pulse the PMD coin-
cides with the edge-effect-free result of the U-contour method.
One can see that the edge-effects significantly disturb PMD,
even changing the topology of the distribution. Usually the
Coulomb field effect increases the ionization signal, and makes
the edge-effect relevant at smaller field strength than in the
short-range potential.
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FIG. 7. PMD in the attoclock via first-order SFA: (a) PMD with the edge effect included, (b) PMD with the edge effect subtracted; The laser field
is E(t) = −E0 cos(ωt/6)2(cos(ωt), ε sin(ωt)), ω = 0.062 a.u., κ = 1.345 a.u., E0 = 0.04 a.u., ε = 0.87 a.u. the field truncation is at ωti = −3π/ω
and ωt f = 3π/ω.

VI. CONCLUSION

We have developed a new method to remove the edge-effect
of the laser pulse because of the diffraction from the time
slit created by the edges, in PMD of tunnel-ionized electrons.
The method consists of replacing the original time-integral
in the ionization amplitude along the real time axis with the,
so-called, U-contour, adding two integrals along the imagi-
nary time axis, starting at the time edges of the laser pulse.

The method can be applied analytically for SFA, as well as
for the numerical solution of TDSE. The edge-effect adds a
trivial diffraction patterns originated from the time-edges of
the laser pulse, which disappear when using more smooth laser
pulses (long-truncated-Gaussian pulse) of the same frequency
and intensity. The edge-effect hides the physical structures in
PMD due to nonadiabatic processes in weak laser fields that
underlines the important application of the proposed method
to reveal the dynamical signal of strong-field ionization in the
deep nonadiabatic regime.
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S. Fritzsche, Single-cycle versus multicycle nonsequential dou-

ble ionization of argon, Phys. Rev. A 104, 013105 (2021).
[24] M. F. Kling, C. Siedschlag, A. J. Verhoef, J. I. Khan, M. Schultze,

T. Uphues, Y. Ni, M. Uiberacker, M. Drescher, F. Krausz, and
M. J. Vrakking, Control of electron localization in molecular
dissociation, Science 312, 246 (2006).

[25] H. Xu, Z. Li, F. He, X. Wang, A. Atia-Tul-Noor, D. Kielpinski,
R. T. Sang, and I. V. Litvinyuk, Observing electron localization
in a dissociating H2+ molecule in real time, Nature Communi-
cations 8, 10.1038/ncomms15849 (2017).
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