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Abstract—This paper deals with the mechanical 
behavior of the gearwheels of the antiquity, which were 
generally characterized by triangular shaping of the 
teeth. The engagement of the conjugate profiles is 
analyzed in detail, calculating the temporal variation of 
the speed ratio due to the back and forth shifting of the 
relative instant center. The admissibility of the points of 
the theoretical contact path is carefully checked, 
estimating also the magnitude of the successive tooth 
collisions and ascertaining the energy losses arising from 
the particular nature of the coupling. Some very 
interesting results are that only one couple of teeth turns 
out to be active at each time instant and that the real path 
may belong to the only approach region or to the only 
recess region entirely or may be split into two separate 
sub-phases, the one in approach and the other in recess, 
or may even straddle both regions. The occurrence of 
each of these conditions depends on the average speed 
ratio (tooth ratio) and on the assigned clearance between 
the two wheels. It is also  found that the speed oscillation 
is roughly contained in a ±10% range and the efficiency 
may reach rather high values, despite the presumable 
crude finishing of the ancient gearwheels due to the 
rudimentary technology used in the construction of the 
tooth profiles. 

Keywords: triangular tooth gearing, history of mechanics 

I Introduction 

Though only very few residues from the antiquity 
machinery are still preserved in some museums scattered 
over the world, it is legitimate to guess that a relatively 
advanced construction technology had been achieved and 
to imagine an extended practical use of many mechanical 
devices, especially in the Hellenistic, Byzantine and 
Islamic worlds. 

The gearwheel coupling was no doubt a somehow 
current application and, for example, was largely used for 
the implementation of astronomical devices, like 
planetary calculators for the position of many celestial 
bodies, or astrolabes, or odometers. 

One of the most significant find, the Antikythera 
mechanism (Fig. 1), is a planetary gear system, 
presumably of the first century B.C., ascribed perhaps to 
the philosopher Posidonius or to the astronomer 
Hypparchus of the Academy of Rhodes and used for the 
calculation of several astronomical positions. It was 
retrieved at the beginning of the XX century from the 

Antikythera wreck, which was accidentally discovered 
thanks to some sponge-divers anchored near the coast of 
the homonymous island (‘Αντικύθηρα, whose meaning 
is "in front of Kythera", is a very small Greek island with 
less than one hundred inhabitants in the sea channel 
between Crete and the larger island of Kythera). 

Many in-depth studies have been carried out on its 
functionality as a primitive analog computer (for 
example, see Pastore [1], de Solla Price [2-3], Wright [4] 
and mind the recent activity of the Antikythera 
Mechanism Research Project [5]). Reference [1] by 
Pastore reports an extensive and careful description of 
this gear system and elucidates its functional 
characteristics. De Solla Price spent a lot of time in his 
studies about this mechanism, in order to reconstruct the 
missing parts starting from the few archeological 
residuals, and also tried to assemble a complete model, 
whose copy is now in the National Archaeological 
Museum of Athens. Wright carried out a wide campaign 
of X-ray detection of the wheel, continued later on by the 
Antikythera Mechanism Research Project, which pointed 
out the shape of equilateral triangles of the toothing 
unequivocally. On the other hand, it is sensational that 
such a profile denounces a less advanced design 
conception in comparison with the recent find of the 
gearwheel of Olbia (Sardinia, Italy), which may be 
ascribed to the genius of Archimedes of Syracuse (third 
century B.C.) and is then earlier than the Antikythera 
planetary of more than one century, but exhibits the 
extraordinary characteristic that the tooth profiles are 
very close to the modern cycloidal shape [1]. 

It is very probable that many gear systems like the 
Antikythera mechanism were built during the Hellenistic 
period. Cicero mentions two other devices of this type in 
De Re Publica and says that they had been built by 
Archimedes and one of them was brought to Rome by 
Marcus Claudius Marcellus, who conquered Syracuse 
during the Second Punic War. It is believed that the 
cycloidal gearwheel of Olbia belonged to one of these 
devices [1]. Cicero also says that another such device had 
been built "recently" by a friend of him and thus, this 
technology was quite spread since the time of 
Archimedes and the Antikythera orrery was only one 
exemplar of a widely diffused manufacturing, though 
skilled hands and complex calculations were needed for 
this type of construction.  
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The complex technology needed for the construction of 
these gear systems was transmitted, through the 
Hellenistic world, to the Byzantine and Islamic culture 
and gave the conceptual origin to several geared 
machines in the Middle Age, like odometers, mechanical 
calendars and clockworks (for example, bear in mind 
some machines described in the books of the Byzantine 
monasteries, the volume Kitab al-Hiyal by Banu Musa, 
the odometers and astrolabes of al Biruni, etc.). 

We can also find gear devices in the codices of 
Leonardo da Vinci, i. e. at the dawn of the Modern Era. 
However, the tooth shape is still quite rudimentary, often 
triangular, and far from the modern cycloidal or involute 
profiles developed after Euler. 

The present analysis aims at stating the fundamentals 
of the mechanical coupling of ancient triangular gears. 
There seems to be no previous study of this type. 

II. Geometry of triangular toothed gears 

A scheme of the gear coupling is represented in Fig. 2 
a, b and c for three possible contact configurations: 
approach, profile matching and recess. The sizes are 
chosen in accordance to the design concepts to be 
presumed for those ancient times. Some elementary 
constraints lead to forced choices of the system data 
(constant pitch, equal tooth depth, etc.), while other 
variables are assumed ad lib. 

The ratio of the tooth numbers of the two gears 
corresponds to the average speed ratio, which is imposed 
by the machine employment, though the simple 
geometrical shape of the tooth profiles implies the 
variability of the instant speed ratio during the meshing. 

It is supposed firstly that each couple of conjugate 
teeth engages along the whole ideal path, ignoring the 
possible restrictions involved by the presence of the 
preceding and following teeth. In actual fact, the number 

of active teeth and the true line of contact for sequential 
tooth gearings is limited by the need of avoiding 
interference conditions and will be examined in the 
following Section III C. 

It is assumed that the teeth on the one and the other 
gear have the same aperture angle 2β and the same depth 
h from the vertex V to the root circle, whence, fixing the 
tooth numbers, the whole toothing can be designed 
relying on evident geometrical considerations. 

The triangle OBV in the detail on the lower side of Fig. 
2 shows that the tooth depth h and the side profile width e 
are calculable as 
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for each gearwheel, where R and R − h are the tip and 
root radii and z is the tooth number. 

Thus, the assumption of equal depths permits writing 
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and calculating for example R2 once fixed R1. 

The minimum value of the center distance D is Dmin. = 
R1 + R2 − h, but a tolerance factor a, a little greater than 
1, has to be multiplied by Dmin. necessarily in order to 
consider some backlash, which was especially needed in 
the antiquity to let the gear system work, in consideration 
of the unavoidable manufacturing inaccuracy because of 
the crude technology of those days. Thus, D = aDmin.. 

After fixing D, the ideal angular width of the meshing 
region is specified by the intersections of the two tip 
circumferences, of radii R1 and R2: 
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where i and j may stand either for 1 and 2 or for 2 and 1, 
while αi indicates the generic angular position of the 

                                                           

Fig. 1. Main fragment of the Antikythera mechanism at the National 
Archaeological Museum of Athens. 
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gearwheel i, which is positive or negative for the meshing 
entrance or exit of both wheels, according to Fig. 2. 

III. Kinematics of the gear coupling 

Refer to Fig. 2 for the notation throughout the present 
section. 

Starting from the initial meshing point on the first 
intersection of the two tip circles, where the two teeth are 
in contact through the apices, there is a first phase, where 
the apex of the driven tooth is pushed and slides along 
the side of the driver tooth, and a second phase, where 
the driver tooth apex pushes the side of the driven tooth, 
as far as the ending meshing point, on the second 
intersection of the tip circles. Such two phases are 
separated by the matching position of the two profiles, 
which occurs for −α2 = α1. This matching value will be 
called α1m and the two phases will be named of approach 
and recess, though somehow improperly if comparing 
with the modern gear terminology. 

Thus, the approach contact locus coincides with the 
arc of the driven tip circle preceding the matching 
position α2m (< 0) and the recess contact locus with the 
arc of the driver tip circle following the matching 
position α1m (> 0). The instant center of the relative 
motion is given by the intersection of the normal to the 
active profile, of the driver wheel in approach (na) and of 
the driven one in recess (nr), and the center line. A 
sudden change of the speed ratio must occur when 
passing from the matching position of the two teeth. 

In dependence on α1, it is possible to calculate the 

driven angle α2 and the distance v = 21VV  between the 

two vertices by use of specific closure equations, 
different for the approach and the recess. 

 
A. Approach phase 
Apply the two closure equations 
 

( ) DRvR =++− 22111 coscoscos αβαα  (5)

( ) 0sinsinsin 22111 =−+− αβαα RvR  (6)

 
to get, by elimination of v, 
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Then, calculating cosα2 and sinα2 by Eqs. (5-6), 

squaring and summing, α2 is easily eliminated and we get 
a quadratic equation for v, 
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where the coefficient of the linear term is equal to twice 
the positive difference of the projections of D and R1 on 
the straight line containing the diver profile, while the 

third term is equal to 12VO 2 − R2
2 and is negative as V1 is 

inside the driven tip circle. These observations address 
the choice between the two roots of Eq. (8) towards the 
plus sign, 
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Fig. 2 a, b, c. Scheme of tooth coupling. z2 /z1 = 2, β = 30°. 
a) approach phase; b) profile matching; c) recess phase 
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and it may be noticed that the term under the square root 
is equal to the projection of the tip radius R2 on the 
straight line of the driver profile. 

The approach phase ends when α2 = − α1 (α1 = α1m), 
whence we get by Eq. (7): 
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The instant center Ca of the relative motion is found on 

the center line, tracing the normal na to the driver tooth 
profile, whose slope is equal to π / 2 − α1 − β. Equating 

the projections of aCO2
 and 22VO  on the prolongation of 

the driver profile, the distance aCO2  is found to be  
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whence the speed ratio τ = ω2 /ω1 = aCO1 / aCO2 = 

D/ aCO2 − 1 is obtainable as 
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B. Recess phase 
After passing the matching configuration, the apex of 

the driver tooth slides on the driven tooth side, whose 
slope is β − α2, and the two closure equations are 

 
( ) DRvR =+−− 22211 coscoscos ααβα  (13)

( ) 0sinsinsin 22211 =−−− ααβα RvR  (14)

 
As it is desired to express all variables as functions of 

α1, the distance v may be firstly calculated, solving Eqs. 
(13-14) for cosα2 and sinα2, squaring and summing 
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where the third term is equal to R2
2 − 12VO 2 and is 

positive, so that both roots of Eq. (15) are positive. 
Nevertheless, the geometric meaning of Eq. (15) is that, 
fixing the angular position α1 of the vertex V1, which is 
inside the circumference of radius R2, one has to find the 
position of point V2 on this last circumference so that the 

angle 221
ˆ OVV  is equal to β. Two possible positions fulfill 

this condition, but the one closest to V1 is clearly to be 
selected, i. e. the lowest root v: 
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Since D2 + R1
2 − 2DR1cosα1 = 12VO 2, since R2sinβ gives 

the minimum distance of the centre O2 from the straight 
line prolonging the side of the driven tooth and since the 
apex V1 lies on this line, the quarter-discriminant under 
square root of Eq. (16) is certainly positive. 

After obtaining v, it is possible to get α2 by back 
calculation 
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and Equation (17) may be observed to be equivalent to 
stating that the absolute value of α2 is given by the sum 

of the angles formed by 12VO  with the center line and 

with the radius 22VO . 
The instant center Cr of the relative motion during the 

recess phase is located on the center line, on the 
intersection with the normal nr to the driven tooth profile, 
whose slope is equal to π / 2 − β + α2. Equating the 

projections of rCO1
 and 11VO  along the direction parallel 

to the driven profile, the distance rCO1  is given by 
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and the speed ratio τ = ω2 /ω1 is 
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where α2(α1) is given by Eq. (17). 

 
C. Real meshing conditions 
Of course, the teeth are closely distributed in two 

regular sequences, on the one and the other wheel, and, 
after ascertaining that the contact conditions cannot but 
be described by the analysis of the previous subsections, 
it is necessary to investigate if all the ideal contact points 
are admissible and if several meshing couples may be in 
contact simultaneously. 

Choosing a generic contact point on the ideal path, 
either in approach or in recess, the homologous points of 
the preceding or following tooth couples have angular 
distances ± 2πj /z1 and ± 2πj /z2 in the driver and driven 
gearwheels respectively, where j =  1, 2, … Therefore, 
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drawing the full ideal diagram α2(α1) a generic point 
must be regarded as admissible only if, tracing a straight 
line with slope z1/z2 through such a point, all the other 
points whose abscissae differ of ± 2πj/z1 from it lie below 
the diagram, as otherwise there would be interference for 
some tooth couple. 

Since the diagram α2(α1) will be shown to exhibit a 
slight upward concavity nearly everywhere except at the 
matching position α1m, where a sudden slope change 
occurs, the above reasoning leads to exclude all points of 
the diagram that lie above the prolongation of that 
particular chord (or sum of aligned chords) with slope 
z1/z2 and (total) projection 2πj/z1 on the α1 axis, that is 
located as much as possible at the bottom of the main 
concavity. The admissible contact points, which must lie 
below this straight line, may then be searched by 
checking the interference condition of the preceding and 
following teeth at any position of the ideal path. 

The consequence is in practice that only one couple of 
profile may be in contact at each time instant and, as soon 
as such profiles detach themselves, two new profiles, 
either of the following or of the preceding tooth couple, 
join simultaneously to mesh, either upstream or 
downstream. This will be better elucidated by showing 
some practical results from the numerical calculations. 

On the other hand, comparing with the inverse motion, 
it may be proven that the back inactive profiles of the 
teeth are quite far from the interference condition. 

 
D. Tooth collision 
The motion transmission is continuous, but the speed 

ratio is variable, as the position of the instant center of 
the relative motion moves back and forth along the center 
line. Moreover, since the entrance speed ratio is always a 
little higher than the exit one, because the relative instant 
center shifts towards the driver wheel center during each 
partial engagement, a slight impact occurs at the 
beginning of any mesh phase or sub-phase, as the driven 
profile has a slightly lower speed before the engagement 
than after it. 

It is supposed that the impact is inelastic, so that, 
immediately after the conjunction of two profiles, the 
velocity components of the driver and driven point along 
the normal to the contact are equal, while immediately 
before this instant, the driven velocity component is 
smaller, where the difference is proportional to the speed 
ratio jump. 

The velocity components normal to the active profiles 
may be obtained as the total velocities of those points of 
the two planes rotating rigidly with the one and the other 
wheel, that are located on the intersections of the 
parallels to the profile traced from the wheel centers with 
the normal to the profile itself. 

It will be shown that, for not too large backlash, the 
meshing phase is entirely in the approach region for z1/z2 
rather larger than 1 and in the recess one for z1/z2 rather 

smaller than 1. On the contrary, in the neighborhood of 
z1/z2 = 1, we may observe two sub-phases, the one in 
approach and the other in recess, distant one angular 
pitch from each other and with a trend to join into a 
single phase on increasing the backlash. On the other 
hand, whatever the tooth ratio may be, the meshing phase 
tends to straddle the approach and recess regions on 
increasing the backlash, as is also intuitive. 

If the whole meshing phase is in the approach region, 
indicating the driver and driven angular speeds with ω1 
and ω2 = τ ω1, the velocity components normal to the 
active (driver) profile are 
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Indicating the conditions preceding and following the 

impact with the superscripts − and + respectively and 
assuming for example that ω1 is constant, one has v1⊥

− = 
v1⊥

+ = v1⊥ and v2⊥
+ = v1⊥, whence v2⊥
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τ − /τ +, so that (v2⊥

+ − v2⊥
−) / v1⊥ = 1 − τ − /τ + and, 

calculating the speed ratios at the beginning and the end 
of the meshing phase by Eq. (12), one obtains 
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where the subscripts i and e define the initial and ending 
values of the angle α1. 

When the whole meshing occurs in the recess region, 
the velocity components normal to the active (driven) 
profile are 
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Proceeding as in the previous case, but using now Eq. 

(19), one gets 
 

( )
( )

( )
( ) 1

21

2

1
21

2

1

22

cos

cos
cos

cos

1
R

D

R
D

v

vv

ee

e

ii

i

−
−−

−

−
−−

−

−=−

⊥

−
⊥

+
⊥

ααβ
αβ

ααβ
αβ

 (25)

 



13th World Congress in Mechanism and Machine Science, Guanajuato, México, 19-25 June, 2011                IMD-123 

 6  
 

If the meshing begins in the approach region and ends 
in the recess one, which may occurs for large clearances, 
it is possible to use both equations Eqs. (12) and (19), 
minding that the initial speed ratio refers to the approach 
and the ending one to the recess: 
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(26)

At last, if the meshing phase splits into two sub-
phases, the one in the approach region and the other in 
the recess one, their total width and the distance between 
each other are both equal to the angular pitch (see Section 
V). Therefore, each couple of profiles starts the 
engagement in the approach region and meshes for a 
period shorter than the angular pitch, at whose end the 
preceding couple engages in the recess region and 
meshes for the complementary angular pitch, until 
separating simultaneously with the engagement of the 
new couple of profiles, following the first one, in the 
approach region. For the impact at the beginning of the 
approach sub-phase,  Equation (26) may be used, 
choosing properly τe (end of the preceding recess sub-
phase), while for the starting impact of the recess sub-
phase, one has to use an inverse relationship with respect 
to Eq. (26), minding that τe refers now to the end of the 
preceding approach sub-phase: 
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Likewise, in the particular case when the engagement 
straddles both, approach and recess regions, in addition to 
the impact described by Eq. (26), also the impact of the 
tooth profiles at the matching position must be taken into 
account. All the intermediate points of the driven profile 
between the two tooth tips bounce on the driver profile, 
except the inner point, which remains in contact, and the 
velocity jump is still given by Eq. (27), provided that one 
replaces α1i and α1e with α1m, and α2i with − α1m.   

All these impacts involve relative speed jumps up to 
the order of 10% and may produce a significant rattle of 
the gear system if the driving crank has an appreciable 
angular speed. 

IV. Power loss 

Apart from the other energy losses, for example in the 
supports, or because of the air drag, or because of other 
loss sources, the losses to be ascribed to the tooth 

meshing are due to the sliding friction and to the tooth 
impact. 

The ideal pressure angle, formed by the normals to the 
active profile and to the center line, is β + α1 in the 
approach phase and β − α2 in the recess one and is quite 
larger in comparison with the modern involute toothing. 

Owing to the sliding friction, the line of action of the 
force exerted by the driver tooth on the driven one is 
rotated of the friction angle ϕ = arctanf with respect to 
the normal, towards the center of the driven wheel, both 
in the approach and in the recess phases (see Fig. 2). 

Since only one couple of teeth is active at each time 
instant, the problem is isostatic and the mutual force is 
given by the ratio of the driver torque M1, which is 
assumed constant, except the instantaneous peaks due to 
the tooth collisions, and the corresponding arm b1. 
Tracing the parallel to the line of action of the mutual 
force through the relative instant center as in Fig. 2, the 

arms b1 and b2 are calculable as b1 = aCO1 cos(β+α1+ϕ2) 

+ aCV2 sinϕ, b2 = aCO2 cos(β+α1+ϕ2) − aCV2 sinϕ, for 

an approach contact, and b1 = rCO1 cos(β−α2+ϕ1) + 

rCV1 sinϕ, b2 = rCO2 cos(β−α2+ϕ1) − rCV1 sinϕ, for a 

recess one, where ϕ1 = ϕ sgn(α1), ϕ2 = ϕ sgn(α2). 

Considering that aCV2 = R2sinα2 /cos(β+α1), rCV1 = 

R1sinα1 /cos(β−α2), CO1  = τ CO2 , using Eqs. (11) 

and (18) and carrying out some calculations, the values of 
b1 and b2 are found to be given by 

( ) ( )[ ]
( )1

2221212
1 cos

sinsincoscos

αβ
ϕαϕαβααβτ

+
+++++= R

b  (28)

( ) ( )[ ]
( )1

2221212
2 cos

sinsincoscos

αβ
ϕαϕαβααβ

+
−++++= R

b  (29)

during the approach, and 

( ) ( )[ ]
( )2

1112211
1 cos

sinsincoscos

αβ
ϕαϕαβααβ

−
++−−−= R

b  (30)

( ) ( )

( )2

11
1221

1

2 cos

sinsin
coscos

αβ

ϕα
τ

ϕαβααβ

−








 −+−−−

=
R

b  
(31)

during the recess. 
The efficiency ηf due to the only sliding friction is 

obtainable as the product of the speed ratio τ and the arm 
ratio b2 /b1: 

( ) ( )
( ) ( )
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ϕαϕαβααβ

ϕαϕαβααβη
22

2121

222121
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+++++
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(32)
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ϕαϕαβααβ
ϕατϕαβααβη

−+−−−
++−−−=f

 (33) 
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The sliding friction energy loss during one complete 
meshing of two conjugate teeth can be calculated by 
integration: 

   

( )∫ −=
tot1,

111
α∆

αη dML ff  (34) 

 
where, in the case of two partial contact sub-regions, the 
integration must be extended to both of them. The torque 
applied to the driven gearwheel is M1b2 /b1 and is variable 
owing to the variability of the arms b1 and b2. 
Furthermore, this torque differs from the output resistant 
torque due to the secondary shaft inertia and the 
variability of ω2. 

As regards the impact losses, the previous assumptions 
of constancy of the driving speed ω1 and inelastic 
impacts lead to the conclusion that, for every tooth 
collision, the work ½J2ω1

2(τi
2+ − τi

2−) must be provided 
by the driving wheel, where J2 indicates the moment of 
inertia of the driven wheel and all the masses connected 
to the driven shaft, while the speed ratios τ refer to the 
instants immediately after and before the impact, to be 
calculated as in the previous section. In the case of two 
partial contact sub-region or of one single region astride 
the matching position, two impact works must be taken 
into account, because of the approach, recess and 
matching impact. Such impact works have to be added to 
the sliding friction work, Eq. (34), to get the total lost 
energy due to the tooth coupling during one single mesh. 

V. Results 

Figures 3 to 5 show the numerical results arising from 
the above formulation for three tooth ratios z2 /z1 and two 
values of the clearance factor a = D/(R1 + R2 − h). 

Figures 3 a and b refer to a speed down case. The 
active fraction of the diagram is confined in the recess 
region and its width along the abscissa axis is 360°/z1. 
The concavity of the diagram α2(α1) is slight and upward 
directed, so that the admissible active points are confined 
under the bottom chord of width 360°/z1 and slope z1 /z2. 

The speed ratio decreases along the direction of the 
meshing evolution, i. e. from right to left. 

Close to the matching position, α1m, the distance of the 
contact point from the relative rotation center C is very 
small, which justifies the high sliding efficiency near this 
position. A coefficient of friction f = 0.2 was chosen in 
all the examples, assuming bronze gearwheels and some 
sort of rudimentary lubrication, which compensates for 
the necessarily crude profile finishing somehow. 

Comparing Fig. 3 a with Fig. 3 b, which refers to a 
larger backlash, it is possible to observe a significant 
reduction of the ideal meshing width, but no remarkable 
changes in the real mesh. Therefore, rather large 

clearances can be adopted without any important 
worsening of the mesh conditions, to the advantage of the 
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prevention of possible transmission stops due to the tooth 
locking. 

Figures 4 a and b refer to a speed up case and similar 
comments can be made as for Figs. 3. The main 
difference is that the real mesh phase develops inside the 
approach region, but tends to develop astride the 
matching position on increasing the backlash. This last 
feature is clearly typical of all cases. 

Figures 5 a and b refer to a unitary speed ratio. For 
small clearance, two partial meshing regions can be 
observed, the one in the approach region and the other in 
the recess one. The sum of the widths of these two sub-
regions along the α1 axis is equal to 360°/z1 and is also 
equal to the distance between them. Therefore, indicating 
with the numbering, j − 1, j, j +  1, the sequence of three 
successive couples of conjugate teeth and starting the 
analysis of the engagement with the approach sub-phase 
of the couple j, from the right of the diagram towards the 
central position, the couple j − 1 begins the engagement 
of the other sub-phase, in the recess region, immediately 
after the conclusion of the approach sub-phase of j, and 
keeps on until this recess sub-phase is entirely covered. 
Then, the couple j +  1 starts a new approach sub-phase 
from the right end and the whole process begins again. 
This sequence is permitted by the circumstance that the 
distance between the two extremes endpoints, on the 
right of the approach contact and on the left of the recess 
contact, is exactly equal to 2×360°/z1. 

On increasing the clearance, the left sub-region width 
decreases to the advantage of the right one, their total 
width and their mutual distance remaining unchanged, 
until it vanishes and leaves only one single contact 
region. On increasing the clearance further, this unique 
phase moves to the left, until straddling the matching 
configuration α1m and lying in part in the approach region 
and in part in the recess one. This is clearly visible in the 
case of Fig. 5 b, where the sliding efficiency reaches its 
highest average value and the impact velocity jump v2⊥

+ 
− v2⊥

− is very low. For this configuration, i. e. speed ratio 
1:1 and rather large backlash, we get thus the best 
conditions as regards the energy losses. Clearly the 
gearwheel clearance cannot be increased too much 
because, if the ideal region of virtual contact becomes 
smaller than 360°/z1, we may have standstill period of the 
driven wheel, with important collisions at the new motion 
start, or else its definitive arrest. 

VI. Conclusion 

The extraordinary advancement degree of the 
Hellenistic science in conceiving planetary gear systems 
is somehow overshadowed by the technology 
primitiveness of that time. Nevertheless, an appreciable 
level of functionality can be detected by an accurate 
analysis. The gearing behavior was certainly 

characterized by a sensible rattling noise due to the tooth 
collisions consequent to the variability of the speed ratio. 
The energy losses were of course more relevant in 
comparison with the present gear systems, but, guessing 
that a sort of rudimentary greasing or oiling of the contact 
might have been applied even in the antiquity, the friction 
losses due to the rough technology in the tooth 
construction might have been compensated in part by the 
lubrication. Thus, energy losses of the order of 10% or 
less may be reasonably conjectured.  
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