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We analyze the complexity of classically simulating the dynamics of locally interacting quantum spin systems
with a constant rate of entanglement breaking noise. We show that for a system with n spins, a polynomial time
classical algorithm can be used to sample within a O(1/poly(n)) total-variation distance of the state of the spins
when the rate of noise is sufficiently high. Furthermore, by encoding a 1D fault tolerant quantum computation
into the dynamics of open quantum spin systems, we show that for certain physically relevant channels, the
problem of sampling from the output state is BQP-complete in the low noise regime. Our results rigorously show
the presence of phase transitions in the classical simulatability of the continuous time dynamics of open quantum

spin systems.

Introduction: Simulating the dynamics of quantum spin
systems with local interactions is of fundamental interest in
many-body physics. Not only is this a model for many physi-
cally relevant systems, it also serves as a model for engineered
quantum systems that underly quantum information processing
technologies. There has been a long line of research aimed
at developing classical algorithms for simulating dynamics
of quantum spin systems using tensor-networks [1-5]. It is
recognized that simulating quantum spin system dynamics on
classical computers is generically hard due to the possibility
of encoding a quantum computation in such dynamics [6-8].
However, for quantum systems interacting with an external
environment, more opportunities open up for classically sim-
ulating their dynamics [9-14]. From a physical standpoint, a
strongly interacting external environment prevents the spins
from significantly entangling with each other and thus opens
up the possibility of an efficient classical representation of the
quantum state.

This question has received significant attention in the con-
text of circuit model (or discrete-time model) of noisy quantum
computation. It was shown very early on that a simulatability
phase transition is expected for the circuit model of quantum
computation on tuning the rate of noise. For sufficiently high
rate of noise, there would exist a polynomial time classical
algorithm to simulate a quantum computer [15, 16]. Further-
more, the threshold theorem for quantum computation [17, 18]
implied that if the noise is small enough (below a threshold)
and a fresh supply of auxillary qubits is available, then a fault-
less quantum circuit can be encoded into a faulty quantum
circuit. Through numerical simulations and analytical map-
pings to classical statistical mechanics, qualitatively similar
behaviour has been found in the entanglement dynamics of ran-
dom unitary circuits interspersed with measurements [19-24].

In this paper, we rigorously show the existence of simu-
latability phase transitions in the continuous time dynamics of
locally interacting spin systems which have thus far only been
treated numerically in specific models [25, 26]. Not only does
this model underly the discrete-time circuit model, it also phys-
ically more relevant for analyzing near term quantum hardware
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being used as analogue quantum simulators [27-34]. We first
consider the high noise regime and show that for general Lind-
bladian (dissipative or non-dissipative) interactions between
the spins, a classical polynomial time algorithm can sample
within O(1/poly(n)) total variation error of the spin states
after poly(n) time (theorem 1). The key technical contribu-
tion here is to identify a map between the noisy continuous
time dynamics and a correlated percolation problem. Next,
in the low noise regime and and even with non-dissipative
local interactions, we show that spin models in two or higher
dimensions are expected to be classically insimulatable if the
noise channel is entanglement breaking and maps the spin to a
thermal state on a known basis (theorem 2). The key technical
contribution here is an encoding of 1D fault tolerant quantum
computation [17, 18] into the dynamics of the spin system,
which is enabled by implementing heat bath algorithmic cool-
ing [35, 36] by leveraging the noise channel so as to refresh the
bath qubits while maintaining the fault tolerance threshold theo-
rem. A minor modification of this construction also shows that
discrete-time models of unitary circuits interrupted with entan-
glement breaking noise (such as projective measurements) are
also expected to be insimulatable at low noise rates (theorems
3 and 4), thus providing rigorous evidence for numerically and
analytically observed entanglement phase transitions [21-24].

We first consider the problem of simulating the continuous-
time dynamics of locally interacting quantum spin systems in
the high noise regime, as made precise below.

Definition 1 A superoperator £ : £((C?)®") — £((C?)®n)
over n spins arranged on 7% is a local Lindbladian with an
interaction range R if 3 S = {A C Z%diam(A) < R} such

that
£=> "
AeS

where YA € S, LA : £((C?)®") — £((C%)®™) is a Lind-
bladian which is identity on spins outside A. The tuple
(S, {LAA € S8}) is a local representation of L with inter-
action range R.

Furthermore, we need to introduce a notion of the interaction
strength of the local evolution, which would determine the
threshold for the noise rate x above which the dynamics of the
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FIG. 1. Schematic depiction of the mapping of a continuous time model to an equivalent percolation problem in 1D (this mapping is easily
generalized to higher dimensions, see the supplement). The continuous time evolution is first trotterized, followed by blocking 7/4t time-steps
together and identifying this block of time-steps per qubit with a site on the percolating lattice. The site is declared open if the qubit associated
with the site experiences entanglement breaking noise at least once and does not couple to any of the neighbouring qubits via the channels

obtained on trotterization of the Lindbladian £ ().

spin system is classically simulatable. The notion of interaction
strength that will be of key importance in theorem 1 is related to
the Choi-state of the local terms in the Lindbladian determining
the interaction.

Definition 2 Letr L be a local Lindbladian with an interaction

range R, then the interaction strength of its local representa-
tion (S, {LA|A € S}) is given by

g = rz{lgg |/\max(q)LA)|a

where ® 1 is the Choi-state corresponding to the superoperator
L, Amax (D) is its maximum magnitude eigenvalue.

Problem 1 (Continuous-time model) For a fixed lattice di-
mension d € N, an interaction range R > 0, an interaction
strength g, a noise rate & > 0 and a single spin entanglement-
breaking channel N : £(C?) — £(C?), sample in the com-
putational basis from a family of states {p, € D1((C?)®") :
n € N} where forn € N, p,, is a state of n—spins arranged
on Z.% such that

p=Tew( [ (£a00)+ Zw —i0))ds ) 0

where

*Vn € N, p,(0) is a n spin product state that can be
computed classically in O(poly(n)) time,

* t,, = O(poly(n)) is the evolution time,

*Vn € Nand s € [0,t,], Ln(s) : £((C?)®") —
£((C*)®n) is a n—spin local Lindbladian superoper-
ator which has an efficiently computable local represen-
tation of interaction range R and interaction strength

g.

o Vi€ {1,2...n}, N; : £((C?)®") — £((C%)®n) is the
tensor product of the entanglement breaking channel N
acting on the i" spin and identity on other spins.

Theorem 1 3 fy, > 0 dependent on d and R such that for k >
fing, there is classical polynomial-time algorithm to sample
within a O(1/poly(n)) total variation distance of p,, the n
qubit state from the family of states specified in problem 1.

Proof sketch: The basic steps in the proof are schematically
depicted in Fig. 1 — we first trotterize the continuous time
evolution with time-step d¢t = O(1/poly(n)) chosen to incur a
total variation error < O(1/poly(n)). While in the trotterized
picture the noise channels are applied at the same time, the
probability of the noise actually being applied is proportional
to ot and hence vanishingly small — consequently, the trot-
terized picture does not directly exhibit a percolation phase
transition either. The key idea to resolve these issues is to
note that the channels resulting from the trotterization of the
local n qubit Lindbladian £,, can be further approximated as
a convex combination of an identity channel, applied with
probability 1 — Q(gdt) and another completely positive trace-
preserving (CPTP) map, applied with probability O(gdt). To
sample from the trotterized circuit, we sample independently
from the channels resulting from the trotterization of £,, and
the entanglement breaking channel A/. Each channel sam-
pling is mapped to a percolation problem by associating a
site in the equivalent percolation problem with a qubit and a
block of m trotterized time steps, where m ~ 7/dt for some
7 > 0. The site is declared open if the the associated qubit
experiences the entanglement breaking channel at least once
and does not couple to the neighbouring qubits through the
channels corresponding to L,,, else it is declared closed. The
probability of the site being open is then lower bounded by
~ exp(—Q(g7))(1—exp(—kT)) (see the supplement for more
details). A simple analysis of this result shows that if « is larger
than a threshold determined by g, 7 can be chosen such that
this probability exceeds the site percolation threshold, making
the percolation problem subcritical. Now, using the fact that
the sizes of the clusters in the subcritically percolated lattice
are almost surely O(log n) [37], we then obtain that the result-
ing sequence of sampled channels can be contracted in poly(n)
time on a classical computer. A subtlety in this analysis is
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FIG. 2. Implementation of a RESTART gate on an a computational ancilla qubit by using the neighbouring auxillary qubits — (a) Schematic
depiction of the basic steps involved — cooling the auxillary qubits, swap with ancilla and shift for the next restart operation. (b) The shift
operation implemented by layers of SWAP gates (which take time 7,) followed by allowing the noise to act on the individual qubits for time 74.
Since the choice 74 = @(ml/ =17, suffices to shift m qubits with a given fidelity, this construction does not break the fault-tolerant threshold

theorem.

that the effective percolation problem obtained is not where
each site is independent, but where the probability of a site
being open open or closed is dependent on the state of the site
above or below it — however, by closely analyzing the condi-
tional probability, we can show that the size of the clusters in
this problem are also upper bounded by O(log n). A detailed
formal proof is provided in the supplement. (.

Intuitive reasoning might suggest that since the entangle-
ment breaking noise, at any non-zero rate, disentangles an
extensive number of qubits, it might be possible to classi-
cally simulate local spin systems at any rate of noise. For
instance, if the entanglement breaking noise is depolarizing
(i.e. N(-) = tr(-)I/2) and the local interactions are entirely
non dissipative, then it follows simply by entropic considera-
tions [38, 39] that the beyond ¢t = O(log(n)), the joint state of
the qubits is within a O(1/poly(n)) total variation error of the
maximally mixed state. In 1D locally interacting spin systems,
this implies that the dynamics is always classically simulatable
for all times ¢, and in two or higher dimensions, the dynamics
is classically simulatable for ¢ = 2(log(n)). For depolariz-
ing noise, therefore, we do not expect to have a simulatability
phase transition on changing the rate of noise.

However, if the noise channel is not depolarizing, then the
entropic argument presented in Refs. [38, 39] does not apply,
and there is a possibility that for sufficiently small rate of noise
k, the dynamics of the spin system become hard to simulate.
In the remainder of this paper, we investigate the relationship
between the properties of the noise channel A/ and the simu-
latability of dynamics in the low noise regime using the theory
of fault-tolerant quantum computation. Our analysis relies on
the threshold theorems proved by Aharanov [17] and Gottes-
man [18] where they showed that if the noise rate is below a
particular threshold, a fault tolerant quantum computation can
be encoded even on a 1D lattice of spins with nearest neigh-
bour interaction provided that we have the ability to perform
a RESTART gate (i.e. a channel which could replace a qubit
with a |0}) in the middle of the computation.

We first show the insimulatability of the continuous time
model introduced in Problem 1 if A/ maps the spin to a thermal
state on a known basis (e.g. amplitude damping channel).

Theorem 2 If 3¢ > 0 and mutually orthogonal states

|6T) ,|p~) € C? such that Vo € N'(D1(C?)) :

1) (6] + ——Z |¢) (7],

_1+e, 1
n 2

7 2

for some €, > ¢, then for d > 2, kg > 0 such that for
Kk < kg problem 1 with purely non-dissipative Lindbladians is
BQP complete.

Proof sketch: The key idea behind this proof is to encode a
fault tolerant quantum computation within the continuous-time
model. We first recall some prelimnaries:

1. It has been shown in Refs. [6, 7] in the absence of noise,
sampling from the quantum state generated by a se-
quence of local unitary gates even in a 1D lattice of
qubits is BQP complete.

2. If allowed to controllably restart the qubits (i.e. replace
them with a qubit in a pure state), fault tolerance in
1D circuits can be achieved with just nearest neighbour
unitary gates [17], and thus the problem of sampling
from the state of a 1D lattice of qubits generated by local
unitaries and a RESTART gate is BQP complete if the
rate of noise is below the error correction threshold.

However, we do not directly have access to a RESTART gate
— we propose to implement this gate with unitaries and by
exploiting the noise channel (Fig. 2a). Consider d = 2 (BQP
completeness for d = 2 = BQP completeness for d > 2)
— we pick one row of spins in the lattice as the computational
qubits, comprising of data qubits (which hold the encoded
state on which the BQP complete computation is being per-
formed) and ancilla qubits (which are used to perform error
correction on the encoded data qubits). The ancilla qubits
need to be restarted during the computation — to implement
the RESTART gate on an ancilla qubit, we utilize the qubits,
henceforth called the auxillary qubits, in the column containing
the ancilla. We initialize these qubits in a state 0 € N (D(C?))
— since these qubits are in a finite-temperature thermal state at
the time the RESTART operation needs to be performed, ©(1)
of them next to the ancilla qubit, cool them using a sorting
unitary [35, 36], and swap them with the ancilla qubit.



While this restarts the ancilla qubit into the state |~ ), we
need to replenish the auxillary qubits so as to prepare them for
the next RESTART gate. This is done by shifting the qubits
next to the used auxillary qubits in their place — a difficulty in
performing this shift operation is that it could be faulty due to
the noise. Since we need RESTART operations at ©(poly(n))
time, the error in the shift operation is non negligible even at
any constant, no matter how small, rate of noise. To resolve
this issue, we propose to perform an imperfect shift operation,
followed by allowing the noise to act on the shifted qubits for
time 74 (Fig. 2b) — while an imperfect shift operation can
possibly entangle the qubits and even put them into I/2, the
action of the noise channel on the qubit disentangles the qubits
and drives them to a finite temperature state. Clearly, if 74 is
chosen to be large enough, then the qubits would be in a state
which can be subsequently cooled. However, increasing 74
also increases the effective noise on the computational qubits
since error correction is paused till the qubits are not restarted—
however, a close analysis of this operation reveals that (see the
supplement) that to replenish m auxillary qubits with the shift
operation, 74 can be chosen to be ©(1/x'~1/™) and hence
the error sustained in the computational qubits while error
correction is paused for this shifting, which is proportional to
KT4, can be made smaller than the error correction threshold
for sufficiently small «. [J.

A simplified version of the construction of theorem 2 al-
lows us to show the low-noise insimulatability of discrete-time
models of unitaries interspersed with entanglement breaking
channels. For dynamics of local random unitary circuits in-
terspersed with projective measurements, it is found using
numerical simulations and analytical mappings to statistical
mechanics that for sufficiently low noise rate, a volume law
entanglement develops in the states of spins [21, 22]. We make
this observation rigorous by showing that whenever the noise
channels have a fixed point different from 7 /2, a fault-tolerant
quantum computation can again be encoded in noisy discrete
time models — this condition is weaker than the one assumed
in theorem 2 and additionally covers channels corresponding
to projective measurements. We consider two unitary layers —
a parallelized layer of unitary gates acting on disjoint sets of
qubits, and matrix product unitary layers [40].

Definition 3 A superoperator U : £((C?)®™) — £((C?)®")
over n spins arranged on 7 is a local parallelized unitary
layer if Vp € £((C?)®")

o ({1

for some Uy, Us ... Uy that are single or nearest-neighbour
two-qubit unitaries acting on disjoint sets of spins.

Definition 4 A superoperator U : £((C?)®") — £((C?)®n)
over n spins is a matrix-product unitary layer of bond dimen-
sion D if¥p € £((C*)®™), Up = UpUT, where U is an qubit

unitary such that for ¥iy,is .. .in, j1,72 - . - jn € {0,1}

n
<i1>i2 .. an U |j17j2 .. jn> = 1114;“-7’7
=1
{07 1}’ Ailvjl c
Ain—hjn_l c

cfitn—1

where Vil,iz...in7j1,j2...jﬂ € 1
(CIXD’A;,{I,JH c CD><1 and AZ;’]Z,A?’R..
(CDXD

We point out that every local parallelized unitary layerin d = 1
dimensions can be expressed as a matrix product unitary layer
with bond-dimension 2, but there are matrix product unitary
layers that cannot be expressed as a local parallelized unitary
layers.

Problem 2 (Discrete time model) For a fixed noise rate p €
(0,1) and a single spin entanglement-breaking channel N :
£(C?) — £(C?), sample in the computational basis from a
family of states {p,, € D1((C?)®") : n € N} whereforn € N,
Pn IS a state of n spins given by

é’@”utn,l .. .ulp(O),

n

Pn = gg@nut
where

*Vn € N, p,(0) is a n spin product state that can be
computed classically in O(poly(n)) time,

* t, = O(poly(n)) is the number of time steps,
e Vn eN,t€{1,2...t,}, Uy is a unitary layer,
« & =(1-p)id+pN.

Theorem 3 [f 3o # 1/2 such that N'(¢) = o, then 3 py, > 0
such that for p < pg the problem 2 with local parallelized
unitary layers in two or higher dimensions (definition 3) is
BQP complete.

Proof sketch: We follow the same construction as that of theo-
rem 2, with the additional simplification that the shift operation
can be done faultlessly within this model. This is follows from
the fact that the shift operation can be performed as two layers
of two-qubit SWAP gates, and since in the model the errors are
allowed only before or after the SWAP gate, a qubit initially in
a fixed point of A/ remains unchanged. (.

Theorem 4 [f 30 # /2 such that N (o) = o, then 3 py > 0
such that for p < py, problem 2 with matrix-product unitary
layers of bond dimension > 2 (definition 4) is BOP complete.

Proof sketch: Note that a non-local SWAP operation can be
implemented with a matrix product unitary (MPU) of bond
dimension 2 by applying SWAP gates sequentially — conse-
quently, all the ancilla qubits used to implement the RESTART
gate can be maintained towards one end of the circuit and
swapped into place using a matrix product unitary. As in the-
orem 3, since the model only allows the noise channel to act
before or after the MPU, the SWAP gate can be done faultlessly
0.



In conclusion, we have considered the problem of sim-
ulating an open quantum system of n spins arranged on
d—dimensional lattices and with local interactions. Our work
provides rigorous evidence of existence of simulatability phase
transitions in the continuous-time and discrete-time dynamics
of locally interacting open quantum spin systems. We have
also outlined how the nature of the noise channel can be in-
strumental in determining whether such a phase transition is
possible — while for depolarizing channel, the final state of
the quantum spin systems is very close to the maximally mixed
state, for a number of other channels the existence of such
phase transitions can be inferred simply by an application of
the quantum computation threshold theorem.

Two specific technical problems left open in this work are
extending the fault tolerant construction to 1D spin systems
with local interactions and to extend theorem 2 to a larger
class of noise channels. Another possible direction could be
to extend theorems 2-4 to settings where the spins interact

purely dissipatively. Furthermore, we expect similar results to
hold for cases where the interaction with the environment is
non-Markovian — analyzing the impact of non-Markovianity
on phase transitions in both worst-case and average-case prob-
lems could also be an interesting and experimentally relevant
direction to pursue.
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I. PROOF OF THEOREM 1

In this section, we outline a proof of theorem 1 of the main text. We begin the section by recalling a basic result from the
theory of subcritical percolation [1, 2] which provides a bound on the likelihood of obtaining a very large connected cluster in a
(site) percolating lattice. We also provide a simple extension of this result to a percolation problem where the state of each site is
dependent on the states of (some finite number of) its neighbouring sites — this result is used for analyzing the run-time of the
classical sampling algorithm used in the proof of theorem 1.

A. Some results for subcritical percolation

Definition 1 (Cluster) Consider a percolation problem on a connected lattice L C 7% where each vertex is either open (set to 1)
or closed (set to 0). A set of closed vertices S C L is called a cluster if Vvi,vs € S, there exists a path (using only edges from
Z.2) from vy to va. We will denote by C(L) as the set of all clusters on L i.e. C(L) = {S C L|S is a cluster}.

Lemma 1 (Independent site-percolation from Ref. [2]) Consider a site-percolation problem on a connected lattice L C 7.2
with n sites where each vertex v is independently opened (set to 1) or closed (set to 0). Then, Ip.. € (0,1), referred to as the site
percolation threshold, such that if Prob(X, = 1) > p. V v € L, where X, is the state of the vertex v € L then

Prob S| > s ) <O(ns®exp(—
ro (s%?é)' |_s> < O(n®s®exp(—s/sp)),

for some s, > 0.

Next, we consider a site percolation problem on Z? where each site is statistically dependent on its neighbours, and show that a
similar percolation threshold can be derived for such a problem. The idea is to construct a channel from a percolation problem
where all sites are independent to the percolation problem where each site is dependent on its neighbours in such a way that the
maximum cluster size can only decrease.

Lemma 2 Consider a site-percolation problem on a connected lattice L C 7% with n sites where each site is opened (set to 1) or

closed (set to 0) with state of a vertex v € L being conditionally dependent on state of the vertices in a deleted neighbourhood
Ny C L, then if infyer, inf e (o, 1y1n50] Prob(X, = 1|Xn, = ) > p., where forv € L, X,, € {0, 1} is the state of the vertex v,

forSeL, Xgs € {0, 1}|S |'is the state of the vertices contained in S and p. is the site-percolation threshold defined in lemma 1,
then

Prob S| >s) < O(n's® exp(—
ro <sréléa()z)| |_s> < O(n®s®exp(—s/sp)),

for some s, > 0.

Proof: We consider a site-percolation problem on L where each vertex v € L is independently open or closed. For notational
convenience, Vv € L, we define z,, € {0, 1}‘N”‘ via

x, = argmin Prob(X, = 1| Xy, = x).
2€{0,1}Nol
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Next, Vo € L and x € {0, 1}|N v, we define a Bernoulli random variable Zy. 4 such that

Prob(X, = 1| Xy, = ) ifx = x,,

Prob(Z, , =1) = .
10b(Zv.q ) {(Prob(Xv =1|Xy, = 2) — Prob(X, = 1| Xy, = 2,))/Prob(X, = 0| Xy, =z,) ifx# z,.

The random variable X, can then be generated from Z,, . via

¥ _ 1 if Z, ., =1, else
" 1Zy,. wherex € {0,1}V] such that X, = z.

It is easy to verify that this definition of X, gives the right conditional probability distributions. Furthermore, we can easily
note that Z,, ,, =1 = X, = 1. Therefore, the maximum cluster size in a lattice L where each vertex v has state Z,, ; is
necessarily larger than the maximum cluster size in a lattice L where each vertex v has state X,,. Thus, from lemma 1, the bound
on the likelihood of the maximum cluster size follows. [].

B. Sampling from the open-quantum spin system dynamics

The problem under consideration is precisely stated below,

Problem: We consider a noise rate r, a single-qubit entanglement breaking channel N (-) and a family of Lindbladians
(L) nen over n-qubits on the d—dimensional lattice Z.%. The local Lindbladian L, is expressible as a sum of M = O(poly(n))
Lindbladians acting over qubits at members of the set S = {A1, Ay ... Apr}, where Ay C Z2V i € [M] i.e.

Lo=) La,

AeS

where ¥ A € S, (i) Ly is identity when acting on qubits outside A, (ii) its diameter is bounded i.e. d(A) < O(1)V A € S and (iii)
the Lindbladian has a bounded norm i.e. ||L4||,_,, < O(1). We further assume that the set S can be partitioned into L = O(1)
sets S1,Sa ... Sy, such that Vi € [L] and A, A" € S, AN A’ = ¢. The master equation under consideration is then given by

d%t) = Lop(t) + n; (NG —1d)p(t),

where N is the entanglement breaking channel N acting on the i™ qubit. The computational problem that we are interested in is
to sample from the state p(t), in the computational basis, for a time t = O(poly(n)).

We first trotterize the evolution and represent each channel in the trotterized evolution (be it the entanglement breaking channel
due to trotterization of the noise, or the channels that are entangling neighbouring qubits) as a convex combination of the identity
channel and a completely-positive trace preserving (CPTP) channel. This is made precise in the following lemma.

Lemma 3 A parameter N = ©(poly(n)) can be chosen such that ||p(t) — 64 n||,, < O(1/poly(n)), where &,  is the trotterized

State
O (G ) (RS I [

i=1 FAES; i=1

with g > maxpes Amax (Pr, ) (Where Amax (P ) is the maximum magnitude eigenvalue of the Choi state corresponding to L)
and Ep is a channel acting on the qubits contained in A. The channel (1 — gt/N)id + gt /NE, appearing in the trotterized
channel, expressed as a convex combination of id and &, will be referred to as a ‘horizontal’ channel.

Proof: We use the first order Trotter-Suzuki formula to approximate p(t) by p;, n, where for N € N,

pry = {ﬁ ( II e‘At/N) (f[e“w""“”/“)]]vp(oy &)

i=1 “MA€S; i=1



A standard analysis of the trotterization error [3] allows us to bound the trace-norm error between p(t) and p:

. 2 ?
1060 ol < O 5 (S 12l 4 nnlia =y ) ).
A

Since k = O(1), |Z — N, ,; =O0(1)andVA € S : [|La]l,_,; < O(1), we obtain that ||p(t) — ¢, v, < O(t*poly(n)/N) —
a sufficiently large value of N which scales as poly(n) thus allows us to control the error incurred in this approximation.

Next, we consider each of the channels appearing in the trotterization (Eq. 2) and express them as the convex combination of
the identity channel and a completely-positive trace-preserving (CPTP) map. For a Lindbladian £, consider the channel e for
some 7 > 0. A first order Taylor expansion of this map with respect to 7 yields the map Id + 7£ — note that if 7 is sufficiently
small (made precise below), this map is also CPTP. From Taylor’s theorem it follows that

|e“™ — (1d+ £7)||,_,, <OUILI;_,, 7).

H 1—
Next, we note that for any g > 0,Id + £7 = (1 — g7)Id 4+ g7(Id + £/g). Choosing g > Anax(®P ), where @ is the Choi-state
corresponding to £, it follows that Id + £ /g is completely positive. Furthermore, since £ is a Lindbladian, it follows that Id+ L /g
is completely positive and trace preserving. For 7 < 1/g, we have thus approximated e~ by a convex combination of the
identity channel (applied with probability 1 — g7) and a non-identity CPTP channel (applied with probability g7). Now, using
g > SuPpes Amax (P, ), we obtain that VA € S,

t t 12
L:At/N — 1 _ g g
e ( N)Id+5A+O —

for some channel £ that only acts on the qubits in A. Similarly, Vi € [n]:

2
R(NG—1d)EN/L _ Kt Kt ks
e (1 NL>1d+NLM+O .

We can then construct a circuit whose output is 6 n, where

N f[ [ 11 ((1 - %)id+ %_SA)) H ((1 - JGtL)id+ J\,;tL./\fi>>:|Np(O). 3)

i=1 L Aes; i=1

Furthermore, it easily follows from the abovementioned error estimates that |64,y — p(t)||; < O(t*poly(n)/N) —if t =
O(poly(n)), then clearly there is a choice of N = ©O(poly(n)/e) that ensures that ||,y — p(t)||; < e. Choosing ¢ =
O(1/poly(n)) proves the lemma statement [J.

Next, we consider the problem of sampling from &, 5 — we first map it to a percolation problem on a (d + 1)-dimensional
lattice by choosing the identity channel, or the non-identity channel (£, or ;). However, this sampling alone is not enough to
ensure that the resulting problem percolates, since the probability of choosing the non-identity channel is very close to 0 — in
order to map this to a problem that percolates, each site in the percolation problem needs to be mapped to an of block many
time-steps per qubit. This is made precise in the definition below.

Definition 2 (Equivalent percolation problem) Choose T > 0 and m = [NT/t] — a percolation problem on 7+ corre-
sponding to sampling from &, n in Eq. 3 is constructed by the first sampling from the convex combination of the channels (Ex, N;
or the single- or two-qubit identity channels) in Eq. 3 — then a vertex v := (i,q) € Z91 (where i € Z% and q € N) is open if all
the horizontal channels acting on the i™ qubit from time-step mq to m(q + 1) — 1 are sampled to be the identity channel, and the
channel N; is applied at least once.

Proof of theorem 1: We next analyze the equivalent percolation problem and arrive at a proof of theorem 1 from the main text.
Our goal is to show that for a sufficiently large «, 7 can be chosen to ensure that the equivalent percolation problem is subcritical
which can then be efficiently sampled from. To do so we will use lemma 2 — we first provide a lower bound on the probability
that a vertex on the lattice corresponding to the equivalent percolation problem is open, maximized over all possible configurations
of the neighbouring vertices. For a vertex v = (i, ¢) in the equivalent percolation problem, we associate the neighbourhood
N, = {(j,q), where j € Z% s € Z | A € S such thati,j € A}. Note that the probability of a vertex v, conditioned on the
state of the vertices in its neighbourhood N,,, being open is the smallest when the vertices in NV, are all closed — thus if this



probability can be made larger than the site-percolation threshold, the equivalent lattice will also percolate. Recall that

Prob(X, = 1, X, = 0/V])

Prob(X, = 1|Xy, = 01%) = Prob(Xy, = 0INI)

“

Consider the probability of the vertex v being open and all the vertices in its neighbourhood being closed. One configuration of
samplings from the channels that achieve this is if all the horizontal channels acting on the qubit associated with v are open, the
entanglement breaking channel is applied at least once on the qubit associated with v and the entanglement breaking channel is
never applied with the qubits associated with the vertices in N,,. This provides us with the lower bound

gt ml, i Lm p Lm|N,|
— — !Ny > _ 7 _ v _ v
pont 1 0% 2 (1 ) (- (1 ) ) 1 2)

where [, is the the number of A € S such that i € A (where v = (4, ¢)). Consider now the probability of all the vertices in N,
being closed. This event can occur if either the entanglement breaking channel is not applied on any of the qubits associated with
vertices in IV, or at least one of the horizontal channels associated with the qubits in IV, for the time-steps in v is not identity.
Thus, we obtain the upper bound

™ Kt Lm|N,| gt mry,
Prob(Xy = < (1 —— 1—(1—-=
w012 (- (-8)™).

where 7y, is the number of A € S such that j € A for some (j,v) € N,. Thus, we obtain a lower bound on the worst-case
conditional probability defined in Eq. 4. Using m = [N7/t], we obtain

—K|Ny|T 1
Prob Xv =1|X = N | > 97l 1—e "7 © _ .
rob(Xo = 11X, =07 2 e (= O o 1 = e ) O\ oty ()

We can now show that for x larger than a constant, the lower bound obtained above can be made larger than the site-percolation
threshold p.. Noting that since we only consider problems with local interactions (i.e. the diameter of the set of qubits interaction
with each other is finite), [ = max, [, = O(1) and r = max, rn, = O(1). Fixing 7 by e "7 = ¢ < 1 for some constant ¢, we
obtain that

1
. Prob(X,| Xy, = 0Ny >1— g - ).
Vo : Prob(X,|Xn, =07 > c—%O(H +0 poly (V)

Recall from lemma 3 that N = Q(poly(n)) — it thus follows that for large n, we can choose /g to be large enough for the
lower bound to be very close to 1 — ¢ and thus an appropriate choice of ¢ (which is equivalent to an appropriate choice of x7) will
result in this probability being larger than the site-percolation threshold. It then follows from lemma 2 that with a probability
1—O(polylog(n)/poly(n)), the maximum size of the percolating clusters will be O(log(n)). Using this fact, we can now provide
an algorithm to sample approximately sample from the trotterized state 6 ,. We recall that an entanglement breaking single-qubit
channel can be always be expressed as

N(p) = Z oiTr(E;p), ©)

where o; € D1(C?), and {E;} form a POVM. Thus, an application of an entanglement breaking channel on a single-qubit state
can be simulated by first measuring the qubit with respect to the POVM FE; and then replacing the qubit with o; if the outcome of
the measurement is <. The sampling algorithm then proceeds in two steps:

1. First, we sample from the percolation problem and ignore any samples that have a cluster of size larger than ¢’ log(n) where
¢ is a sufficiently large constant. The error in total variation distance incurred due to this is O(polylog(n)/poly(n)).

2. We then replace the entanglement breaking channel by applying a POVM and replacing the qubit with an unentangled
state as per Eq. 5. We note that this can be done efficiently and per each time-step. More specifically, suppose that uptil
the (discrete) time-step £ all the entanglement breaking channels have been sampled in this way, and we wish to sample
the entanglement breaking channels at time-step £ + 1 — we then need to sample from the measurement of the POVM
corresponding to the qubits where the entanglement breaking channels are applied and trace over the remaining qubits. The
sampling from the POVMs can be done sequentially — we pick any one qubit and measure it in the POVM corresponding to
the entanglement breaking channel, and trace over all the other qubits (including the ones on which the other entanglement
breaking channel is applied). We note that we can efficiently contract the circuit to calculate the probabilities of various



outcomes corresponding to the POVM since all the clusters of qubits can be contracted in poly(n) time. After having
computed these probabilities, we produce a sample from the POVM and conditioned on this sample we sample the next
qubit which has an entanglement breaking channel. Since there are at-most n such qubits, we need to do at most poly(n)
such contractions.

The above two-steps outline a sampling algorithm that can be executed in poly(n) time. Furthermore, there are two sources of
error — one is due to the trotterization, and the other is due to ignoring samples which have large clusters. Both of these errors
are smaller than O(polylog(n)/poly(n)) in the total-variation distance and this completes the proof of theorem 1. [1.

II. IMPLICATION OF THRESHOLD THEOREM ON THE LOW NOISE REGIME

The threshold theorem in quantum computation [4] is a well known result which states that scalable quantum computation is
possible if the noise rate in the quantum computer is low enough. These theorems are usually proved by performing encoded
quantum computation together with error correction, and the reduction in the rate of noise needed to be able to implement scalable
quantum computation depends on the error correcting code. While initially constructed and proved for general circuit model
of computation, the threshold theorem has been proved for quantum circuits while constraining the interactions to be nearest
neighbours on qubits arranged in 1D, 2D or 3D lattices [4, 5].

Here, we investigate various implication of fault tolerant constructions with nearest neighbour interaction on the existence of
phase transitions in the simulation of open quantum spin systems. We begin by recalling a basic lemma proved by Aharanov et
al, and Gottesman et al, which indicates that a fault tolerant quantum computation is possible with 1D nearest neighbour qubits
provided that qubits can be restarted at any point during the time evolution. This lemma is stated within the circuit model of
computation with independent errors (although several extensions are possible) at different locations within the circuit with an
error probability 7.

Lemma 4 (Fault tolerance in 1D with nearest neigbour gates from Ref. [4]) Ler € > 0 and let G a universal set of gates. Let
Q be a quantum circuit on n qubits and depth poly(n) formed from gates from G acting on either one or two neighbouring
qubits. Then, Iny, such that for n < ny, there exists a circuit C' formed from gates of G U {SWAP, RESTART} acting over
O(n polylog(n/e)) qubits for depth O(poly(n)polylog(n/e)) such that in the presence of noise n < 1, it computes a quantum
state which is e-close in total variation distance to the quantum state of the circuit C.

We point out that in the fault-tolerant construction used in this lemma, both the RESTART and SWAP operations can be
subjected to errors, and the concatenated error correction schemes subsequently applied on them will succeed if these errors are
small enough. Building on this lemma and by providing implementations of the RESTART and SWAP gates, below we show that
in many contexts, there we are able to encode a fault-tolerant quantum computation into the problem and hence we expect in the
presence of low biased noise for the problem to be hard to simulate classically. We analyze three models in the following two
subsections:

1. For d > 2, we consider a discrete-time model where the entanglement breaking channels applied with a probability p are
interleaved with single and two-qubit unitaries applied locally on disjoint sets of qubits. Here, we show that as long as the
entanglement breaking channel has a fixed point # /2, we expect the model to be classically insimulatable at sufficiently
low rate of noise.

2. For d = 1, we consider a discrete-time model where we apply a Matrix product unitary followed by the entanglement
breaking channel applied with a probability p on all qubits. Here, we again show that if the entanglement breaking channel
has a fixed point # I /2, we expect the model to be classically insimulatable at sufficiently low rate of noise.

3. For d > 2, we consider a continuous-time model where the entanglement breaking channels can act at any time, and thus
might result in erroneous gate operations. Here, we show that if the image of space of single qubit density matrices under
the entanglement breaking channel does not contain # I /2, then we expect this model to be classically insimulatable at
sufficiently low rate of noise.

Another key ingredient that we will use in our analysis is algorithmic cooling [6, 7] i.e. having a supply of m qubits individually
being in a mixed state 01 ® 09 - - - @ o, Where o; # I/2V i € [m], we would like to be able to extract at least a single qubit in a
pure state. This is a well known problem, and of technological relevance in NMR quantum computing where there is often a
large supply of noisy qubits and it is of interest to concentrate the entropy on a few qubits. For our purposes, this will be a key
ingredient in implementing the RESTART operations for noise-channels which do not necessarily drive the qubit state to identity
(i.e. they are not depolarizing) and thus allow us to construct fault-tolerant circuits below a particular noise rate and hence point to
a simulatability phase transition.
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FIG. 1. A schematic depiction of the implementation of the RESTART operation on a 2D lattice of qubits. We note that the a shift operation can
be implemented on the alternate qubits in any row (i.e. the qubits at the odd or even positions) by doing two consecutive swap operations — one
layer of operations swapping the even with the odd qubits and then another layer of operations swapping the odd qubits with the even qubits.
Taken together, these two operations will shift the odd qubits to one direction and the even qubits in the opposite direction. For simplicity, in this
figure, we depict this shift operation as a single operation and hide one set of alternate qubits.

Definition 3 (Polarization of a qubit state) A qubit (mixed) state o is said to have a polarization of € if Amax — Amin = &, Where
Amax and Amin are the maximum and minimum eigenvalues of o respectively.

Lemma 5 (Algorithmic cooling from Ref. [6]) Consider m qubits initially in the state piix = Q) 04, where for i € [m), o;
has polarization €;(> 0) and let €y = mine(m,) € > 0, then for any n € (0, 1), m can be chosen as a function of 1), €min such
that 3 a unitary circuit U of depth dependent on 1, emin which yields (at least) one qubit whose reduced state has polarization
1—n.

Proof of theorem 3: We restrict ourselves to d = 2 (i.e. a 2D lattice of spins), since if it is BQP hard to simulate the 2D problem
in the presence of a constant, but small enough, rate of noise, it will be BQP hard to simulate higher dimensional problems as well.
We will implement a 1D fault-tolerant quantum computation (lemma 4) in one of the columns of the 2D lattice, and call the
qubits involved in this construction as the computational qubits — some of the computational qubits will be the data qubits (which
encode the quantum computation) and some of these qubits will be ancilla qubits needed for the error correction operations. In
order for the fault-tolerant construction to succeed, we need to implement a RESTART gate, with fidelity below the fault tolerance
threshold, on the ancilla qubits. In order to restart a computational ancilla qubit, we use the non-computational qubits in its row. A
schematic depiction of the restart operation is shown in Fig. 1 — we start off with all the qubits to the right of the qubit to be
restarted in a fixed point o # I /2 of the noise channel. We then perform a sequence of three steps:

1. First, we perform algorithmic cooling on certain number of, say m, qubits on the right of the qubit to be restarted. At the
end of this step, the qubits neighbouring the computational ancilla qubit will be in a state |0). We note that the algorithmic
cooling operation can fail with some non-zero probability — however, this probability does not scale with the number of
qubits involved and hence this construction still yields a threshold theorem. We analyze this point in more detail below.

2. Next, we swap the cooled qubit with the computational qubit. This effectively implements the RESTART operation.



3. Finally, we prepare the qubits for another RESTART operation - we note that the the previous two steps left the qubits
immediately on the right of the computational qubit in a state that is no longer ¢ and consequently cannot be used to
implement another RESTART operation. We therefore now perform a shift operation to shift these qubits to the left of
the computational qubits and replace the m qubits on the right of the computational qubits with the state c®™. This
configuration can now be used to implement the next RESTART operation by using steps 1-3.

Error analysis: We need to ensure that a threshold theorem exists with the above outlined RESTART operation. Recall that at every
time-step, we are allowed to apply either a single-qubit or a nearest neighbour two-qubit gate over disjoint set of qubits. Recall from
lemma 5 that to achieve a cooled qubit in the state |0) with specified probability peool, the number of qubits m required is a function
of Peool (Which we denote by m(peool)), and the number of time-steps ¢ required to accomplish this is also a function of e
(which we denote by tcool (Peoot ). Furthermore, it follows from lemma 5 that to achieve peooling = 1 — O(1), both m(peoor) = O(1)
and teo01 (Peool) = O(1). Consequently, both the following swap and shift operations (which needs to swap O (m(peool)) qubits)
can be done in time-steps tswaps (Peoot) = O(1). Importantly, we note that since in the model being considered in this theorem, we
can perform the SWAP gate without an error in the gate, and since o is a fixed-point of the noise channel, swapping a qubit in the
state o with another qubit will still generate an output qubit in the state o (this is not necessarily true if an error occurs in the gate)
and consequently the shift operation can always be performed to arrange the qubits properly for the next RESTART operation.
Finally, since the number of time-steps and the number of qubits participating in the RESTART operation O(1), we note that
the RESTART operation can be made more efficient than required by the error correction threshold by making the probability
of applying the entanglement breaking noise p small enough. This shows that below a particular noise threshold, we will
be able to implement a BQP hard problem fault-tolerantly within the discrete-time model considered, which proves the theorem. [.

Proof of theorem 4: This key difficulty with implementing a RESTART operation in the 1D nearest-neighbour setting is that the
qubits that are cooled and swapped into the computational ancillas cannot be placed close to the computational ancillas, and ©(n)
(where n is the number of computational qubits) swap operations are required in order to bring them close to the computational
ancillas. Applying O(n) swap gates without any error correction breaks the threshold theorem for quantum computation and
hence does not allow us to fault tolerantly encode a BQP hard problem into the noisy quantum dynamics. However, if we allow
ourselves to use constant bond dimension MPUs, then we can perform ©(n) swap operations with an MPU of bond dimension 2
in one time-step, and thus the construction used in the proof of theorem 2 works. In this case, we will just maintain the qubits
used for restarting the computational ancilla on one end of the 1D lattice, and cool and swap them with the computational ancilla
qubits in a single time-step. L.

We now proceed to the proof of theorem 4 where we consider a continuous model of noise being applied on the spins. Here, the
swap operations needed to shift the qubits to be cooled near the computational qubits cannot be done faultlessly. However, if we
consider noise modelled with point channels with a fixed point different from identity, we show that a 1D fault tolerant quantum
computation can still be implemented in d > 2.

Proof of theorem 2: For the two (or higher) dimensional models where the noise is applied continuously in time, one of the key
difficulties in the construction of theorem 2 is that the SWAP operations can be faulty. Thus, even at a very low rate of noise, it is
not guaranteed that the qubits that are being used to restart the computational ancillas at times ©(poly(n)) are in a state that is
sufficiently different from the identity. In particular, if we consider channels which have identity as a fixed point (in addition to
fixed points which are not identity) then an error in the SWAP gate could result in one of the qubits being set into the identity and
thus not be useful for the RESTART operation.

However, under the assumption 3|¢. ) ,|¢_) € C? such that the entanglement breaking channel A maps every qubit state to a
state of the form (1 —¢)/2|¢_) (¢p_| + (1 +¢)/2|d+) (¢ |, we can construct a shift operation that, despite being erroneous,
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FIG. 2. Schematic of the shift operation used in the proof of theorem 4.



ensures with a sufficiently high success probability that the shifted qubits are unentangled and different from identity and hence
can be used for the subsequent cooling algorithm. This shift operation, implemented with two layers of SWAP gates, is shown in
Fig. 2 — we apply the Hamiltonian for the SWAP gate for a time period 7, (chosen such that in a noiseless setting, the SWAP
gate would be perfectly executed) and then allow the qubits to evolve just under the influence of the entanglement breaking
noise channel for a time period 74. The latter evolution not only disentangles the output qubit due to the entanglement breaking
nature of the channel, but also drives it away from I /2. We make this concrete by analyzing the operation of this shift operation
on 2m + 1 qubits, out of which with probability 1 — ¢, the qubits 2,4, 6...2m are in a seperable state with the states of the
individual qubits belonging to N (D1(C?)) i.e.

p(0)=(1—=q)po135. 2m—1%0246. 2m+qp-

where 02 4 6...2m can be expressed as

« o «
02.4.6..2m — E Doy @04 =+ Q 0oy (©)
o

with 3" pa = 1,pa > 0and 6 € N (D1(C?)) Vo, i € {2,4,6...2m}. Note that with probability exp(—2m«Ts), the SWAP
operation occurs perfectly and hence the output state can be expressed as.

p(7s) = exp(=2muTs)(1 = q)0135. 2m—1 @ Py 2,4...2m + (1 — exp(—2k75)(1 — q))p",

where 013 5...2m—1 is the state 02 4,6...2m but now shifted to the qubits 1,3,5...2m — 1 and p{ 5 4 _5,, (0”') is some state over
the qubits 0,2, 4. .. 2m (all the qubits). Next, we allow the qubits to evolve under the entanglement breaking noise for a time 74 —
we note that this is equivalent to applying the channel £, = e"7¢ (N=1d) on each qubit. By a Taylor expansion of this exponential,
it can easily be seen that

Ery=e "Td + (1 — e TN,

where N : £(C?) — £(C?) is another entanglement breaking channel with the property that N”(D;(C?)) = N(D;(C?)).
Therefore, with probability 1 — e~*74, this channel disentangled the qubit and maps it to a state in V(D1 (C?)) and consequently,

!

p(7s +7a) = 57%(2m+1)0(7's) =(1-q)0024. 2m-2®@ P35 2m—12m + 40"

where 1 — ¢/ = exp(—2mk7s)(1 — ¢) + (1 — exp(—k74))"™ (1 — exp(—2£75)(1 — q)), 00,2,4...2m—2 is a seperable state of the
form of Eq. 6 but over the qubits 0,2,4...2m — 2. It immediately follows that ¢’ < q if

_ _ ,—2mKTs 1/m
TdZ—ilog<1—<(1 91— e )> ) %)

1— (1 _ q)e—me—s

A similar condition holds for the next layer of SWAP gates — if 7, is chosen as per Eq. 7, then the final state of the m qubits
being shifted will be maintained in a seperable state where the individual qubits are in /(D1 (C?)) with a probability at least
1 — g — hence this property will also be maintained by the subsequent shift operation and we will have m qubits available for the
cooling procedure. We note that even though the qubits now being purified are in a seperable state as opposed to a produce state,
since by assumption the eigenstates of the individual qubit states are the same, the cooling unitary applied on the product state will
also cool the seperable state without any impact on the fidelity of the cooling algorithm. However, the cooling algorithm’s fidelity
will be lowered by a factor > 1 — q. Consequently, in order to implement the RESTART operation with fidelity large enough to
ensure that the threshold theorem can be satisfied, we must be able to choose a sufficiently small q. Since the shift operation
outlined above relies on the entanglement breaking channel to purify the state of the qubits, it is not clear if this condition can
be satisfied (for small rates ) while at the same time ensuring that the noise in the computational qubits is smaller than the
fault-tolerance threshold. However, this is indeed possible — to see this, we note that for small x, we can use 74

~ (2m<1 - q))”’"ws)l/m
Td ~ - - .
q K
However, note that for the error correction procedures to fault tolerantly encode a computation on the computational qubit, it

is necessary to ensure that k74 < ¢y, Where ¢y, is a constant dependent on the spread of the error correcting code. It follows
easily that for a given ¢ and m (which are determined by the target fidelity of the cooling operation) if k < ¢cjf' /2m7s(1 — q),

then for any 74 € ((2m(1 — q)/q)"/™kY/™=17/™ ¢y /), the shift operation will successfully bring the auxillary qubits near
the computational qubits for the RESTART operation while at the same time ensuring that a quantum computation can be fault



tolerantly performed on the computational qubits.
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