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Optimization problems occurring in a wide variety of physical design problems, including but not limited

to optical engineering, quantum control, structural engineering, involve minimization of a simple cost function

of the state of the system (e.g. the optical fields, the quantum state) while being constrained by the physics

of the system. The physics constraints often makes such problems non-convex and thus only locally solvable,

leaving open the question of finding the globally optimal design. In this paper, I consider design problems

whose physics is described by bi-affine equality constraints, and show that under assumptions on the stability

of these constraints and the physical system being non-resonant, gradient descent globally solves a typical

physical design problem. The key technical contributions of this paper are (i) outline a criteria that ensure the

convergence of gradient descent to an approximate global optima in the limit of large problem sizes, and (ii) use

random matrix theory to outline ensembles of physically motivated problems which, on an average, satisfy this

convergence criteria.

I. INTRODUCTION

Optimization-based design methodologies have been suc-

cessfully adapted and applied to solving a wide variety of

physical design problems, including but not limited to photon-

ics design [1–6], device-level designs for quantum technolo-

gies [7–11], and structural engineering [12–14]. The physics

of these system are mathematically captured by bi-affine

equality constraints, i.e. constraints of the form h(x, θ) = 0
where h is affine in x for fixed θ and affine in θ for fixed x,

relating the system state (x) to the design parameters (θ). The

design problem is captured by a cost function of the system

state x, which is to be minimized with respect to the param-

eters θ while enforcing these constraints. In practice, the bi-

affine equality constraint allow for an efficient evaluation of

the gradient of the cost function with respect to the design pa-

rameters [15–19], and thus local optimization algorithms such

as gradient descent [20] of quasi-Newton methods [21] can be

used to solve them locally. However, the bi-affine constraints

also makes the optimization problem non-convex, and hence

hard to solve globally. While the locally optimized result suf-

fices for many applications, it leaves open the question of how

much more improvement in the device performance can be

gained by searching for the global optima.

One prominent approach to answering this question has

been to provide lower bounds on the cost function that cap-

tures the device performance and is being optimized — while

the optimization problem itself is non-convex and hard to

solve globally, such bounds can often be computed efficiently

by solving a convex problem. Several approaches to setting

up this convex problem and calculating these lower bounds

using physically motivated convex relaxations [22–26] or by

an application of Lagrange duality [27–30] have been recently

pursued. In many problems of interest, these lower bounds,

computed numerically, are reasonably close to the locally opti-

mized results and thus indicate that the design is near globally-

optimal [31, 32]. However, there is no general theoretical
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guarantee for the lower bounds obtained by these methods to

be tight (i.e. close to the global optima), and consequently they

do not always allow for a quantitative assessment of the opti-

mality of the locally optimized design.

In this paper, I pursue a different approach for assessing

the optimality of local optimization algorithms — I theoret-

ically analyze the convergence of the gradient descent algo-

rithm when applied to a physical design problem. The results

indicate that gradient descent efficiently solves a typical phys-

ical design problem i.e. it comes within a specified accuracy

of the global optima in a number of steps that only scale poly-

nomially with the problem size. There are two parts to the

main result — first, I provide a set of conditions on the phys-

ical design problem which guarantee this convergence result.

Next, I analyze physically motivated distributions of bi-affine

design problems and show that a member of this ensemble, on

average, satisfies these conditions and thus is expected to be

efficiently solvable by gradient descent. While this work is,

to the best of my knowledge, the first rigorous study of con-

vergence of gradient descent for physical design problems, it

shares techniques with similar analysis of local optimization

algorithms when applied to non-convex problems arising in

training of deep neural networks [33, 34], neural-tangent ker-

nels [35] and dynamical models of time-series data [36].

II. NOTATION

For v ∈ R
n, I will denote by ‖v‖p its lp norm, and for sim-

plicity use ‖v‖ for its l2 norm. For a matrix M ∈ R
n×m,

I will denote by ‖M‖p the induced lp norm i.e. ‖M‖p =
supv∈Rm\{0} ‖Mv‖p/‖v‖p. I will denote by In the n × n

identity matrix. I will denote by ‖M‖max the maximum mag-

nitude element of M i.e. ‖M‖max = maxi∈[n],j∈[m] |Mi,j |. I

will often write the vector, 0n (i.e. vector with all elements

0), simply as 0, and the dimensionality of the vector will be

evident from the context.

For two vectors u, v ∈ R
n, u⊙v ∈ R

n is their elementwise

product defined by (u ⊙ v)i := uivi ∀ i ∈ [n]. Given a

function f : dom(f) ⊂ R → R and a vector v ∈ dom(f)n,

f(v) will denote a vector obtained on applying f entry-wise
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to f .

I will use the computer science notation for asymptotic be-

haviour of sequences. Given a sequence {an ∈ R
+ : n ∈ N}.

an ≤ O(f(n)) for some f : N → R
+ if ∃c > 0 such that

an ≤ cf(n) as n → ∞. an < o(f(n)) for some f : N → R
+

if ∀c > 0, an < cf(n) as n → ∞. In particular, no(1) will

be used to denote a function whose growth is slower than nα

for any α > 0. an ≥ Ω(f(n)) for some f : N → R
+ if

∃c > 0 such that an ≥ cf(n) as n → ∞. an = Θ(f(n)) if

an ≤ O(f(n)) and an ≥ Ω(f(n)).

III. SUMMARY OF RESULTS

I first introduce a definition of a physical design problem,

along with some terminology that I use throughout this paper.

I introduce an abstract definition of a physical system, and a

physical design problem.

Definition 1 A physical system with state size n and param-

eter size m is a map ϕ : dom(ϕ) → R
n specified by a tuple

(A,B, b) where A ∈ R
n×n, B ∈ R

n×m, b ∈ R
n and

dom(ϕ) = {θ ∈ R
m|A+ diag(Bθ) is invertible},

and ∀θ ∈ R
m,

ϕ(θ) = (A+ diag(Bθ))−1b.

A is the physics matrix, B is the selection matrix and b is the

source vector corresponding to the physical system.

Definition 2 Given a physical system ϕ ≡ (A,B, b) of state

size n, and a vector c ∈ R
n, the adjoint system is a map

ad[ϕ] : dom(ϕ)× R
n → R

n such that ∀θ ∈ R
m,

ad[ϕ](θ, c) = (A+ diag(Bθ))−Tc.

Definition 3 A physical design problem of state size n and

parameter size m is specified by a tuple (f, c, ϕ) where f :
R → R is the cost function, c ∈ R

n is the overlap vector, ϕ is

a physical system of state size n and parameter size m and it

corresponds to solving the following constrained optimization

problem:

minimize
θ∈dom(ϕ)

f(cTϕ(θ)),

To solve this problem using local optimization algorithm, it

is essential to be able to efficiently compute the gradient of the

cost function. It is well known that this can be done using the

the maps corresponding to the physical system and the adjoint

system [15–19]. This is made explicit in the following lemma,

which can be straightforwardly proved using the chain rule.

Lemma 1 For a physical design problem (f, c, ϕ), then for

the map f(cTϕ(·)) : dom(ϕ) → R, the gradient at θ ∈
dom(ϕ) is given by

∇θf(c
Tϕ(θ)) = −f ′(cTϕ(θ))BT

ϕ(ϕ(θ) ⊙ ad[ϕ](θ, c)).

Algorithm 1 Gradient descent for solving a physical design

problem

Input: A physical design problem (f, c, ϕ), an initial set of design

parameters θ0 ∈ R
m, a gradient descent step size η ∈ (0,∞) and

number of gradient descent steps T ∈ N.

Output: The optimized design parameters θ∗ ∈ R
m.

Initialisation :

If θ0 /∈ dom(ϕ), then declare FAIL, else set x0 = ϕ(θ0) = (Aϕ+
diag(Bϕθ))

−1bϕ.

LOOP Process

for t = 1 to T − 1 do

Compute the adjoint state at−1 = ϕadj
c (θt−1).

Compute the gradient gt−1 = −f ′(cTxt−1)
(

ϕadj
c (θt−1) ⊙

ϕ(θt−1)
)

Perform the gradient descent step θt := θt−1 − ηgt−1.

if (θt /∈ dom(ϕ)) then

Declare FAIL.

end if

end for

return θT

Throughout this paper, I will be interested in performing an

analysis of gradient descent (explicitly described in algorithm

1) not for one specific problem instance, but for problem in-

stance with large state sizes. More formally, I will consider a

family of physical design problems with larger and larger state

sizes and assess how gradient descent performs on a specific

instance of this family.

Definition 4 A family of physical design problems is a se-

quence {(f, cn, ϕn) : n ∈ N} of physical design problems,

where (f, cn, ϕn) is a physical design problem of state size n
and the cost function f : R → R is independent of n.

I next introduce a set of conditions on a given family of

physical design problems, which will be central to the analy-

sis of the convergence of gradient descent. These conditions

are expressed in terms of the scalings of the spectrum of the

physics matrix with the state size of the physical system, as

well as on the norms of the source and overlap vectors. The

definition I provide below makes concrete the physical expec-

tation that the norm of the physics matrix of systems encoun-

tered in practice only grows polynomially with the state size

of the system, and typically the source and overlap vectors

only affect a constant number of state variables and hence

have norms upper bounded by a constant. I also assume a

condition on the initial gradient of the cost function — since

in practice the initial design is picked randomly and is thus not

locally optimal, we assume that the initial gradient of the cost

function is large (i.e. lower bounded by a function that grows

polynomially with the state size).

Definition 5 A family of physical design problems

{(f, cn, ϕn ≡ (An, Bn, bn)) : n ∈ N} is said to sat-

isfy the (α, γ)-asymptotic convergence conditions if

(a) f is L−Lipschitz smooth1, µ−strongly convex 2 and is

1 A differentiable function f : RD → R is L−Lipschitz smooth if

‖∇f(x) −∇f(y)‖ ≤ L‖x− y‖
2 A function f : RD → R is µ−strongly convex if f(y) ≥ f(x) +
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bounded from below i.e. f∗ = minx∈R f(x) > −∞.

(b) ‖A−1
n ‖2 ≤ O(nγ),

(c) ‖Bn‖∞, ‖Bn‖1, ‖Bn‖2 ≤ O(1),

(d) ‖bn‖∞, ‖bn‖1 ≤ O(1),

(e) ‖cn‖∞, ‖cn‖1 ≤ O(1),

(f) ‖BT
n(A

−1
n bn ⊙A−T

n cn)‖22 ≥ Ω(nα+γ) and

(g) |cT
nA

−1
n bn| ≤ O(1).

Typical physical design problems are expected to be non-

resonant i.e. the state vector is expected to not become very

large during the optimization trajectory. It is empirically ob-

served in many settings that local optimization algorithms per-

form very well when applied to such non-resonant design

problems, while resonant design problems are usually much

harder to solve. This consideration has to be accounted for

in the analysis of gradient descent — the next definition that

I provide makes the intuition behind a non-resonant design

mathematically precise, and will be another important ingre-

dient in the analysis of the optimality of gradient descent.

Definition 6 (Non-resonant design parameters)

Given a family of physical design problems F =
{(f, cn, ϕn) : n ∈ N}, a sequence of design parame-

ters {θn ∈ dom(ϕn) : n ∈ N} is said to be non-resonant

with respect to the family F if ‖ϕn(θn)‖∞ ≤ O(no(1)) and

‖adj[ϕn](θn, cn)‖∞ ≤ O(no(1)).

I now present the first result of this paper — a family of physi-

cal design problems is efficiently solvable by gradient descent,

under the assumption that the design parameters generated

during the algorithm are non-resonant, if it satisfies the asymp-

totic convergence conditions.

Theorem 1 Let F := {(f, cn, ϕn) : n ∈ N} be a family of

physical design problems that satisfies the α, γ−asymptotic

convergence conditions (definition 5) with α > 1/4, γ < 3α,

and for n ∈ N, let Θn = {θ1n, θ2n . . . θTn
n } be the design

parameters generated by gradient descent (algorithm 1) un-

der the assumption that it does not fail when applied on

(f, cn, ϕn) with step size ηn ≤ O(n−3γ+α−1) for Tn steps

starting with initial design of θ0n = 0. If all the sequences

{θn ∈ Θn : n ∈ N} are non-resonant with respect to

F , then f(cT
nϕn(θ

Tn
n )) − f∗ ≤ ε for Tn chosen such that

Tn = Θ(n1−2(α−γ) log(ε−1)).

In the next two propositions, I provide families of design

problems which are constructed by choosing the physics ma-

trices randomly from a distribution. By analyzing an average-

case problem picked from these distributions, I show that it

satisfies the asymptotic convergence conditions. The first fam-

ily of problem is one in which the inverse of the physics ma-

trix is a matrix from the random gaussian ensemble, and this

∇f(x)T(y − x) + σ‖x− y‖2/2.

example is inspired from wave design problems [1–4], where

often the initial design is a random scattering media whose

properties are known to be captured by random matrices [37].

Problem 1 Given a cost function f : R → R being an

L−Lipschitz smooth and µ−strongly convex function that is

bounded from below, define a family of physical design prob-

lems F := {(f, cn, ϕn ≡ (An := G−1
n , Bn := In, bn)) : n ∈

N} where

• ‖bn‖∞, ‖bn‖1, ‖cn‖∞, ‖cn‖1 = Θ(1) and,

• Gn ∈ R
n×n is a matrix where each entry is indepen-

dently drawn from the standard normal distribution.

Proposition 1 For the problem of state size n, (f, cn, ϕn ≡
(An, Bn, bn)), picked from the family of problems defined in

problem 1, it is true that

(a) With probability 1− 2 exp (−ε2/2), ‖A−1
n ‖2 ≤ 2

√
n+

ε,

(b) E(‖BT
n(A

−1
n bn ⊙A−T

n cn)‖)22 ≥ Ω(n),

(c) E(|cT
nA

−1
n bn|2) ≤ O(1),

and consequently, this family of problems on an average satis-

fies the (1/2, 1/2)−asymptotic convergence conditions.

Proposition 1 thus shows that theorem 1 is applicable on aver-

age for a design problem drawn from the distribution of prob-

lems defined in problem 1, and thus guarantees an average

case convergence of gradient descent.

The second family of problems is one in which I fix the scal-

ing of the singular values of the physics matrix with the state

size, and generate the left and right singular vectors randomly

— the physical motivation behind this construction is that the

scaling of the spectrum of the physics matrix with the prob-

lem size is often fixed by the derivative operators and bound-

ary conditions appearing in the physical laws, while the pre-

cise singular vectors depend on the details of the (initial and

randomly chosen) design parameters. Under some assump-

tions on the scalings of the singular values with the problem

size, the asymptotic convergence conditions (definition 5) are

shown to be satisfied on an average.

Problem 2 Given a cost function f : R → R being

an L−Lipschitz smooth and µ−strongly convex function

that is bounded from below and γ ≥ 1/2, define a fam-

ily of physical design problems {(f, cn, ϕn ≡ (An :=
Rndiag(sn)Q

T
n, Bn := In, bn)) : n ∈ N} where

• ‖bn‖∞, ‖bn‖1, ‖cn‖∞, ‖cn‖1 = Θ(1),

• sn ∈ (0,∞)n with ‖1/sn‖∞ ≤ O(nγ) and ‖1/sn‖ =
Θ(n),

• Rn, Qn ∈ R
n×n are drawn uniformly at random from

the Haar measure over orthogonal matrices.

Proposition 2 For the problem of state size n, (f, cn, ϕn ≡
(An, Bn, bn)), picked from the family of problems defined in

problem 2,
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(a) ‖A−1
n ‖2 ≤ O(nγ),

(b) E(‖BT
n(A

−1
n bn ⊙A−T

n cn)‖)22 ≥ Ω(n),

(c) E(|cT
nA

−1
n bn|2) ≤ O(1),

and consequently, this family of problems on an average satis-

fies the 1− γ, γ-asymptotic convergence conditions.

Consequently using theorem 1, it follows that for γ ∈
[1/2, 3/4), a design problem drawn from the distribution of

design problems defined in problem 1 on an average is effi-

ciently solvable by gradient descent.

Finally, I show that under some further assumptions on the

physics matrix of the physical system, it can shown that all

the designs generated during the gradient descent algorithm

are non-resonant, and consequently gradient descent can be

shown to converge to the global optima without the any addi-

tional assumptions on the gradient descent trajectory.

Theorem 2 Let F := {(f, cn, ϕn ≡ (An, Bn, bn)) : n ∈ N}
be a family of physical design problems that satisfies the

α, γ−asymptotic convergence conditions (definition 5) with

α > 1/2, γ < 3α, and also satisfies ‖A−1
n ‖max ≤ O(no(1)),

then gradient descent when applied on (f, cn, ϕn), if it does

not fail, produces a design θ∗n such that f(cTϕn(θ
∗
n))−f∗ ≤ ε

in T = Θ(n1−2(α−γ) log(ε−1)) steps.

The remainder of this paper is devoted to detailed proofs of

these statements — the proof of theorem 1 is provided in sec-

tion IV A, section IV B is dedicated to the proofs of proposi-

tions 1 and 2 and the proof of theorem 2 is provided in section

IV C.

IV. DETAILED PROOFS

A. Convergence of gradient descent

I begin by establishing an asymptotic property concerning

the stability of a physical system — the object of interest here

is to study how a physical system behaves when the design

parameters are perturbed slightly.

Lemma 2 Let {ϕn ≡ (An, Bn, bn) : n ∈ N} be a se-

quence of physical systems which satisfies ‖Bn‖∞ ≤ O(1)
and ‖A−1‖2 ≤ O(nγ) for some γ > 0, then for all sequences

{θn ∈ dom(ϕn) : n ∈ N} such that ‖θn‖∞ ≤ O(no(1)−α−γ)
for some α > 0, ‖(An + diag(Bnθn))

−1‖2 ≤ O(nγ).

Proof : It follows straightforwardly that for n ∈ N,

(An + diag(Bnθn))
−1 =

A−1
n −A−1

n diag(Bnθn)(An + diag(Bnθn))
−1.

From the triangle inequality, I obtain that

‖(An + diag(Bnθn))
−1‖2 ≤ ‖A−1

n ‖2+
‖A−1

n ‖2‖Bnθn‖∞‖(An + diag(Bnθn))
−1‖2.

By assumption, ‖A−1
n ‖2 ≤ O(nγ) for γ > 0, and

‖Bnθn‖∞ ≤ ‖Bn‖∞‖θn‖∞ ≤ O(no(1)−γ−α). Therefore,

(

1−O(no(1)−α)
)

‖(An + diag(Bnθn))
−1‖2 ≤ O(nγ),

from which the lemma statement follows. �

For completeness, I provide an additional lemma with some

standard properties of Lipschitz continuous and strongly con-

vex functions that I will use in the following proofs.

Lemma 3 Let f : R → R be a twice-differentiable,

L−Lipschitz smooth and µ−strongly convex function such

that f∗ = minx∈R f(x) ≥ −∞, then

(a) ∀x, y ∈ R,

f(x) ≤ f(y) +∇f(y)(x− y) +
L

2
|x− y|2.

(b) ∀x ∈ R,

2µ
(

f(x)− f∗
)

≤ |∇f(x)|2.

(c) ∀x ∈ R,

|f ′(x)|2 ≤ 2L2

µ
(f(x)− f∗).

Proof :

(a) Since a L−Lipschitz smooth function by definition sat-

isfies |f ′(x) − f ′(y)| ≤ L|x− y| ∀x, y ∈ R, it follows

that ∀x ∈ R, |f ′′(x)| ≤ L. From Taylor’s theorem, it

follows that

f(x) =

f(y) + f ′(y)(x− y) +
1

2

∫ x

y

f ′′(s)(x − s)ds.

Since ∀s ∈ [x, y], f ′′(s) ≤ |f ′′(s)| ≤ L, it follows that

f(x) ≤ f(y) + f ′(y)(x− y) +
L

2

∫ x

y

(x− s)ds

= f(y) + f ′(y)(x − y) +
L

2
|x− y|2.

(b) Since f is µ−strongly convex, ∀x, y ∈ R

f(x) ≥ f(y) + f ′(y)(x − y) +
µ

2
|x− y|2.

and hence ∀y ∈ R

min
x∈R

f(x) ≥ min
x∈R

(

f(y) + f ′(y)(x − y) +
µ

2
|x− y|2

)

,

from which it follows that ∀y ∈ R

f∗ ≥ f(y)− 1

2µ
|f ′(y)|2.
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(c) Let x∗ = argminx∈R
f∗. I note that from stationarity

conditions, f ′(x∗) = 0. From the L−Lipschitz conti-

nuity, it follows that |f ′(x)|2 ≤ L2(x − x∗)2 ∀ x ∈ R.

Furthermore, from strong convexity of f , it follows that

∀x ∈ R,

f(x) ≥ f∗ +
µ

2
|x− x∗|2.

Therefore, ∀ x ∈ R, |f ′(x)|2 ≤ 2L2/µ(f(x)− f∗) �.

Next, I analyze the gradient descent algorithm (algorithm

1). The next three lemmas characterize the decrease in the

cost function on taking a gradient descent step.

Lemma 4 Let (f, c, ϕ ≡ (A,B, b)) be a physical design prob-

lem, and let f be L−Lipschitz smooth, then ∀θ ∈ dom(ϕ) and

η > 0 such that θ′ := θ − η∇θf(c
Tϕ(θ)) ∈ dom(ϕ),

f(cTϕ(θ′)) ≤ f(cTϕ(θ)) − η(f ′(cTϕ(θ))2×
(

‖BTv(θ)‖22 + ε1(θ, θ
′) + ηε2(θ, θ

′)
)

,

where v(θ) := ϕ(θ) ⊙ ad[ϕ](θ, c)

ε1(θ, θ
′) := ad[ϕ](θ, c)Tdiag(BBTv(θ))(ϕ(θ′)− ϕ(θ)),

(1a)

ε2(θ, θ
′) := −L

2

(

ad[ϕ](θ, c)Tdiag(BBTv(θ))ϕ(θ′)
)2
. (1b)

Proof : Since f is L−Lipschitz smooth, it follows that

f(cTϕ(θ′)) ≤ f(cTϕ(θ)) + f ′(cTϕ(θ))cT(ϕ(θ′)− ϕ(θ))+

L

2

(

cT(ϕ(θ) − ϕ(θ′)
)2
. (2)

Furthermore, since

ϕ(θ′)− ϕ(θ) = −(A+ diag(Bθ))−1diag(B(θ′ − θ))ϕ(θ′),

I obtain that

cT(ϕ(θ′)− ϕ(θ))

= −ad[ϕ](θ, c)Tϕ(θ′)

= −ηf ′(cTϕ(θ))adj[ϕ](θ, c)Tdiag(BBTv(θ))ϕ(θ′). (3)

Expressing ϕ(θ′) = ϕ(θ) + (ϕ(θ′)− ϕ(θ)), I obtain that

cT(ϕ(θ′)− ϕ(θ)) = −ηf ′(cTϕ(θ))
(

‖BTv(θ)‖2+
adj[ϕ](θ, c)Tdiag(BBTv(θ))(ϕ(θ′)− ϕ(θ))

)

. (4)

Substituting Eqs. 3 and 4 into the Eq. 2, I obtain the lemma

statement. �.

Lemma 5 Consider a family of physical design problems

F := {(f, cn, ϕn ≡ (An, Bn, bn)} satisfying the α, γ-

asymptotic convergence conditions (definition 5). Let η >
0, and let {θn ∈ dom(ϕn) : n ∈ N} be a se-

quence non-resonant with respect to F with ‖θn‖∞ ≤
O(no(1)−α−γ). Furthermore, suppose that the sequence

{θ′n := θn − η∇θf(c
T
nϕn(θn)) : n ∈ N} satisfies ‖θ′n‖∞ ≤

O(no(1)−α−γ), then |ε1(θn, θ′n)| ≤ O(no(1)+γ−α+1/2),
where ε1 is defined in lemma 4.

Proof : From the definition of ε1 it follows that ∀n ∈ N,

|ε1(θn, θ′n)| ≤
√
n‖ad[ϕn](θn, cn)

Tdiag(BnB
T
nvn(θn))‖∞×

‖ϕn(θ
′
n)− ϕn(θn)‖2, (5)

where vn(θn) = ad[ϕn](θn, cn) ⊙ ϕn(θn). Since

the sequence {θn : n ∈ N} is non-resonant,

‖ad[ϕn](θn, cn)
Tdiag(BnB

T
nvn(θn))‖∞ ≤ O(no(1)). Fur-

thermore, ∀n ∈ N

‖ϕn(θn)− ϕn(θ
′
n)‖2 ≤

‖(An + diag(Bnθn))
−1‖2‖Bn(θn − θ′n)‖∞‖ϕn(θ

′
n)‖2

It follows from lemma 2 that

‖(An + diag(Bnθn))
−1‖2 ≤ O(nγ) and ‖ϕn(θ

′
n)‖2 ≤

‖(An + diag(Bnθn))
−1‖2

√

‖b‖∞‖b‖1 ≤ O(nγ). Fi-

nally, ‖Bn(θn − θ′n)‖∞ ≤ ‖B‖n(‖θn‖∞ + ‖θ′n‖∞) ≤
O(no(1)−α−γ) and thus ‖ϕn(θ

′
n)− ϕn(θn)‖2 ≤

O(no(1)+γ−α). Using these estimates the lemma state-

ment follows.

Lemma 6 Consider a family of physical design problems

F := {(f, cn, ϕn ≡ (An, Bn, bn))} satisfying the

α, γ−asymptotic convergence conditions (definition 5). Let

η > 0 and {θn ∈ dom(ϕn) : n ∈ N} be a se-

quence non-resonant with respect to F with ‖θn‖∞ ≤
O(no(1)−α−γ). Furthermore, suppose that the sequence

{θ′n := θn − η∇θf(c
T
nϕn(θn)) : n ∈ N} satisfies ‖θ′n‖∞ ≤

O(no(1)−α−γ), then |ε2(θn, θ′n)| ≤ O(no(1)+4γ), where ε2 is

defined in lemma 4.

Proof : I note that ∀n ∈ N, |ε2(θn)| ≤
L/2‖adj[ϕn](θn, cn)‖‖ϕn(θn)‖‖BnB

T
nvn(θn)‖∞, where, as

in lemma 5, vn(θn) := ad[ϕn](θn, cn) ⊙ ϕn(θn) ∀ n ∈ N.

It follows from lemma 2 and the observation that

‖b‖ ≤
√

‖b‖1‖b‖∞ ≤ O(1) that ‖ϕn(θn)‖ ≤ O(nγ).
Similarly, ‖ad[ϕn](θn, cn)‖ ≤ O(nγ). Furthermore,

‖BnB
T
n‖∞ ≤ ‖Bn‖∞‖Bn‖1 ≤ O(1) and since {θn : n ∈ N}

is non-resonant, ‖ad[ϕn](θn, cn)‖∞ ≤ O(no(1)). From these

estimates, the lemma statement follows.

Lemma 7 Consider a family of physical design problems

F := {(f, cn, ϕn ≡ (An, Bn, bn))} satisfying the

α, γ-asymptotic convergence conditions (definition 5) with

3α > γ and ‖A−T
n cn‖∞ ≤ O(no(1)). Let {θn ∈

dom(ϕn) : n ∈ N} be a sequence non-resonant with

respect to F such that ‖θn‖∞ ≤ O(no(1)−α−γ), then

‖BT
n(ϕn(θn)⊙ ad[ϕn](θn, cn))‖2 ≥ Ω(nα+γ).

Proof : For notational convenient, let vn(θ) = ϕn(θ) ⊙
ad[ϕn](θ, cn) ∀θ ∈ dom(ϕn), n ∈ N. I first upper bound

‖BT
n(vn(θn)− vn(0))‖. Notice that

‖BT
n(vn(θn)− vn(0))‖ ≤ ‖Bn‖2‖vn(θn)− vn(0)‖.
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Furthermore,

‖vn(θn)− vn(0)‖ ≤
‖ϕn(θn)‖∞‖ad[ϕn](θn, cn)− ad[ϕn](0, cn)‖+
‖ad[ϕn](0, cn)‖∞‖ϕn(θn)− ϕn(0)‖.

Note that since {θn : n ∈ N} is non-resonant,

‖ϕn(θn)‖∞ ≤ O(no(1)) and by assumption

‖ad[ϕn](0, cn)‖∞ = ‖A−T
n cn‖∞ ≤ O(no(1)). Further-

more, ∀n ∈ N

‖ϕn(θn)− ϕn(0)‖ ≤ ‖A−1
n ‖2‖Bnθn‖∞‖ϕn(θn)‖.

I note that by assumption ‖A−1
n ‖2 ≤ O(nγ),

‖Bnθn‖ ≤ O(no(1)−α−γ) and ‖ϕn(θn)‖ ≤
‖(An + diag(Bnθn))

−1‖2‖bn‖ ≤ O(nγ). Conse-

quently, ‖ϕn(θn)− ϕn(0)‖ ≤ O(no(1)+γ−α). Similarly,

‖ad[ϕn](θn, cn)− ad[ϕn](0, cn)‖ ≤ O(no(1)+γ−α), which

yields

‖BT
n(vn(θn)− vn(0))‖ ≤ O(no(1)+γ−α).

Finally, I note that from the triangle inequality

‖BT
nvn(θn)‖ ≥ ‖BT

nvn(0)‖ − ‖BT
n(vn(θn)− vn(0))‖.

Since, by assumption, ‖BT
nvn(0)‖ ≥ Ω(n(α+γ)/2) and

γ < 3α, I obtain that ‖BT
nvn(θn)‖ ≥ Ω(n(α+γ)/2), from

which the lemma statement follows. �.

Theorem 1 (Restated) Let F := {(f, cn, ϕn) : n ∈ N}
be a family of physical design problems that satisfies the

α, γ−asymptotic convergence conditions (definition 5) with

α > 1/4, γ < 3α, and for n ∈ N, let Θn = {θ1n, θ2n . . . θTn
n }

be the design parameters generated by gradient descent

(algorithm 1) under the assumption that it does not fail when

applied on (f, cn, ϕn) with step size ηn ≤ O(n−3γ+α−1)
for Tn steps starting with initial design of θ0n = 0. If all the

sequences {θn ∈ Θn : n ∈ N} are non-resonant with respect

to F , then f(cT
nϕn(θ

Tn
n )) − f∗ ≤ ε for T chosen such that

Tn = Θ(n1−2(α−γ) log(ε−1)).

Proof : Consider the trajectory {θ1n . . . θTn
n } generated

by gradient descent when applied for Tn steps on the problem

(f, cn, ϕn) starting from θ0n = 0 and with step size ηn. I will

first analyze the final cost function achieved under the assump-

tion that ∀t ∈ [Tn], ‖θtn‖∞ ≤ O(no(1)−α−γ), and show that it

can be made ε−close to f∗ after Tn = Θ(n1−2(α−γ)log(ε−1))
gradient descent steps. Then, I will show that this assumption

is valid for all gradient descent steps.

I note with this assumption and the assumption that gradient

descent algorithm generates a trajectory that is non-resonant,

lemmas 4-7 are applicable. From lemmas 5 and 7, it is easy to

see that if α > 1/4, then ∀t ∈ {0, 1, 2 . . . Tn − 1},

‖BT
n(ϕn(θ

t
n) · ad[ϕn](θ

t
n, cn)‖2+2ε1(θ

t
n, θ

t+1
n ) ≥ Ω(nα+γ).

Similarly, choosing ηn ≤ O(n−3γ+α−1), it follows from lem-

mas 6 and 7 that ∀t ∈ {0, 1, 2 . . . Tn − 1}

‖BT
n(ϕn(θ

t
n) · ad[ϕn](θ

t
n, cn)‖2+2ε2(θ

t
n, θ

t+1
n ) ≥ Ω(nα+γ).

Consequently, from lemma 4, I obtain that ∀t ∈ [Tn]

f(cT
nϕn(θ

n
t )) ≤ f(cT

nϕn(θ
t−1
n ))−ηnf

′(cT
nϕn(θ

t−1
n ))2Ω(nα+γ),

From lemma 3b it follows that

f(cT
nϕn(θ

n
t ))−f∗ ≤ (f(cT

nϕn(θ
n
t−1))−f∗)(1−ηnΩ(n

α+γ)).

where f∗ = minx∈R f(x). Noting that, from lemma 3b along

with asymptotic convergence condition (g), it follows that

f(cT
nϕn(θ

n
0 ))− f∗ = f(cT

nA
−1
n bn)− f∗

≤ L

2

(

cT
nA

−1
n bn − x∗)2

≤ O(1),

where x∗ = argminx∈R
f(x) and therefore

f(cT
nϕn(θ

n
Tn

))− f∗ ≤ O(1)(1 − ηnΩ(n
α+γ))Tn .

Consequently, using Tn = Θ(n1−2(α−γ)log(ε−1)), I obtain

that f(cT
nϕn(θ

n
Tn

))− f∗ ≤ ε.

Next, I verify that the assumption ‖θtn‖∞ ≤ O(no(1)−α−γ)
holds for all t ∈ [Tn]. I notice that for all t ∈ [Tn], the norm of

θtn can be upper bounded by the sum of norms of gradients in

the previous steps, multiplied by the step size. Using lemma 1

‖θtn‖∞ ≤

ηn

t−1
∑

t′=0

|f ′(cnϕn(θ
t′

n ))|‖BT
n(ϕn(θ

t′

n )⊙ ad[ϕn](θ
t′

n , cn))‖∞.

Furthermore, using the fact that ‖Bn‖1 ≤ O(1), and that

the gradient descent trajectory is assumed to be non-resonant,

‖BT
n(ϕn(θ

t
n)⊙ ad[ϕn](θ

t
n, cn))‖∞ ≤ O(no(1)) ∀t ∈ [Tn].

Furthermore, from lemma 3(c), it follows that

|f ′(cnϕn(θ
t′

n ))| ≤ (2L2/µ)1/2(f(cT
nϕn(θ

t′

n ))− f∗))1/2

≤ O(1)(1 − ηnΩ(n
α+γ))t

′/2.

Therefore,

‖θtn‖∞ ≤ ηnO(no(1))

t−1
∑

t′=0

(1− ηnΩ(n
α+γ))t

′/2

≤ ηnO(no(1))

1− (1− ηnΩ(nα+γ))1/2

≤ O(no(1)−α−γ).

This completes the proof of the lemma �.



7

B. Analysis of random family of physical design problems

Problem 1 (Restated) Given a cost function f : R → R be-

ing an L−Lipschitz smooth and µ−strongly convex function

that is bounded from below, define a family of physical design

problems F := {(f, cn, ϕn ≡ (An := G−1
n , Bn := In, bn)) :

n ∈ N} where

• ‖bn‖∞, ‖bn‖1, ‖cn‖∞, ‖cn‖1 = Θ(1) and,

• Gn ∈ R
n×n is a matrix where each entry is indepen-

dently drawn from the standard normal distribution.

Proposition 1 (Restated) For the problem of state size n,

(f, cn, ϕn ≡ (An, Bn, bn)), picked from the family of prob-

lems defined in problem 1, it is true that

(a) With probability 1− 2 exp (−ε2/2), ‖A−1
n ‖2 ≤ 2

√
n+

ε,

(b) E(‖BT
n(A

−1
n bn ⊙A−T

n cn)‖)22 ≥ Ω(n),

(c) E(|cT
nA

−1
n bn|2) ≤ O(1),

and consequently, this family of problems on an average

satisfies the 1/2, 1/2−asymptotic convergence conditions.

Proof :

(a) This is a standard result in random matrix theory, for

e.g. see Ref. [38].

(b) It follows from straightforward computation that

E(‖BT
n(A

−1
n bn ⊙A−T

n cn)‖)22
= E(‖Gnbn ⊙GT

ncn‖2)
= n‖bn‖2‖cn‖2 + ‖bn ⊙ cn‖2.

Noting that ‖bn‖2 ≥ ‖bn‖2∞ ≥ Ω(1) and ‖cn‖2 ≥
‖cn‖2∞ ≥ Ω(1), the lemma statement follows.

(c) I note that.

E(|cT
nA

−1
n bn|2) = E

(

cT
nGnbnb

T
nG

T
ncn

)

= ‖cn‖2‖bn‖2.

Since ‖bn‖2 ≤ ‖bn‖21 ≤ O(1) and ‖cn‖2 ≤ ‖cn‖21 ≤
O(1), the lemma statement follows. �

Problem 2 (Restated) Given a cost function f : R → R

being an L−Lipschitz smooth and µ−strongly convex func-

tion that is bounded from below and γ ≥ 1/2, define a

family of physical design problems {(f, cn, ϕn ≡ (An :=
Rndiag(sn)Q

T
n, Bn := In, bn)) : n ∈ N} where

• ‖bn‖∞, ‖bn‖1, ‖cn‖∞, ‖cn‖1 = Θ(1),

• sn ∈ (0,∞)n with ‖1/sn‖∞ ≤ O(nγ) and ‖1/sn‖ =
Θ(n),

• Rn, Qn ∈ R
n×n are drawn uniformly at random from

the Haar measure over orthogonal matrices.

Lemma 8 Let M = R diag(v)QT ∈ R
d×d, where R,Q are

orthogonal matrices drawn independently from the Haar ran-

dom measure over the set of d × d orthogonal matrices, and

b, c ∈ R
d, then

E
(

(cTMb)2
)

=
1

d2
‖v‖2‖b‖2‖c‖2.

Proof : Provided in appendix A.

Lemma 9 Let M = R diag(v)QT ∈ R
d×d, where R,Q are

orthogonal matrices drawn independently from the Haar ran-

dom measure over the set of d × d orthogonal matrices, and

b, c ∈ R
d, then

E
(

‖Mb⊙MTc‖2
)

= ‖b‖2‖c‖2‖v‖4Ω
(

1

d3

)

.

Proof : Provided in appendix A.

Proposition 2 (Restated) For the problem of state size

n, (f, cn, ϕn ≡ (An, Bn, bn)), picked from the family of

problems defined in problem 2,

(a) ‖A−1
n ‖2 ≤ O(nγ),

(b) E(‖BT
n(A

−1
n bn ⊙A−T

n cn)‖)2 ≥ Ω(n),

(c) E(|cT
nA

−1
n bn|2) ≤ O(1),

and consequently, this family of problems on an average

satisfies the 1− γ, γ-asymptotic convergence conditions.

Proof :

(a) This follows straightforwardly by noting that ‖Rn‖ =
‖Qn‖ = 1 ∀ n ∈ N and ‖diag(sn)

−1‖ = ‖1/sn‖∞ ≤
O(nγ).

(b) Using lemma 9, it immediately follows that

E(‖BT
n(A

−1
n bn ⊙A−T

n cn)‖2)
≥ ‖bn‖2‖cn‖2‖1/sn‖4Ω(n−3).

Noting that ‖bn‖2‖cn‖2 ≥ ‖bn‖2∞‖cn‖2∞ ≥ Ω(1) and

‖1/sn‖4 ≥ Ω(n4), the lemma statement follows.

(c) Using lemma 8, it follows that

E
(

(cT
nA

−1
n bn)

2
)

=
1

n2
‖cn‖2‖bn‖2‖1/sn‖2.

Since ‖cn‖2‖bn‖2 ≤ ‖cn‖21‖bn‖21 ≤ O(1), and

‖1/sn‖2 ≤ O(n2), the lemma statement follows. �

C. Provably non-resonant problems

Lemma 10 Let {ϕn ≡ (An, Bn, bn) : n ∈ N} be a sequence

of physical systems which satisfies ‖bn‖1 ≤ O(1), ‖Bn‖∞ ≤
O(1), ‖A−1

n ‖max ≤ O(no(1)) and ‖A−1‖2 ≤ O(nγ) for some
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γ < 1/2, then ∀ sequences {θn ∈ dom(ϕn) : n ∈ N}, {cn ∈
R

n : n ∈ N} such that ‖θn‖∞ ≤ O(no(1)−1) and ‖cn‖1 ≤
O(1), ‖ϕn(θn)‖∞ ≤ O(no(1)) and ‖ad[ϕn](θn, cn)‖∞ ≤
O(no(1)).

Proof : It follows straightforwardly that for n ∈ N,

ϕn(θn) = A−1
n bn −A−1

n diag(Bnθn)ϕn(θn).

Consequently,

‖ϕn(θn)‖∞ ≤ ‖A−1
n bn‖∞ + ‖A−1

n diag(Bnθn)ϕn(θn)‖∞
≤ ‖A−1

n ‖max‖bn‖1 +
√
n‖A−1

n ‖2‖Bnθn‖∞‖ϕn(θn)‖∞.

By assumption, ‖A−1
n ‖2 ≤ O(nγ) for γ < 1/2, and

‖Bnθn‖∞ ≤ ‖Bn‖∞‖θn‖∞ ≤ O(no(1)−1). Therefore,

(

1−O(no(1)+γ−1/2)
)

‖ϕn(θn)‖∞ ≤ O(no(1)),

from which it follows that ‖ϕn(θn)‖ ≤ O(no(1)). A similar

analysis yields ‖ad[ϕn](θn, cn)‖∞ ≤ O(no(1)). �

Theorem 2 (Restated) Let F := {(f, cn, ϕn ≡
(An, Bn, bn)) : n ∈ N} be a family of physical design

problems that satisfies the α, γ−asymptotic convergence con-

ditions (definition 5) with α > 1/2, γ < 3α, and also satisfies

‖A−1
n ‖max ≤ O(no(1)), then gradient descent when applied

on (f, cn, ϕn), if it does not fail, produces a design θ∗n such

that f(cTϕn(θ
∗
n)) − f∗ ≤ ε in T = Θ(n1−2(α−γ) log(ε−1))

steps.

Proof : This theorem can be proved by repeating the anal-

ysis in the proof of theorem 1, and noting from lemma

10 that the assumption that the gradient descent trajectory

{θ1n, θ2n . . . } obtained for the problem (f, cn, ϕn) satisfies

‖θtn‖∞ ≤ O(nα+γ) implies that the trajectory is also non-

resonant. �

V. CONCLUSION AND OPEN PROBLEMS

In conclusion, this work provides rigorous evidence for lo-

cal optimization algorithms being efficient at solving physical

design problems. I show that, under some assumptions on the

physics of the system, non-resonant physical design problems

are efficiently solvable by gradient descent. Furthermore, I

also outline random ensembles of physical design problems

which are, on an average, efficiently solvable by local opti-

mization algorithms.

This work, while being a first step towards theoretically un-

derstanding the complexity of typical physical design prob-

lems, leaves several questions open. One question is to better

characterize when a physical design problem is resonant — in

this analysis, I need to assume that gradient descent avoids

resonant designs in order to show that it globally solves the

design problem. While theorem 2 makes some progress in

this direction, it would be interesting to more carefully ana-

lyze the gradient descent trajectory and obtain a set of weaker

conditions on the design problems under which gradient de-

scent avoids resonant devices. Another interesting direction

would be to study the optimality of gradient descent on spe-

cific design problems, or ensembles of design problems, ap-

pearing in practical settings using the tools introduced in this

paper. Finally, extending the analysis introduced in this paper

to other optimization algorithms (such as quasi-Newton meth-

ods like BFGS, L-BFGS, or method of moving asymptotes),

would also go a long way in making the rigorous results prac-

tically relevant.
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A. W. Rodriguez, Nature Photonics 12, 659 (2018).

[2] L. Su, A. Y. Piggott, N. V. Sapra, J. Petykiewicz, and J. Vuck-

ovic, Acs Photonics 5, 301 (2018).

[3] A. Y. Piggott, E. Y. Ma, L. Su, G. H. Ahn, N. V. Sapra, D. J.

Vercruysse, A. M. Netherton, A. S. Khope, J. E. Bowers, and
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Appendix A: Proof of lemmas

This proof requires a basic integration formula with respect to the Haar measure over the orthogonal matrices. Given that

O ∈ R
n×n is an orthogonal matrix drawn randomly from the Haar measure, this integration formula allows us to express

E(Oi1,j1Oi2,j2 . . . Oi2k ,j2k) in terms of the orthogonal Wein-garten function [39, 40]. This function is difficult to evaluate in

closed form for a general k, but for my purposes k = 2 will suffice. For completeness, I provide this integration formula, and

specialize it to k = 2 and then provide a proof of proposition 2(b).

Definition 7 (Pairing) For n ∈ N, denoted by P2n, is an unordered tuple of n unordered tuples with two elements,

((i1, j1), (i2, j2) . . . (in, jn)) where all i1, i2 . . . in, j1, j2 . . . jn are distinct and ∈ [2n]. The set of all pairings over [2n] will

be denoted by P2n.

Remarks:

• It is important to emphasize the simply reordering the tuples in a pairing, or the the two elements inside the tuple,

does not generate a different pairing. For instance, the pairing ((1, 2), (3, 4), (5, 6)) over [6] is the same as the pairing

((3, 4), (2, 1), (6, 5)).

• As an explicit and important example for the following calculations, the set P4 has three distinct elements, ((1, 2), (3, 4)),
((1, 3), (2, 4)), ((1, 4), (2, 3)).

Definition 8 (Pairing delta function ∆p
i1,i2...i2n

) Given a pairing p = ((k1, r1), (k2, r2) . . . (kn, rn)) ∈ P2n, and indices

i1, i2 . . . i2n from some set I, then

∆p
i1,i2...i2n

=

n
∏

s=1

δiks ,irs ,

where δi,j = 1 if i = j and 0 if i 6= j is the Kronecker delta function.

Definition 9 (Loop function loop(p1, p2)) Let p1, p2 ∈ P2k be two pairings. Construct a graph with vertices {1, 2, 3 . . .2k}
with edges on all the pairings in p1 or p2, then loop(p1, p2) is the number of connected components in the graph.
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Definition 10 (Orthogonal wein-garten function Wg
O(d)
k (p1, p2)) Given P2k = {p1, p2 . . . }, let Gd

k ∈ R
|P2k|×|P2k| be a ma-

trix with elements (Gd
k)i,j = dloop(pi,pj), then the Wg

O(d)
k (pi, pj) = [(Gd

k)
−1]i,j .

Lemma 11 For d > 1 and for p1, p2 ∈ P4,

Wg
O(d)
2 (p1, p2) =

{

1
d2−1 if p1 = p2,

− 1
d(d2−1) if p1 6= p2.

Proof : Explicitly, P4 = {p1 := ((1, 2), (3, 4)), p2 := ((1, 3), (2, 4)), p3 := ((1, 4), (2, 3))}. I can now calculate the loop

function, and it follows that loop(pi, pj) = 2 if i = j else 1 and thus

Gd
2 =





d2 d d
d d2 d
d d d2



 =⇒
(

Gd
2

)−1
=

1

d2 − 1





1 −1/d −1/d
−1/d 1 −1/d
−1/d −1/d 1



 .

Identifying the weingarten function with these matrix elements, the lemma statement follows �.

Lemma 12 (Integration w.r.t. Haar measure over O(d) from Ref. [40]) Let R be a matrix drawn uniformly at random from

the Haar measure over the set of d× d orthogonal matrices, then for all k ∈ N,

E
[

Ri1,j1Ri2,j2 , Ri3,j3 . . . Ri2k,j2k

]

=
∑

p1,p2∈P2k

Wg
O(d)
k (p1, p2)∆

p1

i1,i2...i2k
∆p2

j1,j2...j2k
.

Lemma 8 (Restated) Let M = R diag(v)QT ∈ R
d×d, where R,Q are orthogonal matrices drawn independently from the Haar

random measure over the set of d× d orthogonal matrices, and b, c ∈ R
d, then

E
(

(cTMb)2
)

=
1

d2
‖v‖2‖b‖2‖c‖2.

Proof : Explicitly writing out the expectation value,

E((cTMb)2) = E

(

∑

i,j,k∈[d]2

2
∏

l=1

vkl
cilbjlRil,kl

Qjl,k2

)

=
∑

i,j,k∈[d]2

( 2
∏

l=1

vkl
cilbjl

)

E
(

Ri1,k1
Ri2,k2

)

E
(

Qj1,k1
Qj2,k2

)

.

From lemma 12, it follows that

E(Ri1,k1
Ri2,k2

) =
1

d
δi1,i2δk1,k2

, and E(Qj1,k1
Qj2,k2

) =
1

d
δj1,j2δk1,k2

,

and consequently,

E
(

(cTMb)2
)

=
1

d2
‖v‖2‖b‖2‖c‖2.

and thus the lemma statement follows �.

Lemma 9 (Restated) Let M = R diag(v)QT ∈ R
d×d, where R,Q are orthogonal matrices drawn independently from

the Haar random measure over the set of d× d orthogonal matrices, and b, c ∈ R
d, then

E
(

‖Mb⊙MTc‖2
)

= ‖b‖2‖c‖2‖v‖4Ω(d−3).

Proof : It is easily follows that

E
(

‖Mb⊙MTc‖2
)

=
∑

i∈[n]

∑

j,k,l,m∈[n]2

vj1vj2vk1
vk2

E
(

Ri,j1Ri,j2Rl1,k1
Rl2,k2

)

E
(

Qm1,j1Qm2,j2Qi,k1
Qi,k2

)

bm1
bm2

cl1cl2 .
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From lemma 12, it follows that

E
(

Ri,j1Ri,j2Rl1,k1
Rl2,k2

)

=
∑

p1,p2∈P4

Wg
O(d)
4 (p1, p2)∆

p1

i,i,l1,l2
∆p2

j1,j2,k1,k2
,

E
(

Qm1,j1Qm2,j2Qi,k1
Qi,k2

)

=
∑

p′

1
,p′

2
∈P4

Wg
O(d)
4 (p′1, p

′
2)∆

p′

1

m1,m2,i,i
∆

p′

2

k1,k2,j1,j2
.

I first evaluate the summation

f(p1, p
′
1, v) :=

∑

j,k∈[d]2

∑

p2,p′

2
∈P4

vj1vj2vk1
vk2

Wg
O(d)
4 (p1, p2)Wg

O(d)
4 (p′1, p

′
2)∆

p2

j1,j2,k1,k2
∆

p′

2

j1,j2,k1,k2
.

I note from definition 8

∑

j,k∈[d]2

vj1vj2vk1
vk2

∆p2

j1,j2,k1,k2
∆

p′

2

k1,k2,j1,j2
=

{

‖v‖44 if p2 6= p′2,

‖v‖4 if p2 = p′2.

Consequently, it follows that

f(p1, p
′
1, v) =

(

‖v‖4 − ‖v‖44
)

∑

p∈P4

Wg
O(d)
4 (p1, p)Wg

O(d)
4 (p′1, p) + ‖v‖44

(

∑

p∈P4

Wg
O(d)
4 (p1, p)

)(

∑

p∈P4

Wg
O(d)
4 (p′1, p)

)

.

Using the explicit formula for the Weingarten functions from from lemma 11, it follows that

χ(p1, p
′
1, v) =

{

χeq(v) if p1 = p′1,

χueq(v) if p1 6= p′1.
,

where

χeq(v) =
d2 + 2

d2(d2 − 1)2
‖v‖4 − 4d− 2

d2(d2 − 1)2
‖v‖44,

χueq(v) = − 2d− 1

d2(d2 − 1)2
‖v‖4 + d2 − 2d+ 3

d2(d2 − 1)2
‖v‖44

I note that

E
(

‖Mb⊙MTc‖2
)

=
∑

p1,p′

1
∈P4

∑

i∈[n],

l,m∈[n]2

bm1
bm2

cl1cl2∆
p1

i,i,l1,l2
∆

p′

1

m1,m2,i,i
χ(p1, p

′
1, v)

= χeq(v)
(

d‖b‖2‖c‖2 + 2‖b⊙ c‖2
)

+ 6χueq(v)‖b‖2‖c‖2.

Using the expressions for χeq(v), χuneq(v), we prove the lemma statement. �.


