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In open quantum system theory, unitary groups over system-environment Hilbert space corresponding to delta-

function memory kernels, and thus generating Markovian system dynamics, are specified as the solution of a

quantum stochastic differential equation. In this paper, we identify a larger class of non-Markovian memory

kernels, described by complex-valued radon measures, and rigorously define their dynamics by constructing

system-environment unitary groups corresponding to the memory kernels. We then consider k−local many-

body non-Markovian systems and show that under physically reasonable assumptions on the total variation

and smoothness of the memory kernels, their dynamics can be efficiently approximated on quantum computers

thus providing a rigorous verification of the Extended Church-Turing thesis for non-Markovian open quantum

systems.

I. INTRODUCTION

Quantum systems invariably interact with their environ-

ment, and any model describing their behaviour needs to cap-

ture this interaction. Often such systems are assumed to ap-

proximately be Markovian, wherein the environment does not

retain any memory of the system. Markovian open quantum

systems have been extensively studied in quantum informa-

tion theory and quantum optics — a mathematically rigorous

description of a unitary group over the system-environment

Hilbert space which generates Markovian open quantum dy-

namics is provided in the theory of quantum stochastic calcu-

lus [1, 2] as the solution of a quantum stochastic differential

equation. When evolved according to this unitary group, the

system’s reduced state satisfies the well-known Lindbladian

master equation [3].

However, a number of quantum systems arising in solid-

state physics [4–7], quantum optics [8–12] as well as quan-

tum biology and chemistry [13–16] are not Markovian and

the environment’s memory needs to be explicitly taken into ac-

count. This opens up the question of formulating a mathemati-

cally rigorous description of non-Markovian dynamics. While

it is generically expected that non-Markovian open quantum

systems satisfy a generalized Nakajima-Zwazig [15, 17] or

time-convolutionless [18–20] master equation, it is usually

hard to obtain such a master equation explicitly except for

when the system only weakly couples to its environment [21–

24]. Given the difficulty of generalizing the Markovian mas-

ter equation to the non-Markovian setting, a natural ques-

tion to ask is if this generalization can be done with the uni-

tary groups described by quantum stochastic differential equa-

tions.

This question has been addressed in several specific set-

tings in the quantum optics literature — using standard the-

ory of second quantization, unitary groups have been con-

structed for non-Markovian spin boson models with normaliz-

able [25] as well as weakly interacting spin boson models with

non-normalizable [26] form factors. Furthermore, for time-

delayed feedback systems, the non-Markovian dynamics can
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be rigorously defined by expanding the system Hilbert space

with time [27, 28]. In this paper, we identify a general class

of non-perturbative models with memory kernels described

by tempered radon measures [29], which are a natural gen-

eralization of delta functions arising in classical probability

and distribution theory. We rigorously define a unitary group,

which in general generates non-Markovian system dynamics,

associated with a tempered radon measure. Our generaliza-

tion ties together disparate models used for open-system dy-

namics within the same mathematical framework — as spe-

cial cases, we recover Markovian dynamics, quantum sys-

tems with time-delay and feedback [8, 27, 30] and spin-boson

models described by spectral density functions with vanishing

high-frequency response [25]. A major difficulty in dealing

with memory kernels in this class is that the Schroedinger’s

equation for the system-environment state of the resulting non-

Markovian model is not guaranteed to have a solution. Our

key technical contribution is to construct this unitary group

via a regularization procedure — we use standard mollifiers

to regularize the radon measure to obtain a non-Markovian

model where the Schroedinger’s equation has a guaranteed so-

lution, show that the limit of this solution as the regularization

is removed exists and hence defines the dynamics associated

with the radon measure.

We next consider the simulatability of non-Markovian

many-body dynamics, thus defined, on quantum comput-

ers. While the quantum simulatability of Markovian many-

body open quantum systems [31–34], and many-body closed

quantum systems[35–38] have been extensively studied, non-

Markovian open quantum systems have remain relatively un-

explored. A recent work developed an efficient quantum algo-

rithm for non-Markovian dynamics where a chain Markovian

dilation is known [39]. For spin-boson models with rapidly de-

caying spectral density functions, a Markovian dilation with

finite Lieb-Robinson velocity has previously been established

[40, 41] which implies quantum simulatability of the model.

Here, we establish that the general class of non-Markovian

many-body models with memory kernels described by tem-

pered radon measures can be efficiently simulated on a quan-

tum computer under physically motivated assumptions on (the

growth of) the total variation of the memory kernel and its

smoothness. Consequently, we show that the non-Markovian

http://arxiv.org/abs/2204.06936v1
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generalization of Markovian dynamics established in this pa-

per is a model of physical system consistent with the Extended

Church Turing thesis, according to which any physically rea-

sonable model of a many-body system should be efficiently

simulatable on quantum computers. The quantum algorithm

for simulating non-Markovian dynamics relies on a Marko-

vian dilation of non-Markovian dynamics using a Lanczos iter-

ation, also referred to the star-to-chain transformation [42, 43],

which has been previously analyzed for the Pauli-Fierz Hamil-

tonians [40, 41, 44], as well as for general models with dis-

tributional memory kernels but under the assumption of a fi-

nite particle emission rate into the environment [45]. The key

technical contribution in our work that allows us to prove that

the quantum algorithm is efficient (i.e. with run-time polyno-

mial in system size and the evolution time) is to establish error

bounds between the non-Markovian dynamics and its Marko-

vian dilation which grows polynomial with system size and

evolution time, as opposed to the previously known bounds

which in the worst case grow exponentially with evolution

time [45, 46].

II. SUMMARY OF RESULTS

We consider non-Markovian open quantum system models

where the quantum system, with a finite-dimensional Hilbert

space HS
∼= Cd, interacts with M bosonic baths, which in-

dividually are symmetric Fock spaces over L2(R). We will

consider a Hamiltonian between the system and the environ-

ment that can be formally be written as

H = HS(t) +
M
∑

α=1

(

L†
αAα(t) + LαA

†
α(t)

)

, (1)

where HS(t) is the time-dependent Hamiltonian describing

the system dynamics in the absence of its interaction with the

environment, {Lα ∈ L(HS)}α∈{1,2...M}
1 are system opera-

tors (which we will refer to as ‘jump operators’ to be consis-

tent with the terminology for Markovian environments) and

for α ∈ {1, 2 . . .M}, Aα(t) is an operator that acts on the αth

bath can be formally expressed as

Aα(t) =

∫

R

v̂α(ω)aα,ωe
−iωt dω√

2π
,

where aα,ω can be interpreted as the annihilation operator for

frequency ω in the αth bath, and v̂α(ω), referred to as a ‘cou-

pling function’ throughout this paper, describes the frequency-

dependence of the interaction between the system and the αth

bath.

Of particular importance to the physics of non-Markovian

1 The space of linear bounded operators from HS to HS will be denoted by

L(HS ).

systems described by the Hamiltonian in Eq. 1 is the kernel

µα
∼= [Aα(t), A

†
α(t

′)] =

∫

R

|v̂α(ω)|2 e−iω(t−t′) dω

2π
.

For Markovian dynamics, |v̂α(ω)| = const and µα
∼= δ(t−t′).

In order to generalize this description to the non-Markovian

setting, it is necessary to describe the family of kernels for

which a dynamical group can be associated with the Hamil-

tonian in Eq. 1. A natural class of kernels which also con-

tains the delta function, but will in general describe non-

Markovian dynamics, is the set of radon measures M(R)[29].

A radon measure µ is a map from the space of continuous and

compactly supported functions (C0
c(R)) to complex numbers

which is bounded in the sense that ∀f ∈ C0
c(R) with support

supp(f) ⊆ Ω ⊆ R

|〈µ, f〉| ≤ TVΩ(µ) sup
x∈Ω

|f(x)| ,

with TVΩ(µ) is defined to be the total variation of µ within

the compact set Ω. Furthermore, we additionally assume that

the radon measures that we consider have a fourier transform

which is of at-most polynomial growth in frequency — this

assumption stems from the physical intuition that the fourier

transform of µα describes the spectral density function of the

αth bath, and will not grow extremely rapidly with ω in all

problems of interest.

Several commonly occuring kernels fall into the class of

radon measures — for instance, it is evident that the single

delta function kernel is a tempered radon measure. Further-

more, kernels expressed as sum of multiple delta functions

(µ ∼=
∑P

i=1 δ(t − t′ − τi) for some {τ1, τ2 . . . τP }), which

arise in the study of time-delay feedback systems [8, 27, 30]

also fall into this class. As a final example, consider the

kernels corresponding to square integrable coupling functions

(v̂ ∈ L2(R)) — these models arise in the study of cavity QED

systems in quantum optics [47–52], or the non-Markovian

spin-boson model [25]. Such kernels are also tempered radon

measures with TVΩ(µ) ≤ ‖v̂‖2L2 diam(Ω)2. A detailed anal-

ysis of the properties of these specific radon measures is pro-

vided in section IV B.

A non-Markovian model can thus be specified by the sys-

tem Hamiltonian, jump operators and the coupling functions

in between system and the baths. These coupling functions

are provided as a tempered radon transform, which specifies

the magnitude of the coupling function, and the phase of the

coupling function.

Definition 1 (Non-Markovian model). A non-Markovian

open system model for a quantum system with Hilbert space

HS is specified by

(a) A time-dependent system Hamiltonian HS(t) ∈ L(HS)
which is Hermitian, norm continuous and differentiable

in t,

2 For Ω ⊆ R, diam(Ω) = supx,y∈Ω |x− y|
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(b) A set of coupling functions {(µα, ϕα)}α∈{1,2...M},

where µ1, µ2 . . . µM are tempered radon measures and

ϕ1, ϕ2 . . . ϕM : R → C specify the phase of the cou-

pling functions,

(c) A set of bounded jump operators

{Lα ∈ L(HS)}α∈{1,2...M}.

We now turn to the question of defining the quantum dy-

namics corresponding to a non-Markovian model. In general,

this cannot be done simply through the Schroedinger’s equa-

tion, since for general radon measure kernel it isnt clear if

a meaningful solution with the Hamiltonian in Eq. 1 exists.

For the Markovian case, this is circumvented in the theory

of quantum stochastic calculus by formulating Aα(t)dt and

A†
α(t)dt as operator-valued Ito increments, and the rewrit-

ing Schroedinger’s equation with the Hamiltonian in Eq. 1 a

quantum stochastic differential equation whose solution can

be shown to exist [1, 2]. For non-Markovian cases, we ap-

proach the problem of defining the associated quantum dy-

namics through a regularization procedure. An elementary but

important observation that enables this regularization is that

if the coupling functions are square integrable (vα ∈ L2(R)),
then the solution to Schroedinger’s equation with Hamiltonian

in Eq. 1 can be shown to exist using standard tools from the

theory of non-autonomous differential equations on Banach

spaces [53, 54] (for completeness, we provide a proof of this

in section IV A ). Now, a coupling function (µ, ϕ) can be ap-

proximated by a square integrable function by using a molli-

fier3(smoothing function) ρ.

Definition 2 (Regularization). For ε > 0 and given a symmet-

ric mollifier ρ ∈ C∞
c (R), an ε, ρ−regularization of a distribu-

tional coupling function (µ, ϕ) is a square integrable function

vε ∈ L2(R) whose fourier transform4 is given by v̂ε ∈ L2(R)
is given by

v̂ε(ω) =
√

µ̂(ω)ρ̂(ωε)eiϕ(ω) ∀ω ∈ R,

where ρ̂ is the fourier transform of ρ and µ̂ is the fourier trans-

form of µ 5.

3 A mollifier ρ is a smooth compact function (ρ ∈ C∞
c (R)) which is positive

and with support supp(ρ) ⊆ [−1, 1] with
∫
[−1,1]

ρ(x)dx = 1.

Unless otherwise mentioned, we will assume ρ to be a symmetric (even)

function.
4 We will assume the following convention for the fourier transform v̂ of

v ∈ L2(R):

v̂(t) =

∫
R

v(ω)e−iωt dω√
2π
.

5 For a tempered distribution µ ∈ S′(R), the fourier transform µ̂ (if it exists

as a function from R to C) is defined by demanding that

〈µ, f〉 =
∫
R

µ̂(ω)f̂(ω)
dω√
2π

for all smooth compact functions f ∈ C∞
c (R).

We note that since ρ is smooth and compact, its fourier

transform ρ̂ falls off faster than any polynomial in ω as ω →
∞ and thus vε is indeed a square integrable function. Equiv-

alently, this regularization step can be considered as approx-

imating the radon transform µ with another radon transform

µε whose action on a continuous compact function f is given

by

〈µε, f〉 = 〈µ, f ⋆ ρε ⋆ ρε〉,

where ρε(x) = ε−1ρ(ε−1x) and ⋆ denotes a convolution op-

eration. It can be seen that as ε → 0, f ⋆ ρε ⋆ ρε becomes an

increasingly better approximation to f , and thus µε becomes

an increasingly better approximation of µ.

Since the regularized coupling functions are square inte-

grable, their associated dynamics can be computed by solving

the Schroedinger’s equation. We can now study the limit of

this dynamics on removing the regularization (ε → 0) — our

first result shows that this limit exists, and is independent of

the choice of the mollifier. The proof of this result, provided

in section IV B, relies on an upper bound bound on the

rate of change of two-point correlation functions of system

observables that is uniform in the regularization parameter ε.

Theorem 1 (Informal, Non-markovian dynamics). Given

a non-Markovian open system model (definition 1) with

Uε,ρ(t, s) for t, s ∈ R being the propagator correspond-

ing to an ε, ρ−regularization of its coupling functions,

limε→0 Uε,ρ(t, s) exists weakly6 as an isometry from a dense

subspace D of the system-environment Hilbert space and is

independent of the choice of the mollifier ρ.

This result thus establishes the well definition of dynamics

of a non-Markovian system as specified in definition 1. Our

next result considers the simultability of non-Markovian dy-

namics of many-body systems on quantum computers. The

motivation for analyzing this problem is two fold — first, a

number of non-Markovian physical systems are many-body in

nature and their dynamics are expected to be hard to simulate

on classical computers. Second, it is of interest to understand

the relationship of the non-Markovian model in definition 1

with the Extended Church-Turing thesis, which posits that the

dynamics of any physical system should be efficiently simu-

latable on a quantum computer.

To make further progress, we need two additional assump-

tions — one on the radon measures describing the coupling

functions between the many-body system and the bath, and

the second on the initial state in the environment.

Assumption 1 (Polynomial growth of Radon measure). The

radon measure µ corresponding to the coupling function

should satisfy:

6 A single parameter family of operators {Ox : D → H}x∈[0,∞) is said

to converge weakly (or converge in the weak topology) to O : D → H as

x → 0 if ∀ |ψ〉 ∈ D, limx→0Ox |ψ〉 = O |ψ〉.
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(a) For any compact interval [a, b] ⊆ R, TV[a,b](µ) ≤
poly(|a| , |b|) and

(b) Given a compact interval [a, b] ⊆ R, ∃∆0
µ;[a,b](ε),

∆1
µ;[a,b](ε) which are locally integrable and of polyno-

mial growth with respect to a, b, vanish polynomially as

ε→ 0 and for any differentiable function f ∈ C1(R)

∣

∣

∣
〈µ, f[a,b] ⋆ ρε〉 − lim

ε→0
〈µ, f[a,b] ⋆ ρε〉

∣

∣

∣
≤

∆0
µ;[a,b](ε) sup

t∈[a,b]

|f(t)|+∆1
µ;[a,b](ε) sup

t∈[a,b]

|f ′(t)|

where f[a,b](t) = f(t) if t ∈ [a, b] and 0 otherwise.

Assumption 1(a), which constrains the growth of the total

variation of the memory kernel, can be physically interpreted

as limiting the amount of “memory” that the non-Markovian

system can accumulate. Assumption 1(b) is a constraint on

the smoothness of the memory kernel (i.e. the error incurred

on smoothing the memory kernel with a mollifier), and it lim-

its how rapidly the memory kernel diverges from its smooth

approximations. We show in section IV B (Examples 1-3) that

these assumptions are satisfied by a large class of coupling

functions encountered in experimentally relevant physical sys-

tems.

Assumption 2 (Initial environment state). The initial environ-

ment state |φ1〉 ⊗ |φ2〉 . . . |φM 〉 where for α ∈ {1, 2 . . .M},

|φα〉 ∈ Fock[L2(R)] and

(a) for its n−particle wavefunctions φα,n ∈ L2(Rn), and

any j, k ≥ 0, ∃Nj,k > 0 such that

∞
∑

n=0

nj

∫

Rn

(1 + ω2
1)

k |φα,n(ω)|2 dω < Nj,k.

(b) for v1, v2 . . . vm ∈ L2(R) and P ∈ Z>0, all the ampli-

tudes

〈vac|
m
∏

i=1

(
∫

R

vi(ω)aωdω

)ni

|φα〉

with n1 + n2 . . . nm ≤ P can be computed in

poly(m,P ) time on a classical or quantum computer.

Assumption 2(a) demands that both high particle number or

high frequency amplitude of the initial wavefunction vanishes

superpolynomially. This assumption is reminiscent of assump-

tion on particle number and energies of initial states made in

studying the simulatability of quantum field theories [55, 56].

A number of commonly used initial environment states (such

as thermal states) in physically relevant open systems have ex-

ponentially vanishing high energy amplitudes, and satisfy this

assumption. Assumption 2(b) formalizes the expectation that

the it should be efficient to represent a reasonable initial state

computationally.

The computational problem of simulating k−local many-

body non-Markovian dynamics can now be stated as

Problem 1 (k−local non-Markovian dynamics). Consider a

system of n qudits (HS =
(

Cd
)⊗n

) interacting with M =
poly(n) baths with

(a) System Hamiltonian HS(t) is k−local i.e. HS(t) =
∑N

i=1Hi(t), where N = poly(n), and for i ∈
{1, 2 . . .N}, Hi(t) is an operator acting on atmost k
qudits and ‖Hi(t)‖ ≤ 1.

(b) Jump operators {Lα}α∈{1,2...M} such that for α ∈
{1, 2 . . .M}, Lα acts on at-most k qudits and ‖Lα‖ ≤
1.

(c) Coupling functions {(µα, ϕα)}α∈{1,2...M} such that for

α ∈ {1, 2 . . .M}, µα satisfies the polynomial growth

conditions (assumption 1).

(d) An initial state |Ψ〉 = |0〉⊗n ⊗ |Φ〉, where |Φ〉 =
|φ1〉 ⊗ |φ2〉 ⊗ . . . |φM 〉 is an initial state which satis-

fies assumption 2.

Denoting by ρS(t) the reduced state of the system at time t for

this non-Markovian model, then for t = poly(n), prepare a

quantum state ρ̂ such that ‖ρ̂− ρS(t)‖tr ≤ 1/poly(n).

The key ingredient to analyzing this problem is a Marko-

vian dilation of the non-Markovian model, which identifies

a finite number of modes in the environment’s Hilbert space

and then approximates the non-Markovian model by a Hamil-

tonian simulation of the system only interacting with these

modes. We make this precise in the definition below.

Definition 3 (Markovian Dilation). Given a non-Markovian

open system model (definition 1) with M baths, a Markovian

dilation withNm modes and bandwidthB has a Hilbert space

HS ⊗ Fock[L2(R)]⊗M and Hamiltonian

H(t) = HS(t)+
M
∑

α=1

(

gαaα,1L
†
α+

Nm
∑

i,j=1

tα,i,ja
†
α,iaα,j+h.c.

)

,

where for α ∈ {1, 2 . . .M}, j ∈ {1, 2 . . .Nm}
(a) aα,j =

∫

R
ϕ∗
α,j(ω)aα,ωdω is the annihilation operator

corresponding to the j th mode of the αth bath described

by orthonormal mode functions ϕα,j (〈ϕα,i, ϕα,j〉 =
δi,j),

(b) The parameters |gα| , |tα,i,j | ≤ B.

Our next lemma, which is used in the analysis of problem

1, uses the well-known star-to-chain transformation [42, 43]

to systematically construct a Markovian dilation to the non-

Markovian system. We analyze the error between the dy-

namics of the non-Markovian system and its Markovian di-

lation and estimate the number of modes and bandwidth of a

Markovian dilation needed to approximate the non-Markovian

model.

Lemma 1 (Markovian dilation). Consider a non-

Markovian model specified by a system Hamiltonian

HS(t), jump operators {Lα}α∈{1,2...M} and coupling
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functions {(µα, ϕα)}α∈{1,2...M} where µα satisfy assump-

tion 1 with µ̂α(ω) < O(ω2k) for some k > 0. For

|Ψ0〉 := |σ〉 ⊗ |Φ0〉 ∈ HS ⊗ Fock[L2(R)]⊗M , where

|σ〉 ∈ HS and |Φ0〉 is an initial environment state that

satisfies assumption 2, then ∃ a Markovian dilation of the

non-Markovian model with

Nm, B ≤ O

(

poly

(

1

ǫ
, t,M, sup

α
‖Lα‖ ,

sup
α,s∈[0,t]

‖[HS(s), Lα]‖ ,

N1,k+1,N1,k+2,N1,0

))

whose system-environment state at time t is within ǫ norm dis-

tance of the exact state.

Our analysis of the Markovian dilation, detailed in section

V A, is done in three steps. First, we analyze the error incurred

in regularizing the non-Markovian model with a mollifier ρ,

then we introduce a sharp frequency cutoff on the resulting

regularized square-integrable functions. One the key technical

contribution in our analysis of the mollification and frequency

cutoff is to prove bounds on error that grow only polynomially

with time, which improves previous bounds that, in the worst

case, grow exponentially with time [45, 46]. After introduc-

tion of this cut-off, we perform a star-to-chain transformation

— the analysis of this step closely follows previous works that

have studied the convergence of the star-to-chain transforma-

tion for the spin-boson models with a hard frequency cutoff

[40, 41, 44].

Using this lemma, we can map problem 1 into a Hamilto-

nian simulation problem with a finite number of modes. This

problem is still infinite-dimensional — however, we can eas-

ily show that the moments of the particle number operator for

the environment can grow at-most polynomially with the prob-

lem size n. Therefore, we can truncate the Hilbert space of

this model and obtain a finite-dimensional Hilbert space — an

application of the sparse Hamiltonian lemma [57] then yields

the the second main result of our paper. A detailed proof of

this theorem is provided in section V B

Theorem 2 (k−local Non-Markovian dynamics ∈ BQP).

Problem 1 can be solved in poly(n) time on a quantum com-

puter.

The remainder of this paper is organized as follows — Sec-

tion IV is devoted to establishing the well definition of a non-

Markovian model associated with a memory kernel that is a

tempered radon transform. In section V, we rigorously de-

velop and analyze a Markovian dilation of these models based

on the star-to-chain transformation, and then use it to study

the simulatability of many-body non-Markovian dynamics on

quantum computers.

III. NOTATION AND PRELIMINARIES

This section describes the notation used throughout this paper. For the convenience of the reader, and for the sake of

completeness, we also collect some basic definitions and facts from the theory of function spaces and analysis that we use in

this paper — the interested reader can refer to Refs. [58, 59] for more detailed discussion.

General: For x := (x1, x2 . . . xn) ∈ Rn, y := (y1, y2 . . . ym) ∈ Rm we will denote by (x, y) ∈ Rn+m defined by

(x, y) = (x1, x2 . . . xn, y1, y2 . . . ym). For an ordered subset B of {1, 2 . . . n} and x ∈ R
n, Bx = (xB(1), xB(2) . . . ). We will

denote by αn the n−element constant vector (α, α . . . α), and by α∞ the constant sequence (α, α, α . . . ).

Function spaces and analysis: Throughout this paper, all integrals over Rn will be Lesbesgue integrals with respect to the

Lesbesgue measure over Rn. Two measurable functions f, g : Rn → C are equal almost everywhere, denoted by f =a.e. g,

if the set {x|f(x) 6= g(x)} is a zero measure set. For a measurable function f : Rn → R and a measurable set Ω ⊆ Rn,

ess supx∈Ωf(x) = c if the set {x ∈ Ω|f(x) > c} is a zero measure set. For p ≥ 1, we will denote by

Lp(Rn) =

{

f : R → C

∣

∣

∣

∣

‖f‖Lp <∞
}/

=a.e. where ‖f‖Lp :=

(
∫

Rn

|f(x)|pdx
)1/p

,

and

L∞(Rn) =

{

f : R → C

∣

∣

∣

∣

‖f‖L∞ <∞
}

where ‖f‖L∞ = ess supx∈Rn |f(x)|.

A map f : R → C is said to be a compactly supported function with support supp(f) ⊆ R if supp(f) is compact, and the set

{x ∈ R \ supp(f)|f(x) 6= 0} is a zero measure set. For k ∈ Z≥0, we will denote by Ck(R) the set of k−differentiable functions

(with k = 0 being continuous functions, and k = ∞ being smooth) from R to C, and by Ck
c (R) the set of such functions with

compact support.

A function ρ ∈ C∞
c (R) is said to be a mollifier if ρ(x) ≥ 0 ∀x ∈ R and

∫

R
ρ(x)dx = 1 — unless otherwise mentioned, we
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will assume that supp(ρ) = [−1, 1]. The mollifier is symmetric if ρ(x) = ρ(−x) ∀x ∈ R. Given a mollifier ρ and ε > 0, we

will denote by ρε ∈ C∞
c (R) the map

ρε(x) =
1

ε
ρ

(

x

ε

)

∀ x ∈ R.

Note that ρε is also a mollifier with supp(ρε) ⊆ [−ε, ε]. Given a subset Ω ⊆ R, its indicator function IΩ : R → C is defined by

IΩ(x) =
{

1 if x ∈ Ω,

0 otherwise.

A linear map µ : C0
c(R) → C is a radon measure if ∀Ω ⊂ R which are compact, ∃uΩ > 0 such that

〈µ, f〉 ≤ uΩ sup
x∈R

|f(x)| ∀f ∈ C0
c(R) with supp(f) ⊆ Ω.

The smallest such uΩ is defined to be the total variation of µ in Ω and will be denoted by TVΩ(µ). The set of all radon measures

will be denoted by M(R). By the Lesbesgue decomposition theorem [60], any µ ∈ M(R) can be uniquely expressed as

µ = µc + µd,

where µc ∈ M(R) is called the continuous part of µ and µa is called its atomic part. The continuous part can be characterized

by a function φc ∈ C0(R) where ∀f ∈ C1
c(R),

〈µc, f〉 = −
∫

R

f ′(x)φc(x)dx.

The function φc is also often denoted by φc(x) = µc((−∞, x]) to be consistent with the ‘cumulative function’ of µc in the

measure-theoretic definition of the radon measure. µc can further be decomposed into an absolutely continuous part, which can

be described by a density function, and a Cantor part — we will not require this decomposition in this paper. The atomic part,

µa, which can be expressed as

µa
∼=

∑

i∈I

aiδ(x − xi),

for some finite or countably infinite sequence {ai ∈ C}i∈I and {xi ∈ R}i∈I such that for any compact Ω ⊆ R,

∑

i∈I|xi∈Ω

|ai| <∞.

For any compact Ω ⊆ R, it can be shown that

TVΩ(µ) = TVΩ(µc) + TVΩ(µa) where TVΩ(µc) = sup
f∈C1

c(R)
‖f‖L∞=1

∣

∣

∣

∣

∫

R

φc(x)f
′(x)dx

∣

∣

∣

∣

and TVΩ(µd) =
∑

i∈I|xi∈Ω

|ai|.

We will use standard notation for Schwartz space, S(R) and tempered distributions by S ′(R). Note that every radon measure is

a distribution (i.e. a continuous map from compact smooth function to complex numbers) — a radon measure µ ∈ M(R) which

is additionally a tempered distribution will be called a tempered radon measure. From the Schwartz representation theorem [61],

it follows that any tempered distribution can be expressed as

〈µ, f〉 =
m
∑

α=0

∫

R

uα(ω)
∂α

∂ωα
f̂(ω)

dω√
2π

∀ f ∈ S(R),

where f̂ is the fourier transform of f , and u0, u1 . . . um are continuous functions of at-most polynomial growth. Of particular

interest will be distributions which contain only the term corresponding to α = 0 i.e.

〈µ, f〉 =
∫

R

µ̂(ω)f̂(ω)
dω√
2π

∀ f ∈ S(R),
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where µ̂ is a continuous function of at-most polynomial growth. Such a distribution will be called a tempered distribution with

a fourier transform being a function of at-most polynomial growth, and µ̂ will be referred to as the fourier transform of µ.

Given a Banach space X and an operator O : X → X , the operator norm will be denoted by ‖O‖ = supx∈X ‖Ox‖ / ‖x‖.

The space of bounded linear operators on a Banach space X will be denoted by L(X) i.e. L(X) = {O : X → X | ‖O‖ < ∞}.

A map F : R → L(X) is

norm continuous at t if lim
s→t

‖F (t)− F (s)‖ = 0 and strongly continuous at t if ∀x ∈ X, lim
s→t

‖F (t)x − F (s)x‖ = 0.

and

norm differentiable at t if ∃F ′(t) : lim
s→t

∥

∥

∥

∥

F ′(t)− F (t)− F (s)

t− s

∥

∥

∥

∥

= 0 and

strongly differentiable at if ∃F ′(t) : ∀x ∈ X lim
s→t

∥

∥

∥

∥

F ′(t)x− F (t)x − F (s)x

t− s

∥

∥

∥

∥

= 0.

Note that if X is finite dimensional, then the notion of norm continuity/differentiability and strong continuity/differentiability

are equivalent. A sequence {µn : X → C}n∈N weakly converges to µ∗ : X → C, denoted by µ∗ = wlimn→∞µn, if

∀x ∈ X,µ∗x = limn→∞ µnx.

Given a Hilbert space H, a densely defined operator O : dom[O] → H is said to be closed if ∀ψ ∈ dom[O], such that ∀
sequences {ψn ∈ dom[O]}n∈N which converge to 0 such that the sequence {Oψn ∈ H}n∈N also converges, limn→∞Oψn = 0.

A densely defined operator O is said to be closable if it has a closed extension, called the closure of the operator and denoted

by O. We will use the following property of the domain of the closure, dom[O]: ψ ∈ dom[O] if and only if ∃ a sequence

{ψn ∈ dom[O]}n∈N such that limn→∞ ψn = ψ, and the sequence {Oψn ∈ H}n∈N also converges. Furthermore if O is

closable, the limit of the sequence {Oψn ∈ H}n∈N is independent of the sequence {ψn ∈ H}n∈N, and is equal to Oψ. The

adjoint of a densely defined operator O : dom[O] → H is an operator O† : dom[O†] → H where dom[O†] = {ψ ∈ H|〈ψ,O·〉 :
dom[O] → C is bounded} and by the Riesz’ representation theorem, ∀ψ ∈ H, O†ψ is identified as the unique vector which

satisfies 〈O†ψ, φ〉 = 〈ψ,Oφ〉 ∀φ ∈ dom[O]. An operator is self adjoint if dom[O] = dom[O†]. A closable operator is essentially

self adjoint if it has a self adjoint extension, which then coincides with its closure.

Fock Spaces: For a separable Hilbert space H, and n ∈ Z≥1, we will denote by Symn(H) ⊆ H⊗n the set of symmetric

(permutationally invariant) states in H⊗n. We will denote by Fock[H] := C⊕⊕

n∈Z≥1
Symn(H) the symmetric (bosonic) Fock

space generated by H. We will denote by Πn : Fock[H] → Fock[H] the projector onto Symn(H) (i.e. the n particle sector), by

Π≤n :=
∑n

i=0 Πi and by Π>n = id −Π≤n.

We will denote by F∞[H] ⊆ Fock[H] the space of all states with a finite number of particles i.e.

F∞[H] =
{

|Ψ〉 ∈ Fock[H]
∣

∣∃N0 ∈ N such that Πn |Ψ〉 = 0 ∀n > N0

}

,

by Fk(H) ⊆ Fock[H] for k ∈ Z≥1

Fk[H] =

{

|Ψ〉 ∈ Fock[H]

∣

∣

∣

∣

∞
∑

n=0

nk 〈Ψ|Πn |Ψ〉 <∞
}

,

and by FS [H] the space

FS [H] :=
∞
⋂

k=1

Fk[H] =

{

|Ψ〉 ∈ Fock[H]

∣

∣

∣

∣

∞
∑

n=0

nk 〈Ψ|Πn |Ψ〉 <∞ ∀k ∈ Z≥1

}

.

We remark that F∞[H], FS [H] and Fk[H] (for any k ∈ Z≥1) are dense in Fock[H]. For |Ψ〉 ∈ Fk[H], we will denote by µ
(k)
|Ψ〉 the

kth moment of the photon number operator i.e.

µ
(k)
|Ψ〉 =

∞
∑

n=0

nk 〈Ψ|Πn |Ψ〉 .

For any v ∈ H, we will denote by a−v and a+v the corresponding annhilation and creation operator. These operators can be
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explicitly defined over the domain F∞[H] — a−v : F∞[H] → Fock[H] is an operator defined by

a−v (α, 0
∞) = 0 ∀ α ∈ C,

a−v (0
n, u⊗n, 0∞) = (0n−1,

√
n〈v, u〉u⊗n−1, 0∞) ∀ u ∈ H, n ∈ Z≥1.

Since for every n ∈ Z≥1, the set span{u⊗n|u ∈ H} is dense in Symn(H), and when domain-restricted to span{u⊗n|u ∈ H},

a−v as defined above is a bounded operator, it can be uniquely extended to Symn(H) as a consequence of the bounded linear

transformation theorem, and then extended to F∞[H] by linearity. Similarly, a+v : F∞[H] → Fock[H] is defined via

a+v (α, 0
∞) = (0, αv, 0∞) ∀ α ∈ C,

a+v (0
n, u⊗n, 0∞) =

(

0n+1,
1√
n+ 1

n
∑

i=0

u⊗i ⊗ v ⊗ u⊗(n−i), 0∞
)

∀ u ∈ H, n ∈ Z≥1.

As with a−v , this definition of a+v can be extended uniquely to F0.

In this paper, we will encounter finite tensor products of Fock spaces. Given a Hilbert space H, Fock[H]⊗M ≃ Fock
[

H⊕M
]

,

where the tensor product is taken as a tensor product over Hilbert spaces. We will use the notation FM
∞ [H] = F∞[H⊕M ] and

FM
k [H] = Fk[H⊕M ] for k ∈ Z≥1. For α ∈ {1, 2 . . .M} and v ∈ H, we define a−α,v : FM

∞ [H] → Fock[H]⊗M via

a−α,v(α, 0
∞) = 0 ∀ α ∈ C

a−α,v(0
n, u⊗n, 0∞) = (0n−1,

√
n〈vα, u〉u⊗(n−1), 0∞) ∀u ∈ H⊕M , n ∈ Z≥1.

where vα = 0⊕(α−1) ⊕ v ⊕ 0⊕(M−α). Similarly, we define a+α,v : FM
∞ [H] → Fock[H]⊗M via

a+α,v(c, 0
∞) = (0, cvα, 0

∞) ∀ c ∈ C,

a+α,v(0
n, u⊗n, 0∞) =

(

0n+1,
1√
n+ 1

n
∑

i=0

u⊗i ⊗ vα ⊗ u⊗(n−i), 0∞
)

∀ u ∈ H, n ∈ Z≥1.

We will denote by Πn : Fock[H]⊗M → Fock[H]⊗M the projector onto Symn(H⊕M ), by Π≤n :=
∑n

i=0 Πi and by Π>n :=
id −Π≤n.

IV. WELL-DEFINITION OF NON-MARKOVIAN MODELS

A. Square integrable coupling functions

In this section, we consider the simple case of square integrable coupling functions, and show that the solution to the (time-

dependent) Schroedinger’s equation corresponding to the non-Markovian model exists. We will consider an environment with

M baths, which are individually bosonic Fock spaces overL2(R). We will assume the system to be finite-dimensional. Denoting

the Hilbert space of the system by HS , the Hilbert space of the system and environment will be H = HS ⊗ Fock[L2(R)]⊗M .

The basic data needed to specify a non-Markovian model with square-integrable coupling functions is provided in the definition

below.

Definition 4. A non-Markovian open system model for a quantum system with Hilbert space HS with square integrable system-

environment coupling functions is specified by

(a) A time-dependent system HamiltonianHS(t) ∈ L(HS) which is Hermitian, norm continuous and differentiable in t.

(b) M square integrable functions {vα ∈ L2(R)}α∈{1,2...M},

(c) M bounded operators on the system Hilbert space {Lα ∈ L(HS)}α∈{1,2...M}.

(d) M strongly continuous single-parameter unitary groups on L2(R), {τα,t : L2(R) → L2(R)}α∈{1,2...M}.

Definition 5. For a non-Markovian model with square integrable function as specified by definition 4 and for t ∈ R, H(t) :
HS ⊗ FM

∞ [L2(R)] → H via

H(t) = HS(t) +

M
∑

α=1

(

L†
αa

−
α,τα,tvα + Lαa

+
α,τα,tvα

)

.
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For convenience throughout this section, we will define ℓ to be the constant

ℓ =

M
∑

α=1

‖vα‖L2 ‖Lα‖ . (2)

Lemma 2. For all t ∈ R,

(a) H(t) : HS ⊗ FM
∞ [L2(R)] → H is essentially self adjoint.

(b) H(t) is closable, and ifH(t) : dom[H(t)] → H is its closure thenHS⊗FM
1 [L2(R)] ⊆ dom[H(t)] and ∀ |Ψ〉 ∈ dom[H(t)],

H(t) |Ψ〉 = ∑∞
n=0H(t)

(

Πn |Ψ〉
)

.

Proof :

(a) is shown using Nelson’s analytic vector theorem (Theorem X.39 of Ref. [59]), and showing that all the vectors in HS ⊗
F0[L

2(R)]⊗M are analytic vectors of HS(t). We note that it follows easily from the definition of H(t) that for every n ∈ Z≥0,

H(t)(id ⊗Π≤n) is a bounded operator and

∥

∥H(t)
(

id ⊗Π≤n

)∥

∥ ≤ ‖HS(t)‖+ 2ℓ
√
n+ 1.

Recall that given an operator O : dom[O] → H, a vector x is an analytic vector of O if
∑∞

n=0 t
n ‖Onx‖ /n! < ∞ ∀ t ∈ R.

Let |Ψ〉 ∈ HS ⊗ F0[L
2(R)]⊗M and let N0 ∈ Z≥1 be the number of particles in the environment (i.e. Π>N0 |Ψ〉 = 0). It then

immediately follows that for any k ∈ Z≥0, Hk(t) |Ψ0〉 has at most N0 + k particles, and thus

∥

∥Hk(t) |Ψ0〉
∥

∥ ≤
(

‖HS(t)‖+ 2
√

N0 + k + 1ℓ
)k ‖|Ψ0〉‖ ≤ 2k

(

‖HS(t)‖k + (N0 + k + 1)k/2ℓk
)

‖|Ψ0〉‖ ,

and thus for t ≥ 0

∞
∑

k=0

tk

k!

∥

∥Hk
S(t) |Ψ0〉

∥

∥ ≤ e2t‖HS(t)‖ ‖|Ψ0〉‖+
∞
∑

k=0

(2ℓt)k

k!
(N0 + k + 1)k/2 ‖|Ψ0〉‖ ,

≤ e2t‖HS(t)‖ ‖|Ψ0〉‖+ ‖|Ψ0〉‖+
∞
∑

k=1

(2eℓt)k

kk/2

(

1 +
N0 + k

k

)k/2

‖|Ψ0〉‖ .

Wherein we have used the Stirling’s approximation in the last estimate. The summation can now be seen to converge for any t
and hence |Ψ0〉 is an analytic vector of H(t).

(b) We first consider a sequence {|Ψi〉 ∈ HS ⊗ FM
∞(L2(R))}i∈N such that limi→∞ |Ψi〉 = 0 and the sequence {H(t) |Ψi〉}i∈N

converges. We first show that under these conditions, limi→∞H(t) |Ψi〉 = 0 — to see this, assume the contrary

i.e. limi→∞H(t) |Ψi〉 = |Φ〉 6= 0. Since |Φ〉 6= 0, ∃N > 0,
(

id ⊗Π≤N

)

|Φ〉 6= 0. Note that

∥

∥

(

id ⊗Π≤N

)

H(t)
∥

∥ ≤ ‖HS(t)‖+ 2ℓ
√
N + 1,

and therefore Π≤N |Φ〉 = limi→∞ Π≤NH(t) |Ψi〉 = Π≤NH(t) limi→∞ |Ψi〉 = 0, where we have used that Π≤N ,Π≤NH(t)
are bounded operators to swap the order of limits. Thus, we contradict our original assumption of |Φ〉 6= 0 and hence |Φ〉 = 0.

This shows that the operatorH(t) is closable.

Next, we consider |Ψ〉 ∈ HS ⊗ FM
1 [L2(R)] — we consider the sequence {|Ψn〉 :=

(

id ⊗Π≤n

)

|Ψ〉}n∈N which converges to

|Ψ〉. Furthermore, we note that the sequence {H(t) |Ψn〉}n∈N also converges, and converges to
∑∞

m=0H(t)Πm |Ψ〉 since

∥

∥

∥

∥

∥

H(t) |Ψn〉 −
∞
∑

m=0

H(t)Πm |Ψ〉
∥

∥

∥

∥

∥

≤ ‖HS(t)‖
( ∞

∑

m=n+1

‖Πm |Ψ〉‖2
)1/2

+ 2ℓ

( ∞
∑

m=n+1

(m+ 1) ‖Πm |Ψ〉‖2
)1/2

,

and since ‖|Ψ〉‖ <∞ and µ
(1)
|Ψ〉 <∞,

∑∞
m=n ‖Πm |Ψ〉‖2 ,∑∞

m=nm ‖Πm |Ψ〉‖2 → 0 as n→ ∞. Consequently, we obtain that

|Ψ〉 ∈ dom[H(t)] and H(t) |Ψ〉 = ∑∞
n=0H(t)Πn |Ψ〉. �

We are now poised to first investigate the existence of solution of the Schrödinger’s equation for the time-dependent Hamilto-

nian defined in Definition 5. We restrict ourselves to initial states with only a finite number of particles in the environment

i.e. |Ψ(0)〉 ∈ HS ⊗FM
∞ [L2(R)], and use the density of |Ψ(0)〉 ∈ HS ⊗FM

∞[L2(R)] to extend it to the entire system-environment
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Hilbert space. WhileH(t), for every t, admits a self adjoint extension, since the equation under consideration is non-autonomous,

this by itself does not imply that the solution of this equation exists. Instead, we analyze this equation by first truncating the

number of particles in the environment, and analyzing the convergence of the obtained solution with the truncation.

Definition 6. For p ∈ Z≥0 and t ∈ R, define Hp(t) : H → H via Hp(t) = Π≤pH(t)Π≤p.

Several properties of Hp(t) follows trivially from its definition.

Lemma 3. Hp(t) has the following properties

(a) Hp(t) is a bounded operator for all t ∈ R.

(b) Hp(t) is norm continuous with respect to t.

Proof :

(a) This follows straightforwardly by noting that ∀t ∈ R, α ∈ {1, 2 . . .M},
∥

∥a−α,τtvαΠ≤p

∥

∥ ≤ √
p ‖vα‖L2 and

∥

∥a+α,τtvαΠ≤p

∥

∥ ≤ √
p+ 1 ‖vα‖L2 .

(b) For any δ > 0, note that

‖Hp(t+ δ)−Hp(t)‖ ≤ ‖HS(t+ δ)−HS(t)‖+
M
∑

α=1

√
p ‖Lα‖ ‖(τt+δ − τt)vα‖L2 .

Since HS(t) is norm continuous, ‖HS(t+ δ)−HS(t)‖ → 0 as δ → 0, and since τt is strongly continuous in t,
‖(τt+δ − τt)vα‖L2 → 0 as δ → 0, thus showing from the above estimate that Hp(t) is norm continuous. �

Lemma 4. For any p ∈ N and τ, s ∈ R, there exists a unitary operator Up(τ, s) : H → H which is norm continuous and

differentiable with respect to both s and τ and which satisfies

i
d

dτ
Up(τ, s) = Hp(τ)Up(τ, s) with Up(s, s) = id.

Furthermore, let |Φ〉 ∈ HS ⊗ FS [L
2(R)], and for t > 0, consider M

(k)
|Φ〉(t) defined by

M
(0)
|Φ〉(t) = ‖|Φ〉‖2 ,M (k)

|Φ〉(t) = 2µ
(k)
|Φ〉 + 22k−3ℓ2t2

(

‖|Φ〉‖2 +M
(k−1)
|Φ〉 (t)

)2

for k ≥ 1,

then ∀τ, s ∈ [0, t], µ
(k)
Up(τ,s)|Φ〉 ≤M (k)(t) ∀p ∈ Z≥0.

Proof : Since Hp(τ) is both norm continuous in τ and bounded, the existence, norm continuity and differentiability of Up(τ, s)
follows follows directly from Dyson expansion (see theorem X.69 of Ref. [59]). For part (b), we use the Schödinger equation.

Note that

Up(τ, s) |Φ〉 = Π>p |Φ〉+ Up(τ, s)Π≤p |Φ〉 ,

and furthermore, µ
(k)
Π≤p|Φ〉 ≤ µ

(k)
|Φ〉 ∀k ∈ Z≥1. For convenience of notation, we set |Ψp(τ, s)〉 = Up(τ, s)Π≤p |Φ〉. From the

Schroedinger’s equation, it follows that

d

dτ
µ
(k)
|Ψp(τ,s)〉 =

M
∑

α=1

p−1
∑

n=0

(

(n+ 1)k − nk
)

Im 〈Ψp(τ, s)|Πn+1a
+
α,ττvαLαΠn |Ψp(τ, s)〉 .

and therefore

∣

∣

∣

∣

d

dτ
µ
(k)
|Ψp(τ,s)〉

∣

∣

∣

∣

≤ 2ℓ

p−1
∑

n=0

√
n+ 1

(

(n+ 1)l − nl
)

‖Πn+1 |Ψp(τ, s)〉‖ ‖Πn |Ψp(τ, s)〉‖ ,

Since (n+ 1)l − nl = (n+ 1)l−1 + n(n+ 1)l−2 + n2(n+ 1)l−3 . . . nl−1 for l ∈ Z≥1, we obtain that

∣

∣

∣

∣

d

dτ
µ
(k)
|Ψp(τ,s)〉

∣

∣

∣

∣

≤ 2ℓ

p−1
∑

n=0

k
∑

s=1

(n+ 1)k−s+1/2ns−1 ‖Πn+1 |Ψp(τ, s)〉‖ ‖Πn |Ψp(τ, s)〉‖
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An application of the Cauchy-Schwarz inequality yields that ∀s ∈ {1, 2 . . . k}
p−1
∑

n=0

(n+ 1)k−s+1/2ns−1 ‖Πn+1 |Ψp(τ, s)〉‖ ‖Πn |Ψp(τ, s)〉‖

≤
( p−1
∑

n=0

(n+ 1)k ‖Πn+1 |Ψp(τ, s)〉‖2
)1/2( p−1

∑

n=0

n2s−2(n+ 1)k+1−2s ‖Πn |ψp(τ, s)〉‖2
)1/2

≤
(

µ
(k)
|Ψp(t,s)〉

)1/2
( p−1
∑

n=0

(n+ 1)k−1 ‖Πn |Ψp(τ, s)〉‖2
)1/2

Noting that

p−1
∑

n=0

(n+ 1)k−1 ‖Πn |Ψp(τ, s)〉‖2 ≤ 2k−2

p−1
∑

n=0

(nk−1 + 1) ‖Πn |Ψp(τ, s)〉‖2 = 2k−2

(

µ
(0)
|Ψp(τ,s)〉 + µ

(k−1)
|Ψp(τ,s)〉

)

.

Noting that µ
(0)
|Ψp(τ,s)〉 = µ

(0)
Π≤p|Φ〉 ≤ µ

(0)
|Φ〉, we thus obtain

∣

∣

∣

∣

d

dt
µ
(k)
|Ψp(τ,s)〉

∣

∣

∣

∣

≤ 2k−1ℓ
(

µ
(k)
|Ψp(τ,s)〉

)1/2
(

µ
(0)
|Φ〉 + µ

(k−1)
|Ψp(τ,s)〉

)

,

Integrating which we obtain that for τ ≥ s

(

µ
(k)
|Ψp(τ,s)〉

)1/2 −
(

µ
(k)
Π≤p|Φ〉

)1/2 ≤ 2k−2ℓ

(

(τ − s)µ
(0)
|Φ〉 +

∫ τ

s

µ
(k−1)
|Ψp(τ ′,s)〉dτ

′

)

≤ 2k−2ℓ

(

tµ
(0)
|Φ〉 +

∫ τ

s

µ
(k−1)
|Ψp(τ ′,s)〉dτ

′

)

,

and for τ < s

(

µ
(k)
|Ψp(τ,s)〉

)1/2 −
(

µ
(k)
Π≤p|Φ〉

)1/2 ≤ 2k−2ℓ

(

(s− τ)µ
(0)
|Φ〉 +

∫ s

τ

µ
(k−1)
|Ψp(τ ′,s)〉dτ

′

)

≤ 2k−2ℓ

(

tµ
(0)
|Φ〉 +

∫ s

τ

µ
(k−1)
|Ψp(τ ′,s)〉dτ

′

)

,

Since ∀k ∈ Z≥0, µ
(k)
Up(τ,s)|Φ〉 = µ

(k)
Π>p|Φ〉 + µ

(k)
|Ψp(τ,s)〉These equations can be recursively solved to obtain the functions

M
(k)
|Φ0〉

(t). Note that µ
(0)
|Ψp(τ,s)〉 = µ

(0)
Π≤p|Φ〉 ≤ 〈Φ|Φ〉, and hence M

(0)
|Φ〉(t) can be set to ‖|Φ〉‖2. Assuming that µ

(k−1)
Up(τ,s)|Φ〉 ≤

M
(k−1)
|Φ〉 (t) ∀τ, s ∈ [0, t], we then obtain that

µ
(k)
|Ψp(τ,s)〉 ≤

(

(

µ
(k)
Π≤p|Φ〉

)1/2
+ 2k−2ℓt

(

〈Φ|Φ〉+M
(k−1)
|Φ〉 (t)

))2

≤ 2µ
(k)
Π≤p|Φ〉 + 22k−3ℓ2t2

(

〈Φ|Φ〉+M
(k−1)
|Φ〉 (t)

)2

,

and since µ
(k)
Up(τ,s)|Φ〉 ≤ µ

(k)
|Φ〉 +µ

(k)
|Ψp(τ,s)〉, we can chooseM

(k)
|Φ〉 = 2µ

(k)
|Φ〉+22k−3ℓ2t2

(

〈Φ|Φ〉+M
(k−1)
|Φ〉 (t)

)2
, which proves the

lemma statement. �

It is important to note that the bounds on µp
l (t) are uniform in p — we will exploit this in the following proofs to show the

existence and differentiability of |Ψp(t)〉.

Lemma 5. Let |Ψ0〉 ∈ HS ⊗ F∞
S [L2(R)], then

(a) ∀t, s ≥ 0, limp→∞ Up(t, s) |Ψ0〉 exists and ∈ HS ⊗ F∞
S [L2(R)].

(b) ∀t, s ≥ 0, limp→∞Hp(t)Up(t, s) |Ψ0〉 = H(t) limp→∞ Up(t, s) |Ψ0〉 and H(t) limp→∞ Up(t, s) |Ψ0〉 is strongly con-

tinuous in t.

(c) ∀t, s ≥ 0, limp→∞ Up(t, s)Hp(s) |Ψ0〉 = limp→∞ Up(t, s)H(s) |Ψ0〉 and limp→∞ Up(t, s)H(s) |Ψ0〉 is strongly con-

tinuous in s.

(d) ∃g, h ∈ C0(R) such that ‖Hp(t)Up(t, s) |Ψ0〉‖ ≤ g(t) and ‖Hp(t) |Ψ0〉‖ ≤ h(t) ∀ t ≥ 0 and p ∈ Z≥0.

Proof :

(a) To prove the existence of limit, we appeal to the completeness of H and show that the sequence {Up(t, s) |Ψ0〉}p∈Z≥0
is
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Cauchy. Consider p, q ∈ N with p > q — we note that

‖Up(t, s) |Ψ0〉 − U q(t, s) |Ψ0〉‖ ≤ ‖Up(t, s)Π≤q |Ψ0〉 − U q(t, s)Π≤q |Ψ0〉‖+ 2 ‖Π>q |Ψ0〉‖ .

Furthermore, since both Up(t, s) and U q(t, s) are norm (and thus strongly) differentiable with respect to t and s, we obtain that

‖Up(t, s)Π≤q |Ψ0〉 − U q(t, s)Π≤q |Ψ0〉‖ =

∥

∥

∥

∥

∫ t

s

d

dτ

(

Up(s, τ)U q(τ, s)
)

Π≤q |Ψ0〉 dτ
∥

∥

∥

∥

≤
∫ t

s

∥

∥

(

Hp(τ) −Hq(τ)
)

U q(τ, s)Π≤q |Ψ0〉
∥

∥dτ. (3)

Furthermore, since p > q, we obtain that

|Φp,q(τ, s)〉 :=
(

Hp(τ) −Hq(τ)
)

U q(τ, s)Π≤q |Ψ0〉 =
(

Hp(s)−Hq(s)
)

ΠqU
q(τ, s)Π≤q |Ψ0〉 , (4)

and thus

‖|Φp,q(s)〉‖ ≤ ℓ
√

q + 1 ‖ΠqU
q(τ, s)Π≤q |Ψ0〉‖ . (5)

Using the bound from lemma 4, we obtain that ‖ΠqU
q(τ, s)Π≤q |Ψ0〉‖ ≤

√

M
(2)
Π≤q|Ψ(0)〉(max(s, t))/q ≤

√

M
(2)
|Ψ0〉

(max(s, t))/q and thus

∫ t

s

‖|Φp,q(τ, s)〉‖ dτ ≤ ℓ |t− s| √q + 1

q

√

M
(2)
Π≤q|Ψ0〉

(max(s, t)) ≤ ℓ |t− s| √q + 1

q

√

M
(2)
|Ψ0〉

(max(s, t)),

and hence

‖Up(t, s) |Ψ0〉 − U q(t, s) |Ψ0〉‖ ≤ ℓ |t− s| √q + 1

q

√

M
(2)
|Ψ0〉

(max(s, t)) + 2 ‖Π≤q |Ψ0〉‖ .

Thus, ‖Up(t, s) |Ψ0〉 − U q(t, s) |Ψ0〉‖ → 0 as p, q → ∞, thus implying that the sequence {Up(t, s) |Ψ0〉}p∈N is Cauchy, and

hence converges. Furthermore, from lemma 4, the moments µ
(k)
Up(t,s)|Ψ0〉

are bounded uniformly in p for all k ∈ Z≥0, and hence

from the dominated convergence theorem it follows that all the particle number moments of limp→∞ Up(t, s) |Ψ0〉 are also

bounded — this shows that limp→∞ Up(t, s) |Ψ0〉 ∈ HS ⊗ FM
S [L2(R)].

(b) For |Ψ0〉 ∈ HS ⊗ FM
S [L2(R)], since ‖limp→∞ Up(t, s)Π>p |Ψ0〉‖ = limp→∞ ‖Π>p |Ψ0〉‖ = 0, we obtain that

H(t) lim
p→∞

Up(t, s) |Ψ0〉 = H(t) lim
p→∞

Up(t, s)Π≤p |Ψ0〉 .

We already established in part (a) that the sequence {Up(t, s) |Ψ0〉}p∈Z≥0
, and hence the sequence {Up(t, s)Π≤p |Ψ0〉}p∈Z≥0

,

converges. We now show that the sequence {H(t)Up(t, s)Π≤p |Ψ0〉}p∈Z≥0
also converges. To see this, we note that for p, q ∈

Z≥0 with q ≤ p,

‖H(t)Up(t, s)Π≤p |Ψ0〉 −H(t)U q(t, s)Π≤q |Ψ0〉‖ ≤
∫ t

s

‖H(t)Up(t, τ) |Φp,q(τ, s)〉‖ dτ + ‖H(t)Up(t, s) |Γp,q(t, s)〉‖ , (6)

where |Φp,q(τ, s)〉 is defined in Eq. 4 and |Γp,q(t, s)〉 =
(

Π≤p −Π≤q

)

|Ψ0〉. Now, from the definition of H(t), it follows that

‖H(t)Up(t, s) |Γp,q(t, s)〉‖ ≤ ‖HS(t)‖ ‖|Γp,q(t, s)〉‖+ 2ℓ

(

‖|Γp,q(t, s)〉‖2 + µ
(1)
Up(t,s)|Γp,q(t,s)〉

)1/2

.

Furthermore, using lemma 4, we obtain that

µ
(1)
Up(t,s)|Γp,q(t,s)〉

≤ 2

(

µ
(1)
Γp,q(t,s)

+ ℓ2max2(s, t) ‖|Γp,q(t, s)〉‖4
)

.
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Since |Ψ0〉 ∈ HS ⊗ FM
S [L2(R)], we obtain that

‖|Γp,q(t, s)〉‖ ≤ ‖Π>q |Ψ0〉‖+ ‖Π>p |Ψ0〉‖ → 0 as p, q → ∞ and,

µ
(1)
|Γp,q(t,s)〉

≤ µ
(1)
|Π>q|Ψ0〉〉

+ µ
(1)
|Π>p|Ψ0〉〉

→ 0 as p, q → ∞,

and therefore it follows from the previous estimates that ‖H(t)Up(t, s) |Γp,q(t, s)〉‖ → 0 as p, q → ∞. Consider now the second

term in Eq. 6 — since Up(t, τ) |Φp,q(τ, s)〉 ∈ HS ⊗ FM
∞ [L2(R)], we obtain that

∫ t

s

‖H(τ)Up(t, τ) |Φp,q(τ, s)〉‖ dτ ≤
∫ t

s

‖HS(τ)‖ ‖|Φp,q(τ, s)〉‖ dτ + 2ℓ

∫ t

s

(

‖|Φp,q(τ, s)〉‖2 + µ
(1)
Up(t,τ)|Φp,q(τ,s)〉

)1/2

dτ.

Using Eq. 5 and the bound from lemma 4, we obtain that

∫ t

s

‖HS(τ)‖ ‖|Φp,q(τ, s)〉‖ dτ ≤ ℓ
√
q + 1

q

√

M
(2)
|Ψ0〉

(tmax)

∫ t

s

‖HS(τ)‖ dτ.

It follows from lemma 4 that for τ ∈ [min(t, s),max(t, s)],

µ
(1)
Up(t,τ)|Φp,q(τ,s)〉

≤ 2

(

µ
(1)
|Φp,q(τ,s)〉

+ ℓ2max2(s, t) ‖|Φp,q(τ, s)〉‖4
)

,

and using Eq. 5 it follows that for τ ∈ [min(t, s),max(t, s)],

µ
(1)
|Φp,q(τ,s)〉

≤ (q + 1)2

q3
ℓ2M

(3)
Π≤q|Ψ0〉

(max(s, t)) ≤ (q + 1)2

q3
ℓ2M

(3)
|Ψ0〉

(max(s, t)).

From these estimates, it thus follows that

∫ t

s

‖H(τ)Up(t, τ) |Φp,q(τ, s)〉‖ dτ → 0 as p, q → ∞.

Therefore, from Eq. 6, it follows that the sequence {H(t)Up(t, s)Π≤p |Ψ0〉}p∈N converges — since H(t) is a closable operator,

it then follows that

lim
p→∞

H(t)Up(t, s)Π≤p |Ψ0〉 = H(t) lim
p→∞

Up(t, s)Π≤p |Ψ0〉 = H(t) lim
p→∞

Up(t, s) |Ψ0〉 .

Finally, we show that limp→∞Hp(t)Up(t, s) |Ψ0〉 = limp→∞H(t)Up(t, s)Π≤p |Ψ0〉. We begin by noting that

Hp(t)Up(t, s) |Ψ0〉 = Hp(t)Up(t, s)Π≤p |Ψ0〉+Π>p |Ψ0〉 =⇒ lim
p→∞

Hp(t)Up(t, s) |Ψ0〉 = lim
p→∞

Hp(t)Up(t, s)Π≤p |Ψ0〉 .

Furthermore,

‖(H(t)−Hp(t))Up(t, s)Π≤p |Ψ0〉‖2 ≤

(p+ 1)ℓ2 ‖ΠpU
p(t, s) |Ψ0〉‖2 ≤ p+ 1

p2
ℓ2M

(2)
Π≤p|Ψ0〉

(max(t, s)) ≤ p+ 1

p2
ℓ2M

(2)
|Ψ0〉

(max(t, s)).

and thus limp→∞Hp(t)Up(t, s)Π≤p |Ψ0〉 = limp→∞H(t)Up(t, s)Π≤p |Ψ0〉. Hence, we obtain that

H(t) limp→∞ Up(t, s) |Ψ0〉 = limp→∞Hp(t)Up(t, s) |Ψ0〉.

Now, we investigate the continuity of H(t) limp→∞ Up(t, s) |Ψ0〉 = limp→∞Hp(t)Up(t, s)Π≤p |Ψ0〉 with respect to t. For

p ∈ Z≥0 and δ > 0, define ∆p(δ) va

∆p(δ) =

∥

∥

∥

∥

(

Hp(t+ δ)Up(t+ δ, s)−Hp(t)Up(t, s)

)

Π≤p |Ψ0〉
∥

∥

∥

∥

.
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We need to show that limδ→0 limp→∞ ∆p(δ) = 0. To see this, we note that

∆p(δ) ≤
∥

∥

∥

∥

(

Hp(t+ δ)−Hp(t)

)

Up(t, s)Π≤p |Ψ0〉
∥

∥

∥

∥

+

∥

∥

∥

∥

Hp(t+ δ)

(

Up(t+ δ, s)− Up(t, s)

)

Π≤p |Ψ0〉
∥

∥

∥

∥

.

Now
∥

∥

∥

∥

(

Hp(t+ δ)−Hp(t)

)

Up(t, s) |Ψ0〉
∥

∥

∥

∥

≤ ‖HS(t+ δ)−HS(t)‖ ‖|Ψ0〉‖+
(

‖|Ψ0〉‖2 + µ
(1)
Up(t,s)Π≤p|Ψ0〉

)1/2 M
∑

α=1

‖Lα‖
∥

∥

∥

∥

(

τα,t+δ − τα,t

)

vα

∥

∥

∥

∥

L2

,

≤ ‖HS(t+ δ)−HS(t)‖ ‖|Ψ0〉‖+
(

‖|Ψ0〉‖2 +M
(1)
|Ψ0〉

)1/2 M
∑

α=1

‖Lα‖
∥

∥

∥

∥

(

τα,t+δ − τα,t

)

vα

∥

∥

∥

∥

L2

,

and consequently by the strong continuity of τα,t,

lim
δ→0

lim
p→∞

∥

∥

∥

∥

(

Hp(t+ δ)−Hp(t)

)

Up(t, s) |Ψ0〉
∥

∥

∥

∥

= 0.

Furthermore,

∥

∥

∥

∥

Hp(t+ δ)

(

Up(t+ δ, s)− Up(t, s)

)

Π≤p |Ψ0〉
∥

∥

∥

∥

≤
∫ t+δ

t

‖Hp(τ + δ)Hp(τ)Up(τ, s)Π≤p |Ψ0〉‖ dτ.

It follows from lemma 4 that ‖Hp(τ + δ)Hp(τ)Up(τ, s) |Ψ0〉‖ is bounded above by a constant independent of p and continuous

in τ . Thus, we obtain that

lim
δ→0

lim
p→∞

∥

∥

∥

∥

Hp(t+ δ)

(

Up(t+ δ, s)− Up(t, s)

)

Π≤p |Ψ0〉
∥

∥

∥

∥

= 0.

Thus, we obtain that limδ→0 limp→∞ ∆p(δ) = 0.

(c) The proof of this part closely follows that of part (b), with only minor modifications which we outline here. We can show that

limp→∞

∥

∥

∥
Hp(s) |Ψ0〉 −H(s) |Ψ0〉

∥

∥

∥
= 0, which would imply that limp→∞ Up(t, s)Hp(s) |Ψ0〉 = limp→∞ Up(t, s)H(s) |Ψ0〉,

in two steps — first, we establish that limp→∞Hp(s) |Ψ0〉 = limp→∞Hp(s)Π≤p |Ψ0〉 using the fact that all the particle-

number moments of |Ψ0〉 are finite. Then, we can show that limp→∞Hp(s)Π≤p |Ψ0〉 = limp→∞H(s)Π≤p |Ψ0〉 by analyzing

the norm ‖(H(s)−Hp(s))Π≤p |Ψ0〉‖. By showing that the sequence {H(s)Π≤p |Ψ0〉}p∈N converges, and using the closability

of H(t), we then obtain that limp→∞H(s)Π≤p |Ψ0〉 = H(s) limp→∞ Π≤p |Ψ0〉. Finally, using lemma 2b, you obtain that

H(s) limp→∞ Π≤p |Ψ0〉 = H(s) |Ψ0〉. To prove that limp→∞ Up(t, s)H(s) |Ψ0〉 = limp→∞ Up(t, s)Hp(s) |Ψ0〉 is strongly

continuous, we can again analyze ∆p(δ), where

∆p(δ) =

∥

∥

∥

∥

(

Up(t, s+ δ)Hp(s+ δ)− Up(t, s)Hp(s)

)

|Ψ0〉
∥

∥

∥

∥

,

≤
∥

∥

∥

∥

(

Up(t, s+ δ)− Up(t, s)

)

Hp(s+ δ) |Ψ0〉
∥

∥

∥

∥

+

∥

∥

∥

∥

Up(t, s)

(

Hp(t, s+ δ)−Hp(s)

)

|Ψ0〉
∥

∥

∥

∥

.

Using lemma 4, we can show that limp→∞ limδ→0 ∆
p(δ) = 0.

(d) This follows straightforwardly from lemma 4, and noting that

‖Hp(t)Up(t, s) |Ψ0)〉‖ ≤ ‖HS(t)‖ ‖|Ψ0〉‖+ 2ℓ

(

‖|Ψ0〉‖2 +M
(1)
|Ψ0〉

(max(t, s))

)1/2

.
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which yields the upper bound g(t). Similarly,

‖Hp(t) |Ψ0〉‖ ≤ ‖HS(t)‖ ‖|Ψ0〉‖+ 2ℓ

(

‖|Ψ0〉‖2 + µ
(1)
|Ψ0〉

)1/2

,

which yields the upper bound h(t). �

Lemma 6. Given a non-Markovian model with square integrable coupling functions and for t, s ∈ R, there exists a unique

isometry U(t, s) : HS ⊗ FM
S [L2(R)] → HS ⊗ FM

S [L2(R)] ⊆ H which is strongly continuous and differentiable in both t, s and

satisfies

d

dt
U(t, s) = −iH(t)U(t, s) and

d

ds
U(t, s) = iU(t, s)H(s), (7)

with U(s, s) = id ∀s ∈ R.

Proof : We first construct the unitary group U(t, s) — given a state |Ψ0〉 ∈ HS ⊗ FM
S [L2(R)], we let

U(t, s) |Ψ0〉 = lim
p→∞

Up(t, s) |Ψ0〉 .

It follows from lemma 5 that U(t, s) is well defined, that U(t, s) |Ψ0〉 ∈ HS ⊗ FM
S [L2(R)] and that U(t, s) is an isometry. Now,

we note that since Up(t, s) is the propagator corresponding to Hp(t),

U(t, s) |Ψ0〉 = lim
p→∞

Up(t, s) |Ψ0〉 = |Ψ0〉 − i lim
p→∞

∫ t

s

Hp(τ)Up(τ, s) |Ψ0〉 dτ.

From lemma 5(d), it follows that ‖Hp(τ)Up(τ, s) |Ψ0〉‖ is bounded above by a continuous (and thus integrable) function of τ ,

and hence from the dominated convergence theorem, we obtain that

U(t, s) |Ψ0〉 = |Ψ0〉 − i

∫ t

s

lim
p→∞

Hp(τ)Up(τ, s) |Ψ0〉 dτ.

Finally, using lemma 5(b), we obtain that limp→∞Hp(τ)Up(τ, s) |Ψ0〉 = H(τ)U(τ, s) |Ψ0〉, and since H(τ)U(τ, s) |Ψ0〉 is

strongly continuous in τ , U(t, s) |Ψ0〉 is strongly differentiable in t. Thus,

U(t, s) |Ψ0〉 = |Ψ0〉 − i

∫ t

s

H(τ)U(τ, s) |Ψ0〉 dτ =⇒ d

dt
U(t, s) |Ψ0〉 = −iH(t)U(t, s) |Ψ0〉 .

which shows that dU(t, s)/dt = −iH(t)U(t, s) (where derivatives are understood as strong derivatives) with U(s, s) = id. A

similar argument can be made using lemmas 5(c) and 5(d) to show that dU(t, s) |Ψ0〉 /ds = iU(t, s)H(s).

Since ∀t ∈ R, H(t) is essentially self adjoint, H(t) is self adjoint — from this, it immediately follows that if the solution to

Eq. 7 exists, the it must be unique. To see this, we simply note that the self-adjointness of H(t) implies that ‖U(t, s) |Ψ0〉‖ =
‖U(s, s) |Ψ0〉‖, and hence |Ψ0〉 = 0 =⇒ |Ψ0〉 = 0 ∀t ≥ 0. Now if there were two distinct solutions U1(t, s), U2(t, s) to Eq. 7,

then
(

U1(t, s)− U2(t, s)
)

|Ψ0〉 would be a non-zero vector, which leads to a contradiction since by essential self adjointness of

H(t),
∥

∥

(

U1(t, s)− U2(t, s)
)

|Ψ0〉
∥

∥ = 0. �

In the following lemmas, we provide some further properties of dynamics of non-Markovian models with square integrable

functions which will be useful for the analysis of distributional coupling functions.

Lemma 7. Given u ∈ L2(R) and a non-Markovian model with square integrable coupling functions, ∀α ∈ {1, 2 . . .M}, s, t ∈
[0,∞),

a−α,uU(t, s) = U(t, s)a−α,u − i

∫ t

s

〈u, τα,τvα〉U(t, τ)LαU(τ, s)dτ

over the domain HS ⊗ FM
S [L2(R)], where U(t, s) is the propagator corresponding to the non-Markovian model as defined in

lemma 6.

Proof : Throughout this proof, all operators are considered to be over the domain HS ⊗ FM
S [L2(R)] — in particular, we extend
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a±α,u from the domain HS ⊗ FM
∞ [L2(R)] to HS ⊗ FM

S [L2(R)] via

a±α,u |Ψ〉 =
∞
∑

n=0

a±α,uΠn |Ψ〉 ∀ |Ψ〉 ∈ HS ⊗ FM
S [L2(R)].

Note that since U(t, s) is strongly differentiable with respect to t, and it maps HS ⊗ FM
S [L2(R)] to HS ⊗ FM

S [L2(R)], it follows

that the operator a−α,u(t, s) = U(s, t)a−α,uU(t, s) is strongly differentiable in both t and s. Differentiating it with respect to t,

and using the characterization of H(t) when acting on HS ⊗ FM
S [L2(R)] as provided in lemma 2, we obtain

d

dt
a−α,u(t, s) = −i〈u, τα,tvα〉U(s, t)LαU(t, s).

Noting that since U(t, s) is strongly continuous in both of its arguments and since Lα is a bounded operator, the right hand side

in the above equation is strongly continuous in t and thus the equation can be integrated to obtain

a−α,uU(t, s) = U(t, s)a−α,u − i

∫ t

s

〈u, τα,τvα〉U(t, τ)LαU(τ, s)dτ,

which proves the lemma. �

Definition 7 (System Green’s functions). Consider k + 1 non-Markovian models specified by coupling functions vi = {vi,α ∈
L2(R)}α∈{1,2...M} for i ∈ {1, 2 . . . k + 1}, but with the same time-dependent system Hamiltonian HS(t) and jump operators

{Lα ∈ L(HS)}α∈{1,2...M}. For O1, O2 . . . Ok ∈ L(HS), |Ψ1〉 , |Ψ2〉 ∈ H and t1, t2 . . . tk ∈ [0,∞), then the Green’s function

G
v1,v2...vk+1

O1,O2...Ok
(t1, t2 . . . tk) is defined by

G
v1,v2...vk+1

O1,O2...Ok;|Ψ1〉,|Ψ2〉
(t1, t2 . . . tk) = 〈Ψ1|Uvk+1

(0, tk+1)OkUvk(tk, tk−1)Ok−1 . . . O1Uv1(t1, 0) |Ψ2〉 ,

where Uvi(·, ·) is the propagator, as defined in lemma 6, for the ith model for i ∈ {1, 2 . . . k + 1}.

Lemma 8. Consider two non-Markovian models described by coupling functions v = {vα ∈ L2(R)}α∈{1,2...M}, u = {uα ∈
L2(R)}α∈{1,2...M}, but with the same system Hamiltonian HS(t), jump operators {Lα ∈ L(HS)}α∈{1,2...M} and environment

single-particle unitary group {τα,t : L2(R) → L2(R)}. For A,B ∈ L(HS), |Ψ〉 , |Φ〉 ∈ HS ⊗ FM
S [L2(R)] and t, s ∈ [0,∞),

d

ds
Gv,v,u

A,B;|Ψ〉,|Φ〉(s, t) = iGv,v,u
[HS(s),A],B;|Ψ〉,|Φ〉(s, t)+

i

M
∑

α=1

(

Gv,v,u

[L†
α,A],B;|Ψ〉,a−

α,τsvα |Φ〉
(s, t) +Gv,v,u

[Lα,A],B;a−
α,τsvα |Ψ〉,|Φ〉

(s, t)

)

−

i

M
∑

α=1

(
∫ s

0

〈τsvα, ττvα〉Gv,v,v,u

Lα,[L†
α,A],B;|Ψ〉,|Φ〉

(s, τ, t)dτ +

∫ s

0

〈ττuα, τsvα〉Gv,v,u,u

[Lα,A],B,L†
α;|Ψ〉,|Φ〉

(s, t, τ)dτ−
∫ t

s

〈ττuα, τsvα〉Gv,v,u,u

[Lα,A],L†
α,B;|Ψ〉,|Φ〉

(s, τ, t)dτ

)

Proof : DifferentiatingGv,v,u
A,B;|Ψ〉,|Φ〉(s, t) with respect to s and using lemma 2(b), we obtain that

d

ds
Gv,v,u

A,B;|Ψ〉,|Φ〉(s, t) = i 〈Ψ|Uu(0, t)BUv(t, s)[HS(s), A]Uv(s, 0) |Φ〉+

i

M
∑

α=1

(

〈Ψ|Uu(0, t)BUv(t, s)a
+
α,τsvα [Lα, A]Uv(s, 0) |Φ〉+

〈Ψ|Uu(0, t)BUv(t, s)[L
†
α, A]a

−
α,τsvαUv(s, 0) |Φ〉

)

.

We note that

〈Ψ|Uu(0, t)BUv(t, s)[HS(s), A]Uv(s, 0) |Φ〉 = Gv,v,u
[HS(s),A],B;|Ψ〉,|Φ〉(s, t).



17

Using lemma 7, we obtain that

〈Ψ|Uu(0, t)BUv(t, s)[L
†
α, A]a

−
α,τsvαUv(s, 0) |Φ〉 =

Gv,v,u

[L†
α,A],B;|Ψ〉,a−

α,τsvα |Φ〉
(s, t)− i

∫ s

0

〈τsvα, ττvα〉Gv,v,v,u

Lα,[L†
α,A],B;|Ψ〉,|Φ〉

(s, τ, t)dτ,

and

〈Ψ|Uu(0, t)BUv(t, s)a
+
α,τsvα [Lα, A]Uv(s, 0) |Φ〉 =

Gv,v,u

[Lα,A],B;a−
α,τsvα |Ψ〉,|Φ〉

(s, t) + i

∫ t

s

〈ττuα, τsvα〉Gv,v,u,u

[Lα,A],L†
α,B;|Ψ〉,|Φ〉

(s, τ, t)dτ−

i

∫ s

0

〈ττuα, τsvα〉Gv,v,u,u

[Lα,A],B,L†
α;|Ψ〉,|Φ〉

(s, t, τ)dτ,

which completes the proof of the lemma. �

B. Extension to general radon measures

Definition 8 (Distributional coupling function). A distributional coupling function is specified by a tuple (µ, ϕ) where µ ∈
M(R) ∩ S ′(R) is a radon measure and a tempered distribution whose Fourier transform is a positive continuous function of

at-most polynomial growth and ϕ ∈ C∞(R).

An important consideration is how to apply the radon measure µ on a discontinuous function, since by definition it is only

specified as acting on continuous functions. The approach to extend µ to a space of discontinuous functions is to use a mollifier

i.e. first smoothen the discontinuous function to a continuous function using a mollifier, and then applying µ.

Definition 9 (Function space PWC1(R)). PWC1(R) is space of all functions which are expressible as g · I[a,b] for some g ∈
C1(R) and [a, b] ⊆ R.

Definition 10. Given a µ ∈ M(R), consider the map µε : PWC1(R) → C given by 〈µε, ·〉 = 〈µ, ρε ⋆ (·)〉 with ρ being a

symmetric mollifier, then µ∗ : PWC1(R) → C is defined by µ∗ := wlimε→0µε.

In the following lemmas, we establish that µ∗ is well defined (i.e. the limit defining µ∗ exists), is independent of the precise

choice of the mollifier and that when restricted to the function space C1
c(R) (i.e. the space of continuously differentiable com-

pactly supported functions), its action coincides with that of the radon measure µ. We also derive certain properties of the map

µ∗ which will be useful in the following subsection. We first present a technical lemma.

Lemma 9. Consider µ ∈ M(R) with the Lesbesgue decomposition µ = µc + µd with φc ∈ C0(R) given by φc(x) =
µc((−∞, x]) ∀ x ∈ R, and µd

∼=
∑

i∈I αiδ(x− yi) for some {αi ∈ C}i∈I , {yi ∈ R}i∈I and finite and countably infinite index

set I . Given a compact interval [a, b] ⊆ R and f ∈ C1(R), define 〈µ∗
[a,b], f〉 by

〈µ∗
[a,b], f〉 = 〈µ∗

c,[a,b], f〉+ 〈µ∗
d,[a,b], f〉 where

〈µ∗
c,[a,b], f〉 = f(b)φc(b)− f(a)φc(a)−

∫ b

a

φc(x)f
′(x)dx and

〈µ∗
d,[a,b], f〉 =

1

2

∑

i∈I|yi∈{a,b}

αif(yi) +
∑

i∈I|yi∈(a,b)

αif(yi).

Then, for every compact intervals [a, b] ⊆ R, ∃∆0
µ;[a,b](ε),∆

1
µ;[a,b](ε) > 0 where ∆0

µ;[a,b](ε),∆
1
µ;[a,b](ε) → 0 as ε → 0 such

that ∀ε ∈ (0, (b− a)/2) and for any mollifier ρ ∈ C∞
c (R) with supp(ρ) ⊆ [−ε, ε]

∣

∣

∣
〈µ∗

[a,b], f〉 − 〈µ, ρ ⋆ (f · I[a,b])〉
∣

∣

∣
≤ ∆0

µ;[a,b](ε) sup
x∈[a,b]

|f(x)|+∆1
µ;[a,b](ε) sup

x∈[a,b]

|f ′(x)| .

Proof : Let ρ ∈ C∞
c (R) be a symmetric and positive-valued function with supp(ρ) ⊆ [−ε, ε] for some ε > 0. Let f ∈ C1(R).

For [a, b] ⊆ R, define fρ
[a,b] =

(

f · I[a,b]
)

⋆ ρ.
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Analysis of the continuous part. Now, we consider 〈µc, f
ρ
[a,b]〉 — since fρ

[a,b] ∈ C1
c(R), we note that

〈µc, f
ρ
[a,b]〉 = −

∫

R

φc(x)f
ρ′

[a,b](x)dx.

We note that ∀x ∈ R,

fρ′

[a,b](x) =

∫ b

a

ρ′(x− y)f(y)dy = f(a)ρ(x− a)− f(b)ρ(x− b) +

∫ b

a

f ′(y)ρ(x− y)dy.

Therefore,

〈µc, f
ρ
[a,b]〉 =

∫

R

f(b)φc(y)ρ(y − b)dy −
∫

R

f(a)φc(y)ρ(y − a)dy −
∫

y∈R

x∈[a,b]

φc(y)f
′(x)ρ(y − x)dxdy.

Since ε < (b − a)/2 =⇒ supp(ρ) ⊆ [−(b − a)/2, (b − a)/2], this can be rewritten with integrals being only over compact

intervals,

〈µc, f
ρ
[a,b]〉 =

∫
3b−a

2

3a−b
2

f(b)φc(y)ρ(y − b)dy −
∫

3b−a
2

3a−b
2

f(a)φc(y)ρ(y − a)dy −
∫

3b−a
2

y= 3a−b
2

∫ b

x=a

φc(y)f
′(x)ρ(y − x)dxdy.

Now, since φc is continuous, it is uniformly continuous over the compact interval [(3a − b)/2, (3b − a)/2]. Thus, ∃δµc;a,b(ε)
where δµc;[a,b](ε) → 0 as ε → 0 such that ∀y, y′ ∈ [(3a− b)/2, (3b− a)/2] with |y − y′| < ε, |φc(y)− φc(y

′)| < δµc;[a,b](ε).
Using this, we obtain that ∀x ∈ [a, b]

∣

∣

∣

∣

∣

φc(x)−
∫

y∈[(3a−b)/2,(3b−a)/2]

φc(y)ρ(x− y)dy

∣

∣

∣

∣

∣

=

∫

y∈[x−ε,x+ε]

∣

∣

(

φc(x) − φc(y)
)
∣

∣ ρ(x− y)dy ≤ δµc;[a,b].

It then follows that

∣

∣

∣
〈µ∗

c , f〉 − 〈µc, f
ρ
[a,b]〉

∣

∣

∣
≤

∑

x∈{a,b}

|f(x)|
∣

∣

∣

∣

∣

φc(x)−
∫

[(3a−b)/2,(3b−a)/2]

φc(y)ρ(y − x)dy

∣

∣

∣

∣

∣

+

∫

x∈[a,b]

∣

∣

∣

∣

∣

φc(y)−
∫

y∈[(3a−b)/2,(3b−a)/2]

φc(y)ρ(x− y)dy

∣

∣

∣

∣

∣

|f ′(x)| dx,

and consequently,

∣

∣

∣
〈µ∗

c , f〉 − 〈µc, f
ρ
[a,b]〉

∣

∣

∣
≤ δµc;[a,b](ε)

(

2 sup
x∈[a,b]

|f(x)|+
∫ b

a

|f ′(x)| dx
)

≤ ∆0
µc;[a,b]

(ε) sup
x∈[a,b]

|f(x)| +∆1
µc;[a,b]

sup
x∈[a,b]

|f ′(x)| ,

(8a)

where

∆0
µc;[a,b]

(ε) = 2δµc;[a,b](ε) and ∆1
µc;[a,b]

(ε) = (b − a)δµc;[a,b](ε), (8b)

both of which → 0 as ε→ 0.

Analysis of the atomic part. We now consider 〈µd, f
ρ
[a,b]〉 — since fρ

[a,b] ∈ C0
c(R), we obtain that

〈µd, f
ρ
[a,b]〉 =

∑

i∈I

αif
ρ
[a,b](yi).

Therefore,

∣

∣

∣
〈µ∗

d, f〉 − 〈µd, f
ρ
[a,b]〉

∣

∣

∣
≤

∑

i∈I|yi /∈[a,b]

|αi|
∣

∣

∣
fρ
[a,b](yi)

∣

∣

∣
+

∑

i∈I|yi∈(a,b)

|αi|
∣

∣

∣
f(yi)− fρ

[a,b](yi)
∣

∣

∣
+

∑

i∈I|yi∈{a,b}

|αi|
∣

∣

∣

∣

f(yi)

2
− fρ

[a,b](yi)

∣

∣

∣

∣

.
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Since supp(fρ
[a,b]) ⊆ [a− ε, a+ ε], and

∥

∥

∥
fρ
[a,b]

∥

∥

∥

L∞
≤ supx∈[a,b] |f(x)|, we obtain that

∑

i∈I|yi /∈[a,b]

|αi|
∣

∣

∣
fρ
[a,b](yi)

∣

∣

∣
≤

(

sup
x∈[a,b]

|f(x)|
)(

∑

i∈I|yi∈[a−ε,a)

|αi|+
∑

i∈I|yi∈(b,b+ε]

|αi|
)

.

Furthermore, we note that for x ∈ [a+ ε, b− ε], we obtain that

∣

∣

∣
f(x)− fρ

[a,b](x)
∣

∣

∣
≤

∫

[−ε,ε]

|f(x)− f(x− y)| ρ(y)dy ≤ sup
y∈[a,b]

|f ′(y)|
∫

[−ε,ε]

|y|ρ(y)dy ≤ ε sup
y∈[a,b]

|f ′(y)| ,

and thus we obtain that

∑

i∈I|yi∈(a,b)

|αi|
∣

∣

∣
f(yi)− fρ

[a,b](yi)
∣

∣

∣
≤ 2 sup

y∈[a,b]

|f(y)|
∑

i∈I|yi∈(a,a+ε]
or yi∈(b−ε,b]

|αi|+ ε sup
y∈[a,b]

|f ′(y)|
∑

i∈I|yi∈(a+ε,b−ε)

|αi| .

Similarly, we can note that

∣

∣

∣

∣

1

2
f(a)− fρ

[a,b](a)

∣

∣

∣

∣

≤
∫

[0,ε]

|f(a)− f(a+ y)| ρ(y)dy ≤ sup
y∈[a,b]

|f ′(y)|
∫

[0,ε]

yρ(y) ≤ ε

2
sup

y∈[a,b]

|f ′(y)| and,

∣

∣

∣

∣

1

2
f(b)− fρ

[a,b](b)

∣

∣

∣

∣

≤
∫

[0,ε]

|f(b)− f(b− y)| ρ(y)dy ≤ sup
y∈[a,b]

|f ′(y)|
∫

[0,ε]

yρ(y) ≤ ε

2
sup

y∈[a,b]

|f ′(y)| ,

and thus we obtain that

∑

i∈I|yi∈{a,b}

|αi|
∣

∣

∣

∣

f(yi)

2
− fρ

[a,b](yi)

∣

∣

∣

∣

≤ ε

2
sup

y∈[a,b]

|f ′(y)|
∑

i∈I|yi∈{a,b}

|αi| .

Therefore, we obtain that

∣

∣

∣
〈µ∗

d, f〉 − 〈µd, f
ρ
[a,b]〉

∣

∣

∣
≤ ∆0

µd;[a,b]
(ε) sup

y∈[a,b]

|f(y)|+∆1
µd;[a,b]

(ε) sup
y∈[a,b]

|f ′(y)| , (9a)

where

∆0
µd;[a,b]

(ε) =
∑

i∈I|yi∈[a−ε,a) or

yi∈(b,b+ε]

|αi|+ 2
∑

i∈I|yi∈(a,a+ε]
or yi∈(b−ε,b]

|αi| and ∆1
µd;[a,b]

(ε) = ε

(

∑

i∈I|yi∈(a+ε,b−ε)

|αi|+
1

2

∑

i∈I|yi∈{a,b}

|αi|
)

.

(9b)

We can note that, by construction, ∆0
µd;[a,b]

(ε),∆1
µd;[a,b]

(ε) → 0 as ε→ 0. Using Eqs. 8 and 9, we obtain the lemma statement.

�

Lemma 10 (Existence of µ∗). Given a µ ∈ M(R), consider the map µε : PWC1(R) → C given by 〈µε, ·〉 = 〈µ, ρε ⋆ (·)〉 with

ρ being a symmetric mollifier, then

(a) ∀f ∈ PWC1(R), 〈µ∗, f〉 := limε→0〈µε, f〉 exists and is independent of the choice of the mollifier,

(b) ∀f ∈ C1
c(R), 〈µ∗, f〉 = 〈µ, f〉.

Proof : Suppose that f ∈ PWC1(R) has the representation f = g · I[a,b] for some g ∈ C1(R) and compact [a, b] ⊆ R. Part (a)

of the lemma follows directly from lemma 9 from which it follows that limε→0〈µ, ρε ⋆ f〉 = 〈µ∗
[a,b], g〉, which can be identified

as 〈µ∗, f〉. Furthermore, we note that by construction, µ∗ is independent of the choice of the mollifier.

For part (b), we note that for f = g · I[a,b] ∈ C1
c(R) ⊆ PWC1(R), g(a) = g(b) = 0, and therefore from the definition of

〈µ∗
[a,b], g〉 in lemma 9

〈µ∗, f〉 = 〈µ∗
[a,b], g〉 = −

∫ b

a

φc(x)g
′(x)dx +

∑

i∈I

αig(yi) = −
∫ b

a

φc(x)f
′(x)dx +

∑

i∈I

αif(yi) = 〈µ, f〉,
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which proves the lemma statement. �

Finally, lemma 9 also straightforwardly yields a convergence estimate for the limit that defines µ∗ — the functions appearing

in the convergence estimate (∆0
µ;[a,b],∆

1
µ;[a,b] in lemma 9) will be key to our analysis in the following sections, and we collect

them into the following definition.

Definition 11 (Error functions for µ). Given µ ∈ M(R) and its associated µ∗ : PWC1(R) → C (Definition 10), the er-

ror functions of µ for a compact interval [a, b] ⊆ R, ∆0
µ;[a,b],∆

1
µ;[a,b] : (0, (b − a)/2) → R+ are functions such that

∆0
µ;[a,b](ε),∆

1
µ;[a,b](ε) → 0 as ε → 0+, and ∀f ∈ PWC1(R) expressible as g · I[a,b] for some g ∈ C1(R) and ∀ symmet-

ric mollifiers ρ ∈ C∞
c (R) with supp(ρ) ⊆ [−ε, ε] with ε < (b− a)/2,

|〈µ∗, f〉 − 〈µ, ρ ⋆ f〉| ≤ ∆0
µ;[a,b](ε) sup

x∈[a,b]

|f(x)|+∆1
µ;[a,b](ε) sup

x∈[a,b]

|f ′(x)| .

Example 1 (Square integrable coupling functions). Although we analyzed square-integrable coupling functions separately in the

previous section, they can also be represented as, and thus are a special case of, distributional coupling functions. In particular,

for v ∈ L2(R), with Fourier transform v̂ ∈ L2(R), note that

κ(t) =

∫ ∞

−∞

|v̂(ω)|2e−iωtdω,

is a continuous function with ‖κ‖L∞ ≤ ‖v‖2L2 , and thus can be described by the radon measure µ defined by

〈µ, f〉 =
∫ ∞

−∞

f(t)κ(t)dt ∀ f ∈ C0
c(R) (10)

is a Radon measure. Furthermore, the map µ∗ : PWC1(R) → C as defined in definition 10 is given by

〈µ∗, f〉 =
∫ ∞

−∞

f(t)κ(t)dt ∀ f ∈ PWC1(R),

Consider now f = g · I[a,b] ∈ PWC1(R) for some compact interval [a, b] ⊆ R and g ∈ C1(R). Since κ ∈ C1(R), ∃δκ,[a,b](ε) >
0, where δκ;[a,b](ε) → 0 as ε → 0, such that ∀x, x′ ∈ [(3a− b)/2, (3b− a)/2], with |x− x′| < ε, |f(x)− f(x′)| ≤ δκ;[a,b](ε).
Consequently,

|〈µ∗, f〉 − 〈µ, f ⋆ ρ〉| ≤ δκ;[a,b](ε) sup
x∈[a,b]

|f(x)| ,

and thus the error functions (definition 11) for µ defined in Eq. 10 are ∆0
µ;[a,b] = δκ;[a,b],∆

1
µ;[a,b] = 0. As a specific example, we

consider coupling functions which in frequency-domain are expressible as sum of lorentzians i.e.

|v̂(ω)|2 =

M
∑

i=1

αi

(ω − ωi)2 + γ2i
∀ω ∈ R, or equivalently κ(t) =

M
∑

j=1

αj

2γj
e−γj |t|e−iωjt

for some {αi ∈ R>0}i∈{1,2...M}, {ωi ∈ R}i∈{1,2...M} and {γi ∈ R>0}i∈{1,2...M}. Such coupling functions arise commonly in

modelling resonant light-matter interactions in quantum optics []. For this model, since κ is differentiable almost everywhere

and ‖κ′‖L∞ ≤ ∑M
j=1 αj

√

γ2j + ω2
j /2γj and hence δκ;[a,b](ε) = ε

∑M
j=1 αj

√

γ2j + ω2
j /2γj .

Example 2 (Delta trains). This class of coupling functions arise frequently in models studying quantum systems with time-delay

and feedback. Consider the coupling function specified by radon measure µ ∈ M(R)

〈µ, f〉 =
M
∑

i=1

αif(xi) ∀f ∈ C0
c(R)

(

equivalently µ ∼=
M
∑

i=1

αiδ(x− xi)

)

for some {xi ∈ R}i∈{1,2...M}, {αi ∈ C}i∈{1,2...M} with x1 < x2 · · · < xM . Furthermore, the map µ∗ : PWC1(R) → C, as
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defined in definition 10 is given by

〈µ∗, f〉 =
M
∑

i=1

αi
1

2

(

lim
x→x+

i

f(x) + lim
x→x−

i

f(x)

)

.

The error functions (definition 11) for µ can be chosen to be

∆0
µ,[a,b](ε) =

∑

i∈{1,2...M}|
yi∈[a−ε,a)∪(b,b+ε]

|αi|+
∑

i∈{1,2...M}|
yi∈(a,a+ε]∪(b−ε,b]

2 |αi| ,∆1
µ,[a,b](ε) = ε

(

∑

i∈{1,2...M}|
yi∈(a+ε,b−ε)

|αi|+
1

2

∑

i∈{1,2...M}|
yi∈{a,b}

|αi|
)

.

We refer the reader to the proof of lemma 9 for a derivation of these error functions in a more general setting of a delta train

with a countably finite number of delta functions.

Example 3 (Complex gaussian). Consider the coupling function specified by the radon measure µ ∈ M(R)

〈µ, f〉 =
M
∑

j=1

cj

∫ ∞

−∞

eikjx
2

f(x)dx ∀ f ∈ C0
c(R),

where kj ∈ R, cj ∈ C for j ∈ {1, 2 . . .M}. Such a coupling function arises frequently in the study of quantum optical systems

where the bath is a wire or channel with group velocity dispersion. Furthermore, the map µ∗ : PWC1(R) → C, as defined in

definition 10 is given by

〈µ∗, f〉 =
M
∑

j=1

cj

∫ ∞

−∞

eikjx
2

f(x)dx ∀ f ∈ C0
c(R),

independent of the mollifier ρ. The error functions (definition 11) for µ can be chosen to be

∆0
µ,[a,b](ε) = ε

M
∑

j=1

|cjkj |max

( ∣

∣

∣

∣

3b− a

2

∣

∣

∣

∣

,

∣

∣

∣

∣

3a− b

2

∣

∣

∣

∣

)

and ∆1
µ,[a,b](ε) = 0.

Definition 1, repeated (Non-Markovian model). A non-Markovian open system model for a quantum system with Hilbert space

HS is specified by

(a) A time-dependent system HamiltonianHS(t) ∈ L(HS) which is Hermitian, norm continuous and differentiable in t,

(b) A set of distributional coupling functions {(µi, ϕi)}i∈{1,2...M} as defined in Definition 8,

(c) A set of bounded coupling operators {Li ∈ L(HS)}i∈{1,2...M}.

Definition 2, repeated (Regularization). For ε > 0 and given a symmetric mollifier ρ ∈ C∞
c (R), an ε, ρ−regularization of a

distributional coupling function (µ, ϕ) is a square integrable function vε ∈ L2(R) whose fourier transform v̂ε ∈ L2(R) is given

by

v̂ε(ω) =
√

µ̂(ω)ρ̂(ωε)eiϕ(ω) ∀ω ∈ R.

It is easily seen that v̂ ∈ L2(R), since by assumption µ̂(ω) has atmost polynomial growth in ω, and ρ̂ ∈ S(R) decays

faster than any polynomial. For square integrable coupling functions, lemma 6 guarantees the existence of the solution to the

Schroedinger’s equation — we can then study whether the solution to the Schroedinger’s equation converges as ε → 0 and

define the limit as the dynamics associated with the coupling function specified by (µ, ρ, ϕ).

Lemma 11. Consider two non-Markovian models with coupling functions v = {vα ∈ L2(R)}α∈{1,2...M} and u = {uα ∈
L2(R)}α∈{1,2...M} respectively but with the same system Hamiltonian HS(t), jump operators {Lα}α∈{1,2...M} and single-

particle environment dynamics described by the time-translation unitary group. Let |Ψv(t)〉 = Uv(t, 0) |Ψ0〉 , |Ψu(t)〉 =
Uu(t, 0) |Ψ0〉, where Uv(t, s), Uu(t, s) are the propagators corresponding to the two non-Markovian models, and |Ψ0〉 ∈
HS ⊗ FM

∞ [L2(R)] , then

‖|Ψu(t)〉 − |Ψv(t)〉‖2 ≤
M
∑

α=1

(
∫ t

0

Du,v
α (τ)dτ +

∫ t

0

Eu,v
α (τ)dτ

)

,
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where for τ ∈ [0, t] and α ∈ {1, 2 . . .M},

Du,v
α (τ) = 4 ‖L‖α

∥

∥

∥
a−α,ττ (uα−vα) |Ψ0〉

∥

∥

∥
, and

Eu,v
α (τ) = 2

∣

∣

∣

∣

∫ τ

0

〈ττ (uα − vα), τsvα〉Gv,v,u

Lα,L†
α;|Ψ0〉,|Ψ0〉

(s, τ)ds

∣

∣

∣

∣

+ 2

∣

∣

∣

∣

∫ τ

0

〈τsuα, ττ (uα − vα)〉Gu,u,v

Lα,L†
α;|Ψ0〉,|Ψ0〉

(τ, s)ds

∣

∣

∣

∣

,

where the Green’s functions Gv,v,u

Lα,L†
α;|Ψ0〉,|Ψ0〉

(s, τ) and Gu,u,v

Lα,L†
α;|Ψ0〉,|Ψ0〉

(τ, s) are defined in definition 7.

Proof : Note that ‖|Ψu(t)〉 − |Ψv(t)〉‖2 = 2 − 2 Re[〈Ψu(t)|Ψv(t)〉]. Consider now the inner product 〈Ψu(t)|Ψv(t)〉 — differ-

entiating this with respect to t, we obtain that

d

dt
〈Ψu(t)|Ψv(t)〉 = i

M
∑

α=1

(

〈Ψu(t)|L†
αa

−
α,τt(uα−vα) |Ψv(t)〉+ 〈Ψu(t)|Lαa

+
α,τt(uα−vα) |Ψv(t)〉

)

.

We note that from lemma 7, it follows that ∀α ∈ {1, 2 . . .M},

〈Ψu(t)|L†
αa

−
α,τt(uα−vα) |Ψv(t)〉 = 〈Ψ0|Uu(0, t)L

†
αa

−
α,τt(uα−vα)Uv(t, 0) |Ψ0〉 ,

= Gv,u

L†
α;a−

α,τt(uα−vα)
|Ψ0〉,|Ψ0〉

− i

∫ t

0

〈τt(uα − vα), τsvα〉Gv,v,u

Lα,L†
α;|Ψ0〉,|Ψ0〉

(s, t)ds.

Similarly,

〈Ψu(t)|Lαa
+
α,τt(uα−vα) |Ψv(t)〉 = 〈Ψ0|Uu(0, t)Lαa

+
α,τt(uα−vα)Uv(t, 0) |Ψ0〉 ,

= Gv,u

Lα;|Ψ0〉,a
−

α,τt(uα−vα)
|Ψ0〉

+ i

∫ t

0

〈τsuα, τt(uα − vα)〉Gu,u,v

Lα,L†
α;|Ψ0〉,|Ψ0〉

(t, s)ds.

Here, we have used the notation for Green’s functions defined in definition 7. Furthermore, we can note that ∀α ∈ {1, 2 . . .M},

∣

∣

∣

∣

Gv,u

L†
α;a−

α,τt(uα−vα)
|Ψ0〉,|Ψ0〉

∣

∣

∣

∣

,

∣

∣

∣

∣

Gv,u

Lα;|Ψ0〉,a
−

α,τt(uα−vα)
|Ψ0〉

∣

∣

∣

∣

≤ ‖Lα‖
∥

∥

∥
a−α,τt(uα−vα) |Ψ0〉

∥

∥

∥
,

and thus we obtain

∣

∣

∣

∣

d

dt
〈Ψu(t)|Ψv(t)〉

∣

∣

∣

∣

≤ 2

M
∑

α=1

‖Lα‖
∥

∥

∥
a−α,τt(uα−vα) |Ψ0〉

∥

∥

∥
+

M
∑

α=1

(∣

∣

∣

∣

∫ t

0

〈τt(uα − vα), τsvα〉Gv,v,u

Lα,L†
α;|Ψ0〉,|Ψ0〉

(s, t)ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t

0

〈τsvα, τt(uα − vα)〉Gu,u,v

Lα,L†
α;|Ψ0〉,|Ψ0〉

(t, s)ds

∣

∣

∣

∣

)

. (11)

Finally, noting that

‖|Ψu(t)〉 − |Ψv(t)〉‖2 ≤ 2
∣

∣1− 〈Ψu(t)|Ψv(t)〉
∣

∣ ≤ 2

∫ t

0

∣

∣

∣

∣

d

dτ
〈Ψu(τ)|Ψv(τ)〉

∣

∣

∣

∣

dτ. (12)

Combining the estimates in Eq. 11 and 12, we obtain the lemma statement. �.

Definition 12. For M ∈ Z≥1, define FM
∞,S ⊂ FM

∞ [L2(R)] as the set of vectors |Φ〉 such that

∀n ∈ Z≥1 : Πn |Φ〉 ∈ span

({

u⊗n

∣

∣

∣

∣

u =

M
⊕

α=1

uα, uα ∈ S(R)
})

.

Lemma 12. Let (µ, ϕ) be a distributional coupling function. Given two mollifiers ρ, σ ∈ C∞
c (R) and ε, δ > 0, let vε and

vδ ∈ L2(R) be the ε, ρ− and δ, σ−regularization of (µ, ϕ) respectively. Let HS be Hilbert space, then,

(a) ∀ |Φ〉 ∈ HS ⊗ FM
∞,S , ∃cµ,|Φ〉 > 0, ∀τ ≥ 0, ∀α ∈ {1, 2 . . .M}, ε > 0 such that

∥

∥a−α,ττvε |Φ〉
∥

∥ ≤ cµ,|Φ〉.

(b) ∀ |Φ〉 ∈ HS ⊗ FM
∞,S , ∃cµ,ρ,|Φ〉, dµ,σ,|Φ〉 > 0, ∀τ ≥ 0, ∀α ∈ {1, 2 . . .M}, ε, δ > 0 such that

∥

∥

∥
a−α,ττ (vε−vδ)

|Φ〉
∥

∥

∥
≤
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cµ,ρ,|Φ〉ε+ cµ,σ,|Φ〉δ.

Proof : Any state |Ψ〉 ∈ HS ⊗ FM
∞,S can be expressed as

|Ψ〉 =
N
∑

j=1

|σj〉 ⊗ |uj〉⊗nj ,

for some N ∈ Z≥1, and

{|σj〉 ∈ HS}j∈{1,2...N},

{

|uj〉 =
M
⊕

α=1

|uα,j〉 , uα,j ∈ S(R) ∀ α ∈ {1, 2 . . .M}
}

j∈{1,2...N}

and {nj ∈ Z≥0}j∈{1,2...N}.

(a) We obtain that

∥

∥a−α,ττvε |Φ〉
∥

∥ ≤
N
∑

j=1

√
nj ‖σj‖ ‖uj‖nj−1

∣

∣

∣

∣

∫

R

√

µ̂(ω)ρ̂(ωε)uα,j(ω)dω

∣

∣

∣

∣

,

≤
N
∑

j=1

√
nj ‖σj‖ ‖uj‖nj−1

∫

R

∣

∣

∣

∣

√

µ̂(ω)ρ̂(ωε)uα,j(ω)

∣

∣

∣

∣

dω.

Note that by assumption, |
√

µ̂(ω)| is a continuous function of at-most polynomial growth. Since ∀j ∈ {1, 2 . . .N}, α ∈
{1, 2 . . .M}, uα,j ∈ S(R),

∥

∥

∥

√

µ̂(ω)uα,j(ω)(1 + ω2)
∥

∥

∥

L∞
<∞.

Furthermore, note that since ρ is a mollifier,

‖ρ̂‖L∞ ≤ 1√
2π

∫

R

|ρ(s)|ds = 1√
2π
.

Therefore,

∥

∥a−α,ττvε |Φ〉
∥

∥ ≤
N
∑

j=1

√

nj

2π
‖σj‖ ‖uj‖nj−1

∥

∥

∥

√

µ̂(ω)uα,j(ω)(1 + ω2)
∥

∥

∥

L∞

∫

R

dω

1 + ω2
,

≤ sup
α∈{1,2...M}

( N
∑

j=1

√

πnj

2
‖σj‖ ‖uj‖nj−1

∥

∥

∥

√

µ̂(ω)uα,j(ω)(1 + ω2)
∥

∥

∥

L∞

)

,

where the bound can be identified as the constant cµ,|Ψ〉 in the lemma statement.

(b) We obtain that

∥

∥

∥
a−α,ττ (vε−vδ)

|Φ〉
∥

∥

∥
≤

N
∑

j=1

√
nj ‖σj‖ ‖uj‖nj−1

∣

∣

∣

∣

∫

R

uα,j(ω)
√

µ̂(ω)
(

ρ̂(ωε)− σ̂(ωδ)
)

dω

∣

∣

∣

∣

≤
N
∑

j=1

√
nj ‖σj‖ ‖uj‖nj−1

∫

R

∣

∣

∣

∣

√

µ̂(ω)uα,j(ω)
(

ρ̂(ωε)− σ̂(ωδ)
)

∣

∣

∣

∣

dω.

Again, since by assumption |
√

µ̂(ω)| is a function of at-most polynomial growth, and ∀α ∈ {1, 2 . . .M}, j ∈ {1, 2 . . .N},

uα,j ∈ S(R) and therefore,

∥

∥

∥

√

µ̂(ω)uα,j(ω)(1 + ω2)2
∥

∥

∥

L∞
<∞.
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Furthermore, since ρ, σ ∈ C∞
c (R) ⊆ S(R), ρ̂, σ̂ ∈ S(R). In particular, ‖ρ̂′‖L∞ , ‖σ̂′‖L∞ <∞. Furthermore,

ρ̂(0)− σ̂(0) =
1√
2π

∫

R

ρ(s)ds− 1√
2π

∫

R

σ(s)ds = 0,

since the mollifiers are, by definition, normalized to have unit area. Thus, using the Taylor’s remainder theorem, we obtain that

∣

∣ρ̂(ωε)− σ̂(ωδ)
∣

∣ ≤ ‖ρ̂′‖L∞

∣

∣ω
∣

∣ε+ ‖σ̂′‖L∞

∣

∣ω
∣

∣δ ∀ ω ∈ R.

We thus obtain that

∥

∥

∥
a−α,ττ (vε−vδ)

|Φ〉
∥

∥

∥
≤ max

α∈{1,2...M}

N
∑

j=1

√
nj ‖σj‖ ‖uj‖nj−1

∥

∥

∥

√

µ̂(ω)uα,j(ω)(1 + ω2)2
∥

∥

∥

L∞

∫

R

‖ρ̂′‖L∞

∣

∣ω
∣

∣ε+ ‖σ̂′‖L∞

∣

∣ω
∣

∣δ

(1 + ω2)2
dω.

Noting that
∫

R
|ω|/(1 + ω2)2dω <∞, we obtain the lemma statement with the constants

cµ,ρ,|Φ〉 = max
α∈{1,2...M}

N
∑

j=1

√
nj ‖σj‖ ‖uj‖nj−1

∥

∥

∥

√

µ̂(ω)uα,j(ω)(1 + ω2)2
∥

∥

∥

L∞
‖ρ̂′‖L∞

∫

R

|ω|
(1 + ω2)2

dω. �

Lemma 13. Consider a non-Markovian model specified by a system Hamiltonian HS(t), M jump operators {Lα}α∈{1,2...M}

and coupling functions, {(µα, ϕα)}α∈{1,2...M}. Given two mollifiers ρ, σ ∈ C∞
c (R) and ε, δ ∈ (0, 1/2), consider two non-

Markovian models with the same system Hamiltonian and jump operators, but with square integrable coupling functions given by

vε = {vα,ε ∈ L2(R)}α∈{1,2...M} and vδ = {vα,δ ∈ L2(R)}α∈{1,2...M}, where vα,ε and vα,δ are ε, ρ− and δ, σ−regularizations

of (µα, ϕ) respectively. Given an initial state |Ψ0〉 ∈ HS ⊗ FM
∞,S [L

2(R)], then the errors Evδ,vε
α,|Ψ0〉

(t) and Dvδ,vε
α,|Ψ0〉

(t) defined in

lemma 11 satisfy the estimates

(a) For all α ∈ {1, 2 . . .M} and t > 0,

Evδ,vε
α,|Ψ0〉

(t) ≤ 4 ‖Lα‖2 TV[−1,t+1](µα).

(b) For all α ∈ {1, 2 . . .M} and t > 0,

Evδ,vε
α,|Ψ0〉

(t) ≤ 2

(

2∆1
µα;[0,t](ε+ δ) + ∆1

µα;[0,t](2ε) + ∆1
µα;[0,t](2δ)

)

×
(

‖Lα‖ sup
s∈[0,t]

‖[HS(s), Lα]‖+ 4 ‖Lα‖2
M
∑

α′=1

‖L′
α‖ cµα′ ,|Ψ0〉 + 6 ‖Lα‖2

M
∑

α′=1

‖Lα′‖2 TV[−1,t+1](µα′ ).

)

+

2

(

2∆0
µα;[0,t](ε+ δ) + ∆0

µα;[0,t](2ε) + ∆0
µα;[0,t](2δ)

)

‖Lα‖2 ,

where ∆0
µα;[−t,0],∆

1
µα;[−t,0] are the error functions corresponding to µα (definition 11) and cµα,|Ψ0〉 is the constant

introduced in lemma 12(a).

(c) For all α ∈ {1, 2 . . .M} and t > 0,

Dvδ,vε
α,|Ψ0〉

(t) ≤ 4 ‖Lα‖
(

cµα,ρ,|Ψ0〉ε+ cµα,σ,|Ψ0〉δ
)

,

where cµα,ρ,|Ψ0〉, cµα,σ,|Ψ0〉 are constants introduced in lemma 12(b).

Proof : For this proof, it is convenient to note that for α ∈ {1, 2 . . .M} and any s,∈ [0, t],

〈ττvα,δ, τsvα,ε〉 = 2π

∫

R

µ̂α(ω)ρ̂(εω)σ̂
∗(δω)e−iω(s−t)dω.

Since if ε, δ ∈ (0, 1/2), supp(ρε ⋆ ρε), supp(σδ ⋆ σδ), supp(σδ ⋆ ρε) ⊆ [−1, 1]. Consequently, ∀f ∈ C0(R) and t1, t2 ∈ (0, t],

∣

∣

∣

∣

∫ t2

t1

〈τtvα,δ, τsvα,ε〉f(s)ds
∣

∣

∣

∣

=
∣

∣〈µα, σδ ⋆ ρε ⋆ τt
(

f · I(t1,t2]
)

〉
∣

∣ ≤ TV[−1,t+1](µα) sup
s∈[0,t]

|f(s)| . (13a)
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Similarly,

∣

∣

∣

∣

∫ t2

t1

〈τtvα,ε, τsvα,δ〉f(s)ds
∣

∣

∣

∣

,

∣

∣

∣

∣

∫ t2

t1

〈τtvα,ε, τsvα,ε〉f(s)ds
∣

∣

∣

∣

,

∣

∣

∣

∣

∫ t2

t1

〈τtvα,δ, τsvα,δ〉f(s)ds
∣

∣

∣

∣

≤ TV[−1,t+1](µα) sup
s∈[0,t]

|f(s)| .

(13b)

(a) We note that

∣

∣

∣

∣

∫ t

0

〈τt(vα,δ − vα,ε), τsvα,ε〉Gvε,vε,vδ
Lα,L†

α

(s, t)ds

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ t

0

〈τtvα,δ, τsvα,ε〉Gvε,vε,vδ (s, τ)ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t

0

〈τtvα,δ, τsvα,ε〉Gvε,vε,vδ(s, τ)ds

∣

∣

∣

∣

Since ∀s ∈ [0, t] :
∣

∣

∣
Gvε,vε,vδ

Lα,L†
α;|Ψ0〉,|Ψ0〉

(s, τ)
∣

∣

∣
,≤ ‖Lα‖2, and using Eq. 13, we obtain that

∣

∣

∣

∣

∫ t

0

〈τt(vα,δ − vα,ε), τsvα,ε〉Gvε,vε,vδ

Lα,L†
α

(s, t)ds

∣

∣

∣

∣

≤ 2 ‖Lα‖2 TV[−1,t+1](µα).

Similarly, we can obtain that

∣

∣

∣

∣

∫ t

0

〈τsvα,δ, τt(vα,δ − vα,ε)〉Gvε ,vδ,vδ
Lα,L†

α;|Ψ0〉,|Ψ0〉

∣

∣

∣

∣

≤ 2 ‖Lα‖2 TV[−1,t+1](µα).

Combining these two estimates, we obtain the part (a) of the lemma statement.

(b) We begin by noting that

〈τt(vα,δ − vα,ε), τsvα,ε〉 = 2π

∫ ∞

−∞

µ̂α(ω)ρ̂(εω)
(

ρ̂∗(εω)− σ̂∗(δω)
)

e−iω(s−t)dω,

and therefore,

∫ t

0

〈τt(vα,δ − vα,ε), τsvα,ε〉Gvε,vε,uδ

Lα,L†
α;|Ψ0〉,|Ψ0〉

(s, t)ds =
〈

µα, ρε ⋆ ρε ⋆ g
ε,δ
α,t − ρε ⋆ σδ ⋆ g

α,t
ε,δ

〉

,

where

gε,δα,t = τt

(

Gvε,vε,uδ

Lα,L†
α;|Ψ0〉,|Ψ0〉

(·, t) · I[0,t]
)

.

We note that gε,δα,t is a continuous and differentiable function when restricted to [−t, 0] and hence ∈ PWC1(R). Consequently,

∣

∣

∣

〈

µα, ρε ⋆ ρε ⋆ g
ε,δ
α,t − ρε ⋆ σδ ⋆ g

α,t
ε,δ

〉

∣

∣

∣
≤

∣

∣

∣

〈

µ∗
α, g

ε,δ
α,t

〉

−
〈

µα, ρε ⋆ ρε ⋆ g
ε,δ
α,t

〉

∣

∣

∣
+

∣

∣

∣

〈

µ∗
α, g

ε,δ
α,t

〉

−
〈

µα, ρε ⋆ σδ ⋆ g
α,t
ε,δ

〉

∣

∣

∣

≤
(

∆0
µα;[−t,0](2ε) + ∆0

µα;[−t,0](δ + ε)

)

sup
s∈[0,t]

∣

∣

∣
gε,δα,t(s)

∣

∣

∣
+

(

∆1
µα;[−t,0](2ε) + ∆1

µα;[−t,0](δ + ε)

)

sup
s∈[0,t]

∣

∣

∣
gε,δ

′

α,t (s)
∣

∣

∣

(14)

Furthermore, note that

sup
s∈[−t,0]

∣

∣

∣
gε,δα,t(s)

∣

∣

∣
≤ ‖Lα‖2 , (15)
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We next provide a bound on the derivative (sups∈[−t,0] |gε,δ
′

α,t (s)|) which is uniform in ε, δ. An application of lemma 8, yields

∣

∣

∣
gε,δ

′

α,t (s)
∣

∣

∣
≤

∣

∣

∣
Gvε,vε,vδ

[HS(s+t),Lα],L
†
α;|Ψ0〉,|Ψ0〉

(s+ t, t)
∣

∣

∣
+

M
∑

α′=1

(

∣

∣

∣

∣

∣

Gvε,vε,vδ
[L†

α′ ,Lα],L
†
α;|Ψ0〉,a

−

α′,τ(s+t)vα
|Ψ0〉

(s+ t, t)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

Gvε,vδ,vδ
[Lα′ ,Lα],L

†
α;|Ψ0〉,a

−

α′,τ(s+t)vα
|Ψ0〉

(s+ t, t)

∣

∣

∣

∣

∣

)

+

M
∑

α′=1

( ∣

∣

∣

∣

∫ s+τ

0

〈τs+τvα′,ε, τs′vα′,ε〉Gvε,vε,vε,vδ

Lα′ ,[L
†

α′ ,Lα],L†
α;|Ψ0〉,|Ψ0〉

(s′, s+ τ, τ)ds′
∣

∣

∣

∣

+

∣

∣

∣

∣

∫ τ

0

〈τs′vα′,δ, τs+τvα′,ε〉Gvε,vε,vδ,vδ

[Lα′ ,Lα],L
†
α,L

†

α′ ;|Ψ0〉,|Ψ0〉
(s+ τ, τ, s′)ds′

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ τ

s+τ

〈τs′vα′,δ, τs+τvα′,ε〉Gvε,vε,vδ,vδ
[Lα′ ,Lα],L

†

α′ ,L
†
α;|Ψ0〉,|Ψ0〉

(s+ τ, s′, τ)ds′
∣

∣

∣

∣

)

.

Using Eq. 13, we thus obtain that

sup
s∈(−t,0)

∣

∣

∣
gε,δ

′

α,t (s)
∣

∣

∣
≤ ‖Lα‖ sup

s∈[0,t]

‖[HS(s), Lα]‖+ 4 ‖Lα‖2
M
∑

α′=1

‖Lα′‖ sup
s∈[0,t]

∥

∥

∥
a−α′,τsvα′

|Ψ0〉
∥

∥

∥
+ 6 ‖Lα‖2

M
∑

α′=1

‖L′
α‖

2
TV[−1,t+1](µα)

From lemma 12(a), it follows that ∀α′ ∈ {1, 2 . . .M}, s ∈ [0, t],
∥

∥

∥
a−α′,τsvα′

|Ψ0〉
∥

∥

∥
≤ cµα′ ,|Ψ0〉 and therefore, we obtain that

sup
s∈(−t,0)

∣

∣

∣
gε,δ

′

α,t (s)
∣

∣

∣
≤ sup

s∈[0,τ ]

‖[HS(s), Lα]‖ ‖Lα‖+ 4 ‖Lα‖2
M
∑

α′=1

‖L′
α‖ cµα′ ,|Ψ0〉 + 6 ‖Lα‖2

M
∑

α′=1

‖Lα′‖2 TV[−1,t+1](µα′).

(16)

From Eqs. 14, 15 and 16, we obtain that

∣

∣

∣

∣

∫ t

0

〈τt(vα,δ − vα,ε), τsvα,ε〉Gvε,vε,uδ

Lα,L†
α;|Ψ0〉,|Ψ0〉

(s, t)ds

∣

∣

∣

∣

≤
(

∆0
µα;[−t,0](2ε) + ∆0

µα;[−t,0](δ + ε)

)

‖Lα‖2 +
(

∆1
µα;[−t,0](2ε)+

∆1
µα;[−t,0](δ + ε)

)(

sup
s∈[0,τ ]

‖[HS(s), Lα]‖ ‖Lα‖+ 4 ‖Lα‖2
M
∑

α′=1

‖Lα′‖ cµα′ ,|Ψ0〉 + 6 ‖Lα‖2
M
∑

α′=1

‖Lα′‖2 TV[−1,t+1](µα′)

)

.

Similary,

∣

∣

∣

∣

∫ t

0

〈τsvα,δ, τt(vα,δ − vα,ε)〉Gvδ,vδ,vε

Lα,L†
α;|Ψ0〉,|Ψ0〉

(t, s)ds

∣

∣

∣

∣

≤
(

∆0
µα;[−t,0](2δ) + ∆0

µα;[−t,0](δ + ε)

)

‖Lα‖2 +
(

∆1
µα;[−t,0](2δ)+

∆1
µα;[−t,0](δ + ε)

)(

sup
s∈[0,τ ]

‖[HS(s), Lα]‖ ‖Lα‖+ 4 ‖Lα‖2
M
∑

α′=1

‖Lα′‖ cµα′ ,|Ψ0〉 + 6 ‖Lα‖2
M
∑

α′=1

‖Lα′‖2 TV[−1,t+1](µα′)

)

.

(c) This follows from a direct application of lemma 12.

Theorem 1, repeated (Formal, Non-markovian dynamics). Consider a non-Markovian model specified by a system Hamiltonian

HS(t), M jump operators {Lα}α∈{1,2...M} and distributional coupling functions, {(µα, ϕα)}α∈{1,2...M}. Construct a square-

integral non-Markovian model with the same system Hamiltonian and jump operators, but with coupling functions vε := {vα,ε ∈
L2(R)}α∈{1,2...M}, where for α ∈ {1, 2 . . .M}, vα,ε is an ε, ρ−regularization of (µα, ϕα) for a symmetric mollifier ρ ∈ C∞

c (R),

ε > 0 and letUvε(·, ·) be its propagator. Then, for t > 0,U(t) : FM
∞,S⊗HS → H defined viaU(t) |Ψ0〉 = limε→0 Uvε(t, 0) |Ψ0〉

exists, is an isometry and is independent of the choice of mollifier ρ.

Proof : For simplicity, we will assume that ε, δ ∈ (0, 1). Consider two symmetric mollifiers ρ, σ ∈ C∞
c (R) — let vε := {vα,ε ∈

L2(R)}α∈{1,2...M} and vδ := {vα,δ ∈ L2(R)}α∈{1,2...M} be the ε, ρ− and δ, σ−regularizations of the distributional coupling

functions. For |Ψ0〉 ∈ FM
∞,S ⊗ HS , let |Ψvε(t)〉 = Uvε(t, 0) |Ψ0〉 and |Ψvδ(t)〉 = Uvδ (t, 0) |Ψ0〉, where Uvε(·, ·), Uvδ (·, ·) are

the propagators corresponding to the two models. We note that from lemma 13(c) that ∀α ∈ {1, 2 . . .M} and τ ∈ [0, t]

lim
ε,δ→0

Dvδ,vε
α,|Ψ0〉

(τ) = 0 and Dvδ,vε
α,|Ψ0〉

(τ) ≤ 4 ‖Lα‖
(

cµα,ρ,|Ψ0〉 + cµα,σ,|Ψ0〉

)

.
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From the dominated convergence theorem, we then obtain that

lim
ε,δ→0

∫ t

0

Dvδ,vε
α,|Ψ0〉

(τ)dτ =

∫ t

0

lim
ε,δ→0

Dvδ ,vε
α,|Ψ0〉

(τ)dτ = 0.

Similarly, we note from lemma 13(b) that ∀α ∈ {1, 2 . . .M} and τ ∈ [0, t]

lim
ε,δ→0

Evδ,vε
α,|Ψ0〉

(τ) = 0.

From lemma 13(a), we obtain that ∀α ∈ {1, 2 . . .M} and τ ∈ [0, t]

Evδ,vε
α,|Ψ0〉

(τ) ≤ 4 ‖Lα‖2 TV[−1,τ+1](µα) ≤ 4 ‖Lα‖2 TV[−1,t+1](µα).

Hence, again by dominated convergence theorem, we obtain that

lim
ε,δ→0

∫ t

0

Evδ,vε
α,|Ψ0〉

(τ)dτ =

∫ t

0

lim
ε,δ→0

Evδ,vε
α,|Ψ0〉

(τ)dτ = 0.

We thus obtain from lemma 11 that

lim
ε,δ→0

‖|Ψvε(t)〉 − |Ψvδ (t)〉‖ = 0, (17)

for all symmetric mollifiers ρ, σ. From this condition, using ρ = σ, we obtain that limε→0 |Ψvε(t)〉 exists. Furthermore,

‖limε→0 |Ψvε(t)〉‖ = limε→0 ‖|Ψvε(t)〉‖ = ‖|Ψ0〉‖, and hence the operator mapping |Ψ0〉 to limε→0 |Ψvε(t)〉 is an isometry.

Furthermore, since the limit exists, Eq. 17 additionally implies that the limit is independent of the choice of the mollifier. �

V. COMPLEXITY OF NON-MARKOVIAN DYNAMICS

A. Certifiable Markovian dilations

In this section, we develop a certifiable Markovian dilation of a non-Markovian model. We use the well-known star-to-chain

transformation for mapping the non-Markovian problem to a Hamiltonian simulation problem, and provide error bounds on this

dilation.

Definition 13 (Chain unitary group on L2(R)). Given v ∈ L2(R) with supp(v̂) ∈ [−ωc, ωc] for some ωc > 0, a chain unitary

group with Nm modes generated by v is the strongly continuous single parameter unitary group νt : L
2(R) → L2(R) defined

by

νtf =

Nm
∑

β=1

cβ(t)ϕβ +

(

f −
N
∑

β=1

〈ϕβ , f〉ϕβ

)

,

where

(a) {ϕβ ∈ L2(R)}β∈{1,2...Nm}, called the mode functions, are a set of orthonormal functions (i.e. 〈ϕα, ϕβ〉 = δα,β that are

given by

ϕ̂α(ω) =
pα(ω)v̂(ω)

[ ∫ ωc

−ωc
p2α(ω)|v̂(ω)|2dω

]1/2
∀ α ∈ {1, 2 . . .Nm},

where pα is a degree α− 1 polynomial generated by the following recursion starting from p1(ω) = 1, B1 = 0,

aα =

∫ ωc

−ωc
ωp2α(ω)|v̂(ω)|2dω

∫ ωc

−ωc
p2α(ω)|v̂(ω)|2dω

, pα+1(ω) = (ω −Aα)pα(ω)−Bα−1pα−1(ω), Bα =

∫ ωc

−ωc
p2α−1(ω)|v̂(ω)|2dω

∫ ωc

−ωc
p2α(ω)|v̂(ω)|2dω

. (18)

(b) The coefficients {cβ(t) ∈ C}β∈{1,2...M} are given by the dynamical law: cβ(0) = 〈ϕβ , f〉 for β ∈ {1, 2 . . .M}, together
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with

i
d

dt













c1(t)
c2(t)
c3(t)

...

cM (t)













=













ω1 t1 0 0 . . . 0
t1 ω2 t2 0 . . . 0
0 t2 ω3 t3 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . ωM

























c1(t)
c2(t)
c3(t)

...

cM (t)













(19)

where ωα = Aα ∀α ∈ {1, 2 . . .M} and tα =
√

Bα+1 ∀ α ∈ {1, 2 . . .Nm},

For completeness, we provide a simple and well-known upper bound on the coefficients {ωα}α∈{1,2...Nm} and

{tα}α∈{1,2...Nm−1} which will be useful in the following sections.

Lemma 14 (Upper bound on ωα, tα (Ref. )). Given a chain unitary group with Nm modes generated by v ∈ L2(R) with

supp(v̂) ⊆ [−ωc, ωc] for ωc ≥ 0, then

|ωα| ≤ ωc and tα ≤ ωc ∀ α ∈ {1, 2 . . .Nm},

where {ωα}α∈{1,2...Nm} and {tα}α∈{1,2...Nm} are the parameters of the chain unitary group defined in definition 13.

Lemma 15. Given v ∈ L2(R) ∩ L∞(R) with supp(f) ∈ [−ωc, ωc], let νt : L
2(R) → L2(R) be the chain unitary group with

Nm modes generated by v (definition 13), then ∀t ≥ 0,

1

2
‖τtv − νtv‖2L2 ≤ ‖v‖2L2 N

2
me

Nm

(

2ωct

Nm

)Nm

,

where τt : L
2(R) → L2(R) is the translation group [(τtf)(x) = f(x+ t) ∀ f ∈ L2(R)].

Proof : We define the polynomial πα of degree α− 1 via

πα =
‖v‖L2

‖piv̂‖L2

pα for α ∈ {1, 2 . . .Nm}.

We will denote by A ∈ RNm×Nm the matrix

A =













ω1 t1 0 0 . . . 0
t1 ω2 t2 0 . . . 0
0 t2 ω3 t3 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . ωNm













,

We will denote by λi ∈ R and ui ∈ RNm , i ∈ {1, 2 . . .Nm} the eigenvalues and eigenvectors of the matrix A. We note that if

(λ ∈ R, u ∈ RNm) is an eigenvalue, eigenvector pair of A, then

(

ω1 − λ
)

u1 + t1u2 = 0,
(

ωi − λ
)

ui + ti−1ui−1 + tiui+1 = 0 for i ∈ {2, 3 . . .Nm − 1},
(

ωNm
− λ

)

uNm
+ tNm−1uNm−1 = 0.

Solving these recursions, we obtain that

ui = u1πi(λ) and πNm+1(Ω) = 0 (or pNm+1(Ω) = 0).

Therefore, the eigenvalues λ1, λ2 . . . λNm
are the roots of the polynomial pNm+1, and the eigenvectors are given by

uij =
πj(λi)

Ni
where Ni =

( Nm
∑

j=1

π2
j (λi)

)1/2

It can be noted that the matrix A is hermitian, and consequently, its eigenvectors for an orthonormal basis for RNm , which
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implies that

Nm
∑

j=1

πj(λi)πj(λi′ ) = N2
i δi,i′ and

Nm
∑

i=1

πj(λi)πj′ (λi) = N2
i δj,j′ . (20)

We next compute νtv — noting that v ∝ ϕ1, we obtain that

νtv =

Nm
∑

β=1

cβ(t)ϕβ , where









c1(t)
c2(t)

...

cNm
(t)









= ‖v‖ e−iAt









1
0
...

0









,

which can be rewritten as

e−iAt









1
0
...

0









=

Nm
∑

i=1

π1(λi)

Ni
e−iλitui =⇒ cj(t) = ‖v‖L2

Nm
∑

i=1

π1(λi)πj(λi)

N2
i

e−iλit.

We now consider

1

2
‖τtv − νtv‖2L2 = ‖v‖2L2 −

Nm
∑

j=1

Re

(

c∗j (t)

∫

R

ϕ̂∗
j (ω)v̂(ω)e

−iωtdω

)

= ‖v‖2L2 −
Nm
∑

i,j=1

π1(λi)πj(λi)

N2
i

∫ ωc

−ωc

πj(ω)|v̂(ω)|2 cos((ω − λi)t)dω.

We next use the Gauss quadrature theorem [] — we note that the polynomials p1, p2 . . . pNm
are the polynomials that would be

used to approximate the integral of f(ω)|v̂(ω)|2 in the interval [−ωc, ωc] with Gaussian quadrature withNm interpolating points.

In particular, for every Nm ∈ Z>1, ∃w ∈ [0,∞)Nm with ‖w‖1 = 1 such that for all polynomials q of degree ≤ 2Nm − 1,

1

‖v‖2L2

∫ ωc

−ωc

q(ω)|v̂(ω)|2dω =

Nm
∑

i=1

wiq(λi).

Note that from the Taylor’s remainder theorem, it follows that,

∀ω ∈ [−ωc, ωc], cos(ωt) = qNm
(ω) + rNm

(ω),

where qNm
is a polynomial of degree Nm with qNm

(0) = 1, and

sup
ω∈[−2ωc,2ωc]

|rNm
(ω)| ≤ (2ωct)

Nm+1/(Nm + 1)!. (21)

We thus obtain that

1

2
‖τtv − νtv‖2L2 =

‖v‖2L2 −
Nm
∑

i,j=1

π1(λi)πj(λi)

N2
i

∫ ωc

−ωc

πj(ω)|v̂(ω)|2qNm
(ω − λi)dω −

Nm
∑

i,j=1

π1(λi)πj(λi)

N2
i

∫ ωc

−ωc

πj(ω)|v̂(ω)|2rNm
(ω − λi)dω.

Now, from the Gauss quadrature theorem, it follows that since for j ∈ {1, 2 . . .Nm} degree of πj(ω)qNm
(ω − λj) ≤ 2Nm − 1

∫ ωc

−ωc

πj(ω)|v̂(ω)|2qNm
(ω − λi)dω = ‖v‖2L2

Nm
∑

k=1

wkπj(λk)qNm
(λk − λi),
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and therefore

Nm
∑

i,j=1

π1(λi)πj(λi)

N2
i

∫ ωc

−ωc

πj(ω)|v̂(ω)|2qNm
(ω − λi)dω = ‖v‖2L2

Nm
∑

i,j,k=1

wk
πj(λi)πj(λk)

N2
i

qNm
(λk − λi).

where we have used that π1(ω) = 1 ∀ω ∈ R. Furthermore, using Eq. 20, we obtain that

Nm
∑

i,j=1

π1(λi)πj(λi)

N2
i

∫ ωc

−ωc

πj(ω)|v̂(ω)|2qNm
(ω − λi)dω = ‖v‖2L2 ‖w‖1 = ‖v‖2L2

,

and therefore

1

2
‖τtv − νtv‖2L2 = −

Nm
∑

i,j=1

πj(λi)

N2
i

∫ ωc

−ωc

πj(ω)|v̂(ω)|2rNm
(ω − λi)dω.

Since for i ∈ {1, 2 . . .Nm}, λi ∈ [−ωc, ωc] and therefore

1

2
‖τtv − νtv‖2L2 ≤

Nm
∑

i,j=1

∣

∣

∣

∣

πj(λi)

N2
i

∣

∣

∣

∣

sup
ω∈[−2ωc,2ωc]

|rNm
(ω)|

∫ ωc

−ωc

|πj(ω)||v̂(ω)|2dω

Note that ∀i, j ∈ {1, 2 . . .Nm}, |πj(λi)| ≤ Ni and Ni ≥ 1. Using this and the estimate in Eq. 21, we obtain that

1

2
‖τtv − νtv‖2L2 ≤ (2ωct)

Nm+1

(Nm + 1)!

Nm
∑

i,j=1

∫ ωc

−ωc

|πj(ω)||v̂(ω)|2dω ≤ (2ωct)
Nm+1

(Nm + 1)!

Nm
∑

i,j=1

‖v̂πj‖L2 ‖v‖L2 =
(2ωct)

Nm+1

(Nm + 1)!
N2

m ‖v‖2L2 .

Finally, using Stirling’s approximation to estimate (Nm + 1)! ≥ (Nm + 1)Nm+1e−Nm ≥ NNm+1
m e−Nm , we obtain that

1

2
‖τtv − νtv‖2L2 ≤ ‖v‖2L2 N

2
m

(

2eωct

Nm

)Nm

,

which proves the lemma statement. �

Definition 14 (Chain-approximation). Consider a non-Markovian model specified by a system Hamiltonian HS(t), functions

{(µα, ϕα)}α∈{1,2...M}, jump operators {Lα}α∈{1,2...M} and single-particle environment dynamics described by the time-

translation unitary group. A chain approximation to this non-Markovian model, with frequency cutoff ωc > 0 and Nm ∈ Z>0

modes is a non-Markovian model specified by the same system Hamiltonian and jump operartors, but with square integrable

coupling functions {vα ∈ L2(R)|supp(v̂α) ⊆ [−ωc, ωc]}α∈{1,2...M} and single-particle environment dynamics described by the

unitary groups {να,t : L
2(R) → L2(R)}α∈{1,2...M} where να,t is the chain-unitary group with Nm modes generated by vα.

Next, we analyze the error incurred on approximating a non-Markovian model with its chain approximation. There are

two sources of error in this approximation — the first is in introducing a frequency cutoff into the model, and the next is in

approximating environment in the resulting model by its chain representation. We analyze both of these errors separately — for

this analysis, we restrict ourselves to coupling functions whose Fourier transforms fall off sufficiently fast with frequency. Then,

we consider models specified by a distributional coupling functions where an additional regularization step (as described in the

previous section) is needed to map them to coupling functions in this class.

Lemma 16. Consider a non-Markovian model described by coupling functions v = {vα ∈ L2(R) ∩ C∞(R)| ‖(·)v̂α(·)‖L∞ <
∞}α∈{1,2...M}, jump operators {Lα}α∈{1,2...M} and system Hamiltonian HS(t). For ωc > 0, consider a non-Markovian

model described by coupling functions vωc
= {vωc

∈ L2(R)|v̂α,ωc
:= v̂αI[−ωc,ωc]}α∈Z≥0

but with the same jump operators

and system Hamiltonian. Let |Ψ(t)〉 and |Ψωc
(t)〉 be the state at time t for both of these models starting with initial state

|Ψ0〉 ∈ HS ⊗ FM
∞(L2(R)), then ∀ k ∈ Z≥1,

‖|Ψ(t)〉 − |Ψωc
(t)〉‖2 ≤ 2

ω
1/2
c

M
∑

α=1

‖Lα‖ ‖(·)v̂α(·)‖L∞

(

‖Lα‖ ‖vα‖L2 t
2 + 2µ

(1)
|Ψ0〉

t

)

.
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Proof : It is useful to note that since ∀ α ∈ {1, 2 . . .M}, |v̂α(ω)| ≤ ‖(·)v̂α(·)‖L∞ /ω. Consequently, we obtain that

‖vα − vα,ωc
‖2 =

∫

|ω|≥ωc

|v̂α(ω)|2dω ≤ ‖(·)v̂α(·)‖2L∞

∫

|ω|≥ωc

dω

ω2
=

‖(·)v̂α(·)‖2L∞

ωc
. (22)

The proof of this lemma follows from lemma 11. Consider the two error terms defined in lemma 11. First, note that for τ ∈ [0, t]
and α ∈ {1, 2 . . .M},

Dv,vωc
α (τ) = 4 ‖Lα‖

∥

∥aα,ττ (vα−vα,ωc )
|Ψ0〉

∥

∥ ≤ 4µ
(1)
|Ψ0〉

‖Lα‖ ‖vα − vα,ωc
‖L2 ≤ 4µ

(1)
|Ψ0〉

‖Lα‖ ‖(·)v̂α(·)‖L∞

ω
1/2
c

.

Furthermore, since ∀α ∈ {1, 2 . . .M}, vα, vα,ωc
∈ L2(R), we obtain that ∀τ, s ∈ [0, t]

|〈ττ (vα − vα,ωc
), τsvα〉| ≤

∣

∣

∣

∣

∫

R

(v̂∗α(ω)− v̂∗α,ωc
(ω))v̂α(ω)e

−iω(s−τ)dω

∣

∣

∣

∣

≤ ‖vα‖L2 ‖vα − vα,ωc
‖L2 ≤

‖vα‖L2
‖(·)v̂α(·)‖L∞

ω
1/2
c

,

|〈τsvα,ωc
, ττ (vα − vα,ωc

)〉| ≤
∣

∣

∣

∣

∫

R

(v̂α(ω)− v̂α,ωc
(ω))v̂∗α,ωc

(ω)eiω(s−τ)dω

∣

∣

∣

∣

≤ ‖vα,ωc
‖L2 ‖vα − vα,ωc

‖L2 ≤
‖vα‖L2

‖(·)v̂α(·)‖L∞

ω
1/2
c

.

Therefore, we obtain that ∀τ ∈ [0, t],

Ev,vωc
α (τ) ≤ 4τ

‖Lα‖2 ‖vα‖L2
‖(·)v̂α(·)‖L∞

ω
1/2
c

From lemma 11, we then obtain

‖|Ψ(t)〉 − |Ψωc
(t)〉‖2 ≤ 2

ω
1/2
c

M
∑

α=1

‖Lα‖ ‖(·)v̂α(·)‖L∞

(

‖Lα‖ ‖vα‖L2 t
2 + 2µ

(1)
|Ψ0〉

t

)

,

which proves the lemma statement. �

Lemma 17. Consider two non-Markovian models with system Hamiltonian HS(t), square-integrable coupling functions v =
{vα ∈ L2(R)}α∈{1,2...M} and jump operators {Lα}α∈{1,2...M} but with two different single-parameter strongly continuous

unitary groups {τα,t : L2(R) → L2(R)}α∈{1,2...M}, {να,t : L2(R) → L2(R)}α∈{1,2...M} specifying the single-particle

environment dynamics. Denoting by |Ψτ(t)〉 and |Ψν(t)〉 the system-environment state for the two models at time t ≥ 0 with

|Ψτ(0)〉 = |Ψν(0)〉 = |Ψ0〉 ∈ HS ⊗ FM
∞(L2(R)), then

‖|Ψτ(t)〉 − |Ψν(t)〉‖ ≤
(

t+ 2t
√

µ
(1)
|Ψ0〉

+
1

2

M
∑

α=1

‖Lα‖ ‖vα‖L2 t
2

) M
∑

α=1

‖Lα‖ sup
s∈[0,t]

‖να,svα − τα,svα‖L2 .

Proof : Let Uτ(t, s) and Uν(t, s) be the propagators corresponding to the two models — we note that both Uτ(t, s) |Ψ〉 and

Uν(t, s) |Ψ〉 are strongly differentiable with respect to t and s if |Ψ〉 ∈ HS ⊗ FM
1 [L2(R)]. Consider now,

‖|Ψτ(t)〉 − |Ψν(t)〉‖ = ‖|Ψ0〉 − Uν(0, t)Uτ(t, 0) |Ψ0〉‖ .

Now,

d

dt

(

Uν(0, t)Uτ(t, 0) |Ψ0〉
)

= iUν(0, t)
(

Hν(t)−Hτ(t)
)

Uτ(t, 0) |Ψ0〉

= i

M
∑

α=1

Uν(0, t)
(

Lαa
+
α,να,tvα−τα,tvα + L†

αa
−
α,να,tvα−τα,tvα

)

|Ψτ(t)〉 .

We can thus obtain the estimate,

∥

∥

∥

∥

d

dt

(

Uν(0, t)Uτ(t, 0) |Ψ0〉
)∥

∥

∥

∥

≤
M
∑

α=1

‖Lα‖
(

∥

∥

∥
a+α,να,tvα−τα,tvα |Ψτ(t)〉

∥

∥

∥
+
∥

∥

∥
a−α,να,tvα−τα,tvα |Ψτ(t)〉

∥

∥

∥

)

.
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Moreover,

∥

∥

∥
a+α,να,tvα−τα,tvα |Ψτ(t)〉

∥

∥

∥

2

≤ ‖να,tvα − τα,tvα‖2L2

∞
∑

n=0

(n+ 1) ‖Πn |Ψτ(t)〉‖2 = ‖να,tvα − τα,tvα‖2L2

(

1 + µ
(1)
|Ψτ(t)〉

)

and

∥

∥

∥
a−α,να,tvα−τα,tvα |Ψτ(t)〉

∥

∥

∥

2

≤ ‖να,tvα − τα,tvα‖2L2

∞
∑

n=0

n ‖Πn |Ψτ(t)〉‖2 = ‖να,tvα − τα,tvα‖2L2 µ
(1)
|Ψτ(t)〉

Finally, using lemma 4, we obtain that

µ
(1)
|Ψτ(t)〉

≤ 2µ
(1)
|Ψ0〉

+ 2t2
( M
∑

α=1

‖Lα‖ ‖vα‖L2

)2

.

From these estimates, we thus obtain

‖|Ψτ(t)〉 − |Ψν(t)〉‖ ≤ 2t

(

1 + 2µ
(1)
|Ψ0〉

+ 2t2
( M
∑

α=1

‖Lα‖ ‖vα‖L2

)2)1/2 M
∑

α=1

‖Lα‖ sup
s∈[0,t]

‖να,svα − τα,svα‖L2

Lemma 18. Consider a non-Markovian model specified by a system Hamiltonian HS(t), coupling functions {vα ∈ L2(R) ∩
C∞(R)

∣

∣ ‖(·)v̂α(·)‖L∞ < ∞}α∈{1,2...M}, jump operators {Lα}α∈{1,2...M} and single particle environment dynamics specified

by time-translation unitary group. For |Ψ0〉 ∈ HS ⊗ F∞
M [L2(R)], let |Ψ(t)〉 be the system-environment state at time t, and let

|Ψωc,Nm
(t)〉 be the state obtained from a chain approximation to the non-Markovian model (definition 14), then,

‖|Ψ(t)〉 − |Ψωc,Nm
(t)〉‖ ≤

√
2tNm

(

2eωct

Nm

)

Nm
2
(

1 + 2µ
(1)
|Ψ0〉

+ 2t2
( M
∑

α=1

‖Lα‖ ‖vα‖L2

)2)1/2 M
∑

α=1

‖Lα‖ ‖vα‖L2 +

[

2

ω
1/2
c

M
∑

α=1

‖Lα‖ ‖(·)v̂α(·)‖L∞

(

‖Lα‖ ‖vα‖L2 t
2 + 2µ

(1)
|Ψ0〉

t

)]1/2

Proof : Let |Ψωc
(t)〉 be the state corresponding to a non-Markovian model wherein the environment state is restricted to the

frequency interval [−ωc, ωc] i.e. the model with system Hamiltonian HS(t), coupling functions {vα,ωc
∈ L2(R)|v̂α,ωc

=
v̂α · I[−ωc,ωc]}α∈{1,2...M} and jump operators {Lα}α∈{1,2...M}. Using lemma 16, we can obtain an upper bound on the error

‖|Ψ(t)〉 − |Ψωc
(t)〉‖, and using lemmas 17 and 15 we can obtain an upper bound on ‖Ψωc

(t)− |Ψωc,Nm
(t)〉‖. Using triangle

inequality together with these two bounds, we obtain the lemma statement. �

Lemma 19. Consider a non-Markovian model specified by a system Hamiltonian HS(t), coupling functions {vα ∈
L2(R) ∩ C∞(R)

∣

∣ ‖(·)v̂α(·)‖L∞ < ∞}α∈{1,2...M}, jump operators {Lα}α∈{1,2...M} and single particle environment dy-

namics specified by time-translation unitary group. Suppose that ‖Lα‖ ‖vα‖ ≤ VL2 and ‖Lα‖ ‖(·)v̂α(·)‖L∞ ≤ VS for

all α ∈ {1, 2 . . .M}. For |Ψ0〉 ∈ HS ⊗ F∞
M [L2(R)], then ∃ a chain approximation of the non-Markovian model with

ωc < O(poly(M, t,VL2 ,VS , µ
(1)
|Ψ0〉

, 1/ǫ)) and Nm < O(poly(t,M,VL2 ,VS , µ
(1)
|Ψ0〉

, 1/ǫ)) whose system-environment state at

time t is within ǫ norm distance of the exact state.

Proof : Using lemma 18 with k = 1, we obtain that

‖|Ψ(t)〉 − |Ψωc,Nm
(t)〉‖ ≤ Nm

(

2eωct

Nm

)Nm/2

poly(M, t,VL2 , µ
(1)
|Ψ0〉

) +
1√
ωc

poly(M, t,VL2 ,VS , µ
(1)
|Ψ0〉

).

Therefore, to ensure that ‖|Ψ(t)〉 − |Ψωc,Nm
(t)〉‖ < ε, we can choose ωc < O(poly(M, t,VL2 ,VS , µ

(1)
|Ψ0〉

, 1/ǫ)) and

Nm < O(poly(ωct,M, t,VL2, µ
(1)
|Ψ0〉

, 1/ǫ)), which yields the estimates in the lemma statement. �

Now, we consider distributional models. We need some additional assumptions on the coupling functions to show that they

can be simulated efficiently.

Assumption 1, repeated (Polynomial growth of Radon measure). The radon measure µ corresponding to the coupling function

should satisfy:

(a) For any interval [a, b] ⊆ R, TV[a,b](µ) ≤ poly(|a| , |b|) and
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(b) The error functions corresponding to µ, ∆0
µ;[a,b](ε) and ∆1

µ;[a,b](ε) as specified in definition 11 are individually locally

integrable with respect to a, b and grow at most polynomially with |a| , |b|, and fall off polynomially with ε i.e.

∆0
µ;[a,b](ε),∆

1
µ;[a,b](ε) ≤ poly(|a|, |b|, ε).

We will consider initial states in the environment which are product state over the different baths, and that the individual

product state have a sufficiently rapidly decaying high frequency response. Furthermore, we assume that the initial states

are efficiently representable i.e. their projection onto a finite set of environment modes, specified by square integrable modal

functions, can be efficiently computed.

Assumption 2, repeated (Initial environment state). The initial environment state |φ1〉 ⊗ |φ2〉 . . . |φM 〉 where for α ∈
{1, 2 . . .M}, |φα〉 ∈ Fock[L2(R)] and

(a) for its n−particle wavefunctions φα,n ∈ L2(Rn), and any j, k ≥ 0, ∃Nj,k > 0 such that

∞
∑

n=0

nj

∫

Rn

(1 + ω2
1)

k |φα,n(ω)|2 dω < Nj,k.

(b) for v1, v2 . . . vm ∈ L2(R) and P ∈ Z>0, all the amplitudes

〈vac|
m
∏

i=1

(
∫

R

vi(ω)aωdω

)ni

|φα〉

with n1 + n2 . . . nm ≤ P can be computed in poly(m,P ) time on a classical or quantum computer.

From a physical standpoint, this assumption ensures that the initial state does not induce an infinitely large ‘field’ in the

environment that impacts the dynamics of the system. We make this formal in the next lemma, which can be considered as

providing concrete estimates for the constants cµ,|Φ〉, γµ,|Φ〉 defined in lemma 12.

Lemma 20. Let |Φ〉 = |φ1〉 ⊗ |φ2〉 ⊗ . . . |φM 〉 ∈ Fock[L2(R)]⊗M be an initial state satisfying assumption 2 and let (µ, ϕ) be a

distributional coupling function such that µ̂(ω) ≤ O(ω2k) for some k > 0. For ε > 0, and a compact mollifier ρ ∈ C∞
c (R), let

vε be a ε, ρ−regularization of µ then

(a) ∀α ∈ {1, 2 . . .M} and t ≥ 0,

‖aα,τtvε |Φ〉‖ ≤
(

N1,k+1

)1/2
∥

∥

∥
(1 + (·)2)−(k+1)µ̂(·)

∥

∥

∥

1/2

1
,

(b) ∀α ∈ {1, 2 . . .M} and t ≥ 0,

lim
ε′→0

∥

∥

(

aα,τtvε′ − aα,τtvε

)

|Φ〉
∥

∥ ≤
(

N1.k+2

)1/2
∥

∥

∥
(1 + (·)2)−(k+2)µ̂(·)

∥

∥

∥

1/2

1
ε.

Proof :

(a) We note that for t ≥ 0 and α ∈ {1, 2 . . .M}

‖aα,τtvε |Φ〉‖2 =
∞
∑

n=0

n

∫

Rn−1

∣

∣

∣

∣

∫

R

v̂∗ε (ω1)e
iω1tφα,n((ω1, ω))dω1

∣

∣

∣

∣

2

dω,

≤
(
∫

R

(1 + ω2
1)

−(k+1) |v̂ε(ω1)|2 dω1

)( ∞
∑

n=0

n

∫

Rn

(1 + ω2
1)

k+1 |φα,n(ω)|2 dω
)

,

≤ N1,k+1

(
∫

R

(1 + ω2
1)

−(k+1) |v̂ε(ω1)|2 dω1

)

.

Since vε is an ε, ρ−regularization of (µ, ϕ) and since ‖ρ̂‖L∞ < ‖ρ‖1 = 1, we obtain that

∫

R

(1 + ω2
1)

−(k+1) |v̂ε(ω1)|2 dω1 ≤
∫

R

(1 + ω2
1)

−(k+1)µ̂(ω1)dω1 =
∥

∥

∥
(1 + (·)2)−(k+1)µ̂(·)

∥

∥

∥

1
<∞,
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and thus

‖aα,τtvε |Φ〉‖ ≤
(

N1,k+1

)1/2
∥

∥

∥
(1 + (·)2)−(k+1)µ̂(·)

∥

∥

∥

1/2

1
.

(b) For ε, ε′ > 0, t ≥ 0 and α ∈ {1, 2 . . .M}, we note that

∥

∥

(

aα,τtvε − aα,τtvε′

)

|Φ〉
∥

∥

2
=

∞
∑

n=0

n

∫

Rn−1

∣

∣

∣

∣

∫

R

(

v̂∗ε′(ω)− v̂∗ε (ω1)
)

eiω1tφα,n((ω1, ω))dω1

∣

∣

∣

∣

2

dω

≤
(
∫

R

(1 + ω2
1)

−(k+2) |v̂ε(ω1)− v̂ε′(ω1)|2 dω1

)( ∞
∑

n=0

n

∫

Rn

(1 + ω2
1)

k+2 |φα,n(ω)|2 dω
)

,

≤ N1,k+2

∫

R

(1 + ω2
1)

−(k+2) |v̂ε(ω1)− v̂ε′(ω1)|2 dω

Now, we note that

|v̂ε(ω1)− v̂ε′(ω1)|2 = µ̂(ω) |ρ̂(ω1ε)− ρ̂(ω1ε
′)|2 ≤ µ̂(ω1)ω

2
1(ε− ε′)2 ‖ρ̂′‖L∞ .

Noting that ‖ρ̂′‖L∞ ≤ ‖(·)ρ(·)‖L1 ≤ 1, and thus

∫

R

(1 + ω2
1)

−(k+2) |v̂ε(ω1)− v̂ε′ (ω1)|2 dω ≤ (ε− ε′)2
∥

∥

∥
(1 + (·)2)−(k+1)µ̂(·)

∥

∥

∥

L1

and thus

∥

∥

(

aα,τtvε − aα,τtvε′

)

|Φ〉
∥

∥ ≤
(

N1,k+2

)1/2
∥

∥

∥
(1 + (·)2)−(k+1)µ̂(·)

∥

∥

∥

1/2

L1
|ε− ε′| .

Taking the limit of ε′ → 0 in this estimate, we obtain the lemma statement. �

Theorem 3. Consider a non-Markovian model specified by a system Hamiltonian HS(t), jump operators {Lα}α∈{1,2...M}

and coupling functions {(µα, ϕα)}α∈{1,2...M} where µα satisfy assumption 1 with µ̂α(ω) < O(ω2k) for some

k > 0. For |Ψ0〉 := |σ〉 ⊗ |Φ0〉 ∈ HS ⊗ Fock[L2(R)]⊗M , where |Φ0〉 is an initial environment

state that satisfies assumption 2, then ∃ a chain approximation of the non-Markovian model with ωc, Nm ≤
O
(

poly(ǫ−1, t,M, supα ‖Lα‖ , supα,s∈[0,t] ‖[HS(t), Lα]‖ ,N1,k+1,N1,k+2,N1,0)
)

whose system-environment state at time t
is within ǫ norm distance of the exact state.

Proof : Suppose ρ ∈ C∞
c (R) is a symmetric mollifier. Consider the non-Markovian model which has the system Hamilto-

nian HS(t), jump operators {Lα}α∈{1,2...M} and coupling functions vε = {vα,ε ∈ L2(R)}α∈{1,2...M} where vα,ε is the

ε, ρ−regularization of (µα, ϕα). Denoting the system-environment state at time t corresponding to the distributional model

by |Ψ(t)〉, and the regularized model by |Ψε(t)〉, we obtain from lemmas 11 and 13 that for ε ∈ (0, 1/2),

‖|Ψ(t)〉 − |Ψε(t)〉‖ ≤ lim
ε′→0

M
∑

α=1

(
∫ t

0

Evε,vε′
α,|Ψ0〉

(τ)dτ +

∫ t

0

Dvε,vε′
α,|Ψ0〉

(τ)dτ

)

.

Now, since by assumption 1, the error functions ∆0
µα;[a,b] and ∆1

µα;[a,b] are integrable in a and b. Since they are of polynomial

growth in a, b and of polynomial decrease in ε, we obtain that

∫ t

0

∆0
µα;[−τ,0](ε)dτ,

∫ t

0

∆1
µα;[−τ,0](ε)dτ ≤ O

(

εppoly(t)
)

,

for some p > 0. Furthermore, the upper bound in lemma 13(a) and (b) allows us to use the dominated convergence theorem to

obtain

lim
ε′→0

M
∑

α=1

∫ t

0

Evε,vε′
α,|Ψ0〉

(τ)dτ =

M
∑

α=1

∫ t

0

lim
ε′→0

Evε,vε′
α,|Ψ0〉

(τ)dτ ≤ O

(

εppoly

(

t,M, sup
α

‖Lα‖ , sup
α,s∈[0,t]

‖[HS(s), Lα]‖ ,N1,k+1

))

.

where we have used lemma 20 to estimate cµα,|Ψ0〉 in lemma 13(b). Similarly, using lemma 13(c) together with lemma 13(b),
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we obtain that

lim
ε′→0

M
∑

α=1

∫ t

0

Dvε,vε′
α,|Ψ0〉

(τ)dτ ≤ O

(

ε poly

(

t,M, sup
α

‖Lα‖ ,N1,k+2

))

.

and thus

‖|Ψ(t)〉 − |Ψε(t)〉‖ ≤ O

(

εppoly

(

t,M, sup
α

‖Lα‖ , sup
α,s∈[0,t]

‖[HS(s), Lα]‖ ,Nk+1

))

+O

(

ε poly

(

t,M, sup
α

‖Lα‖ ,Nk+2

))

.

Consequently, to ensure that ‖|Ψ(t)〉 − |Ψε(t)〉‖ ≤ ǫ/2, we need to choose. regularization parameter

ε−1 = poly

(

ǫ−1, t,M, sup
α

‖Lα‖ , sup
α,s∈[0,t]

‖[HS(t), Lα]‖ ,N1,k+1,N1,k+2

)

. (23)

Next, we analyze the chain approximation of the regularized model. We note that if µ̂α is a function of polynomial growth, since

ρ̂ ∈ S(R),
∥

∥(·)j v̂α,ε(·)
∥

∥

L∞ <∞ for any j > 0. In particular, since µ̂α(ω) < O(ω2k) for some k ≥ 0, then

‖vα,ε‖2L2 =

∫

R

µ̂α(ω) |ρ̂(εω)|2 dω ≤ O(ε−(k+1)) and

‖(·)v̂α,ε(·)‖L∞ = sup
ω∈R

|ω| µ̂α(ω) |ρ(εω)| ≤ O(ε−(k+1)).

It thus follows from lemma 18 that there is a chain approximation of this regularized model with

ωc, Nm < O(poly(ǫ−1, t,M, sup
α

‖Lα‖ , ε−2(k+1),N1,0)), (24)

such that the error between the system-environment state at time t is within ǫ/2 norm distance from the state obtained from the

chain approximation. Combining the estimate of the regularizing parameter (Eq. 23) with this estimate, we obtain the theorem

statement. �

B. k−local Non-Markovian open system dynamics is in BQP

We next consider the k−local Non-Markovian open system problem.

Problem 1, repeated (k−local non-Markovian dynamics). Consider a system of n qudits (HS =
(

Cd
)⊗n

) interacting with

M = poly(n) baths with

(a) System Hamiltonian HS(t) is k−local i.e. HS(t) =
∑N

i=1Hi(t), where N = poly(n), and for i ∈ {1, 2 . . .N}, Hi(t) is

an operator acting on atmost k qudits and ‖Hi(t)‖ ≤ 1.

(b) Jump operators {Lα}α∈{1,2...M} such that for α ∈ {1, 2 . . .M}, Lα acts on at-most k qudits and ‖Lα‖ ≤ 1.

(c) Coupling functions {(µα, ϕα)}α∈{1,2...M} such that for α ∈ {1, 2 . . .M}, µα satisfies the polynomial growth conditions

(assumption 1).

(d) Initial state |Ψ〉 = |0〉⊗n ⊗ |Φ〉, where |Φ〉 satisfies assumption 2.

Denoting by ρS(t) the reduced state of the system at time t for this non-Markovian model, then for ε > 0 and t = poly(n),
prepare a quantum state ρ̂ such that ‖ρ̂− ρS(t)‖tr ≤ ε.

To prove that this problem can be efficiently solved on a quantum computer, we proceed in three steps. First, we compute a

Markovian dilation of the non-Markovian system with Nm modes — from theorem 3 it follows that Nm = poly(n, ε−1) modes

are needed to ensure that the error between the dynamics of the non-Markovian and its Markovian dilation is < ε. Next, we

simulate the Markovian dilation on a quantum computer — we thus consider a different problem, defined below.

Problem 2 (k−local non-Markovian chain model). Consider a system of n qudits (HS =
(

C
d
)⊗n

) interacting with M =
poly(n) baths with
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(a) System Hamiltonian HS(t) is k−local i.e. HS(t) =
∑N

i=1Hi(t), where N = poly(n), and for i ∈ {1, 2 . . .N}, Hi(t) is

an operator acting on atmost k qudits and ‖Hi(t)‖ ≤ 1.

(b) Jump operators {Lα}α∈{1,2...M} such that for α ∈ {1, 2 . . .M}, Lα acts on at-most k qudits and ‖Lα‖ ≤ 1.

(c) Square-integrable coupling functions {vα ∈ L2(R)| ‖vα‖L2 = poly(n), supp(v̂α) ⊆ [−ωc, ωc]}α∈{1,2...M} where ωc =
poly(n).

(d) Single-particle environment dynamics specified by {να,t : L
2(R) → L2(R)}α∈{1,2...M} where να,t is the chain unitary

group with Nm = poly(n) modes generated by vα.

(e) Initial state |Ψ〉 = |0〉⊗n ⊗ |Φ〉, where |Φ〉 = |φ1〉 ⊗ |φ2〉 ⊗ . . . |φM 〉 satisfies assumption 2.

Denoting by ρS(t) the reduced state of the system at time t for this non-Markovian model, then t = poly(n), prepare a quantum

state ρ̂ such that ‖ρ̂− ρS(t)‖tr ≤ 1/poly(n).

Since the Markovian dilation is still an infinite dimensional system (with an effective Hilbert space HS⊗Fock[CNm ]⊗M ), this

requires a truncation of Hilbert space to a finite-dimensional one, followed by simulating the finite-dimensional quantum dynam-

ics. To show that the approximating finite-dimensional quantum system can be efficiently simulated, we use the Hamiltonian

simulatability lemma from Ref. [57], which we restate below

Lemma 21 (Hamiltonian simulatability, Ref. [57]). Given a Hamiltonian H(t) over a system of n qudits such that for every

t ≥ 0

(a) ∀ computational basis element |a〉, the the set of computational basis elements |b〉 such that 〈a|H(t) |b〉 6= 0 together with

the elements 〈a|H(t) |b〉 can be computed in poly(n) time, and

(b)
∫ t

0 ‖H(t′)‖ dt′ = poly(n),

then ∃ a quantum circuit over n qudits of depth poly(n) which implements a unitary Û such that

∥

∥

∥
Û − U(t, 0)

∥

∥

∥
≤ 1/poly(n),

where U(·, ·) is the propagator corresponding to H(t).

Lemma 22. Problem 2 can be solved on a quantum computer in run time poly(n, 1/ǫ).

Proof : For notational simplicity, we will denote by aα,j for α ∈ {1, 2 . . .M} and j ∈ {1, 2 . . .Nm} the annihilation operator

corresponding to the j th chain mode of the αth bath, which have the commutation relations [aα,j , a
†
α′,j′ ] = δα,α′δj,j′ . Problem 2

is then equivalent to the simulation of the Hamiltonian defined on the Hilbert space HS ⊗ Fock[CNm ]⊗M

H(t) = HS(t) +

M
∑

α=1

‖vα‖L2

(

Lαa
†
α,1 + L†

αaα,1
)

+

M
∑

α=1

Nm
∑

j=1

ωα,ja
†
α,jaα,j +

M
∑

α=1

Nm−1
∑

j=1

tα,j

(

aα,ja
†
α,j+1 + aα,j+1a

†
α,j

)

,

(25)

where {ωα,j}α∈{1,2...M},{1,2...Nm}, {tα,j}α∈{1,2...M},{1,2...Nm} are the chain parameters corresponding to the unitary group

να,t. We first truncate this model into a finite-dimensional model — to do so, we first derive a bound on the expectation number

of particles in the M baths coupling to the system. Denoting by µ
(1)
α = 〈∑Nm

j=1 a
†
α,jaα,j〉 and µ

(2)
α = 〈∑Nm

j=1(a
†
α,jaα,j)

2〉, we

obtain from Heisenberg’s equations of motion that

d

dt
µ(1)
α = −i ‖vα‖L2

(

〈Lαa
†
α,1〉 − c.c.

)

≤ 2 ‖vα‖L2 ‖Lα‖
√

〈a†α,1aα,1〉 ≤ 2 ‖vα‖L2 ‖Lα‖
√

µ
(1)
α ,

d

dt
µ(2)
α = −i ‖vα‖L2

(

2〈Lα

(

a†α,1
)2
aα,1〉+ 〈Lαa

†
α,1〉 − c.c.

)

≤ 2 ‖vα‖L2 ‖Lα‖
√

µ
(1)
α

(

2

√

µ
(2)
α + 1

)

integrating which yields

µ(1)
α (t) ≤

(
√

µ
(1)
α (0) + ‖vα‖L2 ‖Lα‖ t

)2

,

and

√

µ
(2)
α (t)− 1

2
log

(

1+2

√

µ
(2)
α (t)

)

≤
√

µ
(2)
α (0)− 1

2
log

(

1+2

√

µ
(2)
α (0)

)

+2 ‖vα‖L2 ‖Lα‖
(
√

µ
(1)
α (0)t+

1

2
‖vα‖L2 ‖Lα‖ t2

)

,
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or equivalently

√

µ
(2)
α (t)−

(

µ
(2)
α (t)

4

)1/4

≤
√

µ
(2)
α (0) + 2 ‖vα‖L2 ‖Lα‖

(
√

µ
(1)
α (0)t+

1

2
‖vα‖L2 ‖Lα‖ t2

)

,

where we have used that for x ≥ 0, 0 ≤ log(1 + x) ≤ √
x. We thus obtain that if t = poly(n), µ

(2)
α (t) = poly(n). With this

bound, we consider truncating the Hamiltonian — given p ∈ Z>1, we consider the projector Pp = id ⊗ Π⊗M
≤p , where Π≤p is a

projector onto the space with less than or equal to p particles defined on Fock[CNm ]. Also, we define Qp = id − Pp. Denoting

by |Ψ(t)〉 the state corresponding to the Hamiltonian under consideration (Eq. 25) at time t and by UP(t, 0) the propagator

corresponding to the Hamiltonian PH(t)P , then

‖|Ψ(t)〉 − UP(t, 0)P |Ψ0〉‖ ≤ ‖Qp |Ψ(t)〉‖+
∫ t

0

‖PpH(s)Qp |Ψ(s)〉‖ ds.

Both the terms in the above estimate can be easily bounded from above in terms of p — note that

‖Qp |Ψ(t)〉‖2 ≤
M
∑

α=1

〈Ψ(t)| id ⊗
(

id⊗(α−1) ⊗ Π>p ⊗ idM−α
)

|Ψ(t)〉 ≤ 1

p

M
∑

α=1

µ(1)
α (t) =

1

p
poly(n), (26)

where we have used M = poly(n). Furthermore, noting that Pp,Qp commute with any system operators, and for α ∈
{1, 2 . . .M}, i, j ∈ {1, 2 . . .Nm}, Ppa

†
α,iaα,jQp = 0 and Ppa

†
α,iQp = 0, we obtain that for s ∈ (0, t),

‖PpH(s)Qp |Ψ(s)〉‖ ≤
M
∑

α=1

‖vα‖L2 ‖Lα‖ ‖Ppaα,1Qp |Ψ(s)〉‖ ≤
M
∑

α=1

‖vα‖L2 ‖Lα‖ ‖aα,1Qp |Ψ(s)〉‖ .

For α ∈ {1, 2 . . .M}, we obtain that

‖aα,1Qp |Ψ(s)〉‖2 = 〈Ψ(s)| Qpa
†
α,1aα,1Qp |Ψ(s)〉 = 〈Ψ(s)| a†α,1aα,1Qp |Ψ(s)〉 ≤ 〈Ψ(s)|

(

a†α,1aα,1
)2 |Ψ(s)〉 〈Ψ(s)| Qp |Ψ(s)〉 ,

and consequently using Eq. 26,

‖aα,1Qp |Ψ(s)〉‖2 ≤ µ
(2)
α (s)

p

M
∑

α′=1

µ
(1)
α′ (s).

Therefore,
∫ t

0
‖PpH(s)Qp(s) |Ψ(s)〉‖ ds ≤ poly(n)/

√
p. Thus, we obtain the estimate

‖|Ψ(t)〉 − UP(t, 0)P |Ψ0〉‖ ≤ poly(n)√
p

.

Hence, to ensure that the error is within the truncation is below 1/poly(n), we need to choose p = poly(n).
Finally, we apply lemma 21 to prove the simulatability of the hamiltonan PpH(t)Pp — we need to show that on a (suitably

chosen) basis, for any choice of computational basis |b〉, H(t) |b〉 can be efficiently computed as a sparse vector. We consider

the basis set of the form B = BS × B1 × B2 · · · × BM , where BS is the computational basis for the n qudit system, and for

α ∈ {1, 2 . . .M}, Bα is the subset of Fock state basis for the αth bath with number of particles less than p i.e.

Bα =

{

(

a†α,1
)n1

(

a†α,2
)n2

. . .
(

a†α,Nm

)nNm |vac〉
∣

∣

∣

∣

n1, n2 . . . nNm
∈ Z≥0 with n1 + n2 . . . nNm

≤ p

}

Consider now the Hamiltonian PpH(t)Pp — it can be expressed as sum the following terms:

• PpHS(t)Pp — Since by assumption is expressible only as poly(n) operators that act on at-most k qudits, it immediately

follows that PpHS(t)Pp |b〉 = HS(t) |b〉 can be classically efficiently computed for |b〉 ∈ B.

• Ppωα,ja
†
α,jaα,jPp for α ∈ {1, 2 . . .M}, j ∈ {1, 2 . . .Nm} — this term is diagonal in the basis B. Furthermore, since

there are only NmM = poly(n) such terms, Pp

∑M
α=1

∑Nm

j=1 ωα,ja
†
α,jaα,jPp |b〉 can be efficiently computed ∀ |b〉 ∈ B.

• Pptα,j(aα,ja
†
α,j+1 + aα,j+1a

†
α,j)Pp for α ∈ {1, 2 . . .M}, j ∈ {1, 2 . . .Nm − 1} — applying this term on |b〉 ∈ B
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produces a vector with at-most two non-zero elements when represented on the same basis. Furthermore, since there

are only (Nm − 1)M = poly(n) such terms, Pp

∑M
α=1

∑Nm−1
j=1 tα,j(aα,ja

†
α,j+1 + aα,j+1a

†
α,j)Pp |b〉 can be efficiently

computed ∀ |b〉 ∈ B.

• Pp

(

Lαa
†
α,1 + L†

αaα,1
)

Pp for α ∈ {1, 2 . . .M} — since Lα only acts on at-most k qudits, applying this term on |b〉 ∈ B
produces a vector with at-most 2dk non-zero elements when represented on the same basis. Furthermore, since there are

only M = poly(n) such terms, Pp

∑M
α=1

(

Lαa
†
α,1 + L†

αaα,1
)

Pp |b〉 can be efficiently computed ∀ |b〉 ∈ B.

It thus follows that PpH(t)Pp |b〉 can be efficiently computed ∀ |b〉 ∈ B. Finally, we note from lemma 14 that |ωα,j| , tα,j ≤ ωc

for all α ∈ {1, 2 . . .M}, j ∈ {1, 2 . . .Nm}

‖PpH(t)Pp‖ ≤ ‖HS(t)‖+ 2
√

p+ 1
M
∑

α=1

‖Lα‖ ‖vα‖L2 + pMNmωc + 2ωc(p+ 1)M(Nm − 1),

where we have used the estimates ‖Ppaα,jPp‖ ,
∥

∥

∥
Ppa

†
α,jPp

∥

∥

∥
≤ √

p+ 1,

∥

∥

∥
Ppa

†
α,jaα,jPp

∥

∥

∥
≤ p. Noting that by assumption

‖Lα‖ ≤ 1, ‖HS(t)‖ , p,M,Nm, ωc, t = poly(n), we obtain that
∫ t

0 ‖PpH(s)Pp‖ ds ≤ O(poly(n)). Thus, from lemma 21, we

can show that there is a circuit with depth poly(n) that approximates the propagator corresponding to PpH(s)Pp with evolution

time t within 1/poly(n) spectral norm error.Furthermore, the initial state can be efficiently represented on the basis B since it is

efficiently projectable (assumption 2b), and hence the reduced system state ρS(t) can be efficiently simulated on this quantum

circuit. �

Theorem 2, repeated (k−local Non-Markovian dynamics ∈ BQP). Problem 1 can be solved in poly(n) time on a quantum

computer.

Proof : An application of lemma 3 approximates problem 1 to an instance of problem 2, and then the theorem statement follows

from lemma 22. �

VI. CONCLUSION

Our work identifies the class of tempered radon measures as memory kernels for which a unitary group generating non-

Markovian system dynamics can be constructed. We therefore generalize the unitary group for Markovian dynamics (i.e. with a

delta function memory kernel) described in the theory of quantum stochastic calculus. We then consider the k−local many-body

non-Markovian systems, and show that their dynamics can be efficiently simulated on quantum computers, thus establishing the

consistency of this generalization with the Extended Church-Turing thesis.

Our work leaves open a few important open questions regarding non-Markovian dynamics. The first question is to further

understand if the growth conditions on the radon measure describing the memory kernel (assumption 1) are necessary — while

there are radon measures that violate these conditions, it is possible that these growth conditions hold for any tempered radon

measure. Alternatively, perhaps violating these growth condition can lead to unphysical situations, such as “infinitely long”

memory times in the non-Markovian system. Formalizing these ideas would allow us to further sharpen the class of memory

kernels that describe physically reasonable non-Markovian models.

Second question would be to characterize the unitary group describing non-Markovian dynamics constructed in this paper. An

important characterization would be to understand if this unitary group is generated by a self-adjoint Hamiltonian. Alternatively,

is the unitary group strongly continuous? Similar questions have been previously answered for the unitary group for Markovian

dynamics provided by a quantum stochastic differential equation [63–65].

Finally, it would also be of interest to develop quantum algorithms for non-Markovian dynamics with better dependence on the

problem size as well as the incurred approximation error by exploiting further structure in the non-Markovian model (e.g. spatial

locality, or availability of the Hamiltonian/jump operators as linear combination of unitaries) and using similar techniques that

have been used in Hamiltonian or Lindbladian simulation problems [33, 36, 38, 66].
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[29] A. Grigis and J. Sjöstrand, Microlocal analysis for differential

operators: an introduction, Vol. 196 (Cambridge University

Press, 1994).

[30] H. Pichler and P. Zoller, Physical review letters 116, 093601

(2016).

[31] P. Zanardi, J. Marshall, and L. C. Venuti, Physical Review A

93, 022312 (2016).

[32] A. Chenu, M. Beau, J. Cao, and A. del Campo, Physical review

letters 118, 140403 (2017).

[33] R. Cleve and C. Wang, arXiv preprint arXiv:1612.09512

(2016).

[34] M. Kliesch, T. Barthel, C. Gogolin, M. Kastoryano, and J. Eis-

ert, Physical review letters 107, 120501 (2011).

[35] S. Lloyd, Science 273, 1073 (1996).

[36] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D.

Somma, in Proceedings of the forty-sixth annual ACM sympo-

sium on Theory of computing (2014) pp. 283–292.

[37] G. H. Low and I. L. Chuang, Quantum 3, 163 (2019).

[38] D. W. Berry, A. M. Childs, and R. Kothari, in 2015 IEEE 56th

Annual Symposium on Foundations of Computer Science (IEEE,

2015) pp. 792–809.

[39] X. Li and C. Wang, arXiv preprint arXiv:2111.03240 (2021).

[40] M. P. Woods, M. Cramer, and M. B. Plenio, Physical Review

Letters 115, 130401 (2015).

[41] M. P. Woods and M. B. Plenio, Journal of Mathematical Physics

57, 022105 (2016).
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