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SYMPLECTIC RESOLUTIONS FOR MULTIPLICATIVE QUIVER VARIETIES AND

CHARACTER VARIETIES FOR PUNCTURED SURFACES

TRAVIS SCHEDLER AND ANDREA TIRELLI

Abstract. We study the algebraic symplectic geometry of multiplicative quiver varieties, which are moduli
spaces of representations of certain quiver algebras, introduced by Crawley-Boevey and Shaw [CBS06], called
multiplicative preprojective algebras. They are multiplicative analogues of Nakajima quiver varieties. They
include character varieties of (open) Riemann surfaces fixing conjugacy class closures of the monodromies
around punctures, when the quiver is “crab-shaped”. We prove that, under suitable hypotheses on the
dimension vector of the representations, or the conjugacy classes of monodromies in the character variety
case, the normalisations of such moduli spaces are symplectic singularities and the existence of a symplectic
resolution depends on a combinatorial condition on the quiver and the dimension vector. These results
are analogous to those obtained by Bellamy and the first author in the ordinary quiver variety case, and
for character varieties of closed Riemann surfaces. At the end of the paper, we outline some conjectural
generalisations to moduli spaces of objects in 2-Calabi–Yau categories.

To Sasha Beilinson and Victor Ginzburg on the occasion of their 60th birthdays, with admiration

1. Introduction

1.1. Motivation. This paper is devoted to the study of the symplectic algebraic geometry of coarse moduli
spaces of (semistable) representations of multiplicative preprojective algebras. These can be thought of as
multiplicative analogues of Nakajima quiver varieties [Nak94], which includes character varieties of (open)
Riemann surfaces. In particular, our attention is focused on tackling two main problems: the first is to
understand whether these multiplicative quiver varieties are symplectic singularities, as defined by Beauville
in [Bea00]; the second is to classify all the possible cases in which they admit symplectic resolutions.

Multiplicative preprojective algebras were first defined by Crawley-Boevey and Shaw in [CBS06], with the
aim of better understanding Katz’s middle convolution operation for rigid local systems, [Kat96]. Another
important application contained in the seminal paper [CBS06] is the solution of (one direction of) the multi-
plicative Deligne-Simpson problem in terms of the root data of a certain star-shaped quiver. Moduli spaces
of representations, in the sense of King [Kin94], of these algebras give rise to the so-called multiplicative
quiver varieties. Ordinary (Nakajima) quiver varieties have appeared in numerous places in representa-
tion theory, algebraic geometry, and mathematical physics; their homology theories are closely related to
the representation theory of Kac–Moody Lie algebras [Nak94], and their quantum cohomology is closely
related to quantum R-matrices and the Casimir connection [MO19]. A number of authors have studied
multiplicative quiver varieties since their definition: among others, Jordan [Jor14] considered quantisations
of such varieties from a representation theoretic point of view by constructing flat q-deformations of the
algebra of differential operators on certain affine spaces; a more geometric approach was used by Yamakawa
in [Yam08], where a symplectic structure on these moduli spaces was defined and studied. Some of these
results will be recalled in the next sections of the present paper. More recently, (derived) multiplicative
preprojective algebras appeared in the study of wrapped Fukaya categories of certain Weinstein 4-manifolds
constructed by plumbing cotangent bundles of Riemann surfaces: see [EL17]. In the recent work of Chalykh
and Fairon [CF17], multiplicative quiver varieties are used to construct a new integrable system general-
ising the Ruijsenaars–Schneider system, which plays a central role in supersymmetric gauge theory and
cyclotomic DAHAs. Moreover, in work of McBreen–Webster [MW18] and McBreen–Gammage–Webster
[MGW19], related to [BK16, §7], mirror symmetry is studied for multiplicative hypertoric varieties, which
include multiplicative quiver varieties when the dimensions are one. Finally, mixed Hodge polynomials of
character varieties and quiver varieties were studied in the ground-breaking work of Hausel, Lettelier and
Rodriguez-Villegas using arithmetic methods [HLRV11, HLRV13a, HLRV13b]; they suggested that similar
methods should apply to general multiplicative quiver varieties. Given their appearance in so many different
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contexts, it seems natural to perform a careful analysis of multiplicative quiver varieties from the point of
view of symplectic algebraic geometry.

The subject of symplectic resolutions and the more general symplectic singularities (the latter dating to
Beauville [Bea00]) has recently gained importance in many areas of mathematics and physics. Their quanti-
sations subsume many of the important examples of algebras appearing in representation theory (Cherednik
and symplectic reflection algebras, D-modules on flag varieties and representations of Lie algebras, quantised
hypertoric and quiver algebras, etc.). There is a growing theory of symplectic duality, or three-dimensional
physical mirror symmetry ([BFN, Nak16, CHZ14, BLPW16] and many others), between pairs of these va-
rieties. Pioneering work of Braverman, Maulik and Okounkov [BMO11] (continued in the aforementioned
[MO19] and in many other places) show that their quantum cohomology is also deeply tied to connections
arising in representation theory, related to derived autoequivalences of duals in the sense of homological
mirror symmetry (two-dimensional field theories). Since, as mentioned before, quiver varieties play such an
important role here, it is expected that multiplicative quiver varieties will as well. Moreover, the varieties
in question are instances of moduli spaces parametrising geometric objects. The study of such spaces and
their singularities is, in general, important in algebraic geometry.

For all of these reasons, it is natural to ask when multiplicative quiver varieties have symplectic singu-
larities and admit symplectic resolutions. We largely answer these questions, leaving a couple cases (the
so-called “(2,2)”-cases related to O’Grady’s examples [O’G99], and the so-called isotropic cases, which are
multiplicative analogues of symmetric powers of du Val singularities), that appear to require local structure
theory. Our methods generalise those of [BS16], which we largely follow. They build on Crawley-Boevey
and Shaw’s pioneering work on multiplicative quiver varieties (and extensions by Yamakawa [Yam08]), and
apply (as in [BS16]) Drezet’s factoriality criteria [Dre91] and Flenner’s theorem [Fle88] on extendability of
differential forms beyond codimension four.

1.2. Summary of results on character varieties. Since they are the easiest to state and perhaps of
the broadest interest, we first explain the results on character varieties that follow from our considerations
on multiplicative quiver varieties. Fix a connected compact Riemann surface X of genus g ≥ 0, let S =
{p1, . . . , pk} ⊂ X be a subset of k ≥ 0 points, and fix a tuple C = (C1, . . . , Ck) of conjugacy classes Ci ⊂
GLn(C), i = 1, . . . , k. Let X◦ := X \ {p1, . . . , pk} be the corresponding punctured surface, and let γi be the
homotopy class in π1(X

◦) of some choice of loop around the puncture pi (having the same free homotopy
class as a small counterclockwise loop around pi). We define the character variety of X◦ with monodromies
in Ci as follows:
(1.2.1) X (g, k, C) := {χ : π1(X

◦) → GLn | χ(γi) ∈ Ci}//GLn.
As recalled in Section 3 below, this has the structure of an affine algebraic variety. Note that X (or X◦)
does not appear in the notation on the left-hand side, since the result does not depend on the choice of X
up to isomorphism (only the identification of π1(X

◦) is relevant).

Observe that, in order for this character variety to be nonempty, we must have
∏k

i=1 det(Ci) = 1, where
we let det(Ci) be defined as the determinant of any element of Ci. Let us assume this from now on. Given

m ≥ 1 we let m · C = (C⊕m
1 , . . . , C⊕m

k ). We call C q-divisible if C = m · C′ for m ≥ 2 and
∏k

i=1 det(C′
i) = 1.

Call it q-indivisible if it is not q-divisible. Below, q-indivisibility will be the most important criterion for the
existence of symplectic resolutions for X (g, k, C).

For each Ci, let the minimal polynomial of any A ∈ Ci be (x − ξi,1) · · · (x − ξi,wi
), ordered so that the

sequence αi,j := rank(A − ξi,1) · · · (A − ξi,j) has the property that αi,j − αi,j+1 is non-increasing in j (for
0 ≤ j ≤ wi − 1, setting αi,0 = n). This is possible since the non-increasing property obviously holds when
all the ξi,j are equal. The following quantities will have importance for us:

(1.2.2) ℓ :=
∑

i

αi,1, p(α) := 1 + n2(g − 1) + nℓ+

k∑

i=1

wi−1∑

j=1

αi,jαi,j+1 −
k∑

i=1

wi∑

j=1

α2
i,j .

The quantity 2p(α) is the “expected dimension” of the character variety, which is its actual dimension in
many cases, as explained below.

Our main results on character varieties can be summarised as follows. We divide separately into the genus
0 and the positive genus cases.
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Recall here that a symplectic singularity is a normal variety X equipped with a symplectic structure ωreg

on the smooth locus Xreg such that, for any (or equivalently every) resolution of singularities ρ : X̃ → X ,

ρ∗ωreg extends to a regular two-form ω̃ ∈ Ω2(X̃). The map ρ is furthermore a symplectic resolution if ω̃ is
non-degenerate.

Theorem 1.1. Let g = 0 and fix n and conjugacy classes C1, . . . , Ck ⊆ GLn(C) as above.

• If ℓ < 2n, then one of the following exclusive possibilities occur, and can be computed by an explicit
algorithm:

– X (0, k, C) is empty;
– X (0, k, C) is a point;
– There is a canonical datum (n′, k′, C′

1, . . . , C′
k′ , ι) of n′ < n, k′ ≤ k, and conjugacy classes

C′
1, . . . , C′

k′ ⊆ GLn′(C) such that ℓ′ (defined as above) satisfies ℓ′ ≥ 2n′, and an isomorphism

ι : X (0, k′, C′
) → X (0, k, C).

Suppose, therefore, that ℓ ≥ 2n.
• If C is q-indivisible, then X (0, k, C) admits a projective symplectic resolution (via geometric invariant

theory). Therefore, its normalisation is a symplectic singularity. Moreover, dimX (0, k, C) = 2p(α).
• Suppose that C is q-divisible. Then, unless one of the conditions listed after Corollary 1.12 is satisfied

(for k ≤ 5), the normalisation of X (0, k, C) is a symplectic singularity which does not admit a
symplectic resolution (in fact, it contains a singular terminal factorial open subset).

As mentioned in the theorem, the technique used to show non-existence of symplectic resolutions is
by identifying an open singular factorial terminal subset. It is well-known that singular factorial terminal
varieties cannot admit crepant resolutions, and hence not symplectic resolutions. Indeed, by Van der Waerden
purity, any resolution of a singular factorial variety has exceptional locus which is a divisor. By definition,
any crepant resolution of a terminal variety has exceptional locus of codimension at least two. Put together,
there is no crepant resolution of a singular factorial terminal variety.

Remark 1.2. Note that, when k ≤ 2 in genus zero, the character variety is always a point (or empty).

Theorem 1.3. Suppose that g ≥ 1. Then the following holds:

• If C is q-indivisible, then X (g, k, C) admits a projective symplectic resolution (via geometric invariant
theory). Therefore, its normalisation is a symplectic singularity. Moreover, it has dimension 2p(α).

• If C is q-divisible, then unless one of the following conditions is satisfied, the normalisation of
X (g, k, C) is a symplectic singularity which does not admit a symplectic resolution (in fact, it contains
a singular terminal factorial open subset):
(a) g = 2, k = 0, and n = 2;
(b) g = 1, k = 0;
(c) g = 1, k = 1, w1 = 2, and α1,1 = p, with p prime.

Moreover, in all cases except case (b), dimX (g, k, C) = 2p(α).

The proofs of these theorems is given in Section 6.7; they are consequences of our main results on multi-
plicative quiver varieties (particularly Corollary 6.28).

Remark 1.4. Actually, the results above (slightly modified) should also apply to twisted character varieties,

where we replace π1(X
◦) by a finite central extension, corresponding to setting the relation

∏g
i=1[Ai, Bi]

∏k
j=1Mj

to be a root of unity times the identity matrix. To prove such a statement would require a straightforward
generalisation of [CB13] and of Section 3 below. With this in hand, these results would follow from Corollary
6.28 just as before. For some more details, see Section 1.5 of the introduction, where we describe roughly
how to translate this corollary into the setting of twisted character varieties.

1.3. Multiplicative quiver varieties with special dimension vectors. Recall that a quiver Q is a
directed graph. We let Q0 denote the set of vertices and Q1 the set of arrows (=edges). Given Q together
with a tuple of non-zero complex numbers q ∈ (C×)Q0 , one can define the multiplicative preprojective
algebra Λq(Q), over the semisimple ring CQ0 (see Section 2.2 below). To a representation, we associate a
dimension vector in NQ0 . Given furthermore a stability parameter θ ∈ ZQ0 , one can define a variety, denoted
Mq,θ(Q,α), which is a coarse moduli space of θ-semistable representations of Λq(Q) of dimension vector α. It
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is natural to ask what the dimension vectors of θ-stable representations are. Towards this end, one considers
a combinatorially-defined subset Σq,θ ⊆ NQ0 of the set of all possible dimension vectors (defined in Section
2.8 below). It has the property that, for α ∈ Σq,θ, the θ-stable locus is dense in Mq,θ(Q,α) (and it is always
open). However, it is unknown in general if Mq,θ(Q,α) is non-empty. It is expected, but not known, that
these conversely describe all dimension vectors of stable representations, i.e.:

(*) If there is a θ-stable representation of Λq(Q) of dimension α ∈ NQ0 , then α ∈ Σq,θ.

In the case θ = 0, Crawley-Boevey kindly pointed out a work in progress with Hubery towards a proof of (*).
We prove a weakened version of (*) below (Corollary 6.18), replacing Σq,θ by a larger set. Note that, if (*)
holds and furthermore Mq,θ(Q,α) 6= ∅ for all α ∈ Σq,θ, then put together we would obtain a characterisation
of the set Σq,θ: in this case, α ∈ Σq,θ if and only if there exists a θ-stable representation of dimension α.
However, this is, again, unknown.

To defineMq,θ(Q,α), we require α·θ = 0, and for it to be non-empty, we require that qα :=
∏
i∈Q0

qαi

i = 1.

Let Nq,θ := {α ∈ NQ0 | qα = 1, α · θ = 0}. We call a vector α ∈ Nq,θ q-indivisible if 1
m
α /∈ Nq,θ for any

m ≥ 2. Equivalently, writing α = mβ for m = gcd(αi), we have that qβ is a primitive m-th root of unity.
Note that, if α ∈ Nq,θ is indivisible, it is clearly q-indivisible, although the converse does not hold in general.
(Unlike in the case of character varieties, here the q in “q-(in)divisible” refers to an actual parameter; see
Remark 1.10 for an explanation how the two notions nonetheless coincide.)

We denote by p the following function:

p : NQ0 → Z, p(α) = 1− 1

2
(α, α) ≥ 0,

where (−,−) denotes the Cartan–Tits form associated to the quiver Q (see Section 2.1 for more details).
Geometrically, 2p(α) gives the “expected dimension” ofMq,θ(Q,α) (which is the actual dimension if α ∈ Σq,θ
and Mq,θ(Q,α) 6= ∅: see Remark 2.20 below). If p(α) = 1, i.e., (α, α) = 0, then α is called isotropic.
Otherwise it is called anisotropic.

One of the main results of this paper, proved in Section 4, is the following:

Theorem 1.5. Let α ∈ Σq,θ and assume that α 6= 2β for β ∈ Nq,θ and p(β) = 2. Then, assuming it is
non-empty, Mq,θ(Q,α) satisfies the following:

• its normalisation is a symplectic singularity;
• if α is q-indivisible, then for suitable generic θ′, it admits a symplectic resolution of the form

Mq,θ′(Q,α) → Mq,θ(Q,α);
• if α = mβ for β ∈ Σq,θ and m ≥ 2, and Mq,θ(Q, β) 6= ∅, then Mq,θ(Q,α) does not admit a symplectic

resolution. Moreover, for suitable generic θ′, Mq,θ′(Q,α) is a singular factorial terminalisation. In
fact, Mq,θ(Q,α) itself contains a singular, factorial, terminal open subset.

Implicit in Theorem 1.5 is the fact (see Lemma 2.12 and Corollary 2.21 below) that, for all α ∈ Σq,θ,
Mq,θ′(Q,α) → Mq,θ(Q,α) is a projective birational Poisson morphism for suitable θ′. This implies, by
definition, that it is a symplectic resolution if the source is smooth symplectic. In the last part of the
theorem, by singular factorial terminalisation, we mean a projective birational Poisson morphism with source
a singular factorial terminal variety.

In the case of generic θ, the theorem can be simplified as follows, avoiding the need to check if a vector is
in Σq,θ. First, note that Σq,θ, by definition, is a subset of the set of roots for the quiver (which in turn equals
the set of roots of the associated Kac-Moody Lie algebra in suitable cases). The real roots are those vectors
obtained from elementary vectors ei, i ∈ Q0 by simple reflections α 7→ α− (α, ei)ei; the imaginary roots are
those obtained by such reflections from non-negative (or non-positive) vectors with connected support and
non-positive Cartan pairing with all ei.

Corollary 1.6. Fix an imaginary root α for Q. Let q be such that qα = 1. Let θ be generic (inside the
hyperplane {θ · α = 0}). Then:

(i) We have α ∈ Σq,θ if and only if α is q-indivisible or anisotropic. If α is q-indivisible, Mq,θ(Q,α) is
smooth symplectic.

(ii) Assume α is q-divisible and anisotropic. Moreover, assume that α 6= 2β for p(β) = 2 and qβ = 1.
Then Mq,θ(Q,α) is a (normal) symplectic singularity.
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(iii) Under the assumptions of (ii), we have the following:
– If there exists a θ-stable representation of Λq(Q) of dimension 1

m
α, for some m ≥ 2, then

Mq,θ(Q,α) is singular, factorial, and terminal, and hence does not admit a symplectic resolu-
tion.

– If, on the other hand, there are no θ-stable representations of Λq(Q) of dimension rα for all
rational r < 1, then Mq,θ(Q,α) is smooth.

Note that, in the general case with α ∈ Σq,θ, the above corollary always describes the source of projective
birational Poisson morphisms obtained by suitably varying θ.

Remark 1.7. Note that every rα, r ∈ Q<1 appearing in the theorem is also in Σq,θ, by part (i). Thus, if
there exists a θ-stable representation of every dimension in Σq,θ, then in part (iii) we are necessarily in the
first case. This condition holds in the additive case (with λ ∈ RQ0), by [BS16], but we don’t have any other
evidence that this holds here. Also, note that the two cases are not exhaustive, so it could happen that
there are some stable representations of dimension rα but not when r = 1

m
. In this (unexpected) situation,

it would require more detailed analysis to determine whether a symplectic resolution exists.

Remark 1.8. In the case left out of the theorem, where α = 2β for some β ∈ Nq,θ satisfying p(β) = 2 (we call
this the “(2, 2)-case”), we conjecture, as in the special case of character varieties of rank two local systems
on genus two surfaces handled in [BS16], that Mq,θ(Q,α) has a symplectic resolution obtained by blowing
up the singular locus of Mq,θ′(Q,α), for suitably generic θ′. However, in order to prove this, it is necessary
to understand the étale local structure of Mq,θ(Q,α), while at the moment all of our techniques are global
in nature. In Section 7, we discuss an approach to understand the local structure of the multiplicative
quiver varieties, based on the conjectural 2-Calabi–Yau property of the multiplicative preprojective algebra
for non-Dynkin quivers.

Remark 1.9. Note that, as part of Corollary 1.6, when θ is generic (and α ∈ Σq,θ), we prove normality of
the variety Mq,θ(Q,α), see Proposition 4.10. Moreover, we conjecture normality for all θ (as well as for
the (2, 2)-case). Such a result requires a local understanding of the varieties Mq,θ(Q,α), which would again
follow from the conjectural 2-Calabi–Yau property for Λq(Q) when Q is not Dynkin: see Section 7.

1.4. Character varieties as (open subsets of) multiplicative quiver varieties. In Section 3, extend-
ing results of [CBS06] and [Yam08], we explain how character varieties identify as natural open subsets of
the multiplicative quiver varieties for crab-shaped quivers (Theorem 3.6), also known as “comet-shaped” in
[HLRV11]. Namely, the character variety identifies as an open subset of a multiplicative quiver variety for
the crab-shaped quiver described in Section 1.2, with appropriate parameter q ∈ (C×)Q0 . The open subset
is defined by requiring the loops in the original (undoubled) quiver to act invertibly. In particular, in the
genus zero case, the character variety equals the multiplicative character variety.

Remark 1.10. By the above correspondence, a collection of conjugacy classes C ⊆ GLn(C
×) is q-divisible in

the sense of Section 1.2 (where q is not yet a parameter) if and only if, for the associated quiver Q, dimension
vector α ∈ NQ0 , and parameter q ∈ (C×)Q0 , the vector α is q-divisible in the sense of Section 1.3. We hope
that this abuse of notation aids understanding.

It is then an interesting question which character varieties exhibit the different properties discussed above,
in particular, which ones are the “(2,2)”-cases where an “O’Grady” type resolution is expected (see Remark
1.8)? Their classification is achieved in Theorems 5.1 and 5.3: all of these are in the genus zero case (i.e., they
are star-shaped quivers), with three to five punctures and particular monodromy conditions, as classified in
Theorem 5.1, except for two cases in Theorem 5.3. The latter cases correspond to once-punctured tori and
to closed genus two surfaces (with even rank and rank two local systems, respectively, the former having
particular monodromy about the puncture).

1.5. General dimension vectors. Although it is difficult to study directly quiver varieties of dimensions
α /∈ Σq,θ, in the additive setting this issue is alleviated by Crawley-Boevey’s canonical decomposition,
expressing an arbitrary variety as a product of varieties for dimension vectors in Σq,θ [CB02, Theorem
1.1] (extended to θ 6= 0 in [BS16, Proposition 2.1]). In Theorem 6.17 below, we provide a version of this
decomposition in the multiplicative setting using reflection functors, following the proof of [CB02], which is
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weaker in the sense that the dimension vectors of the factors need not be in Σq,θ, and hence the factors could
further decompose (although it is not known in general if they do). One of the reasons why we must give the
weaker statement is the unavailability of (*); see Section 7.2 for more details. Along with this, we prove a
more general sufficient criterion for varying θ to produce a symplectic resolution (Theorem 6.23), that does
not require dimension vectors to be in Σq,θ. Using these results, in Theorem 6.27, we are able to extend
Theorem 1.5 to general dimension vectors. The content of Theorems 6.17 and 6.27 can be summarised in the

following. Here, Σ̃q,θ is a larger set than Σq,θ, consisting of roots for which a certain multiplicative moment
map is flat; Σiso

q,θ ⊆ Σq,θ is the subset of isotropic roots. See Sections 2 and 6 for details on these definitions.

For any subset X ⊆ NQ0 , let N≥2 ·X := {mα | m ≥ 2, α ∈ X}.
Theorem 1.11. Assume that Mq,θ(Q,α) is non-empty.

(i) There is a decomposition α = β(1) + · · ·+ β(k) with β(i) ∈ Σ̃q,θ ∪N≥2 ·Σiso

q,θ, such that the direct sum map

produces an isomorphism (of reduced varieties):

k∏

i=1

Mq,θ(Q, β
(i)) ∼→ Mq,θ(Q,α).

(ii) Assume that this decomposition has neither elements β(i) ∈ N≥2 · Σiso

q,θ(Q,α) nor β
(i) = 2α for α ∈ Nq,θ

and p(α) = 2. Then:

• The normalisation of Mq,θ(Q,α) is a symplectic singularity;

• Each factor Mq,θ(Q, β
(i)) with β(i) /∈ Σq,θ admits a symplectic resolution;

• If for any factor β(i) there exists a θ-stable representation of dimension γ(i) = 1
m
β(i) with m ≥ 2,

then Mq,θ(Q,α) does not admit a symplectic resolution. In fact, it has an open, singular, terminal,
factorial subset.

Putting everything together, in Corollary 6.28, we are able to give a classification of crab-shaped settings
whose multiplicative quiver varieties admit symplectic resolutions. By Theorem 3.6, we also deduce the
corresponding statement for character varieties (Theorems 1.1 and 1.3), which are open subsets of these
varieties, for θ = 0 and for certain values of the parameter q. To state the result, first recall that the Jordan
quiver is the quiver with one vertex and one arrow (a loop). The fundamental region F(Q) consists of those
nonzero vectors α ∈ NQ0 with connected support and with (α, ei) ≤ 0 for all i. As we explain below, by
applying certain reflection functors, we can reduce to this case. We give a simplified version of the statement
of Corollary 6.28 below; see the full statement for precise details.

Corollary 1.12. Let Q be a crab-shaped quiver and α ∈ Nq,θ a vector in the fundamental region with αi > 0
for all i ∈ Q0. Further assume that (Q,α) is not one of the following cases:

(a) β := 1
2α is integral, qβ = 1, and (Q, β) is one of the quivers in Theorem 5.1 and Theorem 5.3;

(b) Q is affine Dynkin of type Ã0 (i.e., the Jordan quiver with one vertex and one arrow), D̃4 or

Ẽ6, Ẽ7, Ẽ8) and α is a q-divisible multiple of the indivisible imaginary root δ of Q.

Then:

• The normalisation of Mq,θ(Q,α) is a symplectic singularity;
• If α is q-indivisible, Mq,θ(Q,α) admits a symplectic resolution;
• If α is q-divisible, and α is not: (c) a prime multiple of one of the quivers listed in Theorem

6.16.(b2) below (a framed affine Dynkin quiver with dimension vector (1,mδ) with mδ q-divisible)
with θ · δ = 0, then Mq,θ(Q,α) does not admit a symplectic resolution (it contains an open singular
factorial terminal subset).

Thus, after reducing to the fundamental region, a symplectic resolution exists if and only if the dimension
vector is q-indivisible, unless we are in one of the following three open cases:

(a) twice one of the dimension vectors appearing in Theorems 5.1 and 5.3 below, which correspond to
one of certain (twisted) character varieties of a sphere with 3 to 5 punctures (with rank at most 24),
of a once-punctured torus (of rank 4) or a closed genus two surface (of rank 2);

(b) a q-divisible imaginary root on an affine Dynkin quiver (of type Ã0, D̃4, Ẽ6, Ẽ7, or Ẽ8), which cor-
responds to either a (twisted) character variety of a closed torus (type A), or a (twisted) character
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variety of a sphere with 3 or 4 punctures (type E or D, respectively) with particular rank and
monodromy conditions;

(c) a prime multiple of the vector (1, ℓδ) on a framed affine Dynkin quiver (again of type Ã0, D̃4, Ẽ6, Ẽ7,

or Ẽ8) with θ · δ = 0, which corresponds again to a certain character variety of a once-punctured
torus or a sphere with 4 or 5 punctures.

Here when we say “correspond”, we mean precisely that, for θ = 0, the multiplicative quiver varieties equal
the given (twisted) character varieties, whereas for the genus ≥ 1 case, the latter is the open subset of the
former where the transformations corresponding to loops in the undoubled quiver are invertible. Setting
θ 6= 0 gives a partial resolution (which may be an actual one, as in case of θ generic and α q-indivisible).

Remark 1.13. For the ordinary (untwisted) character varieties of closed genus one or two surfaces appearing
in the lists for cases (b) and (a) above, a symplectic resolution exists; see, e.g., [BS16, §8]. The proof makes
use of Poincaré–Verdier duality for closed surfaces; perhaps a suitable generalisation of this for orbifolds
would allow us to extend those results to the orbifold case. If so, we could remove Ã0 from case (b) and the
quiver with one vertex and two loops from (a).

1.6. Outline of the paper. The outline of the paper is as follows: in Section 2 we recall some basic
facts about quivers and root systems and establish the notation that shall be used throughout the paper.
We then recall the definition of multiplicative preprojective algebras and outline some of their algebraic
properties. These are needed in the construction, via Geometric Invariant Theory (GIT), of their moduli
spaces of semistable representations, following [Kin94]. In Definition 2.18, we introduce the fundamental
combinatorially-defined subset Σq,θ of roots appearing in our main results (which is expected to contain, if
not equal, the dimension vectors of θ-stable representations of the multiplicative preprojective algebra). We
extend some properties of multiplicative quiver varieties with dimension vector in Σq,θ that were originally
formulated and proved in [CBS06] in the case of a trivial stability condition to the general case.

In Section 3 we prove that, for quivers of special type, namely those which are crab-shaped (see Figure 1),
there is an isomorphism between (an open subset of) the corresponding multiplicative quiver variety and a
character variety arising from considering representations of the fundamental group of a punctured Riemann
surface where the monodromies of loops around the punctures are assumed to lie in the closure of certain
conjugacy classes. In order to build such a correspondence we exploit [CBS06, Lemma 8.2 and Theorem
1.1]. Note that an instance of the correspondence between multiplicative quiver varieties and local systems
on punctured surfaces already appeared in [Yam08], where a proof is given for the case of the punctured
projective line. Our result applies to all genera. Thanks to this correspondence, and to the results proved
in Section 4, we are able to extend the work of Bellamy and the first author from closed Riemann surfaces
to open ones. Another interesting aspect of this correspondence is that it could be conjecturally combined
with the Non-abelian Hodge Theorem to extend the main results of [Tir17], proved by the second author, in
the context of moduli spaces of parabolic Higgs bundles. More details on this topic are provided in Section
7, where possible future research directions of the present work are discussed.

Section 4 contains the proof of Theorem 1.5. A careful study of the singularities of multiplicative quiver
varieties is carried out. First, we show that the smooth locus is precisely the θ-stable locus. The remaining
part of the section is devoted to the study of the nature of the singular locus. To this end, we use techniques
from the work [BS16] of Bellamy and the first author to prove that, under suitable hypotheses, the singu-
larities are symplectic. We also prove that, under certain conditions, the moduli space Mq,θ(Q,α) contains
an open subset which is singular, factorial, and terminal. As a consequence, Mq,θ(Q,α) does not admit a
symplectic resolution. Moreover, for generic θ, we see that the open subset is the entire variety. The only
case left out by Theorem 1.5, when α = 2β for β ∈ Nq,θ and p(β) = 2, is more subtle than the others. The
corresponding result in the context of ordinary quiver varieties, treated in [BS16], is based on the study of
the local structure of such varieties. In our case, such a tool is still not available, but will hopefully be the
object of future research.

In Section 5, namely in Theorems 5.1 and 5.3, we combinatorially classify all the the pairs (Q,α),
formed by a crab-shaped quiver and a corresponding dimension vector in the fundamental region such
that (p(gcd(α)−1α), gcd(α)) = (2, 2). This is relevant as these are the cases expected, for generic θ, to
admit “O’Grady”-type resolutions (i.e., by blowing up the singular locus). This is also important since, by
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Theorem 1.11, it allows us to recognise whether a dimension vector in the fundamental region is expected to
admit a symplectic resolution or not.

In Section 6 we face the problem of existence of symplectic resolutions of multiplicative quiver varieties
for general dimension vectors. In order to do so, we follow the approach of Bellamy and the first author. In
particular, we prove that a multiplicative quiver variety has a canonical decomposition into natural factors,
see Theorem 6.17. This can be viewed as a multiplicative analogue of Crawley-Boevey’s decomposition
[CB02], and we follow his proof, obtaining some more factors due to the unavailability of (*) and some local
structure results. Our result makes it possible to solve the problem by understanding it only at the level
of such indecomposable factors, which are multiplicative quiver varieties with particular dimension vectors.
We then extend the GIT construction of symplectic resolutions by varying θ to dimension vectors not in Σ
(Theorem 6.23); this includes multiplicative analogues of framed quiver varieties such as Hilbert schemes
of C2 and of hyperkähler almost locally Euclidean spaces. In Theorem 6.27 we make use of our canonical
decomposition and, modulo some cases for which the question remains still open, we classify all multiplicative
quiver varieties with arbitrary dimension vector that admit a symplectic resolution. As an application of
this result, by restricting to crab-shaped quivers, we give an explicit classification of the character varieties
of punctured surfaces admitting symplectic resolutions (Corollary 6.28), combining Theorem 6.27 and the
results of Section 3.

Last, Section 7 contains some open questions which naturally arise from the study carried out in the
present paper. One open question which would be interesting to tackle regards the possibility to extend the
main results of [Tir17] starting from the correspondence outlined in Section 3: in Section 7 we provide some
details on this topic by describing which moduli space one would need to consider, via the non-abelian Hodge
Theorem in the non-compact case [Sim90], and we conjecture a generalisation of the Isosingularity Theorem
for such moduli spaces. To conclude, we outline a general setting and of pose a number of questions which
should generalise the work of the present and many other papers, e.g., [AS15, BS16, KL07, Tir17]: it seems
that many of the techniques exploited in the mentioned works are particular instances of theorems which
conjecturally hold in the context of moduli spaces of semistable objects in 2-Calabi–Yau categories, under
suitable hypotheses. This assertion is motivated also by the work of Bocklandt, Galluzzi and Vaccarino,
[BGV16], who studied moduli spaces of representations of 2-Calabi–Yau algebras and proved that such
varieties locally look like representations of (ordinary) preprojective algebras. This seems to be a singular,
local, underived version of the phenomenon that representation varieties of Calabi–Yau algebras are (shifted)
symplectic (as announced by Brav and Dyckerhoff; see a similar result in [Yeu]).

Acknowledgements. This work is part of the second author’s PhD thesis. We thank Gwyn Bellamy,
William Crawley-Boevey, Ben Davison, Emilio Franco, Marina Logares, for many useful conversations and
enlightening comments on the topic of this paper. The second author would like to thank Jacopo Stoppa
and the Department of Mathematics at SISSA, Trieste, for providing an excellent and stimulating working
environment. The work of the second author was supported by the Engineering and Physical Sciences
Research Council [EP/L015234/1]. The EPSRC Centre for Doctoral Training in Geometry and Number
Theory (The London School of Geometry and Number Theory), University College London and Imperial
College London. The first author would like to thank the Hausdorff Institute for Mathematics and the Max
Planck Institute for Mathematics in Bonn, where some of this research was carried out. We would also like
to thank the anonymous referee for his/her useful suggestions.

2. Multiplicative quiver varieties

In this section we give the definition of multiplicative quiver varieties following [CBS06] and recall some
basic properties of such moduli spaces which will be useful in the arguments of the proof of our main theorems.
In addition to these known results, we prove a new one, concerning the normality of the aforementioned
varieties.

Throughout the paper, we work over the field C of complex numbers.

2.1. Preliminaries on quivers and root systems. We recall the basic definitions and fix the notations
from the theory of quiver representations. Let Q be a finite quiver (= directed graph with finitely many
vertices and edges). We let let Q0 and Q1 denote the set of vertices and the set of arrows (= edges) of Q,
respectively. Moreover, for an arrow a ∈ Q1, let h(a) and t(a) denote the head and the tail of a, respectively.
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For a dimension vector α ∈ NQ0 , we will denote by Rep(Q,α) the space of representations of Q of dimension
α, which is naturally acted upon by the group GL(α) :=

∏
i∈Q0

GL(αi).

The coordinate vector at vertex i is denoted ei. The set NQ0 of dimension vectors is partially ordered by
α ≥ β if αi ≥ βi for all i and we say that α > β if α ≥ β with α 6= β. The support of a vector α is the set
of i ∈ Q0 with αi 6= 0; α is called sincere if its support is all of Q0. The Euler (or Ringel) form on ZQ0 is
defined by

〈α, β〉 =
∑

i∈Q0

αiβi −
∑

a∈Q1

αt(a)βh(a).

Let (α, β) = 〈α, β〉 + 〈β, α〉 denote the corresponding Cartan (or Tits) form and set p(α) = 1 − 〈α, α〉. The
fundamental region F(Q) is the set of nonzero α ∈ NQ0 with connected support and with (α, ei) ≤ 0 for all
i. For q ∈ (C×)Q0 and α ∈ NQ0 , let qα :=

∏
i∈Q0

qαi

i .

If i is a loopfree vertex, so p(ei) = 0, there is a reflection si : Z
Q0 → ZQ0 defined by si(α) = α− (α, ei)ei.

The real roots (respectively imaginary roots) are the elements of ZQ0 which can be obtained from the
coordinate vector at a loopfree vertex (respectively ± an element of the fundamental region) by applying
some sequence of reflections at loopfree vertices. Let R+ denote the set of positive roots. Recall that a root
β is isotropic imaginary if p(β) = 1 and anisotropic imaginary if p(β) > 1. We say that a dimension vector
α is indivisible if the greatest common divisor of the αi is one.

2.2. Multiplicative preprojective algebras. We now define the quiver algebras whose moduli of repre-
sentations are the varieties of interest in the present paper. To this purpose, let Q be a finite quiver, fixed
once and for all in this section. First, recall that, for a vector λ ∈ CQ0 , the deformed preprojective algebra
Πλ(Q) is the quotient of the path algebra CQ of the doubled quiver Q by the relation

∑

x∈Q1

[x, x∗] =
∑

i∈Q0

λiei,

where x∗ denotes the dual loop to x in Q1; it is well-known that Nakajima quiver varieties can be interpreted
as moduli spaces of (θ-semistable) representations of such algebras. As one might expect, the defining
relation for multiplicative preprojective algebras is a multiplicative analogue of the above equation: choose
q ∈ (C×)Q0 and define A(Q) to be the universal localisation of the path algebra CQ such that 1 + xx∗ and
1 + x∗x are invertible, for x ∈ Q1. Then, following [CBS06, Definition 1.2], the multiplicative preprojective
algebra Λq(Q) is defined as the quotient of A(Q) by the relation

<∏

x∈Q1

(1 + xx∗)ε(x) =
∑

i∈Q0

qiei,

where ε(x) equals 1 if x ∈ Q1 and −1 otherwise and the product is ordered by an arbitrary choice of ordering
“<” on Q1. It is known, by [CBS06, Theorem 1.4] that, up to isomorphism, Λq(Q) does not depend on the
orientation of the quiver or the chosen ordering on Q1. When the quiver Q is clear from the context, we will
use the shortened notation Λq in place of Λq(Q).

Analogously to the additive case mentioned above, representations of Λq(Q) are representations of the
underlying quiver Q, {(Vi)i∈Q0

, (φa)a∈Q1
}, satisfying the additional relations:

IdVh(a)
+ φaφ

∗
a is an invertible endomorphism of Vh(a) for all a ∈ Q1

∏

a∈Q1,h(a)=i

(IdVh(a)
+ φaφ

∗
a)
ε(a) = qiIdVi

for all i ∈ Q0,

where, for an edge a ∈ Q1, φ
∗
a denotes the linear map φa∗ , a

∗ being the dual edge of a.
For a positive vector α ∈ NQ0 , we denote by Rep(Λq, α) the set of representations of Λq with Vi = Cαi for

all i. This can be given an obvious affine scheme structure via the subset of matrices satisfying the obvious
polynomial equations. We will work below with the reduced subvariety of this affine scheme.

Remark 2.1. By taking determinants of the defining relation for the multiplicative preprojective algebra, one
can easily see that if Λq has a representation of dimension vector α, then qα = 1, which, thus, is a necessary
condition to be satisfied in order to have a non-empty moduli space.
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The following results, which will be used in the next sections, are proved in [CBS06]. It is worth pointing
out that, even though we work over C, these statements hold true over an arbitrary field K.

Proposition 2.2. If X and Y are finite-dimensional representations of Λq, then

dimExt1Λq (X,Y ) = dimHomΛq (X,Y ) + HomΛq (Y,X)− (dimX, dimY )

The following result concerns the geometry of the space Rep(Λq, α) of representations of the algebra Λq,
when a dimension vector α ∈ NQ0 is fixed. Define gα as gα := −1 +

∑
i∈Q0

α2
i .

Proposition 2.3. Rep(Λq, α) is an affine variety, and every irreducible component has dimension at least
gα+2p(α). The subset T ⊂ Rep(Λq, α) of representations X with trivial endomorphism algebra, End(X) = C,
is open and, if non-empty, smooth of dimension gα + 2p(α).

2.3. Reflection functors for Λq(Q). As in the additive case, one can define reflection functors for the
multiplicative preprojective algebra Λq(Q): let v a loopfree vertex in Q and define

uv : (C
×)Q0 → (C×)Q0 , uv(q)w = q−(ev ,ew)

v qw.

It is easy to see that the map uv satisfies the following identity:

(uv(q))
α = qsv(α),

where sv is the reflection map defined in Section 2.1. The main result concerning such maps is analogous to
the properties of reflections functors for Πλ(Q).

Proposition 2.4. [CBS06, Theorem 1.7] If v is a loopfree vertex and qv 6= 1, then there is an equivalence of
categories Fq from the category of representations of Λq to the category of representations of Λuv(q), acting
on dimension vectors through the reflection sv. The inverse equivalence is given by Fuv(q).

We will need also reflections on θ. Define

rv : ZQ0 → ZQ0 , rv(θ)w = θw − (ev, ew)θv.

Definition 2.5. The map (q, θ, α) 7→ (uv(q), rv(θ), sv(α)), is called a reflection. If θv 6= 0 or qv 6= 1, it is
called an admissible reflection.

We will explain below isomorphisms of multiplicative quiver varieties, due to Yamakawa, which are closely
related to the above equivalence.

2.4. Moduli of representations of Λq(Q). We shall now outline the construction of the varieties of interest
for the present work. As mentioned above, the general definition involves a stability condition θ ∈ ZQ0 , which
we fix for the rest of this section.
The seminal work of King [Kin94] allows one to define the notion of θ-semistability for modules over Λq:

Definition 2.6. Let M be a finite-dimensional representation of Λq such that dimM · θ = 0. The module
M is said to be θ-semistable if, for any sub-module N ⊂M

θ · dimN ≤ 0.

The module M is said to be θ-stable if the strict inequality holds. Finally, M is said to be θ-polystable if
it is a direct sum of θ-stable representations. Given a set (or scheme) X of representations, let Xθ−s and

Xθ−ss denote the θ-stable and θ-semistable loci, respectively. We will use the notation Repθ−s(Q,α) :=
Rep(Q,α)θ−s and similarly for θ−ss.
Remark 2.7. By [Kin94, Proposition 3.1], one has that the above definition of stability coincides with the
usual one coming from GIT: indeed, consider the character

χθ : GL(α) → C×, (gi)i∈Q0 7→
∏

i∈Q0

(det gi)
−θi .

It defines a linearisation on the trivial line bundle Rep(Q,α)×C of the action of GL(α) on Rep(Q,α); thus,
one can define the notion of χθ-(semi)stability à la Mumford, [MFK02]. The aforementioned result of King
proves that M is θ-(semi)stable if and only if it is χθ-(semi)stable.
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Using the notion above one can construct the moduli space of (semistable) representations of Λq of
dimension α as follows (see [Yam08, §2], for the details): define

Rep◦(Q,α) = {φ ∈ Rep(Q,α) | det(1 + φaφ
∗
a) 6= 0, a ∈ Q1}.

Here and in the following, for φ ∈ Rep(Q,α), we let φa, a ∈ Q1 denote the component linear maps. One can
then consider the map

Φ : Rep◦(Q,α) −→ GL(α),

defined by the formula

Φ(φ) =

<∏

a∈Q1

(1 + φaφ
∗
a)
ε(j).

Let us identify C× also with the scalar matrices in GL(αi), and hence (C×)Q0 also with a subset of GL(α).
Fixing q ∈ (C×)Q0 , one has that Rep(Λq(Q), α) is the set-theoretic preimage Φ−1(q). Thus, one can give
the following

Definition 2.8. The multiplicative quiver variety Mq,θ(Q,α) is the GIT quotient

Mq,θ(Q,α) := (Repθ−ss(Q,α) ∩ Φ−1(q)) // GL(α).

Remark 2.9. The reason for the terminology in the previous definition is apparent: the equations defining
the multiplicative preprojective relation are modifications of the ones used to define the usual deformed
preprojective algebras, whose moduli of (semistable) representations are Nakajima quiver varieties.

It is worth recalling a fundamental result of King, which gives a moduli-theoretic interpretation—in the
sense of (representable) moduli functors—to Mq,θ(Q,α).

Theorem 2.10. [Kin94, Propositions 3.1 and 3.2] Assume θ ∈ ZQ0 . Then, Mq,θ(Q,α) is a coarse moduli
space for families of θ-semistable representations up to S-equivalence.

Here two θ-semistable representations are S-equivalent if and only if they have the same composition fac-
tors into θ-stable representations (i.e., they have filtrations whose subquotients are isomorphic θ-stable rep-
resentations). This means that every point in Mq,θ(Q,α) has a unique representative which is θ-polystable,
up to isomorphism.

Precisely as in [BS16, Lemma 2.4], we have the following instance of the well-known principle of GIT:

Definition 2.11. We say that θ′ ≥ θ if every θ′-semistable representation of Λq is also θ-semistable.

Note that θ′ ≥ θ is implied if the purely combinatorial condition holds, that θ · β > 0 implies θ′ · β > 0
for all β < α.

Lemma 2.12. [BS16, Lemma 2.4] Let α ∈ Nq,θ be such that Mq,θ(Q,α) 6= ∅. Take θ′ ≥ θ. Then we have a

projective Poisson morphism Mq,θ′(Q,α) → Mq,θ(Q,α) induced by the inclusion Φ−1(q)θ
′−ss ⊆ Φ−1(q)θ−ss.

We caution that this morphism need not be surjective (and indeed the source could be empty when the
target is not). However, in many cases, as we will see, it produces a symplectic resolution.

2.5. Reflection isomorphisms. There is a multiplicative analogue of the Lusztig-Maffei-Nakajima reflec-
tion isomorphisms of quiver varieties (see in particular [Maf02, Theorem 26]), due to Yamakawa, which
makes use of the reflection functors Fq. Let us extend the definition of Mq,θ(Q,α) to α ∈ ZQ0 by setting it
to be empty in the case that αi < 0 for some i.

Theorem 2.13. [Yam08, Theorem 5.1] An admissible reflection (q, θ, α) 7→ (uv(q), rv(θ), sv(α)) induces an
isomorphism of multiplicative quiver varieties, Mq,θ(Q,α) ∼= Muv(q),rv(θ)(Q, sv(α)).
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2.6. Poisson structure on Mq,θ(Q,α). In order to construct a Poisson structure on Mq,θ(Q,α), we shall
use the theory of quasi-Hamiltonian reductions, first developed in [AMM98] for the case of real manifolds,
and then treated by Boalch, [Boa07], and Van den Bergh [Van08a, Van08b] in the holomorphic and algebraic
settings. To this end, note that the map Φ defined above is a group valued moment map for the quasi-
Hamiltonian action of GL(α) on Rep◦(Q,α). Thus, the variety Mq,θ(Q,α) can be considered as the quasi-

Hamiltonian reduction of Rep◦(Q,α) modulo the action of GL(α). From the properties of such a reduction,
we obtain that Mq,θ(Q,α) is a Poisson variety. Moreover, defining

Ms
q,θ(Q,α) := (Repθ−s(Q,α) ∩ Φ−1(q))/GL(α),

where Repθ−s(Q,α) ⊂ Repθ−ss(Q,α) denotes the θ-stable locus, one has the following result, which will be
crucial in proving that Mq,θ(Q,α) is a symplectic singularity. Note that, in the above definition the quotient
is the usual orbit space, if we replace GL(α) by PGL(α) = GL(α)/C×, as a point in the stable locus has
trivial stabiliser group under PGL(α).

Proposition 2.14. [Yam08, Theorem 3.4] Ms
q,θ(Q,α), if non-empty, is an equidimensional algebraic sym-

plectic manifold and its dimension is 2p(α).

2.7. Stratification by representation type. An important result proved in [CBS06, §7] concerns a natu-
ral stratification of the affine varietyMq,0(Q,α) which parametrises semisimple representations of the algebra
Λq. This stratification and its generalisation, proved below, to the case of θ-semistable representations are
important in order to understand the singular locus of Mq,θ(Q,α).

ConsiderM ∈ Repθ−ss(Λq, α). Replace it by the unique θ-polystable representation which is S-equivalent to
it (see the discussion after Theorem 2.10). M is then said to be of representation type τ = (k1, β

(1); . . . ; kr, β
(r))

if it can be decomposed into the direct sum M ∼=Mk1
1 ⊕ · · · ⊕Mkr

r , where Mi is a θ-stable representation of

Λq of dimension vector β(i), i = 1, . . . , r, and Mi ≇Mj for i 6= j.

Proposition 2.15. If τ is a representation type for Λq, then the set Cτq,θ(Q,α) of θ-semistable representa-

tions of type τ is a locally closed subset of Mq,θ(Q,α), which, if non-empty, has dimension
∑r
i=1 2p(β

(i)).
Mq,θ(Q,α) is the disjoint union of the strata Cτq,θ(Q,α), where τ runs over the set of representation types
that can occur for Λq.

Proof. First, note that the case when θ = 0 is treated in [CBS06] and proved in Lemma 7.1 therein. For
the case when θ 6= 0 we use the same arguments. Indeed, the fact that Mq,θ(Q,α) is a disjoint union of
subsets of a fixed representation type is immediate from the fact that the decomposition of a θ-polystable
module into θ-stable modules is unique. This, in turn, holds because, for θ-stable modules M and N , we
have dimHom(M,N) ≤ 1, with equality if and only if M and N are isomorphic. Moreover, to prove that
each Cτq,θ(Q,α) is locally closed and of the dimension prescribed by the lemma, one can adapt the proof

[CB01, Theorem 1.3]: indeed, those arguments can be repeated in this case as well, replacing Rep(Q,α)

with Repθ−ss(Q,α), µ−1
α (λ) with Φ−1(q), the word ‘(semi)simple’ with ‘θ-(semi)stable’ in the proof, and

noting that everything goes through in the same way because Repθ−ss(Q,α) is open in Rep(Q,α). The

only difference is that, in this case, we do not claim irreducibility, since Repθ−ss(Q, β) is not known to be
irreducible. �

We will need also the following property of Repθ−ss(Λq(Q), α):

Lemma 2.16. Every irreducible component of Repθ−ss(Λq(Q), α) has dimension at least gα + 2p(α) and
the set of θ-stable representations form an open subset of Rep(Λq(Q), α) which, if non-empty, is smooth of
dimension gα + 2p(α).

Proof. For the first part, Lemma 6.2 in [CB03] proves the statement in the case when θ = 0, of which the

above result is a consequence since Repθ−ss(Λq(Q), α) is an open subset of Rep(Λq(Q), α): indeed, every
irreducible component of the former variety is contained in only one irreducible component of the latter
and, hence, the dimension estimate holds. For the second part, one just needs to note that, if X is a θ-
stable representation, then End(X) = C and, hence, by [CBS06, Theorem 1.10] defines a smooth point of

Rep(Λq(Q), α), which implies that it is a smooth point of Repθ−ss(Λq(Q), α). �
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For the proof of the following proposition, apply the strategy carried out in [CB03, §6, 7] and [CBS06, §7]:
the only change is that, in the definition of representation of top-type, one has to replace the word ‘simple’
with the word ‘θ-stable’ and use Proposition 2.15 instead of [CBS06, Lemma 7.1] and Lemma 2.16 instead
of [CBS06, Theorem 1.1].

Proposition 2.17. The inverse image in Repθ−ss(Λq(Q), α) of the stratum of representations of type τ =
(k1, β

(1); , . . . ; kr, β
(r)) has dimension at most gα + p(α) +

∑r

l=1 p(β
(l)).

2.8. The set Σq,θ. As mentioned in the introduction, the dimension vectors of stable representations are
closely related to the following combinatorially-defined set, which is the multiplicative analogue of the set
Σλ introduced by Crawley-Boevey in [CB02] and extensively used in [BS16]:

Definition 2.18. Fix q ∈ (C×)Q0 and θ ∈ ZQ0 and set Nq,θ := {α ∈ NQ0 | qα = 1, α · θ = 0}. Define

R+
q,θ := R+ ∩Nq,θ. Then,

Σq,θ :=

{
α ∈ R+

q,θ

∣∣∣∣∣ p(α) >
r∑

i=1

p
(
β(i)

)
for any decomposition

α = β(1) + · · ·+ β(r) with r ≥ 2, β(i) ∈ R+
q,θ

}
.

When θ = 0, we shall use the shortened notation Σq in place of Σq,0.

The following is an extension of [CBS06, Theorem 1.11] to the case θ 6= 0.

Proposition 2.19. Let α ∈ Σq,θ. Then, if non-empty, Repθ−ss(Λq(Q), α) is a complete intersection in

Repθ−ss(Q,α), equidimensional of dimension gα+2p(α). The locus of θ-stable representations Repθ−s(Λq(Q), α)

is dense inside Repθ−ss(Λq(Q), α).

Proof. This is a direct consequence of Lemma 2.16 and Proposition 2.17, by the definition of Σq,θ. �

Remark 2.20. Note that a consequence of the above proposition is that, if π : Repθ−ss(Λq(Q), α) →
Mq,θ(Q,α) is the projection map, the image Ms

q,θ(Q,α) of the stable locus is dense in the moduli space

Mq,θ(Q,α). As a corollary of this and Proposition 2.14 (or Proposition 2.15), one has that every component
of Mq,θ(Q,α) has dimension 2p(α).

A useful corollary of the proposition is the following criterion for birationality of the maps Mq,θ′(Q, β) →
Mq,θ(Q, β). Together with Lemma 2.12, this explains that these maps will be resolutions of singularities
when the source is smooth.

Corollary 2.21. Let α ∈ Σq,θ be such that Mq,θ(Q,α) 6= ∅. Take θ′ ≥ θ such that every θ-stable represen-
tation is θ′-stable. Then, the morphism Mq,θ′(Q, β) → Mq,θ(Q, β) is birational.

Remark 2.22. Note that θ′ ≥ θ is guaranteed if, whenever β < α, then θ · β > 0 implies θ′ · β > 0. Similarly,
the assumption that every θ-stable representation is θ′-stable is implied if, for β < α, then θ · β < 0 implies
θ′ · β < 0. To find θ′ satisfying these conditions, first note that they will be satisfied for rational stability
conditions θ′ ∈ QQ0 sufficiently close to θ. But they hold for a rational vector if and only if they hold for an
integral multiple.

Proof. By Definition 2.11, Repθ
′−ss(Λq, α) is a subset of Repθ−ss(Λq, α), and it is open. By assumption, the

locus Repθ−s(Λq, α) is open in Repθ
′−ss(Λq, α). It is also dense, since it is dense in Repθ−ss. Therefore the

locusMθ−s
q,θ′ (Q, β) is open and dense in Mq,θ′(Q, β). As the stable GL(α)-orbits are closed, Mθ−s

q,θ′ (Q, β) maps

isomorphically to Ms
q,θ(Q, β). As the latter is dense in Mq,θ(Q, β), we conclude the desired birationality. �

Using the above results, one can derive an important geometric property of the moduli space Mq,θ(Q,α).
For reasons which are clear in the proof of the proposition, we assume that a certain codimension estimate
holds. As usual, let π : Repθ−ss(Λq, α) → Mq,θ(Q,α) denote the quotient map.

Lemma 2.23. Assume α ∈ Σq,θ and let τ be a stratum. The following inequality holds true:

codimRepθ−ss(Λq ,α)(π
−1(Cτq,θ(Q,α))) ≥

1

2
codimMq,θ(Q,α)(C

τ
q,θ(Q,α)).
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Proof. By Proposition 2.19, one has that

codim(π−1(Cτq,θ(Q,α))) = gα + 2p(α)− dimπ−1(Cτq,θ(Q,α)).

Moreover, from Proposition 2.17 it follows that

gα + 2p(α)− dimπ−1(Cτq,θ(Q,α)) ≥ gα + 2p(α)− gα − p(α)−
r∑

l=1

p(β(l)) = p(α) −
r∑

l=1

p(β(l)).

On the other hand, by Proposition 2.15, one has that

p(α)−
r∑

l=1

p(β(l)) =
1

2

(
dimMq,θ(Q,α)− dimCτq,θ(Q,α)

)
,

which, combined with the above inequality, leads to the desired statement. �

By taking the minimum of these codimensions, we immediately conclude:

Corollary 2.24. Let Z denote the complement inside Mq,θ(Q,α) of the set of θ-stable representations
Ms

q,θ(Q,α), i.e., Z is the union of all the non-open strata of Mq,θ(Q,α). Then, the following inequality
holds:

codimπ−1(Z) ≥ 1

2
min

τ 6=(1,α)
codimCτq,θ(Q,α).

Proposition 2.25. Consider α ∈ Σq,θ and assume that all strata in the non-empty multiplicative quiver
variety Mq,θ(Q,α) have codimension at least 4, i.e., assume that

min
τ 6=(1,α)

(
dimMq,θ(Q,α)− dimCτq,θ(Q,α))

)
≥ 4.

Then, the variety Mq,θ(Q,α) is normal.

Proof. The arguments to prove the above statement are analogous to the ones used in [BS16, Proposition
8.3]. In particular, we shall use a criterion proved by Crawley-Boevey, [CB03, Corollary 7.2]. We first
deal with the case when θ = 0 and then explain how to adapt the arguments for general θ. When θ = 0,
Mq,0(Q,α) is the categorical quotient Rep(Λq, α)//GL(α) of an affine variety modulo a reductive group.
Thus, we only need to show that Rep(Λq, α) satisfies Serre’s condition (S2) and that certain codimension
estimates hold true. The first condition is ensured by the fact that, by [CBS06, Theorem 1.11] (the case
θ = 0 of Proposition 2.19), Rep(Λq, α) is a complete intersection and, hence, Cohen-Macaulay, which indeed
implies condition (S2). Now, denote by S the open subset S ⊂ Mq,0(Q,α) of simple representations, which
is non-empty by our assumption. S is contained in the smooth locus and hence is normal. Moreover, let Z
denote its complement in Mq,0(Q,α) and denote with π : Rep(Λq, α) → Mq,0(Q,α) the quotient map; then,
by Corollary 2.24, one has

dimRep(Λq, α)− dimπ−1(Z) ≥ 1

2
min

τ 6=(1,α)
(dimMq,0(Q,α)− dimCτq,0(Q,α)),

and the right hand side is greater or equal than two by assumption. Thus, all the hypotheses of [CB03,
Corollary 7.2] are satisfied and we can conclude that Mq,0(Q,α) is normal. For the case when θ 6= 0, keeping
in mind that normality is a local property, we fix a point x ∈ Mq,θ(Q,α) and aim at proving normality at
x. This is achieved by choosing an open neighbourhood V of x such that the restriction to π−1(V ) of the
projection morphism π−1(V ) → V is an affine quotient (note that this can be done thanks to the properties
of the GIT construction). One can now repeat the same arguments as for the θ = 0 case, noting that, by
Proposition 2.15, the estimates above hold true also in this more general setting: being Cohen-Macaulay is
a local statement and thus the previous part of the proof ensures that π−1(V ), which is open in Rep(Λq, α),
satisfies this property. Moreover, defining Sθ to be the subset of V of θ-stable representations, then one may
proceed as in the first part of the proof to obtain the desired conclusion. �

Remark 2.26. In the next sections, we will examine some cases in which the technical assumption in the
previous result is satisfied, thus giving explicit examples of when Mq,θ(Q,α) is normal.

Finally, for the sequel, we will have to consider the following analogue of divisibility:
14



Definition 2.27. A dimension vector α ∈ Nq,θ is said to be q-indivisible if 1
m
α /∈ Nq,θ for all m ≥ 2.

Equivalently, for α = mβ and β indivisible, then qβ is a primitive m-th root of unity.

3. Punctured character varieties as multiplicative quiver varieties

In this section, we explain how it is possible to realise certain character varieties as particular examples of
multiplicative quiver varieties by considering quivers of special type, the so-called crab-shaped quivers. Such
character varieties parametrise representations of the fundamental group of a compact Riemann surface with
a finite number of punctures, where the monodromies at closed loops around such punctures are fixed to lie
in (the closure of) certain conjugacy classes. We use the language of quiver Riemann surfaces introduced by
Crawley-Boevey in [CB13]. Moreover, in what follows, we shall adopt the term punctured character variety
to refer to the character variety of a Riemann surface with punctures.

Fix a connected compact Riemann surface X of genus g ≥ 0, let S = {p1, . . . , pk} ⊂ X be the set of
punctures and fix a tuple C = (C1, . . . , Ck) of conjugacy classes Ci ⊂ GLn(C), i = 1, . . . , k. Recall that the
fundamental group π1(X \ S) of the punctured surface X \ S admits the following presentation:

π1(X \ S) = 〈a1, . . . , ag, b1, . . . , bg, c1, . . . , ck | [a1, b1] · · · · · [ag, bg]c1 · · · · · ck = 1〉,
where [a, b] = aba−1b−1 denotes the commutator. Note that the generators c1, . . . , ck represent homotopy
classes of closed loops around the punctures, in the same free homotopy classes as small counter-clockwise
loops around the punctures. Thus, a representation of π1(X\S) whose monodromies about the punctures are
in the conjugacy classes Ci is given by a tuple of matrices (A1, . . . , Ag, B1, . . . , Bg, C1, . . . , Ck) ∈ GLn(C)

2g×
C1 × · · · × Ck, satisfying the relation

g∏

i=1

[Ai, Bi]
k∏

j=1

Cj = I.

Given the above, from the fact that isomorphic representations correspond to conjugate matrices, one has
that the character variety X (g, k, C) associated to the pair (X,S) and monodromies lying in the conjugacy
classes fixed above is isomorphic to the affine quotient

X (g, k, C) := {(A1, . . . , Ag, B1, . . . , Bg, C1, . . . , Ck) ∈ GLn(C)
2g × C1 × · · · × Ck|

g∏

i=1

[Ai, Bi]

k∏

j=1

Cj = I}//GLn(C).

Remark 3.1. Note that the closures Ci are affine varieties and hence the quotient is indeed that of an affine
variety by an algebraic group.

We shall now explain how to realise the variety X (g, k, C) as an open subset of a multiplicative quiver
variety, using an equivalence of categories proved in [CB13]. As mentioned above, such a correspondence
holds when one considers the so-called crab-shaped quivers (called “comet-shaped” in [HLRV11]), i.e., quivers
such that there exists a vertex v satisfying the following condition: the set of arrows is formed by loops at
v and a finite number of legs ending at v. See Figure 3. A star-shaped quiver is a crab-shaped quiver with
no loops.

• •

• • • •

•

Figure 1. A crab-shaped quiver with 2 loops and 3 legs, of length 2, 3 and 1 respectively.
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For the remainder of this section, the following notation will be used: g, for the number of loops around
the central vertex; k for the number of legs and li, for i = 1, . . . , k, for the length of the i-th leg. As we
shall see, g contains the information regarding the genus of the surface, while the integers k and li encode
information about the (prescribed) conjugacy classes of the monodromies of the loops around the punctures.

Definition 3.2. [CB13, §2] A Riemann surface quiver Γ is a quiver whose set of vertices has the structure
of a Riemann surface X with finitely many connected components. Γ is said to be compact if X is compact.
A point p ∈ X is called marked if it is a head or a tail of an arrow of Γ.

Definition 3.3. Given a Riemann surface quiver Γ, the component quiver [Γ] of Γ, is the quiver whose set
of vertices is the set of connected components of Γ and arrows given by [a] : [p] → [q] for any arrow a : p→ q,
where p and q are points of X and [p] denotes the connected component of X containing p.

Remark 3.4. Although, by definition, there are in general infinitely many vertices, we will consider (Riemann
surface) quivers with finitely many arrows.

Following closely [CB13, §5, §8], starting from a Riemann surface quiver Γ, it is possible to define two
categories of representations, Repσ(π(Γ)) and Rep Λq([Γ]), whose equivalence is the key point to proving
the correspondence between multiplicative quiver varieties and punctured character varieties.
Fix a quiver Riemann surface Γ and let {Xi}i∈I the set of connected components of the underlying Riemann
surface X . For each i ∈ I let Di be the set of marked points of Γ contained in Xi. Moreover, let D = ∪iDi:
fix σ ∈ (C×)D, bi ∈ Xi \Di and, for each p ∈ Di fix a loop lp ∈ π1(Xi \Di, bi) around p.

Repσπ(Γ) is defined to be the category whose objects are given by collections (Vi, ρi, ρa, ρ
∗
a) consisting of

representations ρi : π1(Xi \Di, bi) → GL(Vi), for i ∈ I and linear maps ρa : Vi → Vj and ρ∗a : Vj → Vi for
each arrow a : p→ q in Γ, where Xi = [p] and Xj = [q], satisfying

σ−1
p ρi(ℓp)

−1 = 1Vi
+ ρ∗aρa and σqρj(ℓq) = 1Vj

+ ρaρ
∗
a

and whose morphisms are the natural ones.
Consider the component quiver [Γ] and define Q to be the quiver obtained from [Γ] by adjoining gi loops
at each vertex i, where gi is the genus of Xi. Moreover, define q ∈ (C×)I by qi =

∏
p∈Di

σp. We define

Rep Λq([Γ])′ to be the category of representations of the multiplicative preprojective algebra Λq(Q) in which
the linear maps representing the added loops in Q (but not their reverse loops in Q) are invertible.

Lemma 3.5. [CB13, Proposition 2] There is an equivalence of categories

Repσπ(Γ) ≃ Rep Λq([Γ])′.

This induces a GL(α)-equivariant isomorphism of affine algebraic varieties,

Repσ(π(Γ), α)
∼−→ Rep(Λq([Γ])′, α),

defined as the collections of representations with Vi = Cαi for all i.

Proof. The first statement is precisely [CB13, Proposition 2]. For the second, both Repσ(π(Γ), α) and
Rep(Λq([Γ])′, α) are acted upon by the group GL(α) and the above equivalence of categories implies that
there is a GL(α)-equivariant bijection as desired. Moreover, Repσ(π(Γ), α) and Rep(Λq([Γ]′, α)) are easily
seen to be affine algebraic varieties, defined as tuples of matrices satisfying certain polynomial relations,
with certain polynomials inverted. To see that the above map is a GL(α)-equivariant algebra isomorphism,
observe that the proof of [CB13, Proposition 2] uses explicit invertible polynomial formulae. �

In order to explain how the above equivalence of categories implies the correspondence between character
varieties and preprojective algebras, we shall explain how it is possible to encode the datum of a number of
conjugacy classes into a star-shaped quiver. We follow [CBS06, §8] and [CB04, §2]: fix k conjugacy classes
C1, . . . , Ck in GLn(C), for k ≥ 1. We can encode the datum of such conjugacy classes in a combinatorial
object as follows: take Ai ∈ Ci and let wi ≥ 1 be the degree of its minimal polynomial, for i = 1, . . . , k;
choose elements ξij ∈ C×, 1 ≤ i ≤ k, 1 ≤ j ≤ wi, such that

(Ai − ξi1I) · · · · · (Ai − ξiwi
I) = 0.

The closure of the conjugacy class Ci is then determined by the ranks of the partial products

αij = rank(Ai − ξi1I) · · · · · (Ai − ξijI),
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for Ai ∈ Ci and 1 ≤ j ≤ wi − 1. In addition, if we set α0 = n, we get a dimension vector α for the following
quiver Qw

s

s

s

s

s

s

s

s

s

s

✡
✡

✡
✡✢ ✟✟✟✙

❏
❏

❏
❏❪

✛

✛

✛

✛

✛

✛

✛

✛

✛

q q q

q q q

q q q

q

q

q

q

q

q

q

q

q
0

[k, 1]

[2, 1]

[1, 1]

[k, 2]

[2, 2]

[1, 2]

[k, wk − 1]

[2, w2 − 1]

[1, w1 − 1]

Now, for every i ∈ {1, . . . , k}, let ti be a non-negative integer, and define a Riemann surface quiver Γ as
follows: its underlying Riemann surface X is given by the disjoint union

X = X0 ⊔
⊔

i∈{1,...,k},j∈{1,...,ti}

P1
i,j,

where X0 is an arbitrary closed Riemann surface of genus g (the choice does not matter), and P1
i,j is simply

a copy of P1 for the index (i, j). For each pair of indices (i, j) fix a point pi,j ∈ P1
i,j , and, for i = 1, . . . , k, fix

distinct points pi ∈ X0. Define D as before to be

D = {pi,j} ∪ {pl}.
The arrows of Γ are listed as follows:

• ai,0 : pi,1 → pi, for i = 1, . . . , k;
• ai,j : pi,j+1 → pi,j , for i = 1, . . . , k, j = 1, . . . , ti − 1.

Figure 2. An example of a Riemann surface quiver associated with a tuple of conjugacy classes.

Unfolding the definition for the objects of the category Repσπ(Γ), one has that for such a Riemann surface
quiver Γ these are representations

ρ : π1(X0 \ {p1, . . . , pk}) → GL(V ),

and linear maps

ρi,0 : Vi,1 → V, ρi,j : Vi,j+1 → Vi,j

and

ρ∗i,0 : V → Vi,1, ρ∗i,j : Vi,j → Vi,j+1,

for i = 1 . . . , k and j = 1, . . . , ti−1, such that, if li ∈ π1(X0 \{p1, . . . , pk}) is the loop around pi, i = 1, . . . , k,
the linear automorphism ρ(li) satisfies the condition

σiρ(li) = 1V + ρi,0ρ
∗
i,0
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and the linear maps ρi,j and ρ
∗
i,j satisfy the equations:

σ−1
i,j+11Vi,j+1 = 1Vi,j+1 + ρ∗i,jρi,j ,

σi,l1Vi,l
= 1Vi,l

+ ρi,lρ
∗
i,l,

for i = 1, . . . , k, j = 1, . . . , ti − 1 and l = 1, . . . , ti, which, setting j = l − 1 and summing the equations
involving operators on the same space Vi,l, can be rewritten as

ρ(li) = σ−1
i 1V + σ−1

i ρi,0ρ
∗
i,0,

ρ∗i,j−1ρi,j−1 − ρi,jρ
∗
i,j = (σ−1

i,j − σi,j)1Vi,j
,

σi,ti1Vi,ti
= 1Vi,ti

+ ρi,tiρ
∗
i,ti
,

for i = 1, . . . , k and j = 1, . . . , ti−1. Now, we specialise to the case ti = wi−1 and assume that dimVi,j = αi,j
and dimV = n, where wi and αi,j are defined as before. Through some simple algebraic computations, it is
possible to see that, given ξi,j as before, it is possible to find corresponding σi,j , defined as

σ0 = 1∏
k
i=1 ξi,1

, σi,j =
ξi,j
ξi,j+1

,

such that the above sets of equations can be rewritten in terms of linear operators φi,j and ψi,j , for i = 1, . . . , k
and j = i, . . . , wi − 1,

V
φi1

⇄
ψi1

Vi1
φi2

⇄
ψi2

Vi2
φi3

⇄
ψi3

. . .
φi,wi−1

⇄
ψi,wi−1

Vi,wi−1

satisfying
ρ(li)− ψi1φi1 = ξi1 1V

φijψij − ψi,j+1φi,j+1 = (ξi,j+1 − ξij) 1Vij
(1 ≤ j < wi − 1)

φi,wi−1ψi,wi−1 = (ξi,wi
− ξi,wi−1) 1Vi,wi−1 ,

which, by [CB04, Theorem 2.1], implies that ρ(li) lies in the closure of the conjugacy class Ci, i = 1, . . . , k.
In fact, this theorem says that this is a necessary and sufficient condition; thus, given a representation

ρ : π1(X0 \ {p1, . . . , pk}) → GL(V ),

where dim V = n and ρ(li) ∈ Ci, for prescribed conjugacy classes C1, . . . , Ck in GLn(C), we can find linear
maps ρi,j and ρ∗i,j and vector spaces Vi,j of dimension αi,j as above, such that the tuple (V, ρ, Vi,j .ρi,j , ρ

∗
i,j)

is an object of the category Repσπ(Γ). Then, combining this with Lemma 3.5, one has the following result.

Theorem 3.6. There is an isomorphism between the character variety X (g, k, C) and the affine quotient

M̃q,0([Γ], α) := Rep Λq([Γ], α)′ //GL(α).

Remark 3.7. From its definition, one can see that Rep Λq([Γ], α)′ is an open affine GL(α)-invariant subset
of Rep(Λq[Γ], α) which is obtained by inverting certain GL(α)-invariant functions (the determinants of the
linear transformations corresponding to loops of the undoubled quiver at the node). Since the quotient in
the affine case, with G reductive, is obtained by passing to G-invariant functions, i.e., SpecB//G = SpecBG,

we deduce that the affine quotient M̃q,0([Γ], α) can be identified with an open subset of the multiplicative
quiver variety Mq,0([Γ], α). This is important because, as outlined in the following section, in order to show
the non-existence of symplectic resolutions we prove that certain such varieties contain an open subset which
is factorial and terminal.

Remark 3.8. We note that, in the star-shaped case, this result follows from [CBS06, Section 8]. Moreover,
in the general case, Yamakawa proves a similar result to the one obtained in this section in the language of
local systems on punctured surfaces, see [Yam08, Theorem 4.14] for more details.

4. Singularities of multiplicative quiver varieties

Throughout this section, which is devoted to the study of the singularities Mq,θ(Q,α) and to the proof
of Theorem 1.5, we use the notation introduced in Section 2.

In order to carry out this analysis, in Section 4.1, we describe the singular locus of the varieties in question.
As one might expect, for α ∈ Σq,θ, this is given by the locus of strictly semistable representations. This
follows because these varieties are Poisson, the stable locus is symplectic and smooth, and its complement
has codimension at least two. Since a generically non-degenerate Poisson structure on a smooth variety can
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only degenerate along a divisor (the vanishing locus of the Pfaffian of the Poisson bivector), we conclude
that the entire smooth locus is non-degenerate. Since the strictly semistable locus is degenerate, it must
therefore be singular. Moreover, in the case where α is q-indivisible, a symplectic resolution can be obtained
by varying θ, by Lemma 2.12 and Corollary 2.21 (and Remark 2.22). These arguments, spelled out below,
prove the second statement of Theorem 1.5.

In Section 4.4, we complete the proof of Theorem 1.5 by considering strata of representation type νβ,
where α = nβ and ν is a partition of n. We compute their codimension. As a consequence, taking β to
be q-indivisible, for suitable θ′ ≥ θ, Mq,θ′(Q,α) has singularities in codimension ≥ 4. Hence by Flenner’s
theorem [Fle88], its normalisation is a symplectic singularity, which proves the first statement of Theorem
1.5. Finally, we show, using Drezet’s criterion of factoriality, that the singularities along most strata νβ are
factorial and terminal. This proves the final statement of Theorem 1.5. Note that Section 4.4 closely follows
[BS16], where the analogous strata are considered for ordinary quiver varieties.

4.1. Singular locus of Mq,θ(Q,α) for α ∈ Σq,θ. Before proving the main statement, we need a well-known
result which is valid for any variety endowed with a Poisson structure.

Lemma 4.1. Let X be a smooth variety and π ∈ ∧2TX a generically non-degenerate Poisson bivector. Let
D the degenerate locus of π. Then, if nonempty, D is a divisor.

Proof. By generic non-degeneracy, dimX has to be even, therefore dimX = 2d. Define the top polyvector
field γ = ∧dπ. Then, D coincides with the zero locus of γ. On the other hand, γ is a section of a line bundle
and, therefore, its zero locus is a divisor (if nonempty). �

This implies the following criterion for the singular locus of a Poisson variety:

Corollary 4.2. Let X be a Poisson variety which is smooth and symplectic in the complement of a closed
Poisson subvariety Z ⊆ X which has codimension at least two everywhere. Then Z equals the set-theoretic
singular locus of X.

Proof. Suppose for a contradiction that X is smooth at a point z ∈ Z. Since Z is a closed Poisson subvariety,
the Poisson structure of X is degenerate at z. It follows from Lemma 4.1 that the degeneracy locus of X has
codimension 1 at z. However, this locus is contained in Z, which has codimension at least two at z. This is
a contradiction. �

Proposition 4.3. Let α ∈ Σq,θ. The smooth locus of Mq,θ(Q,α) is Ms
q,θ(Q,α).

Proof. By Proposition 2.14 Ms
q,θ(Q,α) is smooth and symplectic. Let Z be the complement. It is the union

of all the non-open strata of Mq,θ(Q,α). There are finitely many and these all have purely even dimension;
hence Z has codimension at least two everywhere (as Ms

q,θ is dense and it has purely even dimension, 2p(α)).
Furthermore, we claim that Z is a Poisson subvariety, i.e., all Hamiltonian vector fields are tangent to it.
Indeed, Hamiltonian vector fields descend from GL(α)-invariant Hamiltonian vector fields on representation
varieties. These integrate to formal automorphisms which commute with the G-action, which hence preserve
the stratification by conjugacy classes of stabiliser. Therefore, the hypotheses of Corollary 4.2 are satisfied,
and the statement follows. �

Remark 4.4. It is reasonable to ask if a stronger statement is true, which makes sense for general α: are
the connected components of the representation type strata the symplectic leaves? Equivalently, do the
Hamiltonian vector fields span the tangent spaces to the representation type strata? If so, then (a)Mq,θ(Q,α)
has finitely many symplectic leaves, and (b) the representation type strata are all smooth. The converse
statement also holds: if a stratum is smooth and it is a union of finitely many symplectic leaves, its Poisson
structure must be non-degenerate outside a locus of codimension at least two. So Lemma 4.1 implies that it
is actually non-degenerate.

Let us comment briefly on conditions (a) and (b). First, if Mq,θ(Q,α) is a symplectic singularity,
it has finitely many symplectic leaves, by [Kal06, Theorem 2.5]. Next, for a representation type τ =
(k1, β

(1); . . . ; kr, β
(r)), the direct sum map produces a surjection (Ms

q,θ(Q, β
(1))× · · · ×Ms

q,θ(Q, β
(r)))dist →

Cτq,θ(Q,α) with smooth source, where the dist refers to the open subset where the elements of the i-th and
j-th factors are unequal for all distinct i and j. It seems reasonable to expect this to be a covering, in which
case the stratum is smooth.
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4.2. Generalities on symplectic singularities. In order to prove the first statement of Theorem 1.5, we
need a criterion for the normalisation of a variety to have symplectic singularities. This is an extension of
[BS16, Lemma 6.12], using [Kal09, Theorem 1.5]:

Proposition 4.5. Let X be a Poisson variety and assume that π : Y → X is a proper birational Poisson
morphism from a variety Y with symplectic singularities. Then the normalisation X ′ of X has symplectic
singularities. Moreover, the induced map π : Y → X ′ is Poisson.

Proof. In [BS16, Lemma 6.12], the result is proved under the assumption that X is in fact normal. To
conclude the lemma from this result, we may apply [Kal09, Corollary 1.4, Theorem 1.5]. By these results
(and their proofs), given a Poisson variety X , the normalisation X ′ has a unique Poisson structure such that
the normalisation map ν : X ′ → X is a Poisson morphism. The map π factors through ν, and the induced
map π′ : Y → X ′ must be Poisson, since the Poisson bracket on OX′ is the unique extension of the Poisson
bracket on OX to a biderivation OX′ × OX′ → OY . Then the fact that X ′ has symplectic singularities
follows from [BS16, Lemma 6.12]. �

Remark 4.6. For convenience, we will apply this result even in the case where π is a symplectic resolution.
However, in this case, the statement follows from definitions, without really requiring the results of [BS16,
Kal09], as follows. The map π : Y → X factors through π′ : Y → X ′, which induces on X ′ a unique Poisson
structure such that π′ is Poisson; as Y is non-degenerate and its symplectic form is pulled back from X ′, X ′

must also be non-degenerate on the smooth locus. By definition, X ′ is then a symplectic singularity. Since
π is dominant, the Poisson structure on X is uniquely determined from the one on Y , and must be the one
obtained from X ′ via the inclusion OX → OX′ . This proves the last statement.

Remark 4.7. Actually, in the above proposition, the biconditional holds: X has symplectic singularities if
and only if Y does. Moreover, one can generalise to the case where X is a non-reduced Poisson scheme: in
this case, the map π factors through the reduced subvariety Xred, which is canonically Poisson by [Kal09,
Corollary 1.4].

4.3. The q-indivisible case. We now prove the second statement of Theorem 1.5. Suppose that β ∈ Σq,θ
is q-indivisible.

First suppose that β is real. In this case, by [CBS06, Theorem 2.1], Λq(Q) admits a simple rigid repre-
sentation X and any other representation Y of the same dimension must be isomorphic to X , which means
that the variety Mq,θ(Q, β) is a point. So there is nothing to prove.

Next suppose that β is imaginary. In this case one may proceed as follows: by choosing a generic stability
parameter θ′ ≥ θ, there is a projective symplectic resolution

π : Mq,θ′(Q, β) −→ Mq,θ(Q, β).

Indeed, by [Yam08, Proposition 3.5], for θ′ generic, the stable locus Ms
q,θ′(Q, β), which is smooth, coincides

with the semistable locus. Hence we can find θ′ ≥ θ such that Mq,θ′ is smooth and symplectic. Moreover,
the fact that the morphism π exists and is projective and Poisson follows, in the θ = 0 case, from the very
definitions of affine and GIT quotient and, for general θ, from Lemma 2.12. Finally, birationality of π is
ensured by Corollary 2.21 (and Remark 2.22). Thus, we can conclude that Mq,θ(Q, β) admits a symplectic
resolution, given by the morphism π. By Proposition 4.5 (or Remark 4.6), this implies that the normalisation
of Mq,θ(Q, β) has symplectic singularities.

4.4. The q-divisible case. In this subsection, we prove the first and third statements of Theorem 1.5. We
may assume that α is q-divisible: this is automatic in the third part, whereas in the first part, the result
follows from the second part (proved in the preceding subsection) in the q-indivisible case. This means that
α is anisotropic, by the following result:

Lemma 4.8. Let α ∈ Nq,θ be q-divisible. Then α ∈ Σq,θ only if α is anisotropic. Conversely, if α = mβ
and β ∈ Σq,θ is anisotropic, then α ∈ Σq,θ.

Proof. This is a generalisation of [CB02, Proposition 1.2] (in view of Remarks 6.7 and 6.8), with the same
proof. For details, see Corollary 6.21 below (whose proof is independent of any of the results of this section).

�
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Recall that a weighted partition of n is a sequence ν = (l1, ν1; . . . ; lk, νk) such that ν1 ≥ · · · ≥ νk and∑k

i=1 liνi = n. If ν is a partition of n, we shall denote by νβ the representation type (l1, ν1β; . . . , lk, νkβ).

Lemma 4.9. (1) The set Σq,θ contains {mβ | m ≥ 1};
(2) dimCνβq,θ(Q,nβ) = 2

(
k + (p(β) − 1)

∑k

i=1 ν
2
i

)
;

(3) for (p(β), n) 6= (2, 2), dimMq,θ(Q,nβ)− dimCνβq,θ(Q,nβ) ≥ 4 for all ν 6= (1, n).

(4) for (p(β), n) 6= (2, 2) and ν 6= (1, n), one has dimMq,θ(Q,nβ) − dimCνβq,θ(Q,nβ) ≥ 8 unless one of

the following holds: (i) (p(β), n) = (2, 3) and ν = (1, 2; 1, 1); (ii) (p(β), n) = (3, 2) and ν = (1, 1; 1, 1).

Proof. The arguments are completely analogous to those of [BS16, Lemma 6.1], except here that we use the
dimension estimates given by Proposition 2.15. The first statement is a consequence of Lemma 4.8. �

Note that the above result has the following interesting consequence.

Proposition 4.10. Assume that all θ-stable representations of dimension γ < nβ have γ = mβ for some
m. Moreover, assume that (p(β), n) 6= (2, 2). Then, Mq,θ(Q,nβ) is normal.

For example, the first condition holds if β is q-indivisible and θ is generic.

Proof. This is an immediate consequence of Proposition 2.25 and point (3) of Lemma 4.9, given that, by
assumption on θ, all strata except for the open one have codimension greater than 4. �

Now, let α ∈ Σq,θ be q-divisible. Write α = nβ for β q-indivisible and n ≥ 2. For generic θ′ ≥ θ, the
only strata of Mq,θ′(Q,α) are those of the form νβ, which appear in Lemma 4.9. If (p(β), n) 6= (2, 2),
then, taking into account Remark 2.20, all non-open strata have codimension at least four by Lemma
4.9.(3). Therefore Mq,θ′(Q,α) is a symplectic singularity by Flenner’s Theorem [Fle88]. Now, the map
Mq,θ′(Q,α) → Mq,θ(Q,α) is birational, projective, and Poisson by Corollary 2.21 (and Remark 2.22), and
Lemma 2.12. Therefore, the normalisation of Mq,θ(Q,α) is itself a symplectic singularity by Proposition
4.5. This proves the first statement of Theorem 1.5.

It remains to prove the final statement of Theorem 1.5. For this purpose, assume that α = nβ for n ≥ 2
and that β ∈ Nq,θ (not necessarily q-indivisible or in Σq,θ), such that there exists a θ-stable representation
of dimension β. Let U be the union of all the strata indexed by νβ for ν a weighted partitions of n,

U :=
⋃

ν

Cνβq,θ(Q,α).

As well as for the previous lemma, to prove the following result one can repeat verbatim the arguments in
[BS16, Lemma 6.2].

Lemma 4.11. The subset U is open in Mq,θ(Q,α). If θ is generic and β is q-indivisible, this subset is the
entire variety.

In order to prove that U is factorial, we shall follow the approach of [BS16], which was itself inspired by
results of Drezet [Dre91] on factoriality of points in moduli spaces of semistable sheaves on rational surfaces.

Assuming the notation above, with π : Repθ−ss(Λq, α) → Mq,θ(Q,α) denoting the quotient map, define
V := π−1(U). We aim at proving that V is a local complete intersection and that it is factorial and normal.
We shall then descend the factoriality property to the subvariety U .

Proposition 4.12. V is a local complete intersection, factorial and normal.

The proof of this proposition follows closely the arguments used in [BS16, Proposition 6.5].

Proof of Proposition 4.12. Since V is open inside Repθ−ss(Λq, α), Proposition 2.19 implies that it is a local
complete intersection. To prove normality and factoriality, recall that a local complete intersection satisfies
Serre’s S2 property, so Serre’s criterion implies that it is normal if it is smooth outside a locus of codimension
at least 2. Moreover, by a result of Grothendieck ([KLS06, Theorem 3.12]), a local complete intersection
which is smooth outside a locus of codimension at least 4 is factorial. Put together, to show that V is normal
and factorial, it suffices to show that it is smooth outside of a locus of codimension at least 4. For this, one
can repeat verbatim the arguments used in [BS16, Proposition 6.5], replacing Corollary 6.4 and Lemma 6.1
with Lemma 2.23 and Lemma 4.9, respectively. �
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In order to descend factoriality from V to U we use Drezet’s method. In particular, [BS16, Theorem 6.7]
holds true in this context as well with no change in the proof of the result, as we have already made sure that
all of the tools used there are still applicable here, Proposition 4.12 being the most important one. Thus,
the corresponding statement of [BS16, Corollary 6.9] is the following:

Theorem 4.13. U is a factorial variety.

We omit the proof, as it is exactly the same as in [BS16, Corollary 6.9].
Using the previous theorem and the estimates on the codimension of the singular locus, one can conclude

that Mq,θ(Q,α) does not admit a symplectic resolution. We state this formally below, where we also recall
our running hypotheses for the reader’s convenience.

Theorem 4.14. Let α = nβ ∈ Σq,θ be anisotropic imaginary, for n ≥ 2, such that there exists a θ-stable
representation of Λq of dimension β, and (p(β), n) 6= (2, 2). Then Mq,θ(Q,α) has an open subset which is
factorial, terminal, and singular. Hence it does not admit a symplectic resolution. Moreover, if θ is generic
and α is q-indivisible, then this open subset is the entire variety.

Proof. The subset U is singular, since it contains the non-open stratum (n, β). It is factorial by Theorem
4.13. Under the assumptions, the singular strata in U all have codimension at least four, hence also the
singular locus. Thus, U is terminal by [Nam01], since it has symplectic singularities and the singular locus
has codimension at least four. �

This completes the proof of the third and final statement of Theorem 1.5.

4.5. Proof of Corollary 1.6. Write α = mβ for β q-indivisible. Note that, for θ generic, the only possible
decompositions of α are into multiples of β. If α is q-indivisible, it therefore follows trivially that α ∈ Σq,θ.
Since the only stratum inMq,θ(Q,α) is the open one of stable representations, it also follows from Proposition
2.14 that Mq,θ is smooth symplectic. Suppose that α is q-divisible. It then follows from Lemma 4.8 that α
is in Σq,θ if and only if it is anisotropic. This completes the proof of part (i).

Part (ii) follows from Proposition 4.10 and Theorem 1.5. The first statement of part (iii) follows from
Theorem 1.5. Finally, the last statement follows from Proposition 2.14 because, in this case, there is only
one stratum in Mq,θ(Q,α), consisting of θ-stable representations.

4.6. The anisotropic imaginary (p(α), n) = (2, 2) case. The only case left out in this analysis is that of
2α ∈ Σq,θ for α ∈ Nq,θ satisfying p(α) = 2. The analogous question of existence of a symplectic resolution in
the setting of Nakajima quiver varieties is settled in [BS16, Theorem 1.6], where it is shown that, for generic
θ, blowing up the ideal sheaf defining the singular locus gives a symplectic resolution of singularities. This
is achieved by showing that, étale locally, the variety is isomorphic to the product of C4 with the closure of
the six-dimensional nilpotent orbit closure in Sp(C4): see [BS16, Theorem 5.1] and the references therein.
Given this, one might conjecture that an analogous result holds for multiplicative quiver varieties, and such a
result should be proved by studying the étale local structure of the variety. In fact, by Artin’s approximation
theorem [Art69], it would be sufficient to give a description of the formal neighbourhood of a point. This
will be discussed in a future work. For more details, see Section 7.

5. Combinatorics of multiplicative quiver varieties

In this section we study some combinatorial problems which are related to the geometry of multiplicative
quiver varieties. Indeed, an interesting problem is to classify all the possible “(2, 2)-cases”: these are the main
q-divisible cases for which we conjecture that there exists a symplectic resolution. In the next subsection
we carry out these computations in the case of crab-shaped quivers (which we defined in Section 3). We
shall see how most of the (2, 2)-cases occur in the case of star-shaped quivers, i.e., where there are no loops,
so that the corresponding surface has genus zero. It is also important to point out that the classification
below yields an explicit classification of the crab-shaped quivers for which symplectic resolutions exist, or
are conjectured to exist: see Corollary 6.28 in the next section for details on this.
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5.1. (2,2) cases for crab-shaped quivers. The analysis is based on some standard numerical arguments
and the constraints on the dimension vector α for it to satisfy the conditions of Section 3, i.e., it has to
represent the multiplicities of the eigenvalues in the prescribed conjugacy class.

Theorem 5.1. There are exactly 13 pairs (Q,α), where Q is a star-shaped quiver as in Section 3 and
α ∈ F(Q) is in the fundamental region, such that p(α) = 2. Such pairs are depicted as follows, where a
vertex is substituted by the corresponding entry of the dimension vector:

(5.1.1)

1 1 1

1 2 1

(5.1.2)

1 2 1

1 3 2 1

(5.1.3)

2 2

1 4 3 2 1

(5.1.4)

3 2 1

1 2 4 3 3 1

(5.1.5)

2 2

2 4 2 1

(5.1.6)

4 3 2 1

2 5 4 3 2 1

(5.1.7)

1

3

1 3 5 4 3 2 1
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(5.1.8)

3

1 2 3 4 5 6 4 2 1

(5.1.9)

2

4

2 4 6 4 2 1

(5.1.10)

4

2 5 8 7 6 5 4 3 2 1

(5.1.11)

4

1 2 4 6 8 6 4 2

(5.1.12)

5

1 4 7 10 8 6 4 2

(5.1.13)

6

4 8 12 10 8 6 4 2 1

Remark 5.2. It is important to highlight that quivers (5.1.5), (5.1.9), (5.1.11), (5.1.13) are the framed affine

Dynkin quivers D̃4, Ẽ6, Ẽ7, Ẽ8, respectively, with dimension vector given by (2δ, 1), where δ is the minimal
isotropic imaginary root of the corresponding quiver. See Remark 5.5 for the significance of this.

Proof of Theorem 5.1. Note that p(α) = 2 if and only if 〈α, α〉 = −1. Let us calculate the value of 〈α, α〉
explicitly, for α a general dimension vector. The general star-shaped quiver has g loops and k legs, each of
which has li arrows, i = 1, . . . , k. We have

〈α, α〉 = (1− g)n2 +
∑

i,j

α2
i,j − n

k∑

i=1

αi,1 −
k∑

i=1

li−1∑

j=1

αi,jαi,j+1.

Assume now that α ∈ F(Q) and that 〈α, α〉 = −1; then, given that 〈α, α〉 = ∑
i∈Q0

αi〈α, ei〉 =
∑

i∈Q0
αi〈ei, α〉,

this implies that there can only be two possibilities:
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a) there exists a unique vertex i ∈ Q0 such that either αi = 1 and (α, ei) = −2, or αi = 2 and
(α, ei) = −1, with (α, ej) = 0 for j 6= i; this implies that, denoted by Adj(i) the set of vertices which
are adjacent to i, one has

∑
j∈Adj(i) αj = 5 for αi = 2 and

∑
j∈Adj(i) αj = 4 for αi = 1;

b) there are two distinct vertices i and i′ such that (α, ei) = (α, ei′) = −1 and αi = αi′ = 1, with
(α, ej) = 0 for j 6= i, i′. In this case one has

∑
j∈Adj(k) αj = 3 for k = i, i′.

In this case, if i or i′ is the central vertex, then the only possibility is given by the quiver (1) in the statement
of the theorem. Otherwise, if v is the central vertex, then (α, ev) = 0, which implies that

∑
j∈Adj(v) αj = 2n,

where αv = n: indeed,

0 = (α, ev) = 〈α, ev〉+ 〈ev, α〉 = n−
∑

k→v

αk + n−
∑

v→l

αl = 2n−
∑

j∈Adj(v)

αj .

Now, fix a branch along which none of the special vertices i and i′ appear, let l be its length and let
β0 = n, β1, . . . , βl be the components of the vector α along the branch.

Then, using that (α, ej) = 0 for j 6= i, i′, we get the recursive formula

2βj = βj−1 + βj+1,

for j = 1, . . . , l − 1, and also βl−1 = 2βl, which implies that

βj = (l + 1− j)βl.

Therefore, the branch has the form

n −→ n− c −→ n− 2c −→ · · · −→ c,

where c is a positive integer such that c|n. Moreover, in order for condition a) to be satisfied there has to
be one branch ending with one of the following

5 −→ 2, 4 −→ 2 −→ 1, 4 −→ 1,

and, thus, having the form

(§) n− 3 −→ . . . ,−→ 5 −→ 2,

n− 2 −→ . . . ,−→ 4 −→ 2 −→ 1,

n− 3 −→ . . . ,−→ 4 −→ 1

respectively; for condition b), there have to be two branches ending as

3 −→ 1,

having the form

(§§) n− 2 −→ · · · −→ 3 −→ 1.

Therefore, we are left to consider a star-shaped quiver where all but one or two branches are as follows:

a1 ai al

. . . . . . . . . . . . . . .

n− a1 n− ai n− al

n

Moreover, if the quiver satisfies condition a), then l = k − 1 and there is an additional branch having
one of the forms in (§); on the other hand, if the quiver is as in case b), then l = k − 2 and there are two
additional legs of the form described by (§§).
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We shall now use some numerical arguments to prove that, among all such possibilities, only the ones
listed in the statement of the theorem can actually occur. First, let us spell out how the equality 0 = (α, ev)
can be rephrased: one has that

0 = (α, ev) ⇐⇒ 2n =

k∑

i=1

(n− ai) ⇐⇒
k∑

i=1

ai = (k − 2)n.

Therefore, one has the following possibilities:

a) in the cases of a branch ending with 5 −→ 2 or 4 → 1 the equality 0 = (α, ev) reads as

3

n
+

k−1∑

i=1

1

n/ai
= k − 2,

where n ≡ 2 (mod 3) and n ≡ 1 (mod 3), respectively, and n > ai ≥ 2, ai|n for every i; these shall
be mentioned in the following as cases a.1 and a.2. On the other hand for a branch ending with
4 −→ 2 −→ 1 we have

(5.1.14)
2

n
+

k−1∑

i=1

1

n/ai
= k − 2,

where n has to be even and ai|n; this is renamed as case a.3.
b) there are two branches 3 −→ 1 and 0 = (α, ev) is equivalent to

4

n
+
k−2∑

i=1

1

n/ai
= k − 2,

and ai|n for every i and n has to be odd, and ai < n, for every i.

In cases a.1 and a.2 one has that n ≥ 4 which forces k ≤ 4: indeed, one has that for n ≥ 4 n/ai ≥ 2 and,
therefore,

3

n
+

k−1∑

i=1

1

n/ai
≤ 3

4
+
k − 1

2
<
k + 1

2
,

which implies that

k − 2 <
k + 1

2
,

and thus k ≤ 4. For k = 4 and n = 4 it is easily checked that quiver (5.1.3) in the statement of the result is
the only possibility. If k = 3, then the following inequality holds:

(
1

2
+

1

4

)
n ≥

(
1− 3

n

)
n = n− 3,

which forces n ≤ 12; one can check that case a) cannot be realised for n = 4, 7, 11 and that the cases
n = 5, 8, 10 give quivers (5.1.6), (5.1.10) and (5.1.12) respectively. Next, for case a.3 one has: n even and
k ≤ 4: indeed, since n ≥ 4, from equation (5.1.14), one has that

2

4
+
k − 1

2
≥ k − 2,

which implies that
k

2
≤ 2.

If k = 4 and n = 4 then one gets quiver (5.1.5). If k = 3, then n ≤ 12: indeed, from equation (5.1.14), we
have

2

n
+

1

2
+

1

3
≥ 1

This leads to: quiver (5.1.4) for n = 4, quivers (5.1.8) and (5.1.9) for n = 6, quiver (5.1.11) for n = 8, and
quiver (5.1.13) for n = 12.
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We turn now to case b): n is odd and ≥ 3; this implies that k ≤ 4: indeed, in the same way as the
previous case, equation (5.1.14) gives

4

3
+
k − 2

3
≥ k − 2 =⇒ 8

3
≥ 2k

3
.

Therefore, setting k = 4 forces n = 3, which leads to quiver (5.1.2). When k = 3 one has that n ≤ 6, which
implies that n = 3 or n = 5. One checks that n = 3 is impossible, whereas n = 5 gives quiver (5.1.7). Since
we have dealt with all the possible cases, the proof is complete. �

Theorem 5.3. Assume that g ≥ 1. Then, the only pairs (Q,α), where Q is a crab-shaped quiver and
α ∈ F(Q) is such that 〈α, α〉 = −1 are the following:

(5.1.15) 1

(5.1.16) 2 1

Remark 5.4. Parallel to Remark 5.2, in the second case above, the quiver and dimension vector are also of

the form (2δ, 1) where δ = (1) is the primitive imaginary root of affine type Ã0 (the Jordan quiver with one
vertex and one arrow).

Proof of Theorem 5.3. As in the arguments of the previous theorem, we see that, if v is the central vertex
and α ∈ F , then there are 3 possibilities for the value of (α, ev), i.e., (α, ev) can be either 0, −1 or −2. In
general one has that

(α, ev) = 2(1− g)n−
k∑

i=1

αi,1.

If k = 0, then, by the argument leading to cases (a) and (b) in the proof of Theorem 5.1, one must have
n = 1 and g = 2, which gives the first quiver of the statement of the result. Thus, one is left to show that for
k ≥ 1, there are no crab-shaped quivers satisfying the mentioned conditions other than the second quiver in
the statement of the theorem. If k ≥ 1, n > 1, which implies that either (α, ev) = 0 or −1. In the first case,
we get that

2(1− g)n =

k∑

i=1

αi,1;

but g ≥ 1, which gives
∑k

i=1 αi,1 ≤ 0, a contradiction. If (α, ev) = −1, then one must have n = 2 and
αi,1 = 1 for i = 1, . . . , k and g = 1. This implies that

k = 5− 4g,

which forces k = 1. Therefore, we get the quiver

2 1.

Since we dealt with all the possible cases the proof is complete. �
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Remark 5.5. Note that, to get a list of all the (2, 2)-cases one has to take each of the pairs (Q,α) drawn
above and consider the pair (Q, 2α). Moreover, given q ∈ (C×)Q0 and θ ∈ ZQ0 , it follows from Theorem 6.16
below that the given α are in Σq,θ (since they are already in F(Q)) if and only if the following are satisfied:
(a) they are in Nq,θ, i.e., q

α = 1 and θ · α = 0, and (b) in the (2δ, 1) cases (mentioned in Remarks 5.2 and
5.4), δ /∈ Nq,θ, i.e., q

δ 6= 1 or θ · δ 6= 0.

6. General dimension vectors and decomposition

One fundamental tool in the classification theorem [BS16, Theorem 1.4] is the canonical decomposition of
a dimension vector of a quiver variety into summands which lie in Σλ,θ, which is the additive version of the
set Σq,θ defined in this paper (one just needs to replace the condition qα = 1 with λ · α = 0). This appears
in Crawley-Boevey’s canonical decomposition in the additive case (extended to the case θ 6= 0 in [BS16]).
Combinatorially, it says:

Lemma 6.1. [CB02, Theorem 1.1], [BS16, Proposition 2.1] Let α ∈ NR+
λ,θ. Then α admits a unique

decomposition α = n1σ
(1) + · · ·+nkσ

(k) as a sum of elements σ(i) ∈ Σλ,θ such that any other decomposition
of α as a sum of elements from Σλ,θ is a refinement of this decomposition.

Geometrically, the statement (together with the consequence for symplectic resolutions) is:

Theorem 6.2. [CB02, Theorem 1.1], [BS16, Theorem 1.4] The symplectic variety Mλ,θ(Q,α) = µ−1(λ)θ−ss//GL(α)
is isomorphic to the product

Mλ,θ(Q,α) ∼=
k∏

i=1

SniMλ,θ(Q, σ
(i)).

Moreover, it admits a symplectic resolution if and only if each Mλ,θ(Q, σ
(i)) admits a symplectic resolution.

For multiplicative quiver varieties, the combinatorial statement still holds, but it is not clear that such
a geometric decomposition holds. We instead prove a weaker statement, which gives a decomposition into
factors which might not be minimal, but still has all of the needed properties. Moreover, the resulting
classification of symplectic resolutions is the same statement as if the canonical decomposition as above
held. As a result we are able to generalise Theorem 1.5 to the case of general dimension vectors (Theorem
6.27), and give its specialisation to the crab-shaped case (Corollary 6.28). To complete the proof, we need
to establish that Mq,θ′(Q,α) → Mq,θ(Q,α) is a symplectic resolution for many α not in Σq,θ (Theorem
6.23), in order to handle such factors appearing in the decomposition. In the additive case, such resolutions
include the Hilbert schemes of points in C2 and in hyperkähler ALE spaces (i.e., minimal resolutions of du
Val singularities).

6.1. Flat roots. In order to write a product decomposition in the multiplicative setting, the dimension
vectors for the factors need to be more general than those in Σq,θ. The dimension vectors turn out to include
“flat roots”, which are those for which the moment map is flat (this is true for roots in Σq,θ). This condition
is also very important in order to have a geometric understanding of the varieties.

Definition 6.3. A vector α ∈ Nq,θ is called flat if, for every decomposition α = α(1) + · · · + α(m) with

α(i) ∈ R+
q,θ, we have p(α) ≥ p(α(1)) + · · ·+ p(α(m)). Let Σ̃q,θ be the set of flat roots.

Remark 6.4. As in [CB01, Theorem 1.1], we could alternatively have made the definition only requiring
α(i) ∈ Nq,θ. Indeed, it follows from the proof of the decomposition theorem (Theorem 6.17) below that if

α ∈ Nq,θ, then there is a decomposition α = β(1) + · · · + β(k) with each β(i) either in Σ̃q,θ or of the form

β(i) = mγ, γ ∈ Σiso
q,θ, satisfying p(α) ≤ p(β(1)) + · · · + p(β(k)). Hence, if we know the inequality when the

α(i) ∈ R+
q,θ, we also know it when the α(i) ∈ Nq,θ.

The definition has the following interpretation. Let SL(α) := {g ∈ GL(α) | ∏i∈Q0
det(gi) = 1} ⊂ GL(α).

Note that Φα factors through the inclusion SL(α) → GL(α); let Φα : Rep◦(Q,α)θ−ss → SL(α) be the
factored map.

Proposition 6.5. If α is a flat root, then Φα is flat over a neighbourhood of q. In particular, Φ−1
α (q)θ−ss

is a complete intersection and is equidimensional of dimension gα + 2p(α).
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Proof. The second statement follows from the argument of Proposition 2.19 (following [CB01, Theorem
1.11]): all arguments go through with the strict inequality replaced by the non-strict one, except that no
statement can be deduced about the stable (or simple) representations forming a dense subset. For the

first statement, concerning flatness, note that dimΦ
−1

α (q)θ−ss = dimRep◦(Q,α)θ−ss − dimSL(α). Then the
statement follows from the following general considerations. Suppose we are given a morphism of varieties
f : X → Y , with X equidimensional. By upper semicontinuity of the fibre dimension, the minimum fibre
dimension is dimX −dim Y and the locus in Y where the fibres have this minimal dimension is open. Next,
it is a standard fact that a morphism from a Cohen-Macaulay variety X to a smooth variety Y is flat if and
only if for every x ∈ X , with y = f(x) ∈ Y , one has the equality dimxX = dimy Y + dim f−1(y). It follows
that f is flat over the open locus where the fibres have minimum dimension. Now, back to the situation at
hand, by the second statement of the proposition, the minimum dimension is attained over q ∈ SL(α). As the
domain and codomain are equidimensional and smooth, the aforementioned open locus is a neighbourhood
of q over which Φα is flat. �

Putting this together with Proposition 2.17, we conclude the following analogue of the last statement of
Proposition 2.19:

Corollary 6.6. For α a flat root, a dense subset of Φ−1
α (q)θ−ss is given by the union of preimages of strata

of types (1, β(1); . . . ; 1, β(r)) with p(α) =
∑r

i=1 p(β
(i)).

Observe that Σq,θ ⊆ Σ̃q,θ. The opposite inclusion does not hold: for instance, with (q, θ) = (1, 0), one can
take the quiver with two vertices and two arrows, one a loop at the first vertex, the other an arrow to the
second vertex. Then the dimension vector (m, 1) is flat for all m, but only in Σq,θ for m = 1.

Remark 6.7. Note that, for every pair q, θ, there always exists q′ such that Nq′,0 = Nq,θ, and hence Σq,θ =

Σq′,0 and Σ̃q,θ = Σ̃q′,0. Indeed, let z ∈ C× be a multiplicatively independent element from the qi (i.e.,
〈z, qi〉/〈qi〉 is infinite cyclic, where 〈−〉 denotes the multiplicative group generated by the given elements).
Set q′i := qiz

θi. Then q′ has the desired properties.

Remark 6.8. Similarly, given any parameters in the additive case (for ordinary quiver varieties), λ ∈ CQ0 , θ ∈
ZQ0 , we also can construct q′ ∈ (C×)Q0 such that the sets N and Σ correspond. More precisely, letting

Na
λ,θ,Σ

a
λ,θ, Σ̃

a
λ,θ denote the sets defined for the additive case, this means that Na

λ,θ = Nq′,0, Σ
a
λ,θ = Σq′,0,

and Σ̃aλ,θ = Σ̃q′,0.

We recall, following [CB01] and [Su06], how to classify flat roots in terms of the fundamental region.

Definition 6.9. We say that the transformation α 7→ sv(α) is a (−1)-reflection if sv(α) = α− ev.

We point out a useful geometric consequence of this definition:

Proposition 6.10. Suppose that α 7→ sv(α) is a (−1)-reflection and that qv = 1 and θv = 0. Then there is
a reflection isomorphism Mq,θ(sv(α))

∼→ Mq,θ(α).

Proof. There is an obvious map Mq,θ(α − ev) → Mq,θ(α), given by ρ 7→ ρ ⊕ Cv, where Cv is the trivial
representation (all arrows act as zero). We claim that it is an isomorphism. In the decomposition of any θ-
polystable representation of dimension α into stable representations, at least one factor must have dimension
vector which has positive pairing with ev. By [CBS06, Lemma 5.1] (in the case θ = 0, which extends to
the general case by replacing simple representations by θ-stable ones), this summand must be Cv itself.
Therefore, the obvious map is an isomorphism. �

Definition 6.11. Given α ∈ R+
q,θ, call a sequence v1, . . . , vm ∈ Q0 a reflecting sequence if, setting

(q(i), θ(i), α(i)) := (uvi · · ·uv1(q), rvi · · · rv1(θ), svi · · · sv1(q)),

we have (a) α(m) ∈ F(Q) ∪ {ev | v ∈ Q0}, and (b) α
(i)
vi < α

(i−1)
vi for all i.

Lemma 6.12. A reflecting sequence always exists.
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Proof. By definition, α is a root if and only if there exists a sequence of reflections at loopfree vertices taking
α to either the fundamental region or to an elementary root ev (it is imaginary in the former case and real in
the latter case). Now, given α ∈ NQ0 , let Nα := |{β ∈ R+ real | (α, β) > 0}|. Then each reflection satisfying
(b) decreases Nα by one, and a non-trivial reflection not satisfying (b) increases Nα by one. Now assume
that α ∈ R+

q,θ. Then Nα <∞. Since sv(R
+ \ {ev}) ⊆ R+, an arbitrary sequence of reflections satisfying (b)

will remain in NQ0 . Thus, if α is real, an arbitrary Nα − 1 reflections satisfying (b) will send α to ev for
some v ∈ Q0, and if α is imaginary, then an arbitrary Nα reflections satisfying (b) will take α to F(Q). �

As in [Su06, Theorem 1.2], we have the following.

Theorem 6.13. Let α ∈ R+
q,θ. Pick any sequence of vertices v1, . . . , vm ∈ Q0 such that, for (q(i), θ(i), α(i)) :=

(uvi · · ·uv1(q), rvi · · · rv1 (θ), svi · · · sv1(q)), we have α(m) ∈ F(Q) and α
(i)
vi < α

(i−1)
vi . Then α is flat if and

only if (a) α(m) ∈ F(Q) is flat, and (b) for every i, either (b1) (q(i), θ(i), α(i)) is an admissible reflection

(Definition 2.5) of (q(i−1), θ(i−1), α(i−1)) (i.e., q
(i−1)
vi 6= 1 or θ

(i−1)
vi 6= 0), or (b2) α(i) is a (−1)-reflection of

α(i−1).

Analogously to [Su06], we will show below that α(m) ∈ F(Q) is flat if and only if it is not of the form
mℓδ for δ the minimal imaginary root of an affine Dynkin subquiver, m ≥ 2, and ℓ ≥ 1 is such that qδ is a
primitive ℓ-th root of unity.

The theorem actually gives an algorithm to determine if a root is flat, by playing a variant of the numbers
game [Moz90] (with a cutoff in the inadmissible case as in [GS11]).

Proof of Theorem 6.13. Under an admissible reflection the condition of being flat does not change since
svi : R+

q(i−1),θ(i−1) → R+
q(i),θ(i)

is a bijection (as evi /∈ R+
q(i−1),θ(i−1)), cf. [CB01, Lemma 5.2]. Here we let

q(0) := q and θ(0) := θ. If we apply a (−1)-reflection, we claim that the condition of being flat does not

change. We only have to show that, if α(i) ∈ Σ̃q(i),θ(i) , then also α(i−1) ∈ Σ̃q(i−1),θ(i−1) , since the converse

follows immediately from the definition of flat. Suppose on the contrary that α(i−1) = β(1) + · · ·+ β(k) is a
decomposition with β(j) ∈ R+

q(i−1),θ(i)
and p(α(i−1)) < p(β(1)) + · · · + p(β(k)). Since (α(i−1), evi) = 1, there

must exist j with (β(j), evi) ≥ 1, and hence also β
(j)
vi ≥ 1. Set γ(ℓ) := β(ℓ) − δℓjevi for all ℓ. Note that

p(γ(j)) ≥ p(β(j)), with equality if and only if (β(j), evi) = 1. Then

p(α(i)) = p(α(i−1)) < p(β(1)) + · · ·+ p(β(k)) ≤ p(γ(1)) + · · ·+ p(γ(k)),

so that α(i) /∈ Σ̃q(i),θ(i) . We have proved the contrapositive.

It remains to show that, if (α(i−1), evi) > 1 and (qvi , θvi) = (1, 0), then α(i−1) /∈ Σ̃q(i−1),θ(i−1) In this

case there can be no loops at vi, so that evi is a real root. Moreover, α
(i−1)
vi ≥ 1. Then, p(α(i−1) − evi) =

p(α(i−1) − evi) + p(evi) > p(α(i−1)). So α(i−1) is not flat. �

Remark 6.14. The same theorem as above applies in the additive case, to characterise the analogous set Σ̃λ,θ
of flat roots. Also, note that when θ = 0, the above proof simplifies the proof of [Su06, Theorem 1.2], since
it does not require the classification [CB01, Theorem 8.1] of roots in F(Q) \ Σλ,0.
Remark 6.15. Thanks to [GS11, Theorem 3.1], the condition that any (or every) reflecting sequence consists
only of admissible and (−1)-reflections is equivalent to the condition that, for every real root β ∈ R+

q,θ, we

have (α, β) ≤ 1.

6.2. Fundamental and flat roots not in Σq,θ. To complete the characterisation, we need to determine

the set F(Q) \ Σ̃q,θ. This follows from [CB01, Theorem 8.1], which computes F(Q) \ Σλ (in the additive
case, but which extends to the present setting). We state a sharper and more general version:

Theorem 6.16. A root in R+
q,θ is not in Σq,θ if and only if, applying a reflecting sequence as in Theorem

6.13, either one of the reflections is inadmissible, or the resulting element of F(Q) is one of the following:

(a) mℓδ with δ the indivisible imaginary root for an affine Dynkin subquiver, m ≥ 2, and ℓ is such that
qδ is a primitive ℓ-th root of unity; or

(b) The support of α is J ⊔K for J,K ⊆ Q0 disjoint subsets with exactly one arrow in Q1 from a vertex
j ∈ J to a vertex k ∈ K, αk = 1, and either:
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(b1) αj = 1, and α|J ∈ R+
q,θ, or

(b2) Q|J is affine Dynkin and α|J = mδ for some m ≥ 2, with δ ∈ R+
q,θ indivisible and j an extending

vertex of Q|J .
Moreover, the root is not in Σ̃q,θ if and only if one of the reflections is neither admissible nor a (−1)-reflection,
or the resulting element of F(Q) is in case (a).

Proof. First, it is clear that if an inadmissible reflection is applied in the sequence, p(α) ≤ p(siα)+p(α−siα)
shows that α is not in Σq,θ. So we can assume all reflections are admissible. By [CB01, Theorem 8.1] in the
additive case (with θ = 0), there is a sequence of admissible reflections resulting in one of the given cases
(which is not assumed to be in F(Q)). The proof in loc. cit. extends verbatim to our case, replacing Nλ by
Nq,θ. Although the additive statement has ℓ = 1 (or in characteristic p has ℓ = p), for us we note that if qδ

is a primitive ℓ-th root of unity, i.e., ℓδ is q-indivisible, then ℓδ ∈ Σq,θ, since every element β ∈ Nq,θ with
β < ℓδ is real. Note that, in [CB01, Theorem 8.1] the condition in (b2) that δ ∈ R+

λ is not stated (since its
goal is to produce non-exhaustive necessary conditions for α ∈ Σ), but it follows from the proof that it is
also a necessary condition for α /∈ Σ.

We claim that in fact we can take the result to be in F(Q). Note that, in [CB01], it is not required in
conditions (a),(b) that α be in F(Q). However, we already know that, in order to have α ∈ Σq,θ, there must
be an admissible reflection sequence taking α to F(Q). Thus we may assume that α ∈ F(Q) and moreover
that it is sincere. Then, applying [CB01, Theorem 8.1], there is a further sequence of admissible reflections
taking α to one of the forms above. After this we can apply an admissible reflection sequence to get back to
an element of F(Q), necessarily α again. It is clear that doing so will not change the form as above, since
α was assumed to be sincere, so the reflections cannot shrink the support of α; note that, in cases (a) and
(b2), this means that no reflections will be applied to the coefficients of the multiple of δ.

For the converse, it remains to verify that cases (a) and (b1),(b2) are not in Σq,θ. In case (a) p(mδ) =
1 < mp(δ) = m. In case (b1), p(α) = p(α|J ) + p(α|K). Finally, in case (b1), p(α) = p(δ) + p(α− δ).

The statement about flat roots follows from Theorem 6.13 together with the observation that case (a) is
not flat (as p(mℓδ) < mp(ℓδ)), whereas cases (b1) and (b2) are flat: this follows from [Su06, Theorem 1.1],
where it is shown that (b1) and (b2) are already flat as elements of Σ1,0 (which is stronger). �

6.3. Canonical decompositions. Let Σiso
q,θ ⊆ Σq,θ be the subset of isotropic imaginary roots. We use the

notation N≥2 · Σiso
q,θ := {mα | m ≥ 2, α ∈ Σiso

q,θ}.

Theorem 6.17. (i) Given α ∈ Nq,θ, there exists a unique decomposition α = α(1)+· · ·+α(m) with α(i) ∈ Σq,θ
such that any other such decomposition is a refinement of this one.

(ii) There is also a unique decomposition α = β(1) + · · ·+ β(k) with β(i) ∈ Σ̃q,θ ∪N≥2 ·Σiso

q,θ, satisfying the
properties:

(a) Every element β(i) is of one of the following three types:
(1) β(i) ∈ Σq,θ;

(2) β(i) ∈ N≥2 · Σiso

q,θ;

(3) β(i) ∈ Σ̃q,θ \Σq,θ; moreover, there is an admissible reflection sequence taking β(i) to an element
of the fundamental region having only decompositions of the form (b2) in Theorem 6.16.

(b) Any other decomposition into Σ̃q,θ ∪ N≥2 · Σiso

q,θ satisfying (a) and (b) is a refinement of this one.

(iii) The decomposition in (i) is a refinement of the one in (ii), obtained uniquely, after applying admissible
reflections, by performing decompositions α = α|J + α|K of type (b2) in Theorem 6.16.

(iv) The direct sum map produces a Poisson isomorphism (of reduced varieties), using the decomposition
in (ii),

k∏

i=1

Mq,θ(Q, β
(i)) ∼→ Mq,θ(Q,α).

Notice the following immediate consequence (of the decomposition in (ii)), giving a weakened version of
(*):
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Corollary 6.18. If α is the dimension of a θ-stable representation of Λq, then one of the following three
cases must hold: (1) α ∈ Σq,θ; (2) α ∈ N≥2Σ

iso

q,θ; (3) α is obtained by admissible reflections from an element

in the fundamental region having only type (b2) decompositions in Theorem 6.16.

Remark 6.19. In the additive situation, the fact that cases (2) and (3) in the preceding corollary cannot
occur was very recently given a simpler, unified proof in [CBH19].

Note that, in the real case α ∈ Σq,θ, it is obvious from the properties of admissible reflections that α
is the dimension of a θ-stable representation (see [CBS06, Theorem 1.9] for a stronger statement). In the
imaginary case, following (*), we only expect a stable representation if α ∈ Σq,θ, but it is not at all clear
how to prove its existence.

In the proof of the theorem, we will produce also an algorithm for constructing the β(i), by a sequence of
reflections and subtracting roots ei, with the end result an element in F(Q) whose connected components
give the imaginary β(i). For the real roots, we obtain the unique decomposition into real roots in Σq,θ (as a
real root which is the sum of multiple real roots cannot be in Σq,θ).

Remark 6.20. Observe that essentially the same proof as that provided below of Theorem 6.17 was given
in [CB02] in the context of Nakajima quiver varieties, and indeed the result above holds in that setting.
However, due to the simplifying properties of that case (such as expectation (*) holding, and q-divisibility
coinciding with ordinary divisibility), Crawley-Boevey is able to show that the product decomposition in (iv)
always refines to one using the decomposition of (i). Hence the statement given in [CB02] is substantially
simpler, eliminating parts (ii) and (iii).

Proof of Theorem 6.17. We first obtain the existence of the desired decompositions in (i) and (ii) satisfying
(iii) and (iv). We prove this by induction on the sum of the entries of α. If there is a vertex v ∈ Q0

at which (α, ev) > 0 and either qv 6= 1 or θv 6= 0, then we can apply an admissible reflection. Since
admissible reflections preserve the set of flat roots, the statements follows from Theorem 2.13 and the
induction hypothesis. So suppose that there is no such vertex. Instead, suppose that v ∈ Q0 is such that

(α, ev) > 0 but qv = 1, θv = 0. Then every decomposition of α into elements of Σ̃q,θ must have an element
having positive Cartan pairing with ev. This cannot happen by definition for the imaginary roots. Since ev
is the only real root in Σq,θ with positive pairing with ev, this implies that ev must appear as a summand
of every decomposition of types (i) and (ii). Similarly, the argument of the proof of Proposition 6.10 shows
that, in this case, the direct sum map yields an isomorphism Mq,θ(Q,α− ev)×Mq,θ(Q, ev)

∼→ Mq,θ(Q,α).
We can apply the induction hypothesis to α− ev.

This reduces the theorem to the case that (α, ei) ≤ 0 for all i. In this case we can decompose α into its
connected components. By Theorem 6.16, all of these are flat roots, except for elements of the form mℓδ
with ℓδ ∈ Σiso

q,θ and m ≥ 2.

It remains to show that, given the situation (b1) of Theorem 6.16, we get a decomposition of our moduli
space. This follows from the arguments of [CB01, §10, II]. We briefly repeat them for the reader’s convenience,
adapting them to our situation (see loc. cit. for details). Restrict the quiver to the vertices {j}∪K and the
arrows incident only to these vertices. Let a, a∗ be the pair of reverse arrows between j and k; without loss of
generality suppose a : j → k. Adding the relations at all the vertices of K, and using that α|K ∈ Nq,θ (since
α and α|J are), we obtain that a∗a is equal to a sum of commutators. It thus has trace one, and since αj = 1,
it is zero. Therefore either a∗ or a acts by zero. In the former case we obtain a quotient representation with
dimension vector α|K ; in the latter we obtain a subrepresentation with this dimension. These representations
are θ-semistable since θ · α|K = 0, and the original representation was θ-semistable. So the polystabilisation
of our representation decomposes into a direct sum of representations with dimension vectors α|J and α|K .
Therefore the direct sum map Mq,θ(Q,α|J)×Mq,θ(Q,α|K) → Mq,θ(Q,α) is an isomorphism.

This yields the desired decomposition in (ii), as well as the isomorphism in (iv), and the decomposition
in (iii).

Let us prove that the decompositions are unique. For (i), this is done in [CB02, Theorem 1.1]; the proof
carries over verbatim, replacing Σλ by Σq,θ and adapting all notions. Let us consider (ii), whose proof
is similar. We can obviously assume that α is sincere. We first claim that the uniqueness statement is
unaffected by applying the aforementioned reduction to the fundamental region. It is obvious that applying
admissible reflections does not change the statement. So we only have to show that, if (α, ev) > 0, then every
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decomposition of type (ii) includes ev. In this case, any decomposition of the form (ii) must have (β(i), ev) > 0

for some v. If β(i) 6= ev, then we must have β(i) /∈ N ·Σq,θ. Thus β(i) ∈ Σ̃q,θ, and by assumption (3), it must
be related by admissible reflections to an element of the fundamental region. Therefore, it does not have a
positive pairing with any real roots. This is a contradiction. We therefore obtain that β(i) = ev for some i.
Thus the uniqueness statement for α is equivalent to that for α− ev, as desired.

This reduces us to the case that α is in the fundamental region. We clearly can get a decomposition in a
unique way by iteratively replacing α by the sum α|J + α|K as in (b1) of Theorem 6.16. We only have to
show that every decomposition of the form (ii) refines such a decomposition of type (b1). For a contradiction,
suppose α is in the fundamental region and we have a decomposition of type (b1) with sets J and K, but
also a decomposition of type (ii) with some β(i) not supported entirely on J or K. After applying admissible
reflections to β(i), this property continues to hold, since we cannot perform admissible reflections at the
vertices j and k. So we can assume β(i) is itself in the fundamental region. This contradicts our assumptions
on β(i). �

As a consequence, we obtain the following description of divisibility criteria for elements of Σ̃q,θ and Σq,θ,
analogous to [BS16, Theorem 2.2]:

Corollary 6.21. Let α = mβ for β ∈ R+
q,θ q-indivisible and imaginary, and m ≥ 2. Then, α ∈ Σ̃q,θ if and

only if β ∈ Σ̃q,θ, β is anisotropic, and a reflecting sequence taking β to the fundamental region involves only
admissible reflections. In this case, also α ∈ Σq,θ.

In particular, for γ ∈ Σ̃q,θ, every rational multiple rγ ∈ Nq,θ for r ∈ Q≤1 is also in Σ̃q,θ.

Proof. This follows from the classification of flat roots in Theorems 6.13, 6.16, and 6.17. Observe simply that
if a reflection sequence for β involves an inadmissible (−1)-reflection, then the same sequence for α involves
an inadmissible (−2)-reflection (which is not allowed). On the other hand, if only admissible reflections
are allowed, then mβ will also be flat unless β is isotropic. In the anisotropic case, mβ ∈ Σq,θ, since the
decompositions of type (b1) and (b2) cannot occur for a divisible vector. The last statement then follows
by considering γ and rγ as multiples of a common vector. �

Remark 6.22. Although we are working with reduced varieties throughout the paper, we emphasised this in
Theorem 6.17.(iv) because it is not completely clear that the reflection isomorphisms in [Yam08, Theorem
5.1] are defined scheme-theoretically. On the other hand, this is the only obstacle here. That is, if these
isomorphisms are defined scheme-theoretically, then the proof would appear to extend to this case, i.e., to
not-necessarily-reduced multiplicative quiver schemes.

6.4. Symplectic resolutions for q-indivisible flat roots.

Theorem 6.23. Suppose that α ∈ Σ̃q,θ is q-indivisible and Mq,θ(Q,α) is non-empty. Then for suitable
θ′ ≥ θ, Mq,θ′(Q,α) → Mq,θ(Q,α) is a symplectic resolution.

Remark 6.24. Observe that the theorem also holds in the additive setting, where the result is also interesting.
Indeed, it explains and generalises the technique of framing used to construct resolutions such as Hilbert
schemes of C2 or of hyperkähler ALE spaces. In the former case, the quiver is again the framed Jordan
quiver (with two vertices and two arrows, a loop at the first vertex, and an arrow from the second to the first
vertex). The dimension vector is α = (m, 1). The theorem recovers the well-known statement that taking
θ 6= 0 gives a symplectic resolution of the singularity Symm C2 in the additive case; this identifies with
HilbmC2. In the multiplicative case for the same quiver, by Theorem 3.6 and Remark 3.7, after localisation,
we obtain a resolution of the character variety of the once-punctured torus in the multiplicative case for rank
m local systems with unipotent monodromy A satisfying rk(A− I) ≤ 1.

Proof of Theorem 6.23. In view of Lemma 2.12, we only have to show that we can find θ′ ≥ θ such that
Mq,θ′(Q,α) is smooth and Mq,θ′(Q,α) → Mq,θ(Q,α) is birational. We will make use of the combinatorial
analysis of [CB01, Section 8]. Note that, if α ∈ Σq,θ, then the result follows from the discussion in Section
4.1, so we can assume that this is not the case.

Let us take θ′ generic such that the conditions of Remark 2.22 are satisfied (i.e., θ′ is an integral multiple
of a generic rational stability condition in a small neighbourhood of θ). In particular this means that θ′ ≥ θ,
every θ-stable representation is θ′-stable, and θ′ · β 6= 0 for any β < α with β ∈ Nq,θ.
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By Corollary 6.6, for each connected component of Mq,θ(Q,α), there is a dense stratum of the form

(1, β(1); . . . ; 1, β(r)) with p(α) =
∑r

i=1 p(β
(i)). We need to show that each representation ρ in such a stratum

is in the boundary of a unique GL(α)-orbit in Repθ
′−s(Λq(Q), α). Equivalently, we must show that there is

a unique θ′-stable representation ρ′ up to isomorphism such that ρ is the θ-polystabilisation of ρ′.
We will prove the statement by induction on α, with respect to the partial ordering ≤. First, applying

admissible and (−1)-reflections, we reduce to the case that α is in the fundamental region. Indeed, it is
clear from Theorem 2.13 and Proposition 6.10 that applying these reflections causes no harm. Note that
each (−1)-reflection will modify stratum types by removing a real root from the type; once we are in the
fundamental region no real roots will appear.

We first show uniqueness. If ρ′ is as above, then suppose that there is an exact sequence of θ-semistable
representations of the form 0 → ψ → ρ′ → φ → 0. By our assumptions, the dimension vectors of ψ and
φ are sums of complementary subsets of the β(i). It follows from the proof of Theorem 6.16 (using [CB02,
Section 8]) that there is a corresponding decomposition of α as in Theorem 6.16, of type (b1) or (b2), with
the following property: in type (b1), α(1) := α|J and α(2) := α|K are the dimension vectors of ψ and φ, in
either order; or, in type (b2), α(1) := δ and α(2) := α− δ are these dimension vectors, again in some order.
Note that the ordering of the α(i) is fixed by the conditions that dimψ · θ < 0 and dimφ · θ > 0. Next,
since (α(1), α(2)) = −1, it follows from Proposition 2.2 that dimExt1(ψ, φ) = dimExt1(φ, ψ) = 1. So the
extension ρ′ is uniquely determined, up to isomorphism, from ψ and φ.

We claim that ψ and φ are uniquely determined from their dimension vectors up to isomorphism. We give
the argument for ψ; the one for φ is symmetric. Let C ⊆ {1, . . . , r} be a subset of indices such that dimψ =∑

i∈C β
(i). (This set is unique except in case (b2) with dimψ = α(2) = α− δ.) There exists a unique i ∈ C

such that (β(i), dimφ) = −1 (since (α(1), α(2)) = −1). Now, define θ′′ := θ′|suppdimψ − (θ′ · dimψ)ev, where
v is the unique vertex in supp dimψ which has non-zero Cartan pairing with supp dimφ (so (dimψ)v = 1).
By construction, θ′′ · dimψ = 0 = θ′′ · dimφ. Moreover, θ′′ · β(j) = θ′ · β(j) for j ∈ C \ {i}. We claim that
ψ is θ′′-stable. By definition of θ′-stability, every nonzero submodule η of ψ satisfies θ′ · dim η < 0. Now,
if β(i) 6≤ dim η, then θ′′ · dim η = θ′ · dim η < 0. On the other hand, if η is a proper submodule of ψ with
β(i) ≤ dim η, then ψ/η is a nonzero quotient module with β(i) 6≤ dim(ψ/η). Then (dim(ψ/η), dim φ) = 0.
By Proposition 2.2, Ext1(φ, ψ/η) = 0. Therefore, we have an exact sequence 0 → η → ρ′ → (ψ/η)⊕ φ→ 0.
As a consequence, ψ/η itself is a quotient module of ρ′. It follows that θ′ · dim(ψ/η) > 0. Therefore,
θ′′ · dim(ψ/η) = θ′ · (ψ/η) > 0. Therefore, θ′′ · η < 0. We conclude that ψ is θ′′-stable, as desired. By
induction on α, ψ is then uniquely determined up to isomorphism.

This completes the proof of uniqueness. We move on to existence, which is similar. Begin with a
decomposition given by Theorem 6.16 of type (b1) or (b2). Let us keep the notation α(1), α(2) defined
above. The same construction as above yields modifications θ(1), θ(2) of θ′ such that θ(i) · α(i) = 0. By
induction we can take θ(i)-stable representations φ, ψ of dimension vectors α(i). Then since (α(1), α(2)) = −1,
dimExt1(φ, ψ) = dimExt1(ψ, φ) = 1. Assume that θ′ · φ < 0, otherwise swap φ and ψ. Then form a non-
trivial extension 0 → φ→ ρ′ → ψ → 0. The same computation as above guarantees that ρ′ is θ′-stable. �

Corollary 6.25. In the situation of the proposition, the normalisation of Mq,θ(Q,α) is a symplectic singu-
larity.

Proof. This follows since we have constructed a symplectic resolution (see Proposition 4.5 or Remark 4.6). �

Remark 6.26. Note that the main step of the proof is to show that Mq,θ′(Q,α) → Mq,θ(Q,α) is birational
for suitable θ′ ≥ θ. For this, we did not need the hypothesis that α is q-indivisible. On the other hand,

by Theorems 6.13 and 6.16, when α ∈ Σ̃q,θ \ Σq,θ, α is actually indivisible (not merely q-indivisible). For
α ∈ Σq,θ, the birationality statement is Corollary 2.21, which is easy. (Moreover, the full statement of
Theorem 6.23 was established for α ∈ Σq,θ in Section 4.1.) So it does not really add anything to state the
birationality property without the q-indivisibility hypothesis.

6.5. Symplectic resolutions for general α.

Theorem 6.27. Assume that Mq,θ(Q,α) is non-empty and that the decomposition of Theorem 6.17.(ii) has

no elements β(i) of the forms (a) β(i) = 2γ for γ ∈ Nq,θ and p(γ) = 2, or (b) β(i) = mγ for m ≥ 2 and
γ ∈ Σiso

q,θ. Then:
34



• The normalisation of Mq,θ(Q,α) is a symplectic singularity;

• Each factor Mq,θ(Q, β
(i)) with β(i) /∈ Σq,θ admits a symplectic resolution;

• If for any factor β(i) there exists a θ-stable representation of dimension γ(i) = 1
m
β(i) with m ≥ 2,

then Mq,θ(Q,α) does not admit a symplectic resolution. In fact, it has an open, singular, terminal,
factorial subset.

Proof. The first statement follows if we show that the normalisation of each factor Mq,θ(Q, β
(i)) is a sym-

plectic singularity. For the factors such that β(i) is in Σq,θ, this is a consequence of Theorem 1.5. For

β(i) /∈ Σq,θ, after applying admissible reflections it follows from Theorem 6.16 that it is indivisible. Hence

β(i) is itself indivisible. By our assumptions, β(i) is flat. The result then follows from Theorem 6.23. This
also proves the second statement.

We proceed to the third statement. Under the hypotheses, since we have excluded the isotropic and
(2, 2)-cases, an open subset of Mq,θ(Q, β

(j)) is factorial terminal singular by Theorem 1.5 (see Theorem
4.14). Hence so is an open subset of Mq,θ(Q,α), which therefore does not admit a symplectic resolution. �

6.6. Classifications of symplectic resolutions of punctured character varieties. Here, we combine
the results of this section and Theorem 5.1 to get a classification of all the character varieties of punctured
surfaces which admit a symplectic resolution, modulo the conjectural results of the (2, 2)-cases. As explained
in Section 3, in order to get such a result, it suffices to consider multiplicative quiver varieties of crab-shaped
quivers, where the parameter q and the dimension vector α are chosen in an appropriate way; see Theorem
3.6.

Let Q be a crab-shaped quiver, q ∈ (C×)Q0 and α ∈ Nq,θ and consider the corresponding quiver variety
Mq,θ(Q,α). Then, if α /∈ F(Q), we can apply the algorithm of Theorem 6.17 and obtain a decomposition
where the dimension vectors of the factors are in the fundamental region (such dimension vectors are the
connected components of the reflection of α). Moreover, note that, in the crab-shaped case, all the vector
components not containing the central vertex are Dynkin quivers of type A: therefore, the associated mul-
tiplicative quiver variety is just a point. This implies that we can assume, without loss of generality, that α
be sincere (αi > 0 for all i) and in the fundamental region. After having performed this reduction, we can
prove the following.

Corollary 6.28. Let Q be a crab-shaped quiver and α ∈ Nq,θ a sincere vector in the fundamental region.
Further assume that (Q,α) is not one of the following cases:

(a) β = 1
2α ∈ Nq,θ and (Q, β) is one of the quivers in Theorem 5.1 and Theorem 5.3;

(b) Q is affine Dynkin (of type Ã0 (i.e., the Jordan quiver with one vertex and one arrow), D̃4 or

Ẽ6, Ẽ7, Ẽ8) and α is a q-divisible multiple of the indivisible imaginary root δ of Q.

Then:

• The normalisation of Mq,θ(Q,α) is a symplectic singularity;
• If α is q-indivisible, Mq,θ(Q,α) admits a symplectic resolution;
• If α = mβ for m ≥ 2 and there exists a θ-stable representation of Λq(Q) of dimension β, then

Mq,θ(Q,α) does not admit a symplectic resolution (it contains an open singular factorial terminal
subset);

• In the case that α is q-divisible, the condition of the preceding part is always satisfied, except possibly
in the case: (c) Q = Qe ∪ {∗} is an affine Dynkin quiver Qe of type Ã0, D̃4, Ẽ6, Ẽ7, or Ẽ8 together
with an additional vertex {∗} and an additional arrow from this vertex to one with dimension vector
1 in δ, and α has the form (p, pℓδ) for p ≥ 2 a prime, ℓδ q-indivisible. Here δ denotes the indivisible
imaginary root of Qe.

Remark 6.29. In the final part of the corollary, expectation (*) from the introduction predicts that the
exception indeed fails to satisfy the conditions of the preceding part. Nonetheless, we believe that, also in
this case, there should not exist a projective symplectic resolution; this would be implied by Conjecture 7.15
in the appendix together with the consequence that follows it, by [BS16, Theorem 1.5].

Proof of Corollary 6.28. By Theorem 6.17, we know that α is flat unless it is a positive integral multiple of
an isotropic root, excluded in case (b). Then the first and third statements follow from Theorems 1.5 and
the second from 6.23. For the fourth statement, we apply Theorem 6.16. to see that, in the crab-shaped
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case, the dimension vector can only be in the fundamental region but not in Σq,θ if the quiver is a framed

affine Dynkin quivers of types Ã0, D̃4, Ẽ6, Ẽ7, and Ẽ8, and the dimension vector is (1, ℓδ). Thus only prime
multiples of this vector can be q-divisible but have no factor in Σq,θ.

It then remains only to show that Mq,θ(Q, β) 6= ∅ for β ∈ Σq,θ, not of the form (1, ℓδ) for a framed affine
Dynkin quiver. Let us first assume that θ = 0. In the star-shaped case, the result follows from [CBS06,
Theorem 1.1]. In the crab-shaped case with g > 0 loops at the central vertex, with θ = 0, it suffices by
Theorem 3.6 and Remark 3.7 to show that, for all conjugacy classes C1, . . . , Cm ⊂ GL(n,C) with product
of determinants equal to one, there exists a solution to the equations [A1, B1] · · · [Ag, Bg] = C1 · · ·Cm for
Ci ∈ Ci. This follows because there is a solution to the equation [X1, Y1] = C for arbitrary C ∈ SL(n,C) (by
[Tho61, Theorems 1, 2]).

Now assume θ 6= 0. In most cases (excepting the case of one loop and one branch), one can extend [CBS06,
Theorem 1.1] to this case using [Yam08, §4.3, 4.4]; however, we may give a more direct argument. Since we
are not in the situation of a framed affine Dynkin quiver with dimension vector (1, ℓδ), note that α ∈ Σq,0 as
well, so from the θ 6= 0 case and [CBS06, Theorem 1.11], we know that there exists a simple representation
of Λq of dimension α. This is automatically θ-stable, so we obtain the desired non-emptiness statement. �

Remark 6.30. The assumptions made in the above theorem relate to the fact that in cases (a) and (b), it is
still unknown whether a symplectic resolution exists, as this problem seems to be solvable only through a
deep understanding of the local structure of the variety. Nonetheless in case (a), we expect such symplectic
resolutions to exist and to be constructible by using analogous techniques to the ones used by Bellamy and
the first author in [BS16, Theorem 1.6] (see Remark 1.8).

6.7. Proof of Theorems 1.1 and 1.3. Theorems 1.1 and 1.3 follow from Corollary 6.28, together with
Theorem 3.6, as follows.

First, we claim that q-divisibility for the collection of conjugacy classes C coincides with the same-named
property for the dimension vector α of the corresponding crab-shaped quiver. To see this, first note that
m ·C indeed corresponds to m ·α. So we only have to show that the condition that

∏
i det Ci = 1 is equivalent

to qα = 1. This is true by construction.
Next, we claim that, for g = 0, the condition ℓ ≥ 2n of Theorem 1.1 is equivalent to the condition that

α ∈ F(Q), whereas for g > 0, we have α ∈ F(Q) unconditionally. By the chosen ordering of the ξi,j , we have
(α, ei) ≤ 0 for all i ∈ Q0 except possibly the node. There, the condition ℓ ≥ 2n is equivalent to (α, ei) ≤ 0.
On the other hand, when g ≥ 1, then as there is a loop at the node, it is automatic that (α, ei) ≤ 0 for
i ∈ Q0 the node, and hence in this case α ∈ F(Q) automatically.

We now claim that the dimension of X (g, k, C) equals 2p(α) when the quiver is not Dynkin or affine
Dynkin and moreover ℓ ≥ 2n or g ≥ 1. This follows from Theorem 6.16 and Theorem 3.6 (see also Remark
3.7), provided that α is not both q-divisible and isotropic. However, the latter conditions, for α ∈ F(Q), are
equivalent to saying that the graph ΓC is affine Dynkin and α is q-divisible.

With the preceding claims established, we proceed to the proof of the theorems. Note that applying
reflections as earlier in this section preserves the property that a dimension vector is one corresponding to a
character variety (by Theorem 3.6). So we can always reduce to case that α ∈ F(Q), unless we end up with
something with Dynkin support (hence X (g, k, C) is a point) or something where α becomes negative (hence
X (g, k, C) is empty). This proves the first part of Theorem 1.1. The remaining assertions of the theorems
follow from the above claims, which allow us to translate Corollary 6.28 into the given results via Theorem
3.6.

7. Open questions and future directions

In this section we pose some questions concerning the cases which are left out from the analysis carried
out in the previous sections. This includes the question of to what extent the decomposition in Theorem
6.17 can be refined, as in the additive case in [CB02].

One interesting direction of research which naturally arises from the results proved in this paper and the
work [Tir17] of the second author is the study of analogous problems in the context of the Higgs bundle
moduli spaces, which appear in the picture via the non-abelian Hodge correspondence.
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We also say a few words on how one might hope to study the local structure of formal moduli spaces of
polystable objects in a 2-Calabi–Yau category and prove that, under suitable conditions, formal neighbour-
hoods of such moduli spaces are quiver varieties associated to a quiver which arises from the deformation
theory of the objects parametrised by the moduli spaces. This is relevant to the present context as it would
make it possible to give an alternative and more insightful proof of Proposition 4.3, as explained at the
beginning of Section 4.

Before getting into these issues, we begin by discussing some cases where the multiplicative quiver varieties
are known to be non-empty.

7.1. Non-emptiness of multiplicative quiver varieties. As explained in the previous sections, one of
the subtleties in the study of multiplicative quiver varieties is the fact that it is not known in general when
they are non-empty (nor how many connected components they have). On the other hand, there are special
cases in which non-emptiness can be shown. For example, when q = 1, then, for any quiver Q and any
vector α ∈ NQ0 , the zero representation is a suitable element of Rep(Λq, α), since the invertibility condition
is automatically satisfied as well as the multiplicative preprojective relation. Thus M1,0(Q,α) 6= ∅. More
generally, for every real root β ∈ R+

q,θ, then by applying reflection sequences as in Section 6.1 (see also the

discussion after Corollary 6.18), we conclude that Mq,θ(Q, β) 6= ∅. As a result, if α can be expressed as a

sum of real roots in R+
q,θ (not necessarily coordinate vectors) then Mq,θ(Q,α) 6= ∅.

Another important and less trivial case in which we are guaranteed that Mq,θ(Q,α) is non-empty is
when Q is crab-shaped (for arbitrary α ∈ Nq,θ): this follows from the arguments of the proof of Corollary
6.28 (relying on [CB13] and [Tho61]). We remark that, by the arguments of [Yam08, §4.3, 4.4], relying
on the correspondence between character varieties of punctured surfaces and moduli of parabolic bundles
and [Ina13, §5], it follows that these varieties are in fact irreducible except possibly in certain cases of a
crab-shaped quiver with a single loop (when, after reducing to the fundamental region, the support includes
exactly one branch).

We can also ask when the stable locus Ms
q,θ(Q,α) 6= ∅. Note that an answer to this question for all α also

answers the question of non-emptiness of the entire locus, since every point in Mq,θ(Q,α) is represented by
a polystable representation. More explicitly, Mq,θ(Q,α) 6= ∅ if and only if α can be represented as a sum

of roots α(i) for which Ms
q,θ(Q,α

(i)) 6= ∅. Note that, when α ∈ Σq,θ, then non-emptiness of Mq,θ(Q,α) is

equivalent to that of Ms
q,θ(Q,α), by Proposition 2.19. Our expectation (*) says that Ms

q,θ(Q,α) 6= ∅ implies
α ∈ Σq,θ.

7.2. Refined decompositions for multiplicative quiver varieties. Recall Crawley-Boevey’s canonical
decomposition in the additive case (Theorem 6.2, Lemma 6.1). It is useful to ask to what extent such a
decomposition holds in the multiplicative setting, refining the one of Theorem 6.17. Let β(i), α(i,j) be as in
Theorem 6.17, and group together the α(i,j) that are equal, yielding distinct γ(i,j) each occurring ri,j ≥ 1

times. Note that, when γ(i,j) is anisotropic, then ri,j = 1, since ri,jγ
(i,j) ∈ Σq,θ, by the uniqueness of the

decomposition in Theorem 6.17.(i).

Conjecture 7.1. We have a decomposition as follows:

(7.2.1) Mq,θ(Q,α) ∼=
∏

i,j

Sri,jMq,θ(Q, γ
(i,j)).

The following proposition partly resolves the conjecture modulo expectation (*).

Proposition 7.2. If (*) holds, then the decomposition of Theorem 6.17.(iv) refines to one of the form

(7.2.2) Mq,θ(Q,α) ∼=
∏

i,j

Mq,θ(Q, ri,jγ
(i,j)).

Moreover, in this case, the direct sum map

(7.2.3) Sri,jMq,θ(Q, γ
(i,j)) → Mq,θ(Q, ri,jγ

(i,j))

is surjective.
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Proof. It suffices to decompose each of the Mq,θ(Q, β
(i)). By Proposition 6.16, the first statement follows

by the arguments of [CB02, Section 5] verbatim, replacing simple representations by θ-stable ones. For the
second statement, if ri,j > 1, then γ(i,j) is isotropic. Then, the canonical decomposition of ri,jγ

(i,j) appearing

in Theorem 6.17.(i) is just as a sum of ri,j copies of γ
(i,j). Thus the statement follows from Theorem 6.17.(i)

and expectation (*), since every representation in Mq,θ(Q, ri,jγ
(i,j)) is represented by a polystable one. �

Therefore, modulo (*), Conjecture 7.1 reduces to the following statement: The natural map (7.2.3) an
isomorphism. This should have a positive answer if Conjecture 7.15 holds, since as explained in Section 7.5,
the multiplicative quiver varieties would formally locally be additive quiver varieties, compatibly with the
direct sum map; then the statement reduces to Theorem 6.2.

Example 7.3. Suppose that β(i) is the following dimension vector supported on a framed type Ẽ6 quiver:

(7.2.4)

n

2n

n 2n 3n 2n n 1

Then, by the star-shaped case of Theorem 3.6 (proved in [CBS06, Section 8]), the variety M1,0(Q, β
(i)) is

isomorphic to the character variety of rank 3n local systems on the three-punctured sphere Σ0,3 = P1 \
{0, 1,∞} with unipotent monodromies: about the first two punctures, there should be n Jordan blocks of
size three (or some refinement), and about the third puncture, there should be n− 2 Jordan blocks of size
three, one Jordan block of size four, and one of size two (or some refinement). On the other hand, M1,0(Q, δ)
is the character variety of rank 3 local systems on Σ0,3 with arbitrary unipotent monodromies. Conjecture
7.1 then asks whether the first variety is isomorphic to the n-th symmetric power of the second; it does not
seem so obvious that this should be the case.

One of the difficulties in trying to adapt the proof of the analogous statement to Conjecture 7.1 in the
additive case ([CB02, Section 3]) is that, in the multiplicative case, it is no longer guaranteed that one of
the components of γ(i,j) equals one (since γ(i,j) need only be q-indivisible, not indivisible). It seems it may
be a better approach to prove Conjecture 7.15, as stated above.

Note finally that the proof of Theorem 6.2 ([BS16, Theorem 1.4]), in the additive case, relied on hy-
perkähler twistings, for which one needs to assume that the parameter λ is real. In fact, some of the issues
we face (such as expectation (*)) are not yet resolved, to our knowledge, in the general additive case where
both λ /∈ R and θ 6= 0.

7.3. Symplectic resolutions and singularities. In view of our results and the flexibility of symplectic
singularities, as well as the relationships between multiplicative and additive quiver varieties, we propose the
following:

Conjecture 7.4. Every multiplicative quiver variety is a symplectic singularity.

Note that a product of Poisson varieties is a symplectic singularity if and only if each of the factors is
(because normality and being symplectic on the smooth locus have this property, and in the definition of
symplectic singularity it is equivalent to check the extension property for one or all resolutions of singulari-
ties). Therefore the conjecture reduces to the case of factors appearing in Theorem 6.17, and if (*) holds, to
the case α ∈ Σq,θ ∪N≥2Σ

iso
q,θ by Proposition 7.2. If Conjecture 7.1 holds, then we can furthermore reduce to

the case α ∈ Σq,θ. In that case, by Theorem 1.3, the only issue is normality, which would be implied if the
variety is formally locally an additive one, as predicted by Conjecture 7.15 and the discussion thereafter.

Next, we ask to what extent the property of having a symplectic resolution is equivalent to the same
property for the factors.

Question 7.5. (i) Is it true that Mq,θ(Q,α) admits a symplectic resolution if and only if each of the factors

Mq,θ(Q, β
(i)) does?
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(ii) Suppose that (*) holds. Is it true that Mq,θ(Q,α) admits a symplectic resolution if and only if each

of the factors Mq,θ(Q, ri,jγ
(i,j)), appearing in Proposition 7.2, does?

Note that, when ri,j > 1, then γ(i,j) ∈ Σiso
q,θ, and hence is q-indivisible. Therefore, in this case,

Mq,θ(Q, γ
(i,j)) has a symplectic resolution by varying θ, by Lemma 2.12 and Corollary 2.21. Since it is

a surface, so does its ri,j-th symmetric power, by the corresponding Hilbert scheme. Therefore, if Conjecture
7.1 holds, we can ignore these factors in (ii) above, and only consider the ones with ri,j = 1. Also notice that

all q-indivisible factors, including those with γ(i,j) /∈ Σq,θ, admit symplectic resolutions. Also, if any factor

γ(i,j) appears which is a ≥ 2 multiple of the dimension vector of a θ-stable representation, there can be no
symplectic resolution of Mq,θ(Q,α), nor of Mq,θ(Q, γ

(i,j)). So again, for the question (ii), it is enough to

consider only the factors γ(i,j) which are anisotropic, q-divisible, and not a ≥ 2 multiple of the dimension
vector of a θ-stable representation.

7.4. Moduli of parabolic Higgs bundles and the Isosingularity Theorem. We restrict the attention
to the case of crab-shaped quivers, the corresponding multiplicative quiver varieties of which, as explained
in Section 3, lead to the study of character varieties of (possibly non-compact) Riemann surfaces.

Character varieties of compact Riemann surfaces are important, among many reasons, as they appear as
the Betti side of the non-abelian Hodge correspondence, which is a series of results that establish isomor-
phisms between apparently unrelated moduli spaces, see [Sim94a]. Such a correspondence holds also in the
case of non-compact curves, thanks to the work of Simpson, see [Sim90].

For the compact case, in [Tir17], the second author exploited a fundamental result of Simpson, called the
Isosingularity Theorem, [Sim94b], to show how the statements proved in [BS16, §8] could be translated to
the Dolbeault side of the non-abelian Hodge correspondence, i.e., to the moduli spaces of semistable Higgs
bundles of degree 0.

In the light of the results of this paper and the non-abelian Hodge correspondence in the non-compact
setting, it is a natural question to ask whether an analogue of the main theorems of [Tir17] holds for the
Dolbeault moduli spaces defined on complex curves with punctures, which turn out to be the moduli spaces of
parabolic Higgs bundles. Before stating some conjectural results, we recall the relevant definitions. Motivated
by the work of Simpson, [Sim90], we recall filtered local systems, following [Yam08, §4], which gives a slightly
different but nonetheless equivalent definition from the one given in Simpson, [Sim90].

Definition 7.6. [Yam08, Definition 4.5] Let X be a compact Riemann surface and D ⊂ X be a finite subset.
Let L be a local system on X \D. For a collection of non-negative integers l = (lp)p∈D, a filtered structure
on L of filtration type l is a collection (Up, Fp)p∈D, where for each p ∈ D:

(i) Up is a neighbourhood of p in X (we set U∗
p := Up \ {p}); and

(ii) Fp is a filtration

L|U∗

p
= F 0

p (L) ⊃ F 1
p (L) ⊃ · · · ⊃ F lpp (L) ⊃ F lp+1

p (L) = 0

by local subsystems of L|U∗

p
.

Two filtered structures (Up, Fp)p∈D, (U
′
p, F

′
p)p∈D of the same filtration type are equivalent if for each p ∈ D,

there exists a neighbourhood Vp ⊂ Up ∩ U ′
p of p such that Fp and F ′

p coincide on V ∗
p . A local system L

together with an equivalence class of filtered structures F = [(Up, Fp)p∈D] is called a filtered local system on
(X,D) of filtration type l.

From [Yam08] one has also the following definition of (semi)stability.

Definition 7.7. [Yam08, Definition 4.6] Let (L, F ) be a filtered local system on (X,D) of filtration type l.
Let β = (βjp | p ∈ D, j = 0, . . . , lp) be a collection of rational numbers satisfying βip < βjp for any p and i < j
– such a collection is called a weight. The pair (L, F ) is said to be β-semistable if for any non-zero proper
local subsystem M ⊂ L the following inequality holds:

∑

p∈D

∑

j

βjp
rank

(
M ∩ F jp (L)

)
/
(
M ∩ F j+1

p (L)
)

rank M
≤

∑

p∈D

∑

j

βjp
rank

(
F jp (L)/F

j+1
p (L)

)

rank L
.

(L, F ) is β-stable if the strict inequality always holds.
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Yamakawa established a correspondence between semistable filtered local systems and multiplicative
quiver varieties of star-shaped quivers. This is, as mentioned, a particular case of the correspondence
outlined in Section 3. To shed more light on this correspondence, we spell out the correspondence be-
tween the parameters q, α, θ defining a multiplicative quiver variety Mq,θ(Q,α) of a star shaped quiver
and the weights β of a filtered local system (L, F ): start with a crab-shaped quiver Q with vertex set
Q0 = {0, (i, j)i∈{1,...n},j∈{1,...,li}} – i.e. Q has n legs, each of which has length li, for i = 1, . . . , n. More-

over, let α be a dimension vector, α ∈ NQ0 , ξ ∈ (C×)Q0 a collection of non-zero complex numbers and
β ∈ QQ0 a collection of rational numbers. Then, on one side, one can consider filtered local systems (L, F )
on (P1, {p1, . . . , pn}), where pi, i = 1, . . . , n are pairwise distinct points in P1, with stability parameter β and
such that:

(1) rank(L) = α0,
(2) dimF jpi(L) = αi,j ,

(3) the local monodromy of F jpi(L)/F
j+1
pi

(L) around pi is given by the scalar multiplication by ξjpi for
all i, j.

On the other side, one can consider the multiplicative quiver variety Mq,θ(Q,α), where Q and α are as above
and q and θ are given as

q0 :=
∏

i

(ξ0pi )
−1, qi,j = ξj−1

pi
/ξjpi

θ0 :=

∑
i,j θi,jαi,j

α0
, θi,j = βjpi − βj−1

pi
.

The other main concept in the non-abelian Hodge correspondence on non-compact curves is that of
parabolic Higgs bundle, which we recall below (note that, in [Sim90] the term filtered Higgs bundle is used
instead).

Definition 7.8. Let X and D be a compact Riemann surface and a reduced divisor on X respectively. Let
E → X be a holomorphic vector bundle on X . A parabolic structure on E is the datum of weighted flags
(Ei,p, αi,p)p∈D

Ep = E1,p ⊇ E2,p ⊇ · · · ⊇ El+1,p = 0,

0 ≤ α1,p < · · · < αl,p < 1,

for each p ∈ D. A morphism of parabolic vector bundles is a morphism of holomorphic vector bundles which
preserves the parabolic structure at every point p ∈ D.

Definition 7.9. Given a parabolic bundle (E, (Ei,p, αi,p)p∈D), its parabolic degree is defined to be

pardeg(E) = deg(E) +
∑

p∈D

∑

i

mi(p)αi,p,

where mi(p) = dimEi,p − dimEi,p+1 is called the multiplicity of αi,p.

Remark 7.10. Given the notion of parabolic degree, stability and semistability of a parabolic bundle are
defined as in the case of vector bundles, using the parabolic degree in place of the ordinary degree, see
[LM10, §2] for more details and an outline on some geometric properties of the corresponding moduli spaces.

Definition 7.11. A parabolic Higgs bundle on (X,D) is a parabolic bundle (E, (Ei,p, αi,p)p∈D) together
with a meromorphic map Φ : E → E ⊗KX with poles of order at most 1 at the points p ∈ D. The residue
of Φ at marked points is assumed to preserve the corresponding filtration.

From the Riemann-Hilbert correspondence, we know that representations of the fundamental group of
a punctured surface with fixed monodromies correspond bijectively to filtered local systems. Moreover, in
[Sim90], the following theorem is proved.

Theorem 7.12. [Sim90, Theorem, p. 718] There is a one-to-one correspondence between (stable) filtered
local systems and (stable) parabolic Higgs bundles of degree zero.
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Even though we will not go into the details of this correspondence, we shall at least explain how it works
at the level of parameters α and β. To this purpose, let X be a compact Riemann surface and D ⊂ X a
finite subset of distinct points of X . Fixing p ∈ D, consider the sets

{(λ, αjp) ∈ C× [0, 1) | the action of RespΦ on Ej,p/Ej−1,p has an eigenvalue λ},
{
(ξ, βkp ) ∈ C× × R | the monodromy of F kp (L)/F

k+1
p (L)

along a simple loop around p has an eigenvalue ξ

}
.

Then the correspondence between these two sets is explicitly given by (λ, α) 7→ (ξ, β), where

β := α−ℜλ, ξ := exp(−2π
√
−1λ).

Another fundamental result of Simpson that is crucially used in [Tir17] is the Isosingularity theorem,
which, roughly speaking, states that the moduli spaces of the non-abelian Hodge Theorem in the compact
case, i.e., with no punctures, are étale isomorphic at corresponding points. It is still not known whether the
same result holds in the non-compact case.

Conjecture 7.13. The Isosingularity theorem holds between the moduli space of semistable filtered local
systems for fixed parameters and the moduli space of semistable parabolic Higgs bundles of degree zero with
corresponding parameters.

From the above conjectural result, in combination with the results proved in Section 4 and Conjecture
7.15 below, one should be able to deduce the following:

Conjecture 7.14. The moduli space of semistable parabolic Higgs bundles of degree zero with fixed parame-
ters is a symplectic singularity, admitting a symplectic resolution if and only if the corresponding character
variety admits a symplectic resolution.

A possible strategy to prove the results listed above would be to study the local structure of moduli spaces
of (semistable) objects in Calabi–Yau categories. More details are provided in the next subsection.

7.5. Moduli spaces in 2-Calabi–Yau categories. As mentioned above, the problem of studying the
singularities of a variety can be carried out by analysing the local structure of the variety itself around a
point.

This method is powerful in certain cases, e.g., when one is able to prove some locally étale isomorphism
between the variety of interest and another variety whose singularities are well-known: for example, this is
carried out by Kaledin and Lehn in [KL07] and later by Arbarello and Saccà in [AS15], where they prove
that, given a strictly semistable bundle in the moduli space of semistable sheaves on a K3 surface with a
fixed non-generic polarisation, there exists an étale neighbourhood around that point that is isomorphic to
an affine quiver variety, which depends on the point itself. Similar computations, which find their inspiration
from [KL07], were also performed by the Bellamy and the first author in [BS16] in the context of quiver and
character varieties.

The fact that such a technique can be used and gives the same results in so many apparently different
situations suggests that these are indeed particular cases of a series of theorems which should apply in much
greater generality, namely in the context of 2-Calabi–Yau categories. In the work [BGV16] the authors carry
out a detailed study of the deformation theory of representation spaces of 2-Calabi–Yau algebras and they
show that among all semisimple representations, the ones that correspond to smooth points are precisely the
simple ones. It is known that, when Q is a Dynkin quiver and q = 1, there is an isomorphism

Λ1(Q) ∼= Π0(Q),

between the multiplicative preprojective algebra and the additive preprojective algebra, as shown in [CB13,
Corollary 1]. Moreover, given that the additive preprojective algebras of Dynkin quivers with at least one
arrow have infinite homological dimension, the above isomorphism suggests that, in general, multiplicative
preprojective algebras are not 2-Calabi–Yau. On the other hand, a conjectural statement can be made for
the case of non-Dynkin quivers.

Conjecture 7.15. Let Q be a connected non-Dynkin quiver and q ∈ (C×)Q0 . Then Λq(Q) is a 2-Calabi–Yau
algebra.

41



Assuming the above conjecture, then [BGV16, Theorem 6.3, 6.6] implies the following for θ = 0: given
a dimension vector α ∈ Σq,θ and a point x ∈ Mq,θ(Q,α), then formally locally around x, we have an
isomorphism

̂Mq,θ(Q,α)x
∼= ̂M0,0(Q′, α′)0

for some appropriate quiver Q′ and dimension vector α′. If we can generalise this to arbitrary θ and prove
the conjecture, there would be many interesting consequences. First, it would make it possible to handle
the (2, 2)-case, where one may construct a symplectic resolution by first performing GIT (replacing θ by
suitably generic θ′) and then performing a blow-up of the singular locus. Moreover, this result would imply
normality for Mq,θ(Q,α), without any assumption on α and θ.

Secondly, it would be interesting to extend such arguments and results to coarse moduli spaces of objects
in 2-Calabi–Yau categories. This would indeed make it possible to reduce the study of singularities of a
numerous class of moduli spaces to answering the following question: does the moduli space parametrise
objects of a 2-Calabi–Yau category?

Knowing more about the singularities of coarse moduli spaces of objects in Calabi–Yau categories might
allow one to prove a generalisation of the Isosingularity theorem in the non-compact case, provided that a
suitable version of the 2-Calabi–Yau condition holds for the category of parabolic Higgs bundles.

7.6. Character varieties and Higgs bundles for arbitrary groups. Another interesting problem would
be to analyse whether the results of the present paper can extend to character varieties of (punctured)
Riemann surfaces with representations in arbitrary groups and, via the non-abelian Hodge correspondence,
to the moduli spaces of (parabolic) Higgs principal bundles. Since the results on punctured character varieties
contained in the present paper are deduced based on the correspondence described in Section 3, which heavily
relies on the fact that one considers representations and conjugacy classes inside GL(n,C), it seems unlikely
that the techniques used here could be applied in the more general setting of G-representations. On the other
hand, a possible approach could be the one outlined in the previous subsection. To this end, the question
to be answered would be the following: given an algebraic group G, are there cases, other than G = GLn,
where the category of morphisms ρ : π1(X) → G is 2-Calabi–Yau?
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ix+209. MR 3951025
[Moz90] S. Mozes, Reflection processes on graphs and Weyl groups, J. Combin. Theory Ser. A 53 (1990), no. 1, 128–142.
[MW18] M. McBreen and B. Webster, Homological Mirror Symmetry for Hypertoric Varieties I, arXiv:1804.10646, April

2018.
[Nak94] Hiraku Nakajima, Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J. 76 (1994),

no. 2, 365–416.
[Nak16] H. Nakajima, Towards a mathematical definition of Coulomb branches of 3-dimensional N = 4 gauge theories, I,

Adv. Theor. Math. Phys. 20 (2016), no. 3, 595–669. MR 3565863
[Nam01] Yoshinori Namikawa, A note on symplectic singularities, ArXiv Mathematics e-prints (2001).
[O’G99] Kieran G. O’Grady, Desingularized moduli spaces of sheaves on a K3, J. Reine Angew. Math. 512 (1999), 49–117.

MR 1703077
[Sim90] Carlos T. Simpson, Harmonic bundles on noncompact curves, J. Amer. Math. Soc. 3 (1990), no. 3, 713–770.
[Sim94a] Carlos T. Simpson, Moduli of representations of the fundamental group of a smooth projective variety i, Publications
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