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We generalize our recent results for the hard-wall boundary and interface charges in one-dimensional single-
channel continuum [S. Miles et al., Phys. Rev. B 104, 155409 (2021)] and multichannel tight-binding [N. Müller
et al., Phys. Rev. B 104, 125447 (2021)] models to the realm of the multichannel continuum systems. Using
the technique of boundary Green’s functions, we give a rigorous proof that the change in boundary charge upon
the shift of the system towards the boundary by the distance xϕ ∈ [0, L] (where L is a potential periodicity) is
given by a perfectly linear function of xϕ plus an integer-valued topological invariant I , the so-called boundary
invariant. We provide two equivalent representations for I (xϕ ): the winding-number representation and the
bound-state representation. The winding-number representation allows one to write I as a winding index of a
particular functional of bulk Green’s function. The corresponding integration contour is chosen in the complex
frequency plane to encircle the occupied part of the spectrum residing on the real axis. In turn, in the bound-state
representation, I is expressed through the sum of the winding number of the boundary Green’s function and the
number of bound states supported by the cavity of size xϕ below the chemical potential. We observe that during
a single cycle in the variation of xϕ , the boundary invariant exhibits exactly ν downward jumps, each by a unit of
electron charge, whenever ν energy bands are completely filled leading to the value I (L) = −ν. Additionally, for
translationally invariant models interrupted by a localized impurity we derive the winding-number expression for
the excess charge accumulated on the said impurity. We observe that the charge accumulated on a single repulsive
impurity is restricted to the values −Nc, . . . , 0, where Nc is the number of channels (spin or orbital components)
in the system. For systems with weak potential amplitudes, we additionally develop Green’s-function-based
low-energy theory, allowing one to analytically access the physics of multichannel continuum systems in the
low-energy approximation.
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I. INTRODUCTION

Over the last few decades, the notion of topology has
swiftly moved to the frontiers of contemporary condensed
matter research [1–11]. Possibly, the most prominent example
of the interplay between topology and physics is the so-called
topological insulators (TI), insulators with gapped bulk and
topologically protected gapless edge states [12]. Specifically,
the very presence of these edge modes has motivated an in-
creasing interest in the field of TIs due to their promising
applications in quantum technology [13–17]. In a TI, these
edge states are said to be topologically protected when the said
insulator falls into one of the 10 discrete symmetry classes
[18,19] according to its transformation properties under time-
reversal, particle-hole, and chiral symmetries [20]. To each
of the respective symmetry classes, there exists an associated
topological invariant (such as a Chern number, for exam-
ple), allowing one to distinguish between trivial (edge states
are absent) and topological (edge states are present) phases
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[21,22]. This picture naturally suggests two peculiar physical
questions. First, whether or not topological invariants can be
directly related to a certain physically observable quantity
and, second, whether it is possible to establish a link between
topology and solid-state systems going beyond the constraints
of symmetries?

The first attempt to answer these questions appeared with
the advent of the modern theory of polarization (MTP) [23].
In particular, the so-called surface charge theorem was put
forward relating the boundary charge QB (the excess charge
accumulated on the boundary of an insulator) to the Zak-Berry
phase of the bulk Bloch states [24–26]. Despite the connection
between the boundary charge and the Zak-Berry phase not
being subject to any symmetry restrictions, this connection
lacks uniqueness. Indeed, this relation holds only up to an
integer since, upon a gauge transformation, the Zak-Berry
phase changes by a winding number of this transformation
[26]. This observation recently served as one of the principal
motivations to study the properties of the boundary charge in
one-dimensional insulators in more detail [27,28].

In a series of our recent works [29–35], a number of
the universal features of boundary QB and interface QI (the
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excess charge accumulated on a localized impurity or at in-
terface between two insulators) charges were established. In
Refs. [29,30] topological indices related to the boundary
charge in a broad class of generalized Aubry-André-Harper
models (models defined by the set of periodic hopping
tm = tm+Z and potential vm = vm+Z amplitudes [36,37], with
Z being the number of sites in a unit cell) were intro-
duced. Specifically, a particular gauge has been identified,
in which the relation between the Zak-Berry phase and
QB becomes exact, fixing the unknown integer of the sur-
face charge theorem of MTP. Furthermore, an integer-valued
symmetry-independent topological invariant I ∈ {−1, 0} (so-
called boundary invariant) associated with the change in the
boundary charge upon the shift of the lattice by a single site to-
wards the boundary (tm → tm+1, vm → vm+1) was introduced.
In addition, it was demonstrated that upon a continuous shift
of the lattice towards the boundary by the change in the phase
of the modulation of the model parameters, the total boundary
charge consists of (up to a finite number of discontinuous
jumps) a universal linear function of the modulation phase and
a nonuniversal 2π

Z periodic function vanishing in the Z � 1
limit.

In Ref. [31], the universal properties of QB and QI were
put into a general framework based on the nearsightedness
principle of Kohn [38,39] stating that localized perturbations
in insulators can only lead to local charge redistributions. In
particular, based on this principle, two quantized invariants
were established for generic one-dimensional tight-binding
models (including the multichannel models, models with
multiple orbitals per site). The first invariant, in analogy
with the single-channel case [29,30], underpins the universal
behavior of the boundary charge upon discrete lattice trans-
lations. The second one is related to the local inversion of
the lattice and characterizes the sum of the two boundary
charges left and right to the septum between two insulators.
These developments form a basis for the theory of the inter-
face charges on localized impurities and domain walls and
provide a generalization of the Goldstone-Wilczek formula
[40–44].

Quite recently, general conclusions of Ref. [31] were given
a rigorous mathematical proof [34]. In particular, for arbi-
trary translationally invariant tight-binding models with Nc

channels (orbitals) per site, the boundary invariant was shown
to be given by the winding number of a given functional
of bulk Green’s functions, providing an extended form of
the bulk-boundary correspondence. As opposed to the single-
channel case, I is no longer restricted to the values −1, 0
but rather takes on values in the range −Nc, . . . , 0, naturally
generalizing the Nc = 1 case. Likewise, the quantization of
the interface charge on isolated lattice defects was demon-
strated by establishing the winding-number expressions for
the corresponding interface charges.

In another recent work, the continuum limit of the Aubry-
André-Harper models was analyzed [35]. Such a continuum
limit can be achieved by taking the simultaneous limits Z →
∞ and a → 0 (with a being the lattice spacing), while keeping
the size of the unit cell finite Za = L, in this case, one arrives
at the conventional Schrödinger equation for a particle of
mass m = h̄2

2ta2 moving in a periodic scalar potential V (x) =

V (x + L). In analogy with the tight-binding models, the
change in the boundary charge upon the system’s shift was
studied, albeit now, instead of a shift of the system by a single
lattice site, the shift of the lattice as a whole towards the
boundary by a continuous coordinate xϕ ∈ [0, L] was consid-
ered. It was revealed that the change in the total boundary
charge, up to a number of jumps by minus one electron charge
at the points where an edge state crosses the chemical poten-
tial, is given by a perfectly linear function of xϕ with the slope
given by ν/L. The study thus completely confirms the ob-
servation of [29,30] that the nonuniversal contribution to the
boundary charge vanishes exactly in the Z → ∞ limit. Fur-
ther, it was revealed that in the case of ν occupied bands, the
change in the boundary charge exhibits exactly ν downward
jumps by a unit of electron charge, implying that in the con-
tinuum models, the νth band gap hosts exactly ν (either left-
or right-sided) edge states. In addition, following [34], integer
charge quantization on localized impurities was demonstrated.

In this paper we study continuum models of one-
dimensional multichannel insulators beyond any symmetry
constraints. The models we focus on are defined by all one-
dimensional Schrödinger operators with periodic non-Abelian
scalar V (x) = V (x + L) and vector A(x) = A(x + L) poten-
tials (here V and A are assumed to be Nc × Nc Hermitian
matrices). This class of models describes a wide variety of
interesting physical systems. For example, non-Abelian gauge
fields can naturally arise from relativistic corrections such as
Zeeman and spin-orbit terms in quantum nanowires [45,46].
These systems usually possess topologically nontrivial band
structures [47–50], and have a great potential for spintron-
ics applications [51–53]. Famously, non-Abelian fields arise
in the adiabatic dynamics of degenerate quantum systems
(generalizing the idea of the Berry phase) as was shown by
Wilczek and Zee [54]. Another prominent example is given
by cold-atom systems, where the artificial (or effective) non-
Abelian gauge fields arise from the motion of multilevel atoms
in spatially varying laser fields which couple the states in
the degenerate subspaces between one another [55–59]; see,
for example, [60] for an experimental realization. Other note-
worthy applications include the emergent non-Abelian gauge
fields in twisted graphene bilayers [61,62], trapped fermion
systems [63], and semiconductor photonic cavities [64].

Since the bands in multichannel systems are typically com-
posite (see, for example, [65] for definition), the problem of
exact diagonalization of the semi-infinite system’s Hamilto-
nian in the spirit of [29,35] becomes rather challenging. In
order to avoid these complications, following [34], we utilize
the method of boundary Green’s functions (BGF) [66]. The
BGF technique is common in various transport calculations
including, for example, electronic transport in metals [67,68]
and thermal transport in spin heterostructures [69]. Lately this
method was employed in the realm of topological insulators
[70] and superconductors [71,72].

This work is dedicated to the study of both boundary and
interface charges. As it was mentioned above, we employ the
BGF method to study boundary and interface charge-based
topological invariants. The boundary invariant is defined in the
manner analogous to the single-channel continuum models
[35], with a continuous shift parameter xϕ ∈ [0, L]. We give a
rigorous proof that the boundary invariant associated with the
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corresponding shift is a quantized integer quantity and provide
two different representations for the invariant. The first rep-
resentation is based on the winding-number expression. The
quantity whose winding determines I is shown to be a func-
tional of the equal-argument spatial bulk Green’s function and
its derivatives with respect to both spatial arguments. Since the
change in the boundary charge jumps by an integer only when
an edge state crosses the chemical potential from below, this
invariant naturally provides a form of the bulk-boundary cor-
respondence in multichannel continuum systems. That is the
spectral flow of boundary (or edge) modes is completely char-
acterized by the bulk quantities. The second representation,
on the other hand, utilizes the boundary Green’s functions
solely. In this representation, the invariant is expressed as a
sum of the winding number of BGF evaluated at x = x′ = xϕ

and the number of bound states supported by the cavity (or
box) formed by two hard walls at x = 0 and xϕ . What concerns
the interface charge, we study the translationally invariant
system interrupted by a single isolated (δ-like) repulsive im-
purity and show that the excess charge accumulated on the
impurity is an integer multiple of the electron charge and
is given by a winding-number expression completely analo-
gous to the one found in the tight-biding realization of the
model [34].

We substantiate our analytical findings by numerical anal-
ysis of both boundary and interface invariants. In our analysis
we decompose S(x) = S̄(x) + δS(x), where S̄(x) and δS(x)
are the Abelian and non-Abelian parts of the scalar S = V
and vector S = A potentials, respectively. First, we consider
a Nc = 2 model with both Abelian and non-Abelian poten-
tials being chosen of the same order of magnitude ||S̄(x)|| ∼
||δS(x)||, the regime which we shall call generic. We use this
model to validate the two representations for the boundary in-
variant by comparing the results calculated on their basis with
the ones calculated from first principles. In complete analogy
with the single-channel continuum models [35], we reveal that
the boundary invariant exhibits exactly ν jumps by minus one
electron charge unit when the chemical potential is placed in
the νth band gap. By analyzing the spectral flow of the in-gap
edge states, we find that the jumps of I happen exactly at the
points where an edge state leaves the occupied part of the
spectrum as it is the case in both continuum [35] and tight-
binding [29,30,34] models. Additionally, for the same model,
we present the numerical results for the interface invariant and
reveal that QI takes on values in the range −Nc, . . . ,−1, 0.

Further, we analyze the behavior of the boundary invariant
as a function of ||δS(x)||

||S̄(x)|| in the Nc = 3 model. In particular we
cover various regimes ranging from completely degenerate
||δS(x)||
||S̄(x)|| = 0 to the generic ||δS(x)||

||S̄(x)|| ∼ 1 one, and examine the
properties of I and the associated spectral flow as the “non-
Abelianity” of the potential increases.

Alongside the exact theory, we develop a low-energy
approximation of boundary and interface charge invariants
covering the universal regime ||δS(x)||, ||S̄(x)|| � εF . In di-
rect analogy with the low-energy theory (LET) one commonly
develops in the wave-function language (see, for example,
[28,31,33]), we approximate the bare Green’s function of the
model by the one written in the basis of slowly varying right-
and left-moving fields in the vicinity of the chemical poten-

tial. With the help of the LET we recover the single-channel
results obtained in [31] by the wave-function-based methods
and show that, in general, within the LET, the change in
the total boundary charge is, up to integer contributions, a
linear function of xϕ . Finally, we substantiate our analysis by
comparing the results of LET with the exact ones in a partic-
ular Nc = 2 model with small potential amplitudes ||δS(x)||,
||S̄(x)|| � εF .

This paper is organized as follows. In Sec. II we introduce
the class of models considered in this paper and the corre-
sponding single-particle bulk Green’s functions. In Sec. III
the Green’s functions for the system with isolated pointlike
impurity as well as the hard-wall boundary (the boundary
Green’s function) are introduced. In Sec. IV the charge on an
isolated δ-function impurity (the interface charge) is shown
to be a quantized integer quantity. In Sec. V we define the
boundary charge in terms of the BGF and study its properties
under the shift of the lattice by xϕ ∈ [0, L]. We define the
boundary invariant and derive two equivalent representations
for it. In Sec. VI we provide the numerical validation of the
two representations of the boundary invariant and demonstrate
the quantization of interface charge. In Sec. VII we study the
boundary invariant as a function of the strength of the non-
Abelian part of scalar and vector potentials. In Sec. VIII the
low-energy approximation of the bulk Green’s function and
boundary invariant are introduced, field-theoretical version of
the surface charge theorem is established, and the analytical
results are substantiated with a numerical example. Finally, in
Sec. IX we state our summary.

In what follows we set the electron charge e and reduced
Planck’s constant to unity e = h̄ = 1.

II. MODEL AND BULK GREEN’S FUNCTIONS

Let us consider a model with the Hamiltonian

Hx = p2

2m
+ 1

2m
{A(x), p} + V (x), (1)

where A(x + L) = A(x) = A†(x) and V (x + L) = V (x) =
V †(x) are Nc × Nc Hermitian matrices, and p is the momen-
tum operator.

The retarded bulk Green’s function G(0)(x, x′; z = ω +
iη) ≡ G(0)(x, x′) obeys the equation

(z − H→
x )G(0)(x, x′) = G(0)(x, x′)(z − H←

x′ ) = δ(x − x′),
(2)

where the arrows indicate the directions of action of differen-
tial operators. Representing

G(0)(x, x′) = G(0)(x̄ + nL, x̄′ + n′L)

= L

2π

ˆ π/L

−π/L
dk eik(n−n′ )LG(0)

k (x̄, x̄′), (3)

where x̄, x̄′ ∈ [0, L], we set up the equations

(z − H→
x̄ )G(0)

k (x̄, x̄′) =
∑

r

δ(x̄ − x̄′ − rL)eikrL, (4)

G(0)
k (x̄, x̄′)(z − H←

x̄′ ) =
∑

r

δ(x̄ − x̄′ − rL)eikrL, (5)
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with the boundary conditions

G(0)
k (L, x̄′) = eikLG(0)

k (0, x̄′), (6)

G(0)
k (x̄, L) = G(0)

k (x̄, 0)e−ikL. (7)

We note the property [G(0)(x, x′)]† = G(0)(x′, x), where the
Hermitian conjugation does not affect z = ω + iη. We also
used

δ(x − x′) = δ[x̄ + (n − 1)L − x̄′ − (n′ − 1)L]

=
∑

r

δr,n′−nδ(x̄ − x̄′ − rL)

= L

2π

ˆ π/L

−π/L
dk eik(n−n′ )L

∑
r

eikrLδ(x̄ − x̄′ − rL).

(8)

Alternatively, we introduce

G(0)
k (x̄, x̄′) = eikx̄Ḡ(0)

k (x̄, x̄′)e−ikx̄′
, (9)

with Ḡ(0)
k (x, x′) obeying Eq. (4), in which the momentum

operator is shifted p → p + k, and the periodic boundary
conditions are imposed:

Ḡ(0)
k (L, x̄′) = Ḡ(0)

k (0, x̄′), (10)

Ḡ(0)
k (x̄, L) = Ḡ(0)

k (x̄, 0). (11)

The latter allow us to represent

Ḡ(0)
k (x̄, x̄′) = 1

L

∑
l,l ′

Ḡ(0)
k,ll ′e

2π i
L l x̄− 2π i

L l ′ x̄′
. (12)

Inserting this expansion into the modified Eq. (4), we obtain∑
l ′′

(zδll ′′ − hk,ll ′′ )Ḡ
(0)
k,l ′′l ′ = δll ′ , (13)

where

hk,ll ′′ =
(

2π
L l + k

)2

2m
δll ′′ + 1

m

(
2π

L

l + l ′′

2
+ k

)
Al,l ′′ + Vl,l ′′ ,

(14)

and

Vl,l ′′ ≡ Vl−l ′′ = 1

L

ˆ L

0
dx V (x)e− 2π i

L (l−l ′′ )x, (15)

Al,l ′′ ≡ Al−l ′′ = 1

L

ˆ L

0
dx A(x)e− 2π i

L (l−l ′′ )x (16)

are the Fourier transforms of potential and spin-orbit matrices.
We remark the following properties of G(0)(x, x′):
(1) Jump in the first derivatives across x = x′:

G(0)
1 (x+, x) − G(0)

1 (x−, x) = G(0)
2 (x, x+) − G(0)

2 (x, x−) = 2m,

(17)

where x± = x ± 0+, and the indices 1,2 indicate derivatives
with respect to the corresponding arguments.

(2) Jump in the mixed derivative across x = x′:

G(0)
12 (x+, x−) − G(0)

12 (x−, x+) = i4mA(x). (18)

III. BOUNDARY GREEN’S FUNCTIONS

Introducing the impurity potential Ṽ0δ(x), we set up the
Dyson’s equation

G(x, x′) = G(0)(x, x′) + Ṽ0G(0)(x, 0)G(0, x′) (19)

= G(0)(x, x′) + Ṽ0G(x, 0)G(0)(0, x′). (20)

Establishing first

G(0, x′) =[1 − Ṽ0G(0)(0, 0)]−1G(0)(0, x′), (21)

we find the exact solution to the Dyson equation

G(x, x′) = G(0)(x, x′) + Ṽ0G(0)(x, 0)

× [1 − Ṽ0G(0)(0, 0)]−1G(0)(0, x′). (22)

In the limit Ṽ0 → ∞, corresponding to the hard-wall potential,
we obtain the BGF

G(x, x′) = G(0)(x, x′)

− G(0)(x, 0)[G(0)(0, 0)]−1G(0)(0, x′). (23)

We note that in the continuum models with infinitesimally
small hoppings described by differential operators in the ki-
netic part of the Hamiltonian, such a potential completely
separates the left and the right semi-infinite subsystems from
each other. From either subsystem’s point of view, it then
looks equivalent to a steplike potential of the infinite height.

IV. INTERFACE CHARGE

To compute the interface charge

QI = − 1

π
Im

ˆ
dω 	(μ − ω)

×
ˆ ∞

−∞
dx tr{G(x, x) − G(0)(x, x)}, (24)

where the integration over the spectral range is limited from
above by the chemical potential μ, we use the identity (derived
in Appendix A)

ˆ ∞

−∞
dx G(0)(0, x)G(0)(x, 0) = −∂G(0)(0, 0)

∂ω
. (25)

The interface charge is then given by

QI = − 1

π

ˆ
dω 	(μ − ω)

× Im
∂

∂ω
ln det(1 − Ṽ0G(0)(0, 0)), (26)

which is an immediate generalization of the corresponding
lattice result. In the limit Ṽ0 → ∞ we obtain

QI = − 1

π

ˆ
dω 	(μ − ω)Im

∂

∂ω
ln det G(0)(0, 0). (27)

V. BOUNDARY CHARGE IN SEMI-INFINITE MODEL

A. Definition

We straightforwardly generalize lattice model expressions
to obtain the charge QB = ´∞

0 dx f (x)[ρ(x) − ρ̄] accumu-
lated near the (left) boundary in the right semi-infinite model.
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Hereby ρ(x) is the charge density, ρ̄ is the average charge
density deep in the bulk (i.e., far away from the boundary),
and f (x) is an envelope function, interpolating between the
values 1 close to the boundary and 0 in the bulk. It can be
generally shown [29,34,35] that QB can be decomposed as

QB = Q′
B + QP, (28)

where

Q′
B = − 1

π
Im

ˆ
dω 	(μ − ω)

×
ˆ ∞

0
dx e−0+x tr{G(x, x) − G(0)(x, x)} (29)

= 1

π
Im

ˆ
dω 	(μ − ω)

ˆ ∞

0
dx e−0+x

× tr{[G(0)(0, 0)]−1G(0)(0, x)G(0)(x, 0)} (30)

represents the sum of the Friedel and the edge-state contribu-
tions, while

QP = −
ˆ L

0
dx

x

L
[ρ (0)(x) − ρ̄] (31)

is the so-called polarization charge expressed in terms of the
dipole moment. The latter arises from the charge distribution
in the crossover region of the envelope function f (x). Hereby,
the periodic bulk density and the average bulk density are
given by

ρ (0)(x) = − 1

π
Im

ˆ
dω 	(μ − ω) tr{G(0)(x, x)}, (32)

ρ̄ = 1

L

ˆ L

0
dx ρ (0)(x), (33)

respectively.
Using the identity (see Appendix A)

2m
ˆ ∞

x0

dx e−0+xG(0)(x0, x)G(0)(x, x0)

= G(0)(x0, x0)
∂G(0)

1 (x+
0 , x0)

∂ω
− G(0)

2 (x0, x+
0 )

∂G(0)(x0, x0)

∂ω

+ 2iG(0)(x0, x0)A(x0)
∂G(0)(x0, x0)

∂ω
(34)

= G(0)(x0, x0)
∂L(x0)

∂ω
G(0)(x0, x0), (35)

where

L(x0) = [G(0)(x0, x0)]−1G(0)
2 (x0, x+

0 ) − iA(x0) (36)

possesses the Hermiticity property (see Appendix B)

L(x0) = L†(x0), (37)

we castˆ ∞

x0

dx e−0+x tr{[G(0)(x0, x0)]−1G(0)(x0, x)G(0)(x, x0)}

= 1

2m
tr

{
G(0)(x0, x0)

∂L(x0)

∂ω

}
. (38)

Thus, we find that

Q′
B = 1

π
Im

ˆ
dω 	(μ − ω)tr

{
G(0)(0, 0)

1

2m

∂L(0)

∂ω

}
. (39)

B. Properties of QB under the system’s shift

Let us shift the right subsystem towards the wall by xϕ and
evaluate an analog of (28) in the shifted system. All quantities
referring to the shifted system are denoted by the superscript
(ϕ), e.g., A(ϕ)(x) = A(x + xϕ ) and V (ϕ)(x) = V (x + xϕ ). By
inspecting an equation for the bulk G(0,ϕ)(x, x′), we find that
it coincides with G(0)(x + xϕ, x′ + xϕ ).

First we study the change in the quantity QP:

�QP(xϕ ) = QP(xϕ ) − QP(0). (40)

Expressing

QP(xϕ ) = −
ˆ L

0
dx

x

L
[ρ (0)(x + xϕ ) − ρ̄]

= −
ˆ L+xϕ

xϕ

dx
x − xϕ

L
[ρ (0)(x) − ρ̄], (41)

and noticing that ρ (0)(x) = ρ (0)(x + L) is a periodic function,
we derive (see Appendix C)

�QP(xϕ ) − ρ̄xϕ = −
ˆ xϕ

0
dx ρ (0)(x). (42)

It is apparent that �QP(L) = 0.
Next, we study �Q′

B(xϕ ) = Q′
B(xϕ ) − Q′

B(0). Considering
the Green’s function

G̃(x, x′) = G(0)(x, x′) − G(0)(x, xϕ )

× [G(0)(xϕ, xϕ )]−1G(0)(xϕ, x′), (43)

which is an analog of (23) with the infinite-strength delta
impurity at x = xϕ instead of x = 0, we represent

Q′
B(xϕ ) = − 1

π
Im

ˆ
dω 	(μ − ω)

×
ˆ ∞

xϕ

dx e−0+x tr{G̃(x, x) − G(0)(x, x)} (44)

= 1

π
Im

ˆ
dω 	(μ − ω)

ˆ ∞

xϕ

dx e−0+x

× tr{[G(0)(xϕ, xϕ )]−1G(0)(xϕ, x)G(0)(x, xϕ )}. (45)

Applying the identity (38) to (45), we express

Q′
B(xϕ ) = 1

π
Im

ˆ
dω 	(μ − ω)tr

{
G(0)(xϕ, xϕ )

1

2m

∂L(xϕ )

∂ω

}
.

(46)

Since both G(0)(xϕ,xϕ
) and L(xϕ ) are periodic in xϕ , so

is Q′
B(xϕ ). For the difference �Q′

B(xϕ ) = Q′
B(xϕ ) − Q′

B(0),
which obeys the condition �Q′

B(L) = 0, we can state the
following integral representation:

�Q′
B(xϕ ) = 1

π
Im

ˆ
dω 	(μ − ω)

×
ˆ xϕ

0
dx

d

dx
tr

{
G(0)(x, x)

1

2m

∂L(x)

∂ω

}
. (47)
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C. Representations for the boundary invariant

We study the boundary invariant

I (xϕ ) = �QB(xϕ ) − ρ̄xϕ (48)

= �Q′
B(xϕ ) −

ˆ xϕ

0
dx ρ (0)(x). (49)

Since �QB(L) = �Q′
B(L) + �QP(L) = 0, this invariant pos-

sesses the property I (L) = −ρ̄L.
Combining the terms, we obtain

I (xϕ ) = 1

π
Im

ˆ
dω 	(μ − ω)

ˆ xϕ

0
dx

× tr

{
d

dx

[
G(0)(x, x)

1

2m

∂L(x)

∂ω

]
+ G(0)(x, x)

}
.

(50)

Another representation reads as

I (xϕ ) = − 1

π
Im

ˆ
dω 	(μ − ω)

×
ˆ ∞

xϕ

dx e−0+x tr{G̃(x, x) − G(0)(x, x)}

+ 1

π
Im

ˆ
dω 	(μ − ω)

×
ˆ ∞

0
dx e−0+x tr{G(x, x) − G(0)(x, x)}

+ 1

π
Im

ˆ
dω 	(μ − ω)

ˆ xϕ

0
tr{G(0)(x, x)}. (51)

1. Representation in terms of the winding number

Let us first derive an equation for the function L(x) defined
in (36). Exploiting the relations

d

dx
[G(0)(x, x)]−1

= −[G(0)(x, x)]−1 dG(0)(x, x)

dx
[G(0)(x, x)]−1, (52)

dG(0)(x, x)

dx
= G(0)

1 (x−, x) + G(0)
2 (x, x+), (53)

we establish

dL(x)

dx
= − [G(0)(x, x)]−1

[
G(0)

1 (x−, x) + G(0)
2 (x, x+)

]
× [G(0)(x, x)]−1G(0)

2 (x, x+)

+ [G(0)(x, x)]−1[G(0)
22 (x, x+) + G(0)

12 (x−, x+)
]

− iA′(x). (54)

Using the representation (see Appendix B)

G12(x−, x+) = G(0)
1 (x−, x)[G(0)(x, x)]−1G(0)

2 (x, x+), (55)

and Eq. (2), we find

dL(x)

dx
= − L2(x) − iA(x)L(x) + iL(x)A(x)

− A2(x) − 2m[z − V (x)]. (56)

Differentiating it with respect to ω, we also find

d

dx

∂L(x)

∂ω
= − [L(x) + iA(x)]

∂L(x)

∂ω

− ∂L(x)

∂ω
[L†(x) − iA(x)] − 2m (57)

and

tr

{
G(0)(x, x)

d

dx

∂L(x)

∂ω

}

= −tr

{[
G(0)

1 (x+, x) + G(0)
2 (x, x+)

]∂L(x)

∂ω

}

− 2m tr{G(0)(x, x)}. (58)

From the last relation we obtain

tr

{
d

dx

[
G(0)(x, x)

1

2m

∂L(x)

∂ω

]
+ G(0)(x, x)

}

= −tr

{
∂L(x)

∂ω

}
. (59)

Substituting it in (50), we reveal

I (xϕ ) = − 1

π
Im

ˆ
dω 	(μ − ω)

∂

∂ω

ˆ xϕ

0
dx tr{L(x)}. (60)

Defining the matrix

U (x) = Pexp

{ˆ x

0
dx′L(x′)

}
, (61)

where Pexp stands for the path-ordered exponential, we derive
the following differential equation for it:

dU (x)

dx
= L(x)U (x), U (0) = 1. (62)

Using the Jacobi’s formula

tr{L(x)} = tr

{
dU (x)

dx
U−1(x)

}
= d

dx
ln det U (x), (63)

we express the boundary invariant as the winding number of
det U (xϕ ):

I (xϕ ) = − 1

π
Im

ˆ
dω 	(μ − ω)

∂

∂ω
ln det U (xϕ ). (64)

When the chemical potential is located above the νth
band the average density in the bulk amounts to ρ̄ = ν

L (see
Appendix D), and by (48) it follows I (L) = −ρ̄L = −ν. This
defines the following topological invariant associated with the
filling factor ν

Iν = −I (L) = 1

π
Im

ˆ
dω 	(μ − ω)

∂

∂ω
ln det W = ν,

(65)

where W is given by

W = U (L) = Pexp

{ˆ L

0
dx L(x)

}
. (66)

Let us note that L(x) can be expressed in terms of the bulk
quantities solely. On the other hand, Iν provides the infor-
mation on the number of edge states sitting in the gap above
the band ν. Indeed, since I (xϕ ) drops by unity each time an
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edge state escapes the occupied part of the spectrum, each
time the edge state escapes it never returns back as the edge-
state dispersion always connects the valence and conduction
bands together [29,34,35] (see also Secs. VI and VII), and
the in-gap edge state dispersion relation is periodic in xϕ ,
Iν = ν is precisely equal to the number of edge states to be
found over one xϕ cycle in the gap above the band ν. We thus
see that Iν underpins a new form of bulk-boundary corre-
spondence (BBC) in multichannel one-dimensional models.
As it is emphasized in Sec. VII the conventional form of
BBC in the sense of Hatsugai [6] cannot be established in
multichannel models, due to the nonvanishing xϕ derivative
of the edge state dispersion relation at the band-touching
points.

2. Representation in terms of bound states

Let us introduce the Green’s function G(2)(x, x′) for the
model with two infinite-strength delta impurities at x = 0 and
xϕ . It obeys the relations

G(2)(x, x′) = G̃(x, x′), x, x′ > xϕ (67)

G(2)(x, x′) = G(x, x′), x, x′ < 0 (68)

and for 0 < x, x′ < xϕ it satisfies the Schrödinger equa-
tion with open boundary conditions. This observation allows
us to rewrite (51) in the form

I (xϕ ) = 1

π
Im

ˆ
dω 	(μ − ω)

ˆ xϕ

0
dx tr{G(2)(x, x)}

− 1

π
Im

ˆ
dω 	(μ − ω)

×
ˆ ∞

−∞
dx tr{G(2)(x, x) − G(x, x)}. (69)

The first contribution is interpreted as −Nb, where Nb is a
number of bound states in the isolated cavity 0 < x < xϕ ,
which lie below the chemical potential μ. This follows from
the fact that G(2) is the exact Green’s function for the cavity
of size xϕ with open boundary conditions. In the Lehmann
representation we get

1

π
Im

ˆ
dω 	(μ − ω)

ˆ xϕ

0
dx tr{G(2)(x, x)}

= 1

π
Im

ˆ
dω 	(μ − ω)

ˆ xϕ

0
dx

×
∞∑

β=1

1

ω − εβ + iη
tr{ψβ (x)ψ†

β (x)}

= −
∑
εβ<μ

ˆ xϕ

0
dx tr{ψβ (x)ψ†

β (x)}

= −
∑
εβ<μ

ˆ xϕ

0
dx|ψβ (x)|2 = −Nb, (70)

where ψβ (x) are the exact eigenfunctions of the Hamiltonian
(1) and εβ are the corresponding eigenvalues for the given
boundary conditions.

To evaluate the second term, we note the equation for
G(2)(x, x′):

G(2)(x, x′) = G(x, x′)

− G(x, xϕ )[G(xϕ, xϕ )]−1G(xϕ, x′). (71)

Using the analog of (25) for G(x, x′) (see Appendix A)ˆ ∞

−∞
dx G(xϕ, x)G(x, xϕ ) = −∂G(xϕ, xϕ )

∂ω
, (72)

we obtain

I (xϕ ) = −Nb − 1

π
Im

ˆ
dω 	(μ − ω)

∂

∂ω
ln det G(xϕ, xϕ ),

(73)

i.e., the boundary invariant can be expressed in terms of the
bound states and the winding number of det G(xϕ, xϕ ). The
comparison of (65) and (73) also provides the formula for Nb:

Nb = − 1

π
Im

ˆ
dω 	(μ − ω)

∂

∂ω
ln det[G(xϕ, xϕ )U−1(xϕ )].

(74)

VI. NUMERICAL RESULTS: VALIDATION OF BOUNDARY
AND INTERFACE INVARIANTS

In order to showcase the above-developed theory we study
a particular Nc = 2 system defined by the following potential
profiles:

A(x) = 0.6σ0 sin(qx) + 0.7σ3 sin(3qx)

+ 0.4[cos(π/4)σ1 + sin(π/7)σ2] cos(4qx), (75)

V (x) = 0.3σ0 cos(qx) + 0.3σ1 sin(2qx)

− 0.4σ2 cos(2qx), (76)

where σ0 is the 2 × 2 identity matrix, σ j ( j = 1, 2, 3) are the
usual Pauli matrices, q = 2π

L , and we set L = 5 a.u. (through-
out the calculations we adopt the Hartree’s atomic units, that
is, we additionally set the electron mass to unity m = 1).
The energy dispersion of the bulk system is shown in Fig. 1.
In the following we assume that the chemical potential of
the system is located in the band gap above the sixth band
maxk ε6,k < μ < mink ε7,k .

A. Calculation of winding numbers and bulk
position-space Green’s functions

We are interested in evaluation of the winding numbers of
the form

wn[K] = −
ˆ

dω

π
	(μ − ω)Im

∂

∂ω
ln K (ω) (77)

for some function K (ω), which is real valued on the real axis.
Along the branch cut it is ill defined, therefore, it is necessary
to shift ω → ω + iη, as prescribed in the definition of retarded
response functions. Noticing that Im K (ω + iη) = 1

2i [K (ω +
iη) − K (ω − iη)], we interpret the first term K (ω + iη) under
the integral as K (z) being integrated from −∞ + iη to μ + iη,
and the second term −K (ω − iη) under the integral as K (z)
being integrated from μ − iη to −∞ − iη. This observation
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FIG. 1. The bulk energy spectrum of the model used in the numerical calculations throughout this section. Left panel: band structure
corresponding to the model defined by the non-Abelian gauge potentials (75) and (76) with L = 5 a.u. Right panel: the corresponding bulk
local spectral density at the origin of position space ρ (0)(ω) = ρ (0)(ω, x = 0) = − 1

π
ImG(0)(0, 0; ω + iη) (for numerical reasons η = 10−3 was

chosen in the calculation of spectral density). Throughout the numerical calculations we assume that the chemical potential μ is located in the
gap above the sixth energy band, which we schematically illustrate by the black dashed line.

allows us to rewrite wn[K] in terms of the contour integral in
the complex frequency plane z,

wn[K] = −
fi

C

dz

2π i

∂

∂z
1nK (z), (78)

where C is a clockwise contour surrounding the occupied part
of the spectrum residing on the real axis. For practical pur-
poses we consider a rectangular contour having the width 2η

in the imaginary direction and ranging from B to μ in the real
one. Here μ is the chemical potential and B is some energy
lying below the bottom of the lowest band. Let us also note
that nonetheless retarded and advanced Green’s functions are
defined in the limit η → 0+, in practical calculations of wind-
ing numbers, η can be chosen arbitrarily (and it is numerically
beneficial to choose larger values of η) since the winding
number, being a member of the homotopy class of a unit circle
simply measures the degree of the mapping S1 → S1 and
cannot be affected by continuous contour deformations (see
Fig. 2). Numerically, the contour integral in (78) is calculated
as [34]

fi
C

dz

2π i

∂

∂z
ln K (z) ≈

nc∑
n=1

�K
n , nc � 1 (79)

where

�K
n = 1

2π

⎧⎨
⎩

Y K
n δX K

n+1,n−X K
n δY K

n+1,n

(RK
n )2 , n � nc − 1

Y K
n δX K

1,nc
−X K

n δY K
1,nc

(RK
nc )2 , n = nc

(80)

X K
n = Re[K (ωn)], Y K

n = Im[K (ωn)], (81)

RK
n =

√(
X K

n

)2 + (
Y K

n

)2
, (82)

δX K
a,b = X K

a − X K
b , δY K

a,b = Y K
a − Y K

b . (83)

Here {ωn}n=1,...,nc is the contour-ordered set of points on the
contour C. Note that for small values of η, in the spirit of [34],
one has to employ the adaptive numerical algorithm for the
determination of points {ωn}n=1,...,nc for any given calculation
of the winding number. Using the above-mentioned analytical
continuation trick (choosing larger values of η) one automat-
ically avoids these complications since the said K function is
only needed far away from the nonanalytical features of G(0).
This allows one to evaluate all of the ingredients involved
in the calculation (G(0), G(0)

1 , G(0)
2 ) once on the fixed grid

of complex ω points. Despite this drastic simplification, we
stress that as a rule of thumb one has to choose a much
denser set of ω points in the vicinity of the chemical potential
ω ∈ {μ + iy|y ∈ [η,−η]} than on the rest of the contour ω ∈
C \ {μ + iy|y ∈ [η,−η]} (in fact, for η, B = O(1) the points
on the rest of the contour can be chosen rather sparsely).
This very observation served as our major motivation for the
development of the low-energy theory presented in Sec. VIII.

As we have seen in Secs. IV and V, the relevant invari-
ants can be expressed through the functionals of the bulk
position-space Green’s function. For these purposes we em-
ploy the series of basis transformations (3), (9), and (12),
and search for the Fourier components of the bulk Green’s
function Ḡ(0)

k,l,l ′ . In order to numerically solve Eq. (13) for

Ḡ(0)
k,l,l ′ we introduce a cutoff M < ∞ in the space of Fourier

modes (labeled by l, l ′) and replace the infinite-range Fourier
summations by the corresponding cutoff ones as

∞∑
l=−∞

fl ≈
M∑

l=−M

fl , (84)

for a given sequence fl . The value of the cutoff has to be
chosen in the way that leads to the convergence of the cor-
responding observables. Within this approximation we write
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FIG. 2. Top panel: Schematic illustration of two contours in
the complex ω plane encompassing the nonanalytical features of
the K function on the real axis. Here blue and orange contours
correspond to the small and large values of η and B, respectively.
Second and third panels show a comparison between the mappings
of the small- and large-η rectangular contours by the function K =
det[1 − Ṽ0G(0)(0, 0)]. Despite of the smaller-η contour having much
richer structure than its large-η counterpart, we see that the value of
winding number (−1) is unaffected by contour deformations as is
suggested in main text.

(13) as

(z1̂ − ĥk ) ˆ̄G(0)
k ≈ 1̂, (85)

where 1̂ is the M · Nc × M · Nc identity matrix, ˆ̄G(0)
k is the M ×

M block matrix composed of Nc × Nc blocks Ḡ(0)
k,l,l ′ , and z ∈

{ωn}n=1,...,nc . It thus follows that

Ḡ(0)
k,l,l ′ ≈ (z1̂ − ĥk )−1

l,l ′ . (86)

Hence,

Ḡ(0)
k (x̄, x̄′) ≈ 1

L

M∑
l,l ′=−M

(z1̂ − ĥk )−1
l,l ′e

2π i
L (l x̄−l ′ x̄′ ). (87)

In order to perform the integral in (3) we discretize the
first Brillouin zone by slicing it into Nk � 1 segments
of width δk = 2π

(Nk−1)L and replace the integration with a
sum of Nk evenly spaced momenta km = −π

L + δkm, m =
0, . . . , Nk − 1, so that

ˆ π/L

−π/L
dk f (k) ≈ δk

∑
km

f (km). (88)

Taking into account the transformation (9) it finally follows

G(0)(x, x′) ≈ δk

2π

∑
km

eikm (x̄+nL)e−ikm (x̄′+n′L)

×
M∑

l,l ′=−M

(
z1̂ − ĥkm

)−1

l,l ′e
2π i
L (l x̄−l ′ x̄′ ). (89)

We note that, in practice, the inverse of z1̂ − ĥk is numerically
ill defined for z in the vicinity of the real axis. Indeed, since
the above matrix is normal [z1̂ − ĥk, (z1̂ − ĥk )†] = 0, its con-
ditional number can be written as [73]

κ (z1̂ − ĥk ) = max(|z − spec{ĥk}|)
min(|z − spec{ĥk}|)

, (90)

and since min(|z − spec{ĥk}|) takes arbitrarily small val-
ues as one approaches the spectrum of ĥk , we conclude
that κ can take on arbitrarily large values, so that the
numerical inverse ceases to exist (independently of the nu-
merical inversion algorithm). To avoid this complication,
we perform numerical diagonalization of ĥk and rewrite the
inverse as

(z1̂ − ĥk )−1 =
Nα∑

α=1

1

z − εα,k
|α, k〉 〈α, k| , (91)

where εα,k, |α, k〉 are the eigenvalues and the normalized
eigenstates of ĥk labeled by the band index α = 1, . . . , Nα =
Nc(2M + 1). With this in hand we rewrite Eq. (89) as

G(0)(x, x′) ≈ δk

2π

∑
km

eikm (x̄+nL)e−ikm (x̄′+n′L)

×
Nα∑

α=1

1

z − εα,km

Fα,m(x̄, x̄′), (92)

where we have defined

Fα,m(x̄, x̄′) =
M∑

l,l ′=−M

[|α, km〉 〈α, km|]l,l ′e
2π i
L (l x̄−l ′ x̄′ ). (93)
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(a) (b)

(c)

FIG. 3. (a) Shows the interface charge as a function of the impurity strength Ṽ0 (here Ṽ0 is measured in Hartree units) for the model defined
by potentials (75) and (76). As one can see, the charge on the impurity is restricted to the values −2 (= −Nc ), . . . , 0 as it was the case in
tight-binding description [34]. (b), (c) Demonstrate how the contour defined by the K function det[1 − Ṽ0G(0)(0, 0)] crosses the point 0 + i0
when the interface charge drops as 0 → −1 and −1 → −2, respectively.

Note that the above representation is also beneficial from the
numerical perspective since the auxiliary function Fα,m(x̄, x̄′)
requires a one-off numerical evaluation once M, Nk and the
position-space grid have been established. Analogous repre-
sentations hold for the derivatives of the bare Green’s function
G(0)

1 (x, x′) and G(0)
2 (x, x′).

B. First-principles calculation of boundary invariant

To test the validity of the representations of the boundary
invariant introduced in Secs. V C 1 and V C 2, we compare the
invariant computed based on Eqs. (65) and (73) with the one
computed from the first principles. As opposed to our anal-
ysis of boundary invariant in the multichannel tight-binding
models carried out in [34], we find that the calculation of the
invariant based on the exact numerical diagonalization of the
Hamiltonian (1) in the basis of standing waves is unfeasible
due to the size of the dimension of its matrix representation
required for the convergence of the results. To this end, we
again employ the method of boundary Green’s functions. In
particular, we make use of the formula (50), which is derived
from the basic definition of the boundary charge by simple
position-space integration.

As one can infer, handling the formula (50) requires (in ad-
dition to the calculation of the bulk Green’s functions and its
spatial derivatives) the knowledge of the frequency derivative
of the L(x) function defined by (36). Exploiting the matrix
identity (52) we find

G(0)(x, x)
∂

∂ω
L(x) = ∂G(0)

2 (x, x+)

∂ω

− ∂G(0)(x, x)

∂ω
[G(0)(x, x)]−1G(0)

2 (x, x+).

(94)

Here we again find the representation (92) beneficial since
it allows one to avoid the finite-difference calculation of ω

derivative and simply write it as

∂

∂ω
G(0)(x, x′) ≈ − δk

2π

∑
km

eikm (x̄+nL)e−ikm (x̄′+n′L)

×
Nα∑

α=1

1(
z − εα,km

)2 Fα,m(x̄, x̄′). (95)

Again, an analogous representation holds for ∂
∂ω

G(0)
2 (x, x′).

Evaluation of the integral in (50) is again eased by rewriting
it as a contour integral in the spirit of (78) with the following
analytical continuation.

C. Results

1. Interface charge

In this section we start our discussion by considering the in-
terface charge invariant as a function of the impurity strength
QI (Ṽ0). Numerical results for the interface charge invariant are
presented in Fig. 3(a) for 103 values of Ṽ0 in the range [0, 12].
The chemical potential was chosen to lie slightly above the
sixth energy band μ = maxk ε6,k + 10−2. As opposed to the
single-channel case where the charge on an isolated impurity
is restricted to the values −1, 0 [31,35], we observe that the
interface charge in the multichannel system takes on values
−2 (= − Nc), . . . , 0.

The jumps of the interface charge occur whenever
an edge-state pole defined by the condition det[1 −
Ṽ0G(0)(0, 0)]|ω∈R = 0 crosses the chemical potential from be-
low, that is, a unit of electron charge is carried away from
the system in the process of spectral flow. In Figs. 3(b) and
3(c) we demonstrate this process by studying the flow of the
contours resulting from the mapping of the rectangular con-
tour defined in Sec. VI A by the K function K (ω) = det[1 −
Ṽ0G(0)(0, 0)] as a function of impurity strength Ṽ0. Once the
first bound state leaves the system, the K contour crosses the
origin of the complex plane ω = 0 + i0 leading to the winding
number of −1. As the value of the impurity strength increases
even further, the second edge state escapes the occupied part
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FIG. 4. Top panel: The spectral flow of the in-gap edge states as
a function of the shift variable xϕ . Here the orange solid lines indicate
the bound state poles of the right-half system and the green dashed
lines indicate those corresponding to the left-half system. Position
of the chemical potential (indicated by the dashed black line) is
chosen to be straight in the middle of the band gap between the
sixth and seventh bands. Bottom panel shows the boundary invariant
I (xϕ ) = �QB(xϕ ) − ρ̄xϕ as defined in (48). Invariant calculated from
the first principles [utilizing Eq. (50) is shown in pink, whereas the
boundary invariant calculated on the basis of the winding-number
expression (65) is depicted in blue dots. As one can notice the value
of the invariant drops by 1 each time the bound-state pole crosses the
chemical potential from below.

of the spectrum resulting in the second drop of QI by unity
which is reflected by additional knotting of the contour around
ω = 0 + i0.

2. Boundary invariant

Now let us turn our attention to the boundary invariant
I (xϕ ). Boundary invariant (BI) computed on the basis of the
winding-number representation (65) alongside the one com-
puted from the first principles (see Sec. VI B) is shown in
the bottom panel of Fig. 4. In the calculations of I (xϕ ) the
chemical potential was chosen to lie straight in the mid-
dle of the relevant gap μ = 1

2 (maxk ε6,k + mink ε7,k ) and the
position-space grid consists of 103 evenly spaced points in
the range [0, L] = [0, 5]. First, we note that BIs calculated
within two approaches are in exquisite agreement with one
another, thus justifying the winding-number representation
of Sec. V C 1. In analogy with the single-channel contin-
uum models [35], BI shows exactly ν = 6 downward jumps
by a unit of electron charge for the filling factor ν leading

to the properties I (0) = 0, I (L) = −ρ̄L = − ν
L L = −ν = −6

demonstrated analytically in Sec. V C.
Again, the mechanism leading to the abrupt reduction of

the charge is the spectral flow of the edge-state poles inside
the gap hosting the chemical potential. The pole positions as a
function of the shift parameter xϕ , found as the real solutions
to det[G(0)(xϕ, xϕ )] = 0, are plotted in the top panel of Fig. 4.
We note that there are precisely 12 solutions to the pole equa-
tion in the interval xϕ ∈ [0, L]. Six of these, plotted in dashed
green lines, correspond to the left-half system, whereas the
other six, depicted in solid orange lines, are the ones relevant
for us, those corresponding to the right-half system. As one
can infer from Fig. 4, the downward steps of I (xϕ ) happen
exactly at the points where bound states leave the system, as
is indicated by vertical yellow lines.

Let us note that the entire bulk band structure of any
multichannel continuum model is invariant under continuous
shifts of the lattice by xϕ (as it is the case in single-channel
continuum models [35]) as opposed to the tight-binding mod-
els examined in [34]. This fact can be trivially seen by a
simple coordinate shift in the Schrödinger equation for the
bulk eigenstates of the system. Another similarity to the
single-channel continuum theory is the presence of exactly
ν = 6 poles in the band gap above the νth band, an interesting
difference though lies in the discontinuity of the edge-state
dispersion relation, that is, the poles of the left-half system do
not continuously transform into the ones of the right half in
the process of the spectral flow.

Finally, in Fig. 5, we present the results for the bound-state
representation of BI introduced in Sec. V C 2. The topmost
panel of Fig. 5 shows the first contribution to BI given by
the formula (73), that is, the negative of the number of
bound states −Nb inside the cavity (box) of width xϕ , lying
below the chemical potential μ = 1

2 (maxk ε6,k + mink ε7,k ).
Although this number can be found on the basis of the formula
(74), we have found it numerically beneficial to calculate it via
numerical diagonalization of the Hamiltonian (1) in the basis
of standing waves:

χn(x) =
√

2

xϕ

sin

(
πnx

xϕ

)
, x ∈ [0, xϕ], n ∈ N. (96)

The second contribution to BI defined by (73), i.e., the wind-
ing number of the boundary Green’s function (23) at x = x′ =
xϕ , is shown in the middle panel of Fig. 5. Although −Nb is
a strictly decreasing function of xϕ (as one would expect on
the physical grounds Nb ∼ 2xϕ

√
μ/π ), wn[G(xϕ, xϕ )] shows

three upward jumps by unity. Noteworthy, these are precisely
canceled by the corresponding downward jumps of −Nb (as
indicated by the punctured green lines) leading to the correct
functional dependence of the boundary invariant as is demon-
strated in the bottom panel of Fig. 5.

VII. NUMERICAL RESULTS: FROM COMPLETELY
DEGENERATE TO GENERIC REGIME

In this section we are going to analyze the properties of I
and the associated spectral flow in the regimes ranging from
the completely degenerate ||δV (x)||

||V̄ (x)|| ,
||δA(x)||
||Ā(x)|| = 0 to the generic

one ||δV (x)||
||V̄ (x)|| ,

||δA(x)||
||Ā(x)|| ∼ 1. Here, V̄ (x), Ā(x) and δV (x), δA(x)
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FIG. 5. Top panel: Negative of the number of bound states below
the chemical potential μ = 1

2 (maxk ε6,k + mink ε7,k ) inside a box of
width xϕ . Middle panel: The winding number of boundary Green’s
function G(xϕ, xϕ ). Bottom panel: Comparison between the bound-
ary invariants calculated from the first principles (50) (in pink) and
the ones calculated with the help of the bound-state representation
(73) (blue dotted line).

are the Abelian and non-Abelian parts of the correspond-
ing potentials V (x) = V̄ (x) + δV (x), A(x) = Ā(x) + δA(x).
In the following we consider the Nc = 3 system defined by
the potentials

V̄ (x) = [0.35 cos(2qx) + 0.76 sin(qx)]λ0, (97)

Ā(x) = [0.44 cos(3qx) + 0.11 sin(2qx)]λ0, (98)

δV (x) = 0.074λ2 cos(qx) + 0.0108λ4 cos(2qx)

+ 0.0043λ6 cos(3qx) + 0.0022λ8 sin(qx), (99)

δA(x) = 0.0031λ1 sin(2qx) + 0.011λ3 sin(3qx)

+ 0.0065λ5 sin(4qx) + 0.0092λ7 cos(4qx). (100)

Here λ0 is the 3 × 3 identity matrix, λ j, j = 1, . . . , 8, are
the standard Gell-Mann matrices, and q = 2π

L . In the fol-
lowing we assume that L = 3 a.u. and as before we adopt
the Hartree’s atomic units. In the following we also assume
that the chemical potential lies a quarter band gap away from
the top of the sixth energy band μ = 1

4 (3 max εk,6 + min εk,6)
independently of the perturbation strength.

The energy band structure, the spectral flow of edge states
inside the gap, and the boundary invariant for the potentials
V (x) = V̄ (x) + 0 × δV (x), V̄ (x) + 1 × δV (x), V̄ (x) + 5 ×
δV (x), V̄ (x) + 10 × δV (x) [analogous for A(x)] are shown
in Fig. 6. As the perturbation is turned on from zero, the
energy subbands of a completely degenerate model slightly
split apart, and as the strength of the perturbation increases
further, the subbands become more and more distinguishable.

Similarly, the edge-state poles lying on top of one another
in a model with degenerate bands are split apart by the pertur-
bation. Let us note that as soon as the perturbation is turned
on, the edge state dispersion’s xϕ gradient is no longer zero
at the band edges (as it is always the case in single-channel
models [6,35]), instead the bound-state poles enter the band at
a slant. Touching the band edge by the edge-state dispersion
in the single-channel case is an important property for estab-
lishing the conventional bulk-boundary correspondence in the
spirit of Hatsugai [6]. It allows one to assign a certain sign-
valued vorticity to the touching point, the sum of all vorticties
over both band edges, bottom and top, representing the Chern
index of the band. In the multichannel case this property does
not hold, as discussed above. But, it is nevertheless possible
to establish the bulk-boundary correspondence by observing
that the overall drop of the boundary invariant over the single
xϕ cycle coincides (up to the sign) with the number of the
occupied bands ν.

As one can see, in a degenerate system, the boundary
invariant features a pair of jumps by −3 corresponding to
the escape of the particles of different “color charge” sitting
in the same bound state. As the perturbation is switched on
and the degeneracy is gone, the single step of −3 degenerates
into a threesome of steps splitting further and further apart
as the strength of the non-Abelian part of the potentials is
increased.

VIII. LOW-ENERGY THEORY

In this section, we consider the class of systems with both
Abelian and non-Abelian parts of vector and scalar potential
being much less than the Fermi energy. In this case, it is
possible to develop the so-called low-energy theory (LET)
allowing one to get analytical insights into the physics behind
the states residing near the chemical potential.

As per common practice [28,31,33], present LET is
developed on the basis of degenerate (Brillouin-Wigner) per-
turbation theory, where the periodic potentials generating the
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FIG. 6. From top to bottom: energy spectrum, spectral flow of in-gap edge states, and boundary invariant for varying relative strengths of

Abelian and non-Abelian parts of scalar and vector potentials. Here the strength of the perturbation increases from 0 × {δV
δA} in the first column

to 10 × {δV
δA} in the last one. Here the chemical potential is indicated by the dashed black line and is chosen to lie a quarter of band gap away

from the top of the sixth energy band μ = 1
4 (3 max εk,6 + min εk,6) (for any strength of the perturbation).

Fermi-surface resonances of 2kF,ν̄ = 2πν̄
L , ν̄ = 1, 2, . . . , are

treated as the perturbation to the free-particle Hamiltonian.
In the following case, for simplicity purposes, we restrain
ourselves to the systems satisfying

ˆ L

0
dx e− 2π iν̄x

L V (x) �= 0,

ˆ L

0
dx e− 2π iν̄x

L A(x) �= 0. (101)

That is, we assume that the amplitudes of the mode corre-
sponding to the Fermi surface ν̄ are nonzero and thus the
gap is opened in the first order in perturbation theory. In
the opposite scenario one simply has to consider higher-order
perturbation theory to obtain the effective low-energy Hamil-
tonian (see Refs. [28,31] for details).

Note that in LET, the channel splitting of the energy bands
is typically much smaller than “global” gaps generated purely
by the periodicity of potentials, which are themselves much
smaller than the Fermi energy. For this purpose, it is conve-
nient to adopt the new labeling of states. In this section, the
global gaps (from now on referred to as gaps for simplicity)
are labeled by the index ν̄ = 1, 2, . . . . In particular, when the
chemical potential is placed in the gap ν̄, that means that
ν = Nc · ν̄ bands are filled.

A. Approximation for bulk Green’s functions

Consider either odd gap ν̄ = 2p + 1 or even gap ν̄ = 2p.
In the LET description, an odd gap occurs when the two
parabolas corresponding to the quadratic kinetic term in (14)

and labeled by l = p and −p − 1 intersect each other at
k = π

L , while an even gap occurs when the two parabolas
labeled by l = p and −p intersect each other at k = 0. To
lift these degeneracies, it suffices to project the perturbative
terms ∝Al,l ′′ and Vl,l ′′ in (14) onto the quoted pairs of states.
Thereby, we get an effective low-energy Hamiltonian written
in the 2 × 2 block form, with each block being a Nc × Nc

matrix

P
(

hk − k2
F

2m

)
P = heff

k̄ = k̄2

2m
+ k̄

m
A0 + V0

+
(

vF k̄ + vF A0
k̄
m Aν̄ + Vν̄

k̄
m A†

ν̄ + V †
ν̄ −vF k̄ − vF A0

)
.

(102)

Hereby, P denotes the corresponding projector, with the upper
state being p, and the lower state being −p − 1 (−p) for odd
(even) ν̄. In the following we label these states by a, b = 1, 2.
We set the chemical potential μ = π2 ν̄2

2mL2 and introduce the
notations k̄ = k − π

L (k̄ = k) for the odd (even) case as well
as define the Fermi quasimomentum kF ≡ kF,ν̄ = ν̄π

L and the
Fermi velocity vF ≡ vF,ν̄ = ν̄π

mL . In the above representation
(102) we use the Hermiticity property of V (x) and A(x) trans-
lated to their Fourier components (15) and (16): V−ν̄ = V †

ν̄ ,
A−ν̄ = A†

ν̄ . Without loss of generality, we can choose the zero-
mode matrices V0 and A0 to be traceless.
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Introducing z̄ = z − μ and neglecting the term k̄2

2m we eval-

uate the corresponding effective Green’s function Ḡ(0) eff
k̄

=
(z̄ − heff

k̄
)−1. The corresponding low-energy approximation

for the Green’s function in the spatial representation reads
as

G(0)(x, x′) ≈
ˆ ∞

−∞

d̄k

2π
eik̄(x−x′ )

× [
Ḡ(0),eff

k̄,11
eikF (x−x′ ) + Ḡ(0),eff

k̄,22
e−ikF (x−x′ ) (103)

+ Ḡ(0),eff
k̄,12

eikF (x+x′ ) + Ḡ(0),eff
k̄,21

e−ikF (x+x′ )]. (104)

For the special single-channel case with A(x) = 0 and V0 = 0,

Ḡ(0),eff
k̄

= f (k̄, z̄)

(
z̄ + vF k̄ Vν̄

V ∗
ν̄ z̄ − vF k̄,

)
, (105)

f (k̄, z̄) = 1

z̄2 − (vF k̄)2 − |Vν̄ |2
, (106)

and

G(0)(x, x) = 2F (z̄)[z̄ + |Vν̄ | cos(2kF x + ϕν̄ )], (107)

where ϕν̄ is the phase of the gap parameter Vν̄ = |Vν̄ |eiϕν̄ ,
F (z̄) = ´∞

−∞
dk̄
2π

f (k̄, z̄) = − 1
2vF

1√
|Vν̄ |2−z̄2

, and in particular

F (z̄ = ω + iη) = − 1

2vF

⎧⎪⎪⎨
⎪⎪⎩

i√
ω2−|Vν̄ |2

, ω > |Vν̄ |
1√

|Vν̄ |2−ω2
, −|Vν̄ | < ω < |Vν̄ |

− i√
ω2−|Vν̄ |2

, ω < −|Vν̄ |.
(108)

B. Boundary charge

In the low-energy approximation we neglect the polariza-
tion charge QP since it is O( ||Vν̄ ||

vF kF
ln ||Vν̄ ||

vF kF
) (see Appendix E 1).

Our goal is to evaluate the boundary charge by the formula
(30) making the LET approximation of G(0). Let us then
consider

ˆ ∞

xϕ

dx e−0+xtr{G(0)(x, xϕ )[G(0)(xϕ, xϕ )]−1G(0)(xϕ, x)}

= tr

{
[G(0)(xϕ, xϕ )]−1

ˆ
dk̄

2π

ˆ
dk̄′

2π

×
ˆ ∞

xϕ

dx ei(k̄−k̄′+i0+ )(x−xϕ )

×
∑

a,b,a′b′
Ḡ(0),eff

k̄′,b′a′ e
ikF (b′xϕ−a′x)Ḡ(0),eff

k̄,ab
eikF (ax−bxϕ )

}
. (109)

In order to suppress terms which are fast oscillating in x, we
select only the terms in these sums, which have a = a′ [as it
is shown in Appendix E 2, the rapidly oscillating terms give
a O( ||Vν̄ ||

vF kF
) contribution]. (Here we use a, b = 1, 2 = +,−).

After that we perform the x integration and obtain
ˆ ∞

xϕ

dx e−0+xtr{G(0)(x, xϕ )[G(0)(xϕ, xϕ )]−1G(0)(xϕ, x)}

= tr

{
[G(0)(xϕ, xϕ )]−1

ˆ
dk̄

2π

ˆ
dk̄′

2π

i

k̄ − k̄′ + i0+

×
∑
b,b′

[
Ḡ(0), eff

k̄′ Ḡ(0),eff
k̄

]
b′b

eikF (b′−b)xϕ

}
. (110)

Note the left-subsystem analog
ˆ xϕ

−∞
dx e0+xtr{G(0)(x, xϕ )[G(0)(xϕ, xϕ )]−1G(0)(xϕ, x)}

= −tr

{
[G(0)(xϕ, xϕ )]−1

ˆ
dk̄

2π

ˆ
dk̄′

2π

i

k̄ − k̄′ − i0+

×
∑
b,b′

[
Ḡ(0),eff

k̄′ Ḡ(0),eff
k̄

]
b′b

eikF (b′−b)xϕ

}
. (111)

Representing

Ḡ(0),eff
k̄′ Ḡ(0),eff

k̄
= Ḡ(0),eff

k̄′ Ḡ(0),eff
k̄′ + Ḡ(0),eff

k̄′
(
Ḡ(0),eff

k̄
− Ḡ(0),eff

k̄′
)

(112)

= − ∂

∂ z̄

[
Ḡ(0),eff

k̄′
]+ vF (k̄′ − k̄)

∂Ḡ(0),eff
k̄′

∂ z̄
σzḠ

(0),eff
k̄

(113)

on one hand, and

Ḡ(0),eff
k̄′ Ḡ(0),eff

k̄
= Ḡ(0),eff

k̄
Ḡ(0),eff

k̄
+ (

Ḡ(0),eff
k̄′ − Ḡ(0),eff

k̄

)
Ḡ(0),eff

k̄
(114)

= − ∂

∂ z̄

[
Ḡ(0),eff

k̄

]+ vF (k̄ − k̄′)Ḡ(0),eff
k̄′ σz

∂Ḡ(0),eff
k̄

∂ z̄
(115)

on the other hand, we insert the symmetrized combination of
the above expressions into (110). Thereby, we obtain

ˆ ∞

xϕ

dx e−0+xtr{G(0)(x, xϕ )[G(0)(xϕ, xϕ )]−1G(0)(xϕ, x)}

≈ −1

2
tr

{
[G(0)(xϕ, xϕ )]−1 ∂G(0)(xϕ, xϕ )

∂ z̄

}
(116)

− i

2
vF tr

{
[G(0)(xϕ, xϕ )]−1

ˆ
dk̄

2π

ˆ
dk̄′

2π

×
∑
b,b′

[
∂Ḡ(0),eff

k̄′

∂ z̄
σzḠ

(0),eff
k̄

− Ḡ(0),eff
k̄′ σz

∂Ḡ(0),eff
k̄

∂ z̄

]
b′b

× eikF (b′xϕ−bxϕ )

}
. (117)

1. Single-channel case

Noticing that

Ḡ(0),eff
k̄′ σzḠ

(0),eff
k̄

= Ḡ(0),eff
k̄

σzḠ
(0),eff
k̄′ , (118)
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we show that

∂Ḡ(0),eff
k̄′

∂ z̄
σzḠ

(0),eff
k̄

− Ḡ(0),eff
k̄′ σz

∂Ḡ(0),eff
k̄

∂ z̄

= −2z̄[ f (k̄′, z̄) − f (k̄, z̄)]Ḡ(0),eff
k̄′ σzḠ

(0),eff
k̄

(119)

+ f (k̄′, z̄)σzḠ
(0),eff
k̄

− Ḡ(0),eff
k̄

σz f (k̄, z̄). (120)

Integrating over k̄ and k̄′, we observe that the term (119)
vanishes, while the term (120) gives the contribution

2[F (z̄)]2

(
0 Vν̄

−V ∗
ν̄ 0

)
. (121)

Inserting this into (117), we obtain
ˆ ∞

xϕ

dx e−0+xG(0)(x, xϕ )[G(0)(xϕ, xϕ )]−1G(0)(xϕ, x)

≈ −1

2

1

z̄ + |Vν̄ | cos ϕ̄ν̄

− 1

2
[F (z̄)]−1 ∂F (z̄)

∂ z̄
(122)

+ vF F (z̄)|Vν̄ | sin ϕ̄ν̄

z̄ + |Vν̄ | cos ϕ̄ν̄

, (123)

where ϕ̄ν̄ = 2kF xϕ + ϕν̄ .
Integrating over the valence band states up to −|Vν̄ |, and

accounting the pole at ω = −|Vν̄ | cos ϕ̄ν̄ in the band gap (set-
ting μ = |Vν̄ |), we obtain

QB(ϕ̄ν̄ ) = Qcorr
B − 1

4
+ 1

2

fi
dz̄

2π i

1 − 2vF F (z̄)|Vν̄ | sin ϕ̄ν̄

z̄ + |Vν̄ | cos ϕ̄ν̄

= Qcorr
B − 1

4
+ 	(ϕ̄ν̄ )

+ 1

2π

ˆ −|Vν̄ |

−∞
dω

|Vν̄ | sin ϕ̄ν̄

(ω + |Vν̄ | cos ϕ̄ν̄ )
√

ω2 − |Vν̄ |2
.

(124)

Hereby, the contribution − 1
4 arises from the half-winding

of the function F (z) around the branching point ω = −|Vν |:
1

2

fi
dz̄

2π i
[F (z̄)]−1 ∂F (z̄)

∂ z̄
= 1

2

fi
dz̄

2π i

z̄

|Vν̄ |2 − z̄2

= − 1

8π i

fi −|Vν̄ |+iη

−|Vν̄ |−iη

dz̄

|Vν̄ | + z̄
− Im

×
ˆ −|Vν̄ |

−∞

dω

2π

ω + iη

|Vν̄ |2 − (ω + iη)2

= −1

8
− 1

4

ˆ −|Vν̄ |

−∞
dω[δ(ω − |Vν̄ |) + δ(ω + |Vν̄ |)]

= −1

4
. (125)

In turn, the term Qcorr
B accounts the contribution of deep-lying

occupied states which is missing after the spectrum lineariza-
tion. Following the prescription of Ref. [31], we represent
Qcorr

B as a boundary charge in the gapless model with the
nonlinearized spectrum ( k̄2

2m in the present case). The corre-
sponding calculation, carried out in Appendix F, yields the
result Qcorr

B = − 1
4 .

Recalling that for ϕ ∈ [−π, π ] it holds
ˆ −1

−∞
dx

sin ϕ

(x + cos ϕ)
√

x2 − 1
= ϕ + π − 2π	(ϕ), (126)

we finally obtain

QB(ϕ̄ν̄ ) = ϕ̄ν̄

2π
, (127)

which is consistent with our previous result for lattice models
[31].

2. Multichannel case

Assuming that ||Vν̄ || ∼ vF ||Aν̄ ||, we see that the scalar
potential gives the dominant contribution to the off-diagonal
component of the matrix in (102) at k̄ � kF . Along with the
additional simplifying assumption A0 = 0, this results in the
full neglect of the vector potential A(x). Thereby, we obtain
the multichannel analog of (105):

Ḡ(0),eff
k̄

=
(

f1(k̄, z̄)(z̄ + vF k̄) f1(k̄, z̄)Vν̄

V †
ν̄ f1(k̄, z̄) (z̄ − vF k̄) f2(k̄, z̄),

)
, (128)

where

f1(k̄, z̄) = 1

z̄2 − (vF k̄)2 − Vν̄V †
ν̄

, (129)

f2(k̄, z̄) = 1

z̄2 − (vF k̄)2 − V †
ν̄ Vν̄

. (130)

These matrices satisfy f1Vν̄ = Vν̄ f2, V †
ν̄ f1 = f2V

†
ν̄ . Employ-

ing the singular-value decomposition Vν̄ = U1V̂ν̄U †
2 and V †

ν̄ =
U2V̂ ∗

ν̄ U †
1 , where U1,2 are unitary matrices, and V̂ν̄ is a diagonal

matrix, we represent f1 = U1 f̂ U †
1 and f2 = U2 f̂ U †

2 . Hereby,

f̂ (k̄, z̄) = 1

z̄2 − (vF k̄)2 − |V̂ν̄ |2
(131)

is the diagonal matrix. Then,

Ḡ(0),eff
k̄

=
(

U1 f̂ U †
1 (z̄ + vF k̄) U1 f̂ V̂ν̄U †

2

U2V̂ ∗
ν̄ f̂ U †

1 (z̄ − vF k̄)U2 f̂ U †
2

)
. (132)

It follows

G(0)(x, x) = U1z̄F̂U †
1 + U2z̄F̂U †

2

+ U1F̂V̂ν̄U †
2 e2ikF x + U2V̂

∗
ν̄ F̂U †

1 e−2ikF x, (133)

with the diagonal matrix F̂ (z̄) = 1
2π

´∞
−∞ dk̄ f̂ (k̄, z̄). In the off-

diagonal representation we have

G(0)(x, x) = z̄(F1 + F2)

+ F1Vν̄e2ikF x + V †
ν̄ F1e−2ikF x, (134)

with F1,2(z̄) = 1
2π

´∞
−∞ dk̄ f1,2(k̄, z̄).

Denoting

Ḡ(0)
av = 1

2π

ˆ ∞

−∞
dk̄ Ḡ(0),eff

k̄
=
(

U1z̄F̂U †
1 U1F̂V̂ν̄U †

2

U2V̂ ∗
ν̄ F̂U †

1 U2z̄F̂U †
2

)

= W

(
z̄F̂ F̂V̂ν̄

V̂ ∗
ν̄ F̂ z̄F̂

)
W † ≡ W Ĝ(0)

av W †, (135)
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where W = (U1 0
0 U2

), we evaluate

ˆ
dk̄

2π

ˆ
dk̄′

2π

[
∂Ḡ(0),eff

k̄′

∂ z̄
σzḠ

(0),eff
k̄

− Ḡ(0),eff
k̄′ σz

∂Ḡ(0),eff
k̄

∂ z̄

]

= W

[
∂Ĝ(0)

av

∂ z̄
σzĜ

(0)
av − Ĝ(0)

av σz
∂Ĝ(0)

av

∂ z̄

]
W †

= W

(
0 2F̂ 2V̂ν̄

−2V̂ ∗
ν̄ F̂ 2 0

)
W †

=
(

0 2U1F̂ 2V̂ν̄U †
2

−2U2V̂ ∗
ν̄ F̂ 2U †

1 0

)
. (136)

Then,
ˆ

dk̄

2π

ˆ
dk̄′

2π

∑
b,b′

eikF (b′xϕ−bxϕ )

×
[

∂Ḡ(0),eff
k̄′

∂ z̄
σzḠ

(0),eff
k̄

− Ḡ(0),eff
k̄′ σz

∂Ḡ(0),eff
k̄

∂ z̄

]
b′b

= 2U1F̂ 2V̂ν̄U †
2 e2ikF xϕ − 2U2V̂

∗
ν̄ F̂ 2U †

1 e−2ikF xϕ

= 2F 2
1 Vν̄e2ikF xϕ − 2V †

ν̄ F 2
1 e−2ikF xϕ . (137)

Introducing the following quantity

P(xϕ ) = − ivF tr
{
[G(0)(xϕ, xϕ )]−1

× (
F 2

1 Vν̄e2ikF xϕ − V †
ν̄ F 2

1 e−2ikF xϕ
)}

, (138)

we show in Appendix G that

∂P(xϕ )

∂xϕ

= − kF

vF

∂

∂ z̄
tr{[G(0)(xϕ, xϕ )]−1}. (139)

Then,

QB(xϕ ) = Qcorr
B

+ 1

2π i

fi
dz̄

[
1

2

∂

∂ z̄
ln det G(0)(xϕ, xϕ ) − P(xϕ )

]

= Qcorr
B + 1

2π i

fi
dz̄

[
1

2

∂

∂ z̄
ln det G(0)(xϕ, xϕ )

− P(0) + kF

vF

∂

∂ z̄

ˆ xϕ

0
dx tr{[G(0)(x, x)]−1}

]
,

(140)

where the contour embraces both poles and branch cuts in the
counterclockwise direction, and Qcorr

B = −Nc
4 . Hence,

QB(xϕ ) − QB(0)

=
fi

dz̄

2π i

∂

∂ z̄

[
1

2
ln det G(0)(xϕ, xϕ ) − 1

2
ln det G(0)(0, 0)

+ kF

vF

ˆ xϕ

0
dx tr{[G(0)(x, x)]−1}

]
(141)

= 1

2π i

fi
dz̄ qB(xϕ ; z̄) − 1

2π i

fi
dz̄ qB(0; z̄). (142)

In the representation (142) we employed the boundary charge
spectral density

qB(xϕ ; z̄) = 1

2

∂

∂ z̄
ln det G(0)(xϕ, xϕ ) − P(xϕ ), (143)

and (142) holds true by virtue of the identity (139).
The frequency contour integral gives the two contributions

to QB(xϕ ) − QB(0). First, there is a branch cut along the real
axis from −∞ to −�ν̄ ≡ − min1�λ�Nc |V̂ν̄,λ|, that is up to
the valence band edge determined by the smallest eigenvalue
of Vν̄ . Second, there are poles lying in the band gap below
the chemical potential, that is in the range −�ν̄ < z̄ < 0. We
should, however, keep in mind that these poles can correspond
to bound states in either the right or left subsystem.

To evaluate the branch-cut contribution, we use the rep-
resentation (141), in which the integrand is expressed in
terms of the full frequency derivative. Noticing that the

phase of det G(0) (xϕ,xϕ )
det G(0) (0,0) is continuous at very large negative z̄ �

− max1�λ�Nc |V̂ν̄,λ|, while the jump in

[G(0)(x, x)]−1|z̄=−∞+iη − [G(0)(x, x)]−1|z̄=−∞−iη = 2ivF

(144)

contributes to

Q(b−c)
B (xϕ ) − Q(b−c)

B (0) = 1

2π i

kF

vF

ˆ xϕ

0
dx tr{2ivF } (145)

= kF

π
Ncxϕ = ν̄Nc

xϕ

L
= ρ̄xϕ. (146)

In turn, to evaluate the poles’ contribution to QB(xϕ ) −
QB(0), we use the representation (142). The poles z̄(p)

j
of qB(xϕ;z̄ ) are identified with the roots of the equa-
tion det G(0)(xϕ, xϕ ) = 0, and thus we get

1

2π i

fi
poles

dz̄ qB(xϕ ; z̄) =
∑

j

R j (xϕ ), (147)

where we sum residua

Rj (xϕ ) = lim
z̄→z̄(p)

j

1

2

(
1 − 2P(xϕ ) det G(0)(xϕ, xϕ )

∂ det G(0) (xϕ,xϕ )
∂ z̄

)
(148)

of all the poles. It turns, however, out that Rj (xϕ ) = +1 for
the bound state in the right subsystem, and Rj (xϕ ) = 0 for
the bound state in the left subsystem (see Appendix H for the
proof). Thus, we find the poles’ contribution

Q(p)
B (xϕ ) − Q(p)

B (0) = Nr (xϕ ) − Nr (0) (149)

in terms of the number Nr (xϕ ) of the bound states in the right
subsystem with energies lying in the gap below the chemical
potential. In particular, in the single-channel case

Nr (xϕ ) = 1

2

(
1 + sin ϕ̄ν

| sin ϕ̄ν̄ |
)

= 	(sin ϕ̄ν̄ ), (150)

which is in agreement with our previous result [31]. Finally,

QB(xϕ ) − QB(0) = ρ̄xϕ + Nr (xϕ ) − Nr (0). (151)

This formula allows for an immediate interpretation in terms
of the spectral flow. Note that xϕ can be redefined xϕ → xϕ +

1
2kF Nc

∑Nc
λ=1 ϕν̄,λ to include the mean phase of the gap-matrix

eigenvalues.
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FIG. 7. Comparison of the exact spectrum of the model defined
by the potential (152) (here L = 3 a.u.) with its low-energy coun-
terpart. As it is indicated in the inset the exact spectrum is well
approximated by the low-energy one in the vicinity of the chemi-
cal potential located in the middle of the second energy gap μ =
1
2 (max εk,4 + min εk,5).

C. Comparison with exact theory

One expects the low-energy theory (LET) to be valid
in the regime of small enough energy gaps �ν̄

εF
� 1, where

�ν̄ ∼ max1�λ�Nc |V̂ν̄,λ| is the energy gap hosting the chemical
potential, and εF is the Fermi energy. Thus, for the purpose
of comparison of LET and exact result we have to choose a
model with small enough potential amplitudes. In particular,
let us consider the following Nc = 2 potential:

V (x) = v0σ0 cos(3qx) + v1σ1 sin(2qx)

+ v2σ2 sin(4qx) + v3σ3 cos(2qx). (152)

Here as before q = 2π/L, σ0 and σ j are the identity and Pauli
matrices, respectively, and the potential amplitudes are chosen
to be v0 = 0.0065, v1 = 0.035, v2 = 0.00275, v3 = 0.047.
In the following we additionally assume that L = 5 a.u. and
the chemical potential is located in the middle of the second
band gap μ = (max εk,4 + min εk,5)/2 (that is ν̄ = 2). We can
read off the effective potential:

V2 = −iασ1 + βσ3, α = v1

2
, β = v3

2
. (153)

The Dirac-type model features a quartet of energy bands with
dispersion relations given by

ε
(σ )
k̄,± = σ

√
v2

F k̄2 + �2±, �± = α ± β. (154)

Here σ = − corresponds to the valence bands, σ = + cor-
responds to the conduction ones, k̄ = k − 0 = k, and vF =
kF = ν̄π

L ≡ 2π
5 . The comparison between the exact and ap-

proximate dispersion relations is shown in Fig. 7. As one can
infer from the inset, in the vicinity of the chemical potential,
the two perfectly overlap.

Performing the manipulations outlined in Sec. VIII B 2 we
find that the LET approximation of the equal argument bare

Green’s function is given by

G(0)(x, x) = z̄(F̂+ + F̂−)σ0 + (�+F̂+ + �−F̂−) sin(2kF x)σ1

+ (�+F̂+ − �−F̂−) cos(2kF x)σ3. (155)

Here F̂± are the diagonal elements of F̂ corresponding to the
two different gaps �±. This immediately allows us to write
the determinant of G(0)(x, x):

det G(0)(x, x) = 2F̂+F̂−[z̄2 + �+�− cos(4kF x)] − 1

2v2
F

.

(156)

It is straightforward to determine the poles inside the gap
z̄ ∈ [−|�−|, |�−|] satisfying det G(0)(x, x) = 0. We find the
following solutions:

z̄∗
± = ± �+�−| sin(4kF x)|√

�2+ + �2− + 2�+�− cos(4kF x)

	[|�−|/|�+| − cos(4kF x)], (157)

where 	 is the Heaviside step function. The affiliation of a
given pole (for a given value of x) with either left- or right-
half system follows from the sign of its spatial derivative:
positive for the right-half system and negative for the left one.
Using (138) we obtain the following simple result for the P
function:

det G(0)(x, x)P(x) = 2vF �+�−F̂+F̂−(F̂+ + F̂−) sin(4kF x).
(158)

With this in hand, we readily find the following central result
for the aforementioned model:

Q(p)
B (xϕ ) − Q(p)

B (0)

= sin(4kF xϕ )

| sin(4kF xϕ )|

(
�− + �+ cos(4kF xϕ ) sin(4kF xϕ )

|�− + �+ cos(4kF xϕ ) sin(4kF xϕ )|

× �+[�+ + �− cos(4kF xϕ )]√
�2+ + �2− + 2�+�− cos(4kF xϕ )

− (�− ↔ �+)

)

	[|�−|/|�+| − cos(4kF xϕ )]. (159)

The comparison of the results presented above with exact ones
is shown in Figs. 8 and 9. Figure 8(a) shows the spectral flow
of the in-gap edge states calculated from det[G(0)(xϕ, xϕ )] =
0, z̄ ∈ [max εk,4, min εk,5], where G(0)(xϕ, xϕ ) is the exact
Green’s function for the model defined by the potential (153).
On the other hand, the spectral flow based on the LET solution
(157) is shown in Fig. 8(b), and its difference to the result
in Fig. 8(a) is presented in Fig. 9. As is indicated by dashed
vertical yellow lines, the values of xϕ where the edge states
(belonging to the right-half system) escape the occupied part
of the spectrum calculated on the basis of two approaches
are in perfect agreement. Moreover, the entire line shapes
of the spectral flows are in exquisite tune with one another.
This signifies that in the regime of small gaps, not only the
exact spectrum in the vicinity of the chemical potential is
well approximated by LET (see Fig. 7), but also the Green’s
function itself. Let us also note that the discontinuity feature of
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(a)

(b)

(c)

FIG. 8. Comparison of the exact invariant with the one obtained
on the basis of the low-energy theory. (a) Shows the spectral flow of
the in-gap edge states obtained within the exact theory. (b) Shows the
spectral flow of the in-gap edge states obtained within the low-energy
approximation. (c) Shows the xϕ dependence of the residue R(xϕ ) at
the pole z̄∗

+ [see (157)] lying below the chemical potential.

the spectral flow (the poles of the left-half system do not con-
tinuously transform into the ones of the right half) discussed
in Sec. VI C also persists in the low-energy regime.

Figure 8(c) demonstrates the residue (148) at the pole z̄∗
+

lying below the chemical potential. As one can see, the residue
takes on values 0 or 1 depending on the “chirality” of the pole.
Whenever an edge state lies below the chemical potential, R
equals 0 if the edge state is hosted by the left-half system and
equals 1 if the edge state belongs to the right-half system as it
was pointed out in Sec. VIII B 2. As is indicated by the dashed
vertical yellow lines, the change in the value of the residue
happens precisely at the points of the xϕ cycle, where the right-
half system’s edge modes escape and the left-half system’s
enter the occupied part of the spectrum.

IX. SUMMARY

For generic continuum models with non-Abelian scalar and
vector potentials, we have laid down a theoretical framework
for boundary and interface charge investigations. Within our
approach, both boundary and interface charges are expressed
in terms of bulk position-space Green’s functions and its
derivatives, allowing one to avoid the direct construction of
the wave functions of an inhomogeneous system, a hardly
achievable goal in a system with composite energy bands (a
typical scenario in multichannel systems).

With the help of the Green’s function representation of the
boundary charge, we establish a topological integer-valued
index I (xϕ ) associated with the change in the boundary charge
upon the translation of the entire system by xϕ ∈ [0, L] to-
wards the boundary. We demonstrated that I (xϕ ) admits for
two equivalent representations: the winding-number and the
bound-state representations. In the winding-number represen-
tation, the boundary invariant is expressed via the winding
number of a particular functional of bulk Green’s functions
as it encompasses the section of the real-frequency axis corre-
sponding to the occupied part of the energetic spectrum (see
Table I). On the other hand, in the bound-state representation,
the boundary invariant is expressed as the sum of the winding
number of the boundary Green’s function and the number of
bound states hosted by the box of size xϕ lying below the
chemical potential.

We observe that during a single xϕ cycle, the boundary
invariant exhibits exactly ν downward jumps by a unit of elec-
tron charge whenever the chemical potential is accommodated
by the gap above the νth band. This naturally generalizes the
results on the single-channel continuum models [35] to the
multichannel realm. We find that the boundary invariant quan-
tifies the spectral flow of the boundary eigenvalue problem:
discontinuous jumps of I (xϕ ) occur whenever an edge-state
pole escapes the occupied part of the spectrum, that is, the
unit of electron charge is carried away from the system in the
process of spectral flow. Since the boundary invariant quan-
tifies the boundary problem while being expressed in terms
of bulk quantities solely, it presents itself as a symmetry-
independent formulation of bulk-boundary correspondence in
one-dimensional multichannel continuum models. Moreover,
we have seen that the property of the bound-state dispersion
having zero xϕ derivative at the band-touching points [35] is
not retained in the multichannel case. In the single-channel
case this property is crucial for establishing the conventional
bulk-boundary correspondence [6]. It allows one to assign an
effective vorticity to the touching point, all vorticties over both
band edges, bottom and top, summing up to the Chern index of
the band. Even though in the multichannel case this property
does not hold, it is still possible to establish the bulk-boundary
correspondence by observing that the net drop of I over the
single xϕ cycle, up to the sign, coincides with the number of
the occupied bands ν in the system.

Additionally, the quantization of excess charge accumu-
lated on an isolated δ-function (repulsive) impurity, the
so-called interface charge QI , was demonstrated. In particular,
we prove that the charge on the impurity is given by the wind-
ing number and, thus, is a topological invariant (see Table I).
Via this construction, we provide a rigorous mathematical
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FIG. 9. Left panel: Comparison of the spectral flow of the in-gap bound state energy (relative to the Fermi energy), corresponding to the
first bound state shown in Figs. 8(a) and 8(b). The span of the bound states slightly differs as predicted by LET and computed from first
principles, that is, LET and exact bound states typically leave and enter the energy bands at slightly different points. For that sake, in the right
panel, the difference between the bound-state energies as predicted by both approaches is only shown in the overlapping regions.

proof of the nearsightedness principle in the general one-
dimensional multichannel continuum models (see Ref. [34]
for an analogous result for tight-binding lattice models). We
observe that the charge piled up on the impurity is restricted
to the values −Nc, . . . ,−1, 0, generalizing the results of
Ref. [35].

For the systems with potential amplitudes being much
smaller than the typical value of kinetic energy, we addi-
tionally develop a Green’s-function-based low-energy theory
(LET) of boundary and interface charges. In particular, for the
models with scalar potential only, we provide a rigorous proof
that the change in QB upon a continuous shift of a lattice
towards the boundary by xϕ is, up to integer contributions,
a perfectly linear function of xϕ . This development provides
the multichannel generalization of the field-theoretical ver-
sion of the surface charge theorem discovered in Ref. [33]
for single-channel tight-binding models. We reveal that the
agreement between LET and exact results becomes exquisite
in the regime of small energy gaps (potential amplitudes),
signifying that in this regime, in the vicinity of the chemical
potential, the exact Green’s function of the theory is perfectly
approximated by its LET counterpart. Of future interest is
the generalization of the existing low-energy theory to the
one-dimensional systems with non-Abelian vector potentials.

The developed approach of the boundary Green’s functions
can be naturally applied in higher-dimensional models for the

TABLE I. Summary of the main formulas: winding-number
expressions for the boundary and interface invariants. Both quan-
tities characterize properties of systems with broken translational
invariance, being themselves nevertheless expressed in terms of the
Green’s function G(0)(x, x) of the translationally invariant model.

Invariant Notation wn [det K̂], Eq. (78) Details

Boundary I (xϕ ) K̂ = Pexp
´ xϕ

0 dx L(x) L(x) in Eq. (36)

Interface QI K̂ = 1 − V̄0G(0)(0, 0) imp. strength V̄0

search of localized edge, surface, or hinge modes. However,
a technical challenge might consist in explicit solving of the
Dyson equation in the presence of higher-dimensional bound-
aries and impurity potentials.
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APPENDIX A: DERIVATION OF EQS. (25), (34), and (72)

Performing the sum over unit-cell index we obtainˆ ∞

−∞
dx G(0)(0, x)G(0)(x, 0)

=
∞∑

n=−∞

( L

2π

)2 ˆ π/L

−π/L
dk′

ˆ π/L

−π/L
dk ei(k−k′ )nL

×
ˆ L

0
dx̄ G(0)

k′ (0, x̄)G(0)
k (x̄, 0)

= L

2π

ˆ π/L

−π/L
dk

ˆ L

0
dx̄ G(0)

k (0, x̄)G(0)
k (x̄, 0). (A1)

Exploiting the Fourier representation (12) we further observe
that the above expression equals

L

2π

ˆ π/L

−π/L
dk

1

L2

∑
l1,l ′1,l2,l

′
2

ˆ L

0
dx̄ Ḡ(0)

k,l1l ′1
e− 2π i

L l ′1 x̄e
2π i
L l2 x̄Ḡ(0)

k,l2l ′2

= L

2π

ˆ π/L

−π/L
dk

1

L

∑
l1,l ′2

(
Ḡ(0)

k Ḡ(0)
k

)
l1,l ′2
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= − ∂

∂ω

⎡
⎣ L

2π

ˆ π/L

−π/L
dk

1

L

∑
l1,l ′2

(
Ḡ(0)

k

)
l1,l ′2

⎤
⎦

= − ∂

∂ω
G(0)(0, 0). (A2)

In this derivation we used the matrix identity Ḡ(0)
k

∂Ḡ(0) −1
k
∂ω

Ḡ(0)
k =

− ∂Ḡ(0)
k

∂ω
and the property ∂Ḡ(0) −1

k
∂ω

= 1 which follows from (13).
We also prove (34) which is a single-sided analog of (25).

Without loss of generality we set x0 = 0 since the coordinate
systems can be chosen arbitrarily. Summing up over the unit
cells, we obtainˆ ∞

0
dx e−0+xG(0)(0, x)G(0)(x, 0)

=
ˆ L

0
dx̄
( L

2π

)2 ˆ π/L

−π/L
dk′

ˆ π/L

−π/L
dk

×
∞∑

n=0

ei(k−k′+i0+ )nLG(0)
k′ (0, x̄)G(0)

k (x̄, 0)

=
( L

2π

)2 ˆ π/L

−π/L
dk′

ˆ π/L

−π/L
dk

1

1 − ei(k−k′+i0+ )L

×
ˆ L

0
dx̄ G(0)

k′ (0, x̄)G(0)
k (x̄, 0). (A3)

To evaluate the latter integral, we differentiate (4) with respect
to ω

G(0)
k (x̄, 0) + (z − H→

x̄ )
∂G(0)

k (x̄, 0)

∂ω
= 0. (A4)

Multiplying the result with G(0)
k′ (0, x̄) and integrating over x̄

from 0+ to L−, we obtain with help of (5):ˆ L

0
dx̄ G(0)

k′ (0, x̄)G(0)
k (x̄, 0)

= −
ˆ L−

0+
dx̄ G(0)

k′ (0, x̄)(H←
x̄ − H→

x̄ )
∂G(0)

k (x̄, 0)

∂ω

= 1

2m

[
G(0)

2,k′ (0, x̄)
∂G(0)

k (x̄, 0)

∂ω
− G(0)

k′ (0, x̄)
∂G(0)

1,k (x̄, 0)

∂ω

− 2iG(0)
k′ (0, x̄)A(x̄)G(0)

k (x̄, 0)

]L−

0+
. (A5)

Taking into account the boundary conditions (6) and (7) as
well as the property (17), we derive

2m
ˆ L

0
dx̄ G(0)

k′ (0, x̄)G(0)
k (x̄, 0)

=
[

G(0)
2,k′ (0, 0+)

∂G(0)
k (0, 0)

∂ω
− G(0)

k′ (0, 0)
∂G(0)

1,k (0+, 0)

∂ω

− 2iG(0)
k′ (0, 0)A(0)

∂G(0)
k (0, 0)

∂ω

]
(ei(k−k′ )L − 1)

− 2mei(k−k′ )L ∂G(0)
k (0, 0)

∂ω
. (A6)

Since

L

2π

ˆ π/L

−π/L
dk′ ei(k−k′ )L

1 − ei(k−k′+i0+ )

= −1 + 1

2π i

˛
k′∈[−π/L,π/L]

d (eik′L )

eik′L − eikLe−0+L
= 0, (A7)

the last term of (A6) does not give any contribution to (A3).
The remaining terms of (A6) yield

− 2m
ˆ ∞

0
dx e−0+xG(0)(0, x)G(0)(x, 0)

=
( L

2π

)2 ˆ π/L

−π/L
dk′

ˆ π/L

−π/L
dk

×
[

G(0)
2,k′ (0, 0+)

∂G(0)
k (0, 0)

∂ω
− G(0)

k′ (0, 0)
∂G(0)

1,k (0+, 0)

∂ω

− 2iG(0)
k′ (0, 0)A(0)

∂G(0)
k (0, 0)

∂ω

]
, (A8)

which proves (34) for x0 = 0.
Finally, to prove (72), we notice that (25) can be easily

generalized to

ˆ ∞

−∞
dx G(0)(x′′, x)G(0)(x, x′) = −∂G(0)(x′′, x′)

∂ω
. (A9)

Then, using Eq. (23) we show that
ˆ ∞

−∞
dx G(xϕ, x)G(x, xϕ )

= −∂G(0)(xϕ, xϕ )

∂ω

+ G(0)(xϕ, 0)[G(0)(0, 0)]−1 ∂G(0)(0, xϕ )

∂ω

+ ∂G(0)(xϕ, 0)

∂ω
[G(0)(0, 0)]−1G(0)(0, xϕ )

+ G(0)(xϕ, 0)
∂[G(0)(0, 0)]−1

∂ω
G(0)(0, xϕ )

= −∂G(xϕ, xϕ )

∂ω
. (A10)

APPENDIX B: PROOF OF THE IDENTITIES (37) AND (55)

We consider the Green’s function

Gx0 (x, x′) = G(0)(x, x′)

− G(0)(x, x0)[G(0)(x0, x0)]−1G(0)(x0, x′), (B1)

which corresponds to a model with the infinite-strength delta
impurity at x = x0, and for x0 = 0 it coincides with (20).

For the arguments’ values x < x0 and x′ > x0 this function
identically vanishes, Gx0 (x, x′) ≡ 0, since such points belong
to the different subsystems, between which there is no com-
munication. Differentiating the right-hand side of (B1) with
respect to both x and x′, and then taking the limits x → x−

0
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and x′ → x+
0 , we obtain

G(0)(x−
0 , x+

0 ) = G(0)
1 (x−

0 , x0)[G(0)(x0, x0)]−1G(0)
2 (x0, x+

0 ).
(B2)

This proves the identity (55).
Analogously, we establish that

G(0)(x+
0 , x−

0 ) = G(0)
1 (x+

0 , x0)[G(0)(x0, x0)]−1G(0)
2 (x0, x−

0 ).
(B3)

Comparing the right-hand sides of (B2) and (B3) with each
other, and accounting the properties (17) and (18), we estab-
lish

G(0)
1 (x±

0 , x0)[G(0)(x0, x0)]−1 + iA(x0)

= [G(0)(x0, x0)]−1G(0)
2 (x0, x±

0 ) − iA(x0). (B4)

For the upper sign choice, this relation coincides with (37).

APPENDIX C: DERIVATION OF (42)

To derive (42), we consider

QP(xϕ ) = −
ˆ L+xϕ

xϕ

dx
x

L
[ρ (0)(x) − ρ̄]

= QP(0) −
ˆ L+xϕ

L
dx

x

L
[ρ (0)(x) − ρ̄]

+
ˆ xϕ

0
dx

x

L
[ρ (0)(x) − ρ̄]

= QP(0) −
ˆ xϕ

0
dx

x + L

L
[ρ (0)(x) − ρ̄]

+
ˆ xϕ

0
dx

x

L
[ρ (0)(x) − ρ̄]

= QP(0) −
ˆ xϕ

0
dx[ρ (0)(x) − ρ̄]

= QP(0) + ρ̄xϕ −
ˆ xϕ

0
dx ρ (0)(x). (C1)

APPENDIX D: AVERAGE DENSITY IN THE BULK

Here we would like to prove that whenever the chemical
potential is located above the gap number ν, the average
density in the bulk amounts to ρ̄ = ν

L . In order to proceed,
we review some elementary properties of the bulk eigenstates
of the system in close analogy with [35]. In particular, the
eigenstates satisfy the Bloch condition

ψk,α (x + L) = eikLψk,α (x), (D1)

and are normalized to unity over the unit cell

ˆ L

0
dx ψ

†
k,α

(x)ψk,α (x) =
Nc∑

λ=1

ˆ L

0
dx ψ

λ†
k,α

(x)ψλ
k,α (x). = 1.

(D2)

Furthermore, the following completeness and identity resolu-
tion identities hold:

L

2π

ˆ π/L

−π/L
ψk,α (x)ψ†

k,α
(x′) = 1Ncδ(x − x′), (D3)

L

2π

ˆ
dx ψ

†
k,α

(x)ψk′,α′ (x) = δ(k − k′)δα,α′ . (D4)

With this in hand we can represent the bulk single-particle
Green’s function as

G(0)(x, x′) = L

2π

∑
α

ˆ π/L

−π/L
dk

ψk,α (x)ψ†
k,α

(x′)

ω − εk,α + iη
. (D5)

Using the representation (D5) as well as the normalization
condition (D2), we get from the definition (33)

ρ̄ = 1

L

ˆ L

0
dx ρ (0)(x)

= − 1

π

1

L

L

2π
Im

ˆ
dω 	(μ − ω)

ˆ L

0
dx tr{G(0)(x, x)}

= 1

L

L

2π

∑
α

ˆ π/L

−π/L
dk

ˆ
dω 	(μ − ω)

×
ˆ L

0
dx tr{ψk,α (x)ψ†

k,α
(x)}δ(ω − εk,α )

= 1

L

L

2π

∑
α

ˆ π/L

−π/L
dk

ˆ
dω 	(μ − ω)

×
ˆ L

0
dx ψ

†
k,α

(x)ψk,α (x)δ(ω − εk,α )

= 1

L

∑
α

ˆ
dω 	(μ − ω)δ(ω − εk,α ) = ν

L
, (D6)

where ν is the number of occupied bands below the chemical
potential.

APPENDIX E: SCALING OF QP AND STRONGLY
OSCILLATING TERMS IN LOW-ENERGY THEORY

1. Polarization charge

We start our discussion with the evaluation of the bulk
density (32) in the low-energy limit

ρ (0)(x) = − 1

π
Im

ˆ 0

−∞
dz̄ trG(0)(x, x). (E1)

In the low-energy approximation we get

Im[trG(0)(x, x)]

= 2
Nc∑

λ=1

(z̄ + Re[Ũλλeiϕν̄,λe2ikF x]|V̂ν̄,λ|)Im[F̂λ(z̄)], (E2)

where we have defined Ũ = U †
2 U1. In the following we

are only interested in δρ (0)(x) = ρ (0)(x) − ρ̄. Averaging (E4)
over the unit cell and using kF = ν̄π

L we obtain

ρ̄ = − 2

π

Nc∑
λ=1

ˆ 0

−∞
dz̄ z̄ Im[F̂λ(z̄)]. (E3)
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It thus follows

δρ (0)(x) = − 2

π

Nc∑
λ=1

Re[Ũλλeiϕν̄,λe2ikF x]|V̂ν̄,λ| (E4)

×
ˆ 0

−∞
dz̄ Im[F̂λ(z̄)]. (E5)

As it is usually the case in (1 + 1)-dimensional field theory,
the integrals featuring only a single propagator have to be
complemented with the high-energy cutoff �ε � εF � vF kF .
Bearing this in mind we write

− 1

π

ˆ 0

−∞
dz̄ Im[F̂λ(z̄)] � − 1

π

ˆ 0

−�ε

dz̄ Im[F̂λ(z̄)]

= − 1

2πvF

ˆ −1

− �ε
|V̂ν̄,λ |

dω̄
1√

ω̄2 − 1
� 1

2πvF
ln

|V̂ν̄,λ|
�ε

. (E6)

Hence, we conclude that

ρ (0)(x) �
Nc∑

λ=1

(Re[Ũλλeiϕν̄,λe2ikF x]|V̂ν̄,λ|)
ln |V̂ν̄,λ|

�ε

πvF
. (E7)

Substituting this result into the definition of the polarization
charge (41) and performing the integral we find

QP = − 1

π

Nc∑
λ=1

Im[Ũλλeiϕν̄,λ]
|V̂ν̄,λ|
2vF kF

ln
|V̂ν̄,λ|
2�E

= O

(
D

vF kF
ln

D

vF kF

)
, (E8)

where D = max1�λ�Nc |V̂ν̄,λ|. This justifies the assertion made
in Sec. VIII B.

2. Strongly oscillating terms in (109)

The fast oscillating contribution to (109) is given by

FO = 1

π
Im

ˆ 0

−∞
dz̄ tr

{
[G(0)(xϕ, xϕ )]−1

ˆ
dk̄

2π

ˆ
dk̄′

2π

×
ˆ ∞

xϕ

dx ei(k̄−k̄′+i0+ )(x−xϕ )

×
∑
a,b,b′

Ḡ(0),eff
k̄′,b′a Ḡ(0),eff

k̄,āb
eikF (b′−b)xϕ e−2ikF ax

}

= 1

π
Im

ˆ 0

−∞
dz̄ tr

{
[G(0)(xϕ, xϕ )]−1

ˆ
dk̄

2π

ˆ
dk̄′

2π

× i
∑
a,b,b′

Ḡ(0),eff
k̄′,b′a Ḡ(0),eff

k̄,āb
eikF (b′−b−2a)xϕ

k̄ − k̄′ − 2akF + iη

}
, ā = −a.

(E9)

To the leading order in D
vF kF

we have

FO ≈ − 1

2kF π
Im

ˆ −D

−�c

dz̄tr

{
iz̄

F1(z̄) + F2(z̄)

× [
F 2

1 (z̄)e−2ikF xϕ − F 2
2 (z̄)e2ikF xϕ

]}

≈ −Nc sin(2kF xϕ )

4vF kF π

ˆ −D

−�c

dz̄
z̄√

z̄2 − D2

= O

(
D

vF kF

)
. (E10)

APPENDIX F: HIGH-ENERGY CORRECTION
TO THE LOW-ENERGY APPROXIMATION

OF THE BOUNDARY CHARGE

Let us compute the correction term Qcorr
B as the boundary

charge in the gapless model with the parabolic spectrum. Its
bulk Green’s function reads as

G(p)(x, x′) =
ˆ ∞

−∞

dk

2π

eik(x−x′ )

ω + iη − k2

2m

= −im
ei|x−x′ |√2m(ω+iη)

√
2m(ω + iη)

. (F1)

Inserting this into the general formula (30) we evaluate

Qcorr
B = 1

π
Im

ˆ μ

−∞
dω

ˆ ∞

0
dx

{
−im

e2ix
√

2m(ω+iη)

√
2m(ω + iη)

}

= 1

4π
Im

ˆ μ

−∞

dω

ω + iη
= −1

4
. (F2)

APPENDIX G: PROOF OF EQ. (139)

First, we notice the useful relations

F 2
1 = 1

4v2
F

1

Vν̄V †
ν̄ − z̄2

, F 2
2 = 1

4v2
F

1

V †
ν̄ Vν̄ − z̄2

, (G1)

and

∂F1

∂ z̄
= 4v2

F z̄F 3
1 ,

∂ (z̄F1)

∂ z̄
= 4v2

FVν̄V †
ν̄ F 3

1 , (G2)

∂F2

∂ z̄
= 4v2

F z̄F 3
2 ,

∂ (z̄F2)

∂ z̄
= 4v2

FV †
ν̄ Vν̄F 3

2 . (G3)

On the basis of (138) we evaluate

1

2vF kF

∂P(xϕ )

∂xϕ

= tr
{
[G(0)(xϕ, xϕ )]−1

(
F 2

1 Vν̄e2ikF xϕ + V †
ν̄ F 2

1 e−2ikF xϕ
)}

− tr
{
[G(0)(xϕ, xϕ )]−1

× (F1Vν̄e2ikF xϕ − V †
ν̄ F1e−2ikF xϕ )[G(0)(xϕ, xϕ )]−1

× (
F 2

1 Vν̄e2ikF xϕ − V †
ν̄ F 2

1 e−2ikF xϕ
)}

, (G4)

where we employed the relation ∂G−1

∂xϕ
= −G−1 ∂G

∂xϕ
G−1. Trans-

forming further, we obtain

1

2vF kF

∂P(xϕ )

∂xϕ

= tr
{
F 2

1 Vν̄e2ikF xϕ [G(0)(xϕ, xϕ )]−1

× (z̄F1 + z̄F2 + 2V †
ν̄ F1e−2ikF xϕ )[G(0)(xϕ, xϕ )]−1

}
+ tr

{
V †

ν̄ F 2
1 e−2ikF xϕ [G(0)(xϕ, xϕ )]−1

× (z̄F1 + z̄F2 + 2F1Vν̄e2ikF xϕ )[G(0)(xϕ, xϕ )]−1
}
. (G5)
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Let us now consider

1

2vF kF

[
∂P(xϕ )

∂xϕ

+ kF

vF

∂

∂ z̄
tr{[G(0)(xϕ, xϕ )]−1}

]

= tr
{
F 2

1 Vν̄e2ikF xϕ [G(0)(xϕ, xϕ )]−1

× (z̄F1 + z̄F2 + 2V †
ν̄ F1e−2ikF xϕ )[G(0)(xϕ, xϕ )]−1

}
+ tr

{
V †

ν̄ F 2
1 e−2ikF xϕ [G(0)(xϕ, xϕ )]−1

× (z̄F1 + z̄F2 + 2F1Vν̄e2ikF xϕ )[G(0)(xϕ, xϕ )]−1
}

− 2tr
{
[G(0)(xϕ, xϕ )]−1

(
Vν̄V †

ν̄ F 3
1 + F 3

2 V †
ν̄ Vν̄

+ z̄F 3
1 Vν̄e2ikF xϕ + V †

ν̄ z̄F 3
1 e−2ikF xϕ

)
[G(0)(xϕ, xϕ )]−1

}
.

(G6)

Shortening the notation G(0)(xϕ, xϕ ) = G and re-arranging
terms in the above expression, we find its alternative repre-
sentation

= tr
{
[(z̄F1 + V †

ν̄ F1e−2ikF xϕ )G − G(z̄F2 + V †
ν̄ F1e−2ikF xϕ )]

× e2ikF xϕ G−1
(
G−1F 2

1 Vν̄ − F 2
1 Vν̄G−1

)
G−1

}
+ tr

{
[(z̄F2 + F1Vν̄e2ikF xϕ )G − G(z̄F1 + F1Vν̄e2ikF xϕ )]

× e−2ikF xϕ G−1(G−1V †
ν̄ F 2

1 − V †
ν̄ F 2

1 G−1)G−1}. (G7)

By virtue of the identities

(z̄F1 + V †
ν̄ F1e−2ikF xϕ )G − G(zF2 + V †

ν̄ F1e−2ikF xϕ ) = 0, (G8)

(z̄F2 + F1Vν̄e2ikF xϕ )G − G(z̄F1 + F1Vν̄e2ikF xϕ ) = 0, (G9)

which can be checked by a direct calculation, the terms in
(G7) are mutually canceling, and thus (139) is proven.

APPENDIX H: RESIDUA VALUES FOR THE BOUND
STATE IN RIGHT AND LEFT SUBSYSTEMS

Suppose that a root z̄(p)
r of the equation det G(0)(xϕ, xϕ ) =

0 gives a pole of the boundary Green’s function G(x, x; z̄),
which corresponds to a bound state in the right subsystem x >

xϕ . In the vicinity of the pole we approximate

G(x, x; z̄)

≈ − 1

z̄ − z̄(p)
r

1

∂z̄ det G(0)
(
xϕ, xϕ ; z̄(p)

r
)

× G(0)
(
x, xϕ ; z̄(p)

r

)
adj
[
G(0)

(
xϕ, xϕ ; z̄(p)

r

)]
G(0)

(
xϕ, x; z̄p

r

)
= |ψe,r (x)〉〈ψe,r (x)|

z̄ − z̄(p)
r

. (H1)

Hereby, adj[G(0)] = det G(0) [G(0)]−1 denotes the adjugate
matrix, which is regular at the pole frequency.

The normalization condition of the edge state |ψe,r (x)〉 in
the right subsystem

ˆ ∞

xϕ

dx〈ψe,r (x)|ψe,r (x)〉 = 1 (H2)

implies that

1 = − 1

∂z̄ det G(0)
(
xϕ, xϕ ; z̄(p)

r
) tr

{
adj
[
G(0)(xϕ, xϕ ; z̄(p)

r

)]

×
ˆ ∞

xϕ

dx e−0+xG(0)(xϕ, x; z̄p
r

)
G(0)(x, xϕ ; z̄p

r

)}
. (H3)

Using the analogous integral evaluation in Sec. VIII B, we
obtain

1 = − 1

∂z̄ det G(0)
(
xϕ, xϕ ; z̄(p)

r
)

×
(
−1

2
∂z̄ det G(0)

(
xϕ, xϕ ; z̄(p)

r

)
+ P

(
xϕ ; z̄(p)

r

)
det G(0)(xϕ, xϕ ; z̄(p)

r

))
, (H4)

which gives the residue value

Rr (xϕ ) = 1

2

(
1 − 2P

(
xϕ ; z̄(p)

r
)

det G(0)
(
xϕ, xϕ ; z̄(p)

r
)

∂z̄ det G(0)
(
xϕ, xϕ ; z̄(p)

r
)

)
= 1.

(H5)

In turn, for a root z̄(p)
l of the equation det G(0)(xϕ, xϕ ) = 0

corresponding to the edges state |ψe,l (x)〉 in the left subsystem
x < xϕ , we have an approximation of the boundary Green’s
function in the vicinity of z̄ ≈ z̄(p)

l , which is similar to (H1).
But, the normalization condition

1 =
ˆ xϕ

−∞
dx〈ψe,l (x)|ψe,l (x)〉

= − 1

∂z̄ det G(0)
(
xϕ, xϕ ; z̄(p)

l

) tr

{
adj
[
G(0)

(
xϕ, xϕ ; z̄(p)

l

)]

×
ˆ xϕ

−∞
dx e0+xG(0)(xϕ, x; z̄p

l

)
G(0)(x, xϕ ; z̄p

l

)}
(H6)

contains the complementary integration range (−∞, xϕ]. Em-
ploying in this case (111) instead of (110), we eventually
obtain

1 = − 1

∂z̄ det G(0)
(
xϕ, xϕ ; z̄(p)

l

)
×
(

−1

2
∂z̄ det G(0)(xϕ, xϕ ; z̄(p)

l

)

− P
(
xϕ ; z̄(p)

l

)
det G(0)

(
xϕ, xϕ ; z̄(p)

l

))
, (H7)

which gives the residue value

Rl (xϕ ) = 1

2

(
1 − 2P

(
xϕ ; z̄(p)

l

)
det G(0)

(
xϕ, xϕ ; z̄(p)

l

)
∂z̄ det G(0)

(
xϕ, xϕ ; z̄(p)

l

)
)

= 0.

(H8)
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